staging: most: core: rename struct most_c_aim_obj to pipe
[linux/fpc-iii.git] / kernel / sched / topology.c
blob034cbed7f88b4f14dc44fb9565706436805c68b8
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5 #include <linux/sched.h>
6 #include <linux/mutex.h>
7 #include <linux/sched/isolation.h>
9 #include "sched.h"
11 DEFINE_MUTEX(sched_domains_mutex);
13 /* Protected by sched_domains_mutex: */
14 cpumask_var_t sched_domains_tmpmask;
15 cpumask_var_t sched_domains_tmpmask2;
17 #ifdef CONFIG_SCHED_DEBUG
19 static int __init sched_debug_setup(char *str)
21 sched_debug_enabled = true;
23 return 0;
25 early_param("sched_debug", sched_debug_setup);
27 static inline bool sched_debug(void)
29 return sched_debug_enabled;
32 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
33 struct cpumask *groupmask)
35 struct sched_group *group = sd->groups;
37 cpumask_clear(groupmask);
39 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
41 if (!(sd->flags & SD_LOAD_BALANCE)) {
42 printk("does not load-balance\n");
43 if (sd->parent)
44 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
45 " has parent");
46 return -1;
49 printk(KERN_CONT "span=%*pbl level=%s\n",
50 cpumask_pr_args(sched_domain_span(sd)), sd->name);
52 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
53 printk(KERN_ERR "ERROR: domain->span does not contain "
54 "CPU%d\n", cpu);
56 if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
57 printk(KERN_ERR "ERROR: domain->groups does not contain"
58 " CPU%d\n", cpu);
61 printk(KERN_DEBUG "%*s groups:", level + 1, "");
62 do {
63 if (!group) {
64 printk("\n");
65 printk(KERN_ERR "ERROR: group is NULL\n");
66 break;
69 if (!cpumask_weight(sched_group_span(group))) {
70 printk(KERN_CONT "\n");
71 printk(KERN_ERR "ERROR: empty group\n");
72 break;
75 if (!(sd->flags & SD_OVERLAP) &&
76 cpumask_intersects(groupmask, sched_group_span(group))) {
77 printk(KERN_CONT "\n");
78 printk(KERN_ERR "ERROR: repeated CPUs\n");
79 break;
82 cpumask_or(groupmask, groupmask, sched_group_span(group));
84 printk(KERN_CONT " %d:{ span=%*pbl",
85 group->sgc->id,
86 cpumask_pr_args(sched_group_span(group)));
88 if ((sd->flags & SD_OVERLAP) &&
89 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
90 printk(KERN_CONT " mask=%*pbl",
91 cpumask_pr_args(group_balance_mask(group)));
94 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
95 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
97 if (group == sd->groups && sd->child &&
98 !cpumask_equal(sched_domain_span(sd->child),
99 sched_group_span(group))) {
100 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
103 printk(KERN_CONT " }");
105 group = group->next;
107 if (group != sd->groups)
108 printk(KERN_CONT ",");
110 } while (group != sd->groups);
111 printk(KERN_CONT "\n");
113 if (!cpumask_equal(sched_domain_span(sd), groupmask))
114 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
116 if (sd->parent &&
117 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
118 printk(KERN_ERR "ERROR: parent span is not a superset "
119 "of domain->span\n");
120 return 0;
123 static void sched_domain_debug(struct sched_domain *sd, int cpu)
125 int level = 0;
127 if (!sched_debug_enabled)
128 return;
130 if (!sd) {
131 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
132 return;
135 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
137 for (;;) {
138 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
139 break;
140 level++;
141 sd = sd->parent;
142 if (!sd)
143 break;
146 #else /* !CONFIG_SCHED_DEBUG */
148 # define sched_debug_enabled 0
149 # define sched_domain_debug(sd, cpu) do { } while (0)
150 static inline bool sched_debug(void)
152 return false;
154 #endif /* CONFIG_SCHED_DEBUG */
156 static int sd_degenerate(struct sched_domain *sd)
158 if (cpumask_weight(sched_domain_span(sd)) == 1)
159 return 1;
161 /* Following flags need at least 2 groups */
162 if (sd->flags & (SD_LOAD_BALANCE |
163 SD_BALANCE_NEWIDLE |
164 SD_BALANCE_FORK |
165 SD_BALANCE_EXEC |
166 SD_SHARE_CPUCAPACITY |
167 SD_ASYM_CPUCAPACITY |
168 SD_SHARE_PKG_RESOURCES |
169 SD_SHARE_POWERDOMAIN)) {
170 if (sd->groups != sd->groups->next)
171 return 0;
174 /* Following flags don't use groups */
175 if (sd->flags & (SD_WAKE_AFFINE))
176 return 0;
178 return 1;
181 static int
182 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
184 unsigned long cflags = sd->flags, pflags = parent->flags;
186 if (sd_degenerate(parent))
187 return 1;
189 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
190 return 0;
192 /* Flags needing groups don't count if only 1 group in parent */
193 if (parent->groups == parent->groups->next) {
194 pflags &= ~(SD_LOAD_BALANCE |
195 SD_BALANCE_NEWIDLE |
196 SD_BALANCE_FORK |
197 SD_BALANCE_EXEC |
198 SD_ASYM_CPUCAPACITY |
199 SD_