2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex
);
33 static LIST_HEAD(all_q_list
);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
44 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++)
45 if (hctx
->ctx_map
.map
[i
].word
)
51 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
52 struct blk_mq_ctx
*ctx
)
54 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
64 struct blk_mq_ctx
*ctx
)
66 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
68 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
69 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
73 struct blk_mq_ctx
*ctx
)
75 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
77 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
80 static int blk_mq_queue_enter(struct request_queue
*q
, gfp_t gfp
)
85 if (percpu_ref_tryget_live(&q
->mq_usage_counter
))
88 if (!(gfp
& __GFP_WAIT
))
91 ret
= wait_event_interruptible(q
->mq_freeze_wq
,
92 !atomic_read(&q
->mq_freeze_depth
) ||
94 if (blk_queue_dying(q
))
101 static void blk_mq_queue_exit(struct request_queue
*q
)
103 percpu_ref_put(&q
->mq_usage_counter
);
106 static void blk_mq_usage_counter_release(struct percpu_ref
*ref
)
108 struct request_queue
*q
=
109 container_of(ref
, struct request_queue
, mq_usage_counter
);
111 wake_up_all(&q
->mq_freeze_wq
);
114 void blk_mq_freeze_queue_start(struct request_queue
*q
)
118 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
119 if (freeze_depth
== 1) {
120 percpu_ref_kill(&q
->mq_usage_counter
);
121 blk_mq_run_hw_queues(q
, false);
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
126 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
128 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->mq_usage_counter
));
132 * Guarantee no request is in use, so we can change any data structure of
133 * the queue afterward.
135 void blk_mq_freeze_queue(struct request_queue
*q
)
137 blk_mq_freeze_queue_start(q
);
138 blk_mq_freeze_queue_wait(q
);
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
142 void blk_mq_unfreeze_queue(struct request_queue
*q
)
146 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
147 WARN_ON_ONCE(freeze_depth
< 0);
149 percpu_ref_reinit(&q
->mq_usage_counter
);
150 wake_up_all(&q
->mq_freeze_wq
);
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
155 void blk_mq_wake_waiters(struct request_queue
*q
)
157 struct blk_mq_hw_ctx
*hctx
;
160 queue_for_each_hw_ctx(q
, hctx
, i
)
161 if (blk_mq_hw_queue_mapped(hctx
))
162 blk_mq_tag_wakeup_all(hctx
->tags
, true);
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
169 wake_up_all(&q
->mq_freeze_wq
);
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
174 return blk_mq_has_free_tags(hctx
->tags
);
176 EXPORT_SYMBOL(blk_mq_can_queue
);
178 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
179 struct request
*rq
, unsigned int rw_flags
)
181 if (blk_queue_io_stat(q
))
182 rw_flags
|= REQ_IO_STAT
;
184 INIT_LIST_HEAD(&rq
->queuelist
);
185 /* csd/requeue_work/fifo_time is initialized before use */
188 rq
->cmd_flags
|= rw_flags
;
189 /* do not touch atomic flags, it needs atomic ops against the timer */
191 INIT_HLIST_NODE(&rq
->hash
);
192 RB_CLEAR_NODE(&rq
->rb_node
);
195 rq
->start_time
= jiffies
;
196 #ifdef CONFIG_BLK_CGROUP
198 set_start_time_ns(rq
);
199 rq
->io_start_time_ns
= 0;
201 rq
->nr_phys_segments
= 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq
->nr_integrity_segments
= 0;
206 /* tag was already set */
216 INIT_LIST_HEAD(&rq
->timeout_list
);
220 rq
->end_io_data
= NULL
;
223 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
226 static struct request
*
227 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int rw
)
232 tag
= blk_mq_get_tag(data
);
233 if (tag
!= BLK_MQ_TAG_FAIL
) {
234 rq
= data
->hctx
->tags
->rqs
[tag
];
236 if (blk_mq_tag_busy(data
->hctx
)) {
237 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
238 atomic_inc(&data
->hctx
->nr_active
);
242 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, rw
);
249 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
, gfp_t gfp
,
252 struct blk_mq_ctx
*ctx
;
253 struct blk_mq_hw_ctx
*hctx
;
255 struct blk_mq_alloc_data alloc_data
;
258 ret
= blk_mq_queue_enter(q
, gfp
);
262 ctx
= blk_mq_get_ctx(q
);
263 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
264 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
& ~__GFP_WAIT
,
265 reserved
, ctx
, hctx
);
267 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
268 if (!rq
&& (gfp
& __GFP_WAIT
)) {
269 __blk_mq_run_hw_queue(hctx
);
272 ctx
= blk_mq_get_ctx(q
);
273 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
274 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
, reserved
, ctx
,
276 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
277 ctx
= alloc_data
.ctx
;
281 blk_mq_queue_exit(q
);
282 return ERR_PTR(-EWOULDBLOCK
);
286 EXPORT_SYMBOL(blk_mq_alloc_request
);
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
289 struct blk_mq_ctx
*ctx
, struct request
*rq
)
291 const int tag
= rq
->tag
;
292 struct request_queue
*q
= rq
->q
;
294 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
295 atomic_dec(&hctx
->nr_active
);
298 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
299 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
300 blk_mq_queue_exit(q
);
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
305 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
307 ctx
->rq_completed
[rq_is_sync(rq
)]++;
308 __blk_mq_free_request(hctx
, ctx
, rq
);
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request
);
313 void blk_mq_free_request(struct request
*rq
)
315 struct blk_mq_hw_ctx
*hctx
;
316 struct request_queue
*q
= rq
->q
;
318 hctx
= q
->mq_ops
->map_queue(q
, rq
->mq_ctx
->cpu
);
319 blk_mq_free_hctx_request(hctx
, rq
);
321 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
323 inline void __blk_mq_end_request(struct request
*rq
, int error
)
325 blk_account_io_done(rq
);
328 rq
->end_io(rq
, error
);
330 if (unlikely(blk_bidi_rq(rq
)))
331 blk_mq_free_request(rq
->next_rq
);
332 blk_mq_free_request(rq
);
335 EXPORT_SYMBOL(__blk_mq_end_request
);
337 void blk_mq_end_request(struct request
*rq
, int error
)
339 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
341 __blk_mq_end_request(rq
, error
);
343 EXPORT_SYMBOL(blk_mq_end_request
);
345 static void __blk_mq_complete_request_remote(void *data
)
347 struct request
*rq
= data
;
349 rq
->q
->softirq_done_fn(rq
);
352 static void blk_mq_ipi_complete_request(struct request
*rq
)
354 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
358 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
359 rq
->q
->softirq_done_fn(rq
);
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
365 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
367 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
368 rq
->csd
.func
= __blk_mq_complete_request_remote
;
371 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
373 rq
->q
->softirq_done_fn(rq
);
378 void __blk_mq_complete_request(struct request
*rq
)
380 struct request_queue
*q
= rq
->q
;
382 if (!q
->softirq_done_fn
)
383 blk_mq_end_request(rq
, rq
->errors
);
385 blk_mq_ipi_complete_request(rq
);
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
396 void blk_mq_complete_request(struct request
*rq
, int error
)
398 struct request_queue
*q
= rq
->q
;
400 if (unlikely(blk_should_fake_timeout(q
)))
402 if (!blk_mark_rq_complete(rq
)) {
404 __blk_mq_complete_request(rq
);
407 EXPORT_SYMBOL(blk_mq_complete_request
);
409 int blk_mq_request_started(struct request
*rq
)
411 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
413 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
415 void blk_mq_start_request(struct request
*rq
)
417 struct request_queue
*q
= rq
->q
;
419 trace_block_rq_issue(q
, rq
);
421 rq
->resid_len
= blk_rq_bytes(rq
);
422 if (unlikely(blk_bidi_rq(rq
)))
423 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
428 * Ensure that ->deadline is visible before set the started
429 * flag and clear the completed flag.
431 smp_mb__before_atomic();
434 * Mark us as started and clear complete. Complete might have been
435 * set if requeue raced with timeout, which then marked it as
436 * complete. So be sure to clear complete again when we start
437 * the request, otherwise we'll ignore the completion event.
439 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
440 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
441 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
442 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
444 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
446 * Make sure space for the drain appears. We know we can do
447 * this because max_hw_segments has been adjusted to be one
448 * fewer than the device can handle.
450 rq
->nr_phys_segments
++;
453 EXPORT_SYMBOL(blk_mq_start_request
);
455 static void __blk_mq_requeue_request(struct request
*rq
)
457 struct request_queue
*q
= rq
->q
;
459 trace_block_rq_requeue(q
, rq
);
461 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
462 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
463 rq
->nr_phys_segments
--;
467 void blk_mq_requeue_request(struct request
*rq
)
469 __blk_mq_requeue_request(rq
);
471 BUG_ON(blk_queued_rq(rq
));
472 blk_mq_add_to_requeue_list(rq
, true);
474 EXPORT_SYMBOL(blk_mq_requeue_request
);
476 static void blk_mq_requeue_work(struct work_struct
*work
)
478 struct request_queue
*q
=
479 container_of(work
, struct request_queue
, requeue_work
);
481 struct request
*rq
, *next
;
484 spin_lock_irqsave(&q
->requeue_lock
, flags
);
485 list_splice_init(&q
->requeue_list
, &rq_list
);
486 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
488 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
489 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
492 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
493 list_del_init(&rq
->queuelist
);
494 blk_mq_insert_request(rq
, true, false, false);
497 while (!list_empty(&rq_list
)) {
498 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
499 list_del_init(&rq
->queuelist
);
500 blk_mq_insert_request(rq
, false, false, false);
504 * Use the start variant of queue running here, so that running
505 * the requeue work will kick stopped queues.
507 blk_mq_start_hw_queues(q
);
510 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
512 struct request_queue
*q
= rq
->q
;
516 * We abuse this flag that is otherwise used by the I/O scheduler to
517 * request head insertation from the workqueue.
519 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
521 spin_lock_irqsave(&q
->requeue_lock
, flags
);
523 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
524 list_add(&rq
->queuelist
, &q
->requeue_list
);
526 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
528 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
530 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
532 void blk_mq_cancel_requeue_work(struct request_queue
*q
)
534 cancel_work_sync(&q
->requeue_work
);
536 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work
);
538 void blk_mq_kick_requeue_list(struct request_queue
*q
)
540 kblockd_schedule_work(&q
->requeue_work
);
542 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
544 void blk_mq_abort_requeue_list(struct request_queue
*q
)
549 spin_lock_irqsave(&q
->requeue_lock
, flags
);
550 list_splice_init(&q
->requeue_list
, &rq_list
);
551 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
553 while (!list_empty(&rq_list
)) {
556 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
557 list_del_init(&rq
->queuelist
);
559 blk_mq_end_request(rq
, rq
->errors
);
562 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
564 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
566 return tags
->rqs
[tag
];
568 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
570 struct blk_mq_timeout_data
{
572 unsigned int next_set
;
575 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
577 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
578 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
581 * We know that complete is set at this point. If STARTED isn't set
582 * anymore, then the request isn't active and the "timeout" should
583 * just be ignored. This can happen due to the bitflag ordering.
584 * Timeout first checks if STARTED is set, and if it is, assumes
585 * the request is active. But if we race with completion, then
586 * we both flags will get cleared. So check here again, and ignore
587 * a timeout event with a request that isn't active.
589 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
593 ret
= ops
->timeout(req
, reserved
);
597 __blk_mq_complete_request(req
);
599 case BLK_EH_RESET_TIMER
:
601 blk_clear_rq_complete(req
);
603 case BLK_EH_NOT_HANDLED
:
606 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
611 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
612 struct request
*rq
, void *priv
, bool reserved
)
614 struct blk_mq_timeout_data
*data
= priv
;
616 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
618 * If a request wasn't started before the queue was
619 * marked dying, kill it here or it'll go unnoticed.
621 if (unlikely(blk_queue_dying(rq
->q
)))
622 blk_mq_complete_request(rq
, -EIO
);
625 if (rq
->cmd_flags
& REQ_NO_TIMEOUT
)
628 if (time_after_eq(jiffies
, rq
->deadline
)) {
629 if (!blk_mark_rq_complete(rq
))
630 blk_mq_rq_timed_out(rq
, reserved
);
631 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
632 data
->next
= rq
->deadline
;
637 static void blk_mq_rq_timer(unsigned long priv
)
639 struct request_queue
*q
= (struct request_queue
*)priv
;
640 struct blk_mq_timeout_data data
= {
646 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
649 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
650 mod_timer(&q
->timeout
, data
.next
);
652 struct blk_mq_hw_ctx
*hctx
;
654 queue_for_each_hw_ctx(q
, hctx
, i
) {
655 /* the hctx may be unmapped, so check it here */
656 if (blk_mq_hw_queue_mapped(hctx
))
657 blk_mq_tag_idle(hctx
);
663 * Reverse check our software queue for entries that we could potentially
664 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
665 * too much time checking for merges.
667 static bool blk_mq_attempt_merge(struct request_queue
*q
,
668 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
673 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
679 if (!blk_rq_merge_ok(rq
, bio
))
682 el_ret
= blk_try_merge(rq
, bio
);
683 if (el_ret
== ELEVATOR_BACK_MERGE
) {
684 if (bio_attempt_back_merge(q
, rq
, bio
)) {
689 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
690 if (bio_attempt_front_merge(q
, rq
, bio
)) {
702 * Process software queues that have been marked busy, splicing them
703 * to the for-dispatch
705 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
707 struct blk_mq_ctx
*ctx
;
710 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++) {
711 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
712 unsigned int off
, bit
;
718 off
= i
* hctx
->ctx_map
.bits_per_word
;
720 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
721 if (bit
>= bm
->depth
)
724 ctx
= hctx
->ctxs
[bit
+ off
];
725 clear_bit(bit
, &bm
->word
);
726 spin_lock(&ctx
->lock
);
727 list_splice_tail_init(&ctx
->rq_list
, list
);
728 spin_unlock(&ctx
->lock
);
736 * Run this hardware queue, pulling any software queues mapped to it in.
737 * Note that this function currently has various problems around ordering
738 * of IO. In particular, we'd like FIFO behaviour on handling existing
739 * items on the hctx->dispatch list. Ignore that for now.
741 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
743 struct request_queue
*q
= hctx
->queue
;
746 LIST_HEAD(driver_list
);
747 struct list_head
*dptr
;
750 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
));
752 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
758 * Touch any software queue that has pending entries.
760 flush_busy_ctxs(hctx
, &rq_list
);
763 * If we have previous entries on our dispatch list, grab them
764 * and stuff them at the front for more fair dispatch.
766 if (!list_empty_careful(&hctx
->dispatch
)) {
767 spin_lock(&hctx
->lock
);
768 if (!list_empty(&hctx
->dispatch
))
769 list_splice_init(&hctx
->dispatch
, &rq_list
);
770 spin_unlock(&hctx
->lock
);
774 * Start off with dptr being NULL, so we start the first request
775 * immediately, even if we have more pending.
780 * Now process all the entries, sending them to the driver.
783 while (!list_empty(&rq_list
)) {
784 struct blk_mq_queue_data bd
;
787 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
788 list_del_init(&rq
->queuelist
);
792 bd
.last
= list_empty(&rq_list
);
794 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
796 case BLK_MQ_RQ_QUEUE_OK
:
799 case BLK_MQ_RQ_QUEUE_BUSY
:
800 list_add(&rq
->queuelist
, &rq_list
);
801 __blk_mq_requeue_request(rq
);
804 pr_err("blk-mq: bad return on queue: %d\n", ret
);
805 case BLK_MQ_RQ_QUEUE_ERROR
:
807 blk_mq_end_request(rq
, rq
->errors
);
811 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
815 * We've done the first request. If we have more than 1
816 * left in the list, set dptr to defer issue.
818 if (!dptr
&& rq_list
.next
!= rq_list
.prev
)
823 hctx
->dispatched
[0]++;
824 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
825 hctx
->dispatched
[ilog2(queued
) + 1]++;
828 * Any items that need requeuing? Stuff them into hctx->dispatch,
829 * that is where we will continue on next queue run.
831 if (!list_empty(&rq_list
)) {
832 spin_lock(&hctx
->lock
);
833 list_splice(&rq_list
, &hctx
->dispatch
);
834 spin_unlock(&hctx
->lock
);
836 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
837 * it's possible the queue is stopped and restarted again
838 * before this. Queue restart will dispatch requests. And since
839 * requests in rq_list aren't added into hctx->dispatch yet,
840 * the requests in rq_list might get lost.
842 * blk_mq_run_hw_queue() already checks the STOPPED bit
844 blk_mq_run_hw_queue(hctx
, true);
849 * It'd be great if the workqueue API had a way to pass
850 * in a mask and had some smarts for more clever placement.
851 * For now we just round-robin here, switching for every
852 * BLK_MQ_CPU_WORK_BATCH queued items.
854 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
856 if (hctx
->queue
->nr_hw_queues
== 1)
857 return WORK_CPU_UNBOUND
;
859 if (--hctx
->next_cpu_batch
<= 0) {
860 int cpu
= hctx
->next_cpu
, next_cpu
;
862 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
863 if (next_cpu
>= nr_cpu_ids
)
864 next_cpu
= cpumask_first(hctx
->cpumask
);
866 hctx
->next_cpu
= next_cpu
;
867 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
872 return hctx
->next_cpu
;
875 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
877 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
) ||
878 !blk_mq_hw_queue_mapped(hctx
)))
883 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
884 __blk_mq_run_hw_queue(hctx
);
892 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
896 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
898 struct blk_mq_hw_ctx
*hctx
;
901 queue_for_each_hw_ctx(q
, hctx
, i
) {
902 if ((!blk_mq_hctx_has_pending(hctx
) &&
903 list_empty_careful(&hctx
->dispatch
)) ||
904 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
907 blk_mq_run_hw_queue(hctx
, async
);
910 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
912 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
914 cancel_delayed_work(&hctx
->run_work
);
915 cancel_delayed_work(&hctx
->delay_work
);
916 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
918 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
920 void blk_mq_stop_hw_queues(struct request_queue
*q
)
922 struct blk_mq_hw_ctx
*hctx
;
925 queue_for_each_hw_ctx(q
, hctx
, i
)
926 blk_mq_stop_hw_queue(hctx
);
928 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
930 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
932 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
934 blk_mq_run_hw_queue(hctx
, false);
936 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
938 void blk_mq_start_hw_queues(struct request_queue
*q
)
940 struct blk_mq_hw_ctx
*hctx
;
943 queue_for_each_hw_ctx(q
, hctx
, i
)
944 blk_mq_start_hw_queue(hctx
);
946 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
948 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
950 struct blk_mq_hw_ctx
*hctx
;
953 queue_for_each_hw_ctx(q
, hctx
, i
) {
954 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
957 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
958 blk_mq_run_hw_queue(hctx
, async
);
961 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
963 static void blk_mq_run_work_fn(struct work_struct
*work
)
965 struct blk_mq_hw_ctx
*hctx
;
967 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
969 __blk_mq_run_hw_queue(hctx
);
972 static void blk_mq_delay_work_fn(struct work_struct
*work
)
974 struct blk_mq_hw_ctx
*hctx
;
976 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
978 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
979 __blk_mq_run_hw_queue(hctx
);
982 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
984 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
987 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
988 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
990 EXPORT_SYMBOL(blk_mq_delay_queue
);
992 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
993 struct request
*rq
, bool at_head
)
995 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
997 trace_block_rq_insert(hctx
->queue
, rq
);
1000 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1002 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1004 blk_mq_hctx_mark_pending(hctx
, ctx
);
1007 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
1010 struct request_queue
*q
= rq
->q
;
1011 struct blk_mq_hw_ctx
*hctx
;
1012 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
, *current_ctx
;
1014 current_ctx
= blk_mq_get_ctx(q
);
1015 if (!cpu_online(ctx
->cpu
))
1016 rq
->mq_ctx
= ctx
= current_ctx
;
1018 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1020 spin_lock(&ctx
->lock
);
1021 __blk_mq_insert_request(hctx
, rq
, at_head
);
1022 spin_unlock(&ctx
->lock
);
1025 blk_mq_run_hw_queue(hctx
, async
);
1027 blk_mq_put_ctx(current_ctx
);
1030 static void blk_mq_insert_requests(struct request_queue
*q
,
1031 struct blk_mq_ctx
*ctx
,
1032 struct list_head
*list
,
1037 struct blk_mq_hw_ctx
*hctx
;
1038 struct blk_mq_ctx
*current_ctx
;
1040 trace_block_unplug(q
, depth
, !from_schedule
);
1042 current_ctx
= blk_mq_get_ctx(q
);
1044 if (!cpu_online(ctx
->cpu
))
1046 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1049 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1052 spin_lock(&ctx
->lock
);
1053 while (!list_empty(list
)) {
1056 rq
= list_first_entry(list
, struct request
, queuelist
);
1057 list_del_init(&rq
->queuelist
);
1059 __blk_mq_insert_request(hctx
, rq
, false);
1061 spin_unlock(&ctx
->lock
);
1063 blk_mq_run_hw_queue(hctx
, from_schedule
);
1064 blk_mq_put_ctx(current_ctx
);
1067 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1069 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1070 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1072 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1073 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1074 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1077 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1079 struct blk_mq_ctx
*this_ctx
;
1080 struct request_queue
*this_q
;
1083 LIST_HEAD(ctx_list
);
1086 list_splice_init(&plug
->mq_list
, &list
);
1088 list_sort(NULL
, &list
, plug_ctx_cmp
);
1094 while (!list_empty(&list
)) {
1095 rq
= list_entry_rq(list
.next
);
1096 list_del_init(&rq
->queuelist
);
1098 if (rq
->mq_ctx
!= this_ctx
) {
1100 blk_mq_insert_requests(this_q
, this_ctx
,
1105 this_ctx
= rq
->mq_ctx
;
1111 list_add_tail(&rq
->queuelist
, &ctx_list
);
1115 * If 'this_ctx' is set, we know we have entries to complete
1116 * on 'ctx_list'. Do those.
1119 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1124 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1126 init_request_from_bio(rq
, bio
);
1128 if (blk_do_io_stat(rq
))
1129 blk_account_io_start(rq
, 1);
1132 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1134 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1135 !blk_queue_nomerges(hctx
->queue
);
1138 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1139 struct blk_mq_ctx
*ctx
,
1140 struct request
*rq
, struct bio
*bio
)
1142 if (!hctx_allow_merges(hctx
)) {
1143 blk_mq_bio_to_request(rq
, bio
);
1144 spin_lock(&ctx
->lock
);
1146 __blk_mq_insert_request(hctx
, rq
, false);
1147 spin_unlock(&ctx
->lock
);
1150 struct request_queue
*q
= hctx
->queue
;
1152 spin_lock(&ctx
->lock
);
1153 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1154 blk_mq_bio_to_request(rq
, bio
);
1158 spin_unlock(&ctx
->lock
);
1159 __blk_mq_free_request(hctx
, ctx
, rq
);
1164 struct blk_map_ctx
{
1165 struct blk_mq_hw_ctx
*hctx
;
1166 struct blk_mq_ctx
*ctx
;
1169 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1171 struct blk_map_ctx
*data
)
1173 struct blk_mq_hw_ctx
*hctx
;
1174 struct blk_mq_ctx
*ctx
;
1176 int rw
= bio_data_dir(bio
);
1177 struct blk_mq_alloc_data alloc_data
;
1179 if (unlikely(blk_mq_queue_enter(q
, GFP_KERNEL
))) {
1184 ctx
= blk_mq_get_ctx(q
);
1185 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1187 if (rw_is_sync(bio
->bi_rw
))
1190 trace_block_getrq(q
, bio
, rw
);
1191 blk_mq_set_alloc_data(&alloc_data
, q
, GFP_ATOMIC
, false, ctx
,
1193 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1194 if (unlikely(!rq
)) {
1195 __blk_mq_run_hw_queue(hctx
);
1196 blk_mq_put_ctx(ctx
);
1197 trace_block_sleeprq(q
, bio
, rw
);
1199 ctx
= blk_mq_get_ctx(q
);
1200 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1201 blk_mq_set_alloc_data(&alloc_data
, q
,
1202 __GFP_WAIT
|GFP_ATOMIC
, false, ctx
, hctx
);
1203 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1204 ctx
= alloc_data
.ctx
;
1205 hctx
= alloc_data
.hctx
;
1214 static int blk_mq_direct_issue_request(struct request
*rq
)
1217 struct request_queue
*q
= rq
->q
;
1218 struct blk_mq_hw_ctx
*hctx
= q
->mq_ops
->map_queue(q
,
1220 struct blk_mq_queue_data bd
= {
1227 * For OK queue, we are done. For error, kill it. Any other
1228 * error (busy), just add it to our list as we previously
1231 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1232 if (ret
== BLK_MQ_RQ_QUEUE_OK
)
1235 __blk_mq_requeue_request(rq
);
1237 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1239 blk_mq_end_request(rq
, rq
->errors
);
1247 * Multiple hardware queue variant. This will not use per-process plugs,
1248 * but will attempt to bypass the hctx queueing if we can go straight to
1249 * hardware for SYNC IO.
1251 static void blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1253 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1254 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1255 struct blk_map_ctx data
;
1257 unsigned int request_count
= 0;
1258 struct blk_plug
*plug
;
1259 struct request
*same_queue_rq
= NULL
;
1261 blk_queue_bounce(q
, &bio
);
1263 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1268 blk_queue_split(q
, &bio
, q
->bio_split
);
1270 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1271 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1274 rq
= blk_mq_map_request(q
, bio
, &data
);
1278 if (unlikely(is_flush_fua
)) {
1279 blk_mq_bio_to_request(rq
, bio
);
1280 blk_insert_flush(rq
);
1284 plug
= current
->plug
;
1286 * If the driver supports defer issued based on 'last', then
1287 * queue it up like normal since we can potentially save some
1290 if (((plug
&& !blk_queue_nomerges(q
)) || is_sync
) &&
1291 !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1292 struct request
*old_rq
= NULL
;
1294 blk_mq_bio_to_request(rq
, bio
);
1297 * we do limited pluging. If bio can be merged, do merge.
1298 * Otherwise the existing request in the plug list will be
1299 * issued. So the plug list will have one request at most
1303 * The plug list might get flushed before this. If that
1304 * happens, same_queue_rq is invalid and plug list is empty
1306 if (same_queue_rq
&& !list_empty(&plug
->mq_list
)) {
1307 old_rq
= same_queue_rq
;
1308 list_del_init(&old_rq
->queuelist
);
1310 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1311 } else /* is_sync */
1313 blk_mq_put_ctx(data
.ctx
);
1316 if (!blk_mq_direct_issue_request(old_rq
))
1318 blk_mq_insert_request(old_rq
, false, true, true);
1322 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1324 * For a SYNC request, send it to the hardware immediately. For
1325 * an ASYNC request, just ensure that we run it later on. The
1326 * latter allows for merging opportunities and more efficient
1330 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1332 blk_mq_put_ctx(data
.ctx
);
1336 * Single hardware queue variant. This will attempt to use any per-process
1337 * plug for merging and IO deferral.
1339 static void blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1341 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1342 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1343 struct blk_plug
*plug
;
1344 unsigned int request_count
= 0;
1345 struct blk_map_ctx data
;
1348 blk_queue_bounce(q
, &bio
);
1350 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1355 blk_queue_split(q
, &bio
, q
->bio_split
);
1357 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1358 blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1361 rq
= blk_mq_map_request(q
, bio
, &data
);
1365 if (unlikely(is_flush_fua
)) {
1366 blk_mq_bio_to_request(rq
, bio
);
1367 blk_insert_flush(rq
);
1372 * A task plug currently exists. Since this is completely lockless,
1373 * utilize that to temporarily store requests until the task is
1374 * either done or scheduled away.
1376 plug
= current
->plug
;
1378 blk_mq_bio_to_request(rq
, bio
);
1379 if (list_empty(&plug
->mq_list
))
1380 trace_block_plug(q
);
1381 else if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1382 blk_flush_plug_list(plug
, false);
1383 trace_block_plug(q
);
1385 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1386 blk_mq_put_ctx(data
.ctx
);
1390 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1392 * For a SYNC request, send it to the hardware immediately. For
1393 * an ASYNC request, just ensure that we run it later on. The
1394 * latter allows for merging opportunities and more efficient
1398 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1401 blk_mq_put_ctx(data
.ctx
);
1405 * Default mapping to a software queue, since we use one per CPU.
1407 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1409 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1411 EXPORT_SYMBOL(blk_mq_map_queue
);
1413 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1414 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1418 if (tags
->rqs
&& set
->ops
->exit_request
) {
1421 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1424 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1426 tags
->rqs
[i
] = NULL
;
1430 while (!list_empty(&tags
->page_list
)) {
1431 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1432 list_del_init(&page
->lru
);
1433 __free_pages(page
, page
->private);
1438 blk_mq_free_tags(tags
);
1441 static size_t order_to_size(unsigned int order
)
1443 return (size_t)PAGE_SIZE
<< order
;
1446 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1447 unsigned int hctx_idx
)
1449 struct blk_mq_tags
*tags
;
1450 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1451 size_t rq_size
, left
;
1453 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1455 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1459 INIT_LIST_HEAD(&tags
->page_list
);
1461 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1462 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1465 blk_mq_free_tags(tags
);
1470 * rq_size is the size of the request plus driver payload, rounded
1471 * to the cacheline size
1473 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1475 left
= rq_size
* set
->queue_depth
;
1477 for (i
= 0; i
< set
->queue_depth
; ) {
1478 int this_order
= max_order
;
1483 while (left
< order_to_size(this_order
- 1) && this_order
)
1487 page
= alloc_pages_node(set
->numa_node
,
1488 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1494 if (order_to_size(this_order
) < rq_size
)
1501 page
->private = this_order
;
1502 list_add_tail(&page
->lru
, &tags
->page_list
);
1504 p
= page_address(page
);
1505 entries_per_page
= order_to_size(this_order
) / rq_size
;
1506 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1507 left
-= to_do
* rq_size
;
1508 for (j
= 0; j
< to_do
; j
++) {
1510 if (set
->ops
->init_request
) {
1511 if (set
->ops
->init_request(set
->driver_data
,
1512 tags
->rqs
[i
], hctx_idx
, i
,
1514 tags
->rqs
[i
] = NULL
;
1526 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1530 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1535 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1537 unsigned int bpw
= 8, total
, num_maps
, i
;
1539 bitmap
->bits_per_word
= bpw
;
1541 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1542 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1548 for (i
= 0; i
< num_maps
; i
++) {
1549 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1550 total
-= bitmap
->map
[i
].depth
;
1556 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1558 struct request_queue
*q
= hctx
->queue
;
1559 struct blk_mq_ctx
*ctx
;
1563 * Move ctx entries to new CPU, if this one is going away.
1565 ctx
= __blk_mq_get_ctx(q
, cpu
);
1567 spin_lock(&ctx
->lock
);
1568 if (!list_empty(&ctx
->rq_list
)) {
1569 list_splice_init(&ctx
->rq_list
, &tmp
);
1570 blk_mq_hctx_clear_pending(hctx
, ctx
);
1572 spin_unlock(&ctx
->lock
);
1574 if (list_empty(&tmp
))
1577 ctx
= blk_mq_get_ctx(q
);
1578 spin_lock(&ctx
->lock
);
1580 while (!list_empty(&tmp
)) {
1583 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1585 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1588 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1589 blk_mq_hctx_mark_pending(hctx
, ctx
);
1591 spin_unlock(&ctx
->lock
);
1593 blk_mq_run_hw_queue(hctx
, true);
1594 blk_mq_put_ctx(ctx
);
1598 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1601 struct blk_mq_hw_ctx
*hctx
= data
;
1603 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1604 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1607 * In case of CPU online, tags may be reallocated
1608 * in blk_mq_map_swqueue() after mapping is updated.
1614 /* hctx->ctxs will be freed in queue's release handler */
1615 static void blk_mq_exit_hctx(struct request_queue
*q
,
1616 struct blk_mq_tag_set
*set
,
1617 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1619 unsigned flush_start_tag
= set
->queue_depth
;
1621 blk_mq_tag_idle(hctx
);
1623 if (set
->ops
->exit_request
)
1624 set
->ops
->exit_request(set
->driver_data
,
1625 hctx
->fq
->flush_rq
, hctx_idx
,
1626 flush_start_tag
+ hctx_idx
);
1628 if (set
->ops
->exit_hctx
)
1629 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1631 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1632 blk_free_flush_queue(hctx
->fq
);
1633 blk_mq_free_bitmap(&hctx
->ctx_map
);
1636 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1637 struct blk_mq_tag_set
*set
, int nr_queue
)
1639 struct blk_mq_hw_ctx
*hctx
;
1642 queue_for_each_hw_ctx(q
, hctx
, i
) {
1645 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1649 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1650 struct blk_mq_tag_set
*set
)
1652 struct blk_mq_hw_ctx
*hctx
;
1655 queue_for_each_hw_ctx(q
, hctx
, i
)
1656 free_cpumask_var(hctx
->cpumask
);
1659 static int blk_mq_init_hctx(struct request_queue
*q
,
1660 struct blk_mq_tag_set
*set
,
1661 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1664 unsigned flush_start_tag
= set
->queue_depth
;
1666 node
= hctx
->numa_node
;
1667 if (node
== NUMA_NO_NODE
)
1668 node
= hctx
->numa_node
= set
->numa_node
;
1670 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1671 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1672 spin_lock_init(&hctx
->lock
);
1673 INIT_LIST_HEAD(&hctx
->dispatch
);
1675 hctx
->queue_num
= hctx_idx
;
1676 hctx
->flags
= set
->flags
;
1678 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1679 blk_mq_hctx_notify
, hctx
);
1680 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1682 hctx
->tags
= set
->tags
[hctx_idx
];
1685 * Allocate space for all possible cpus to avoid allocation at
1688 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1691 goto unregister_cpu_notifier
;
1693 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1698 if (set
->ops
->init_hctx
&&
1699 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1702 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1706 if (set
->ops
->init_request
&&
1707 set
->ops
->init_request(set
->driver_data
,
1708 hctx
->fq
->flush_rq
, hctx_idx
,
1709 flush_start_tag
+ hctx_idx
, node
))
1717 if (set
->ops
->exit_hctx
)
1718 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1720 blk_mq_free_bitmap(&hctx
->ctx_map
);
1723 unregister_cpu_notifier
:
1724 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1729 static int blk_mq_init_hw_queues(struct request_queue
*q
,
1730 struct blk_mq_tag_set
*set
)
1732 struct blk_mq_hw_ctx
*hctx
;
1736 * Initialize hardware queues
1738 queue_for_each_hw_ctx(q
, hctx
, i
) {
1739 if (blk_mq_init_hctx(q
, set
, hctx
, i
))
1743 if (i
== q
->nr_hw_queues
)
1749 blk_mq_exit_hw_queues(q
, set
, i
);
1754 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1755 unsigned int nr_hw_queues
)
1759 for_each_possible_cpu(i
) {
1760 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1761 struct blk_mq_hw_ctx
*hctx
;
1763 memset(__ctx
, 0, sizeof(*__ctx
));
1765 spin_lock_init(&__ctx
->lock
);
1766 INIT_LIST_HEAD(&__ctx
->rq_list
);
1769 /* If the cpu isn't online, the cpu is mapped to first hctx */
1773 hctx
= q
->mq_ops
->map_queue(q
, i
);
1776 * Set local node, IFF we have more than one hw queue. If
1777 * not, we remain on the home node of the device
1779 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1780 hctx
->numa_node
= cpu_to_node(i
);
1784 static void blk_mq_map_swqueue(struct request_queue
*q
,
1785 const struct cpumask
*online_mask
)
1788 struct blk_mq_hw_ctx
*hctx
;
1789 struct blk_mq_ctx
*ctx
;
1790 struct blk_mq_tag_set
*set
= q
->tag_set
;
1793 * Avoid others reading imcomplete hctx->cpumask through sysfs
1795 mutex_lock(&q
->sysfs_lock
);
1797 queue_for_each_hw_ctx(q
, hctx
, i
) {
1798 cpumask_clear(hctx
->cpumask
);
1803 * Map software to hardware queues
1805 queue_for_each_ctx(q
, ctx
, i
) {
1806 /* If the cpu isn't online, the cpu is mapped to first hctx */
1807 if (!cpumask_test_cpu(i
, online_mask
))
1810 hctx
= q
->mq_ops
->map_queue(q
, i
);
1811 cpumask_set_cpu(i
, hctx
->cpumask
);
1812 ctx
->index_hw
= hctx
->nr_ctx
;
1813 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1816 mutex_unlock(&q
->sysfs_lock
);
1818 queue_for_each_hw_ctx(q
, hctx
, i
) {
1819 struct blk_mq_ctxmap
*map
= &hctx
->ctx_map
;
1822 * If no software queues are mapped to this hardware queue,
1823 * disable it and free the request entries.
1825 if (!hctx
->nr_ctx
) {
1827 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1828 set
->tags
[i
] = NULL
;
1834 /* unmapped hw queue can be remapped after CPU topo changed */
1836 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
1837 hctx
->tags
= set
->tags
[i
];
1838 WARN_ON(!hctx
->tags
);
1841 * Set the map size to the number of mapped software queues.
1842 * This is more accurate and more efficient than looping
1843 * over all possibly mapped software queues.
1845 map
->size
= DIV_ROUND_UP(hctx
->nr_ctx
, map
->bits_per_word
);
1848 * Initialize batch roundrobin counts
1850 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1851 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1854 queue_for_each_ctx(q
, ctx
, i
) {
1855 if (!cpumask_test_cpu(i
, online_mask
))
1858 hctx
= q
->mq_ops
->map_queue(q
, i
);
1859 cpumask_set_cpu(i
, hctx
->tags
->cpumask
);
1863 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
)
1865 struct blk_mq_hw_ctx
*hctx
;
1866 struct request_queue
*q
;
1870 if (set
->tag_list
.next
== set
->tag_list
.prev
)
1875 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1876 blk_mq_freeze_queue(q
);
1878 queue_for_each_hw_ctx(q
, hctx
, i
) {
1880 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1882 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1884 blk_mq_unfreeze_queue(q
);
1888 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1890 struct blk_mq_tag_set
*set
= q
->tag_set
;
1892 mutex_lock(&set
->tag_list_lock
);
1893 list_del_init(&q
->tag_set_list
);
1894 blk_mq_update_tag_set_depth(set
);
1895 mutex_unlock(&set
->tag_list_lock
);
1898 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1899 struct request_queue
*q
)
1903 mutex_lock(&set
->tag_list_lock
);
1904 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1905 blk_mq_update_tag_set_depth(set
);
1906 mutex_unlock(&set
->tag_list_lock
);
1910 * It is the actual release handler for mq, but we do it from
1911 * request queue's release handler for avoiding use-after-free
1912 * and headache because q->mq_kobj shouldn't have been introduced,
1913 * but we can't group ctx/kctx kobj without it.
1915 void blk_mq_release(struct request_queue
*q
)
1917 struct blk_mq_hw_ctx
*hctx
;
1920 /* hctx kobj stays in hctx */
1921 queue_for_each_hw_ctx(q
, hctx
, i
) {
1931 kfree(q
->queue_hw_ctx
);
1933 /* ctx kobj stays in queue_ctx */
1934 free_percpu(q
->queue_ctx
);
1937 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1939 struct request_queue
*uninit_q
, *q
;
1941 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1943 return ERR_PTR(-ENOMEM
);
1945 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
1947 blk_cleanup_queue(uninit_q
);
1951 EXPORT_SYMBOL(blk_mq_init_queue
);
1953 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
1954 struct request_queue
*q
)
1956 struct blk_mq_hw_ctx
**hctxs
;
1957 struct blk_mq_ctx __percpu
*ctx
;
1961 ctx
= alloc_percpu(struct blk_mq_ctx
);
1963 return ERR_PTR(-ENOMEM
);
1965 hctxs
= kmalloc_node(set
->nr_hw_queues
* sizeof(*hctxs
), GFP_KERNEL
,
1971 map
= blk_mq_make_queue_map(set
);
1975 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1976 int node
= blk_mq_hw_queue_to_node(map
, i
);
1978 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
1983 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
1987 atomic_set(&hctxs
[i
]->nr_active
, 0);
1988 hctxs
[i
]->numa_node
= node
;
1989 hctxs
[i
]->queue_num
= i
;
1993 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1994 * See blk_register_queue() for details.
1996 if (percpu_ref_init(&q
->mq_usage_counter
, blk_mq_usage_counter_release
,
1997 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
2000 setup_timer(&q
->timeout
, blk_mq_rq_timer
, (unsigned long) q
);
2001 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2003 q
->nr_queues
= nr_cpu_ids
;
2004 q
->nr_hw_queues
= set
->nr_hw_queues
;
2008 q
->queue_hw_ctx
= hctxs
;
2010 q
->mq_ops
= set
->ops
;
2011 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2013 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2014 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2016 q
->sg_reserved_size
= INT_MAX
;
2018 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2019 INIT_LIST_HEAD(&q
->requeue_list
);
2020 spin_lock_init(&q
->requeue_lock
);
2022 if (q
->nr_hw_queues
> 1)
2023 blk_queue_make_request(q
, blk_mq_make_request
);
2025 blk_queue_make_request(q
, blk_sq_make_request
);
2028 * Do this after blk_queue_make_request() overrides it...
2030 q
->nr_requests
= set
->queue_depth
;
2032 if (set
->ops
->complete
)
2033 blk_queue_softirq_done(q
, set
->ops
->complete
);
2035 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2037 if (blk_mq_init_hw_queues(q
, set
))
2041 mutex_lock(&all_q_mutex
);
2043 list_add_tail(&q
->all_q_node
, &all_q_list
);
2044 blk_mq_add_queue_tag_set(set
, q
);
2045 blk_mq_map_swqueue(q
, cpu_online_mask
);
2047 mutex_unlock(&all_q_mutex
);
2054 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2057 free_cpumask_var(hctxs
[i
]->cpumask
);
2064 return ERR_PTR(-ENOMEM
);
2066 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2068 void blk_mq_free_queue(struct request_queue
*q
)
2070 struct blk_mq_tag_set
*set
= q
->tag_set
;
2072 mutex_lock(&all_q_mutex
);
2073 list_del_init(&q
->all_q_node
);
2074 mutex_unlock(&all_q_mutex
);
2076 blk_mq_del_queue_tag_set(q
);
2078 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2079 blk_mq_free_hw_queues(q
, set
);
2081 percpu_ref_exit(&q
->mq_usage_counter
);
2084 /* Basically redo blk_mq_init_queue with queue frozen */
2085 static void blk_mq_queue_reinit(struct request_queue
*q
,
2086 const struct cpumask
*online_mask
)
2088 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2090 blk_mq_sysfs_unregister(q
);
2092 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
, online_mask
);
2095 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2096 * we should change hctx numa_node according to new topology (this
2097 * involves free and re-allocate memory, worthy doing?)
2100 blk_mq_map_swqueue(q
, online_mask
);
2102 blk_mq_sysfs_register(q
);
2105 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
2106 unsigned long action
, void *hcpu
)
2108 struct request_queue
*q
;
2109 int cpu
= (unsigned long)hcpu
;
2111 * New online cpumask which is going to be set in this hotplug event.
2112 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2113 * one-by-one and dynamically allocating this could result in a failure.
2115 static struct cpumask online_new
;
2118 * Before hotadded cpu starts handling requests, new mappings must
2119 * be established. Otherwise, these requests in hw queue might
2120 * never be dispatched.
2122 * For example, there is a single hw queue (hctx) and two CPU queues
2123 * (ctx0 for CPU0, and ctx1 for CPU1).
2125 * Now CPU1 is just onlined and a request is inserted into
2126 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2129 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2130 * set in pending bitmap and tries to retrieve requests in
2131 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2132 * so the request in ctx1->rq_list is ignored.
2134 switch (action
& ~CPU_TASKS_FROZEN
) {
2136 case CPU_UP_CANCELED
:
2137 cpumask_copy(&online_new
, cpu_online_mask
);
2139 case CPU_UP_PREPARE
:
2140 cpumask_copy(&online_new
, cpu_online_mask
);
2141 cpumask_set_cpu(cpu
, &online_new
);
2147 mutex_lock(&all_q_mutex
);
2150 * We need to freeze and reinit all existing queues. Freezing
2151 * involves synchronous wait for an RCU grace period and doing it
2152 * one by one may take a long time. Start freezing all queues in
2153 * one swoop and then wait for the completions so that freezing can
2154 * take place in parallel.
2156 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2157 blk_mq_freeze_queue_start(q
);
2158 list_for_each_entry(q
, &all_q_list
, all_q_node
) {
2159 blk_mq_freeze_queue_wait(q
);
2162 * timeout handler can't touch hw queue during the
2165 del_timer_sync(&q
->timeout
);
2168 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2169 blk_mq_queue_reinit(q
, &online_new
);
2171 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2172 blk_mq_unfreeze_queue(q
);
2174 mutex_unlock(&all_q_mutex
);
2178 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2182 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2183 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
2192 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2198 * Allocate the request maps associated with this tag_set. Note that this
2199 * may reduce the depth asked for, if memory is tight. set->queue_depth
2200 * will be updated to reflect the allocated depth.
2202 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2207 depth
= set
->queue_depth
;
2209 err
= __blk_mq_alloc_rq_maps(set
);
2213 set
->queue_depth
>>= 1;
2214 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2218 } while (set
->queue_depth
);
2220 if (!set
->queue_depth
|| err
) {
2221 pr_err("blk-mq: failed to allocate request map\n");
2225 if (depth
!= set
->queue_depth
)
2226 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2227 depth
, set
->queue_depth
);
2232 struct cpumask
*blk_mq_tags_cpumask(struct blk_mq_tags
*tags
)
2234 return tags
->cpumask
;
2236 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask
);
2239 * Alloc a tag set to be associated with one or more request queues.
2240 * May fail with EINVAL for various error conditions. May adjust the
2241 * requested depth down, if if it too large. In that case, the set
2242 * value will be stored in set->queue_depth.
2244 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2246 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2248 if (!set
->nr_hw_queues
)
2250 if (!set
->queue_depth
)
2252 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2255 if (!set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
2258 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2259 pr_info("blk-mq: reduced tag depth to %u\n",
2261 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2265 * If a crashdump is active, then we are potentially in a very
2266 * memory constrained environment. Limit us to 1 queue and
2267 * 64 tags to prevent using too much memory.
2269 if (is_kdump_kernel()) {
2270 set
->nr_hw_queues
= 1;
2271 set
->queue_depth
= min(64U, set
->queue_depth
);
2274 set
->tags
= kmalloc_node(set
->nr_hw_queues
*
2275 sizeof(struct blk_mq_tags
*),
2276 GFP_KERNEL
, set
->numa_node
);
2280 if (blk_mq_alloc_rq_maps(set
))
2283 mutex_init(&set
->tag_list_lock
);
2284 INIT_LIST_HEAD(&set
->tag_list
);
2292 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2294 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2298 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2300 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2301 free_cpumask_var(set
->tags
[i
]->cpumask
);
2308 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2310 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2312 struct blk_mq_tag_set
*set
= q
->tag_set
;
2313 struct blk_mq_hw_ctx
*hctx
;
2316 if (!set
|| nr
> set
->queue_depth
)
2320 queue_for_each_hw_ctx(q
, hctx
, i
) {
2321 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2327 q
->nr_requests
= nr
;
2332 void blk_mq_disable_hotplug(void)
2334 mutex_lock(&all_q_mutex
);
2337 void blk_mq_enable_hotplug(void)
2339 mutex_unlock(&all_q_mutex
);
2342 static int __init
blk_mq_init(void)
2346 hotcpu_notifier(blk_mq_queue_reinit_notify
, 0);
2350 subsys_initcall(blk_mq_init
);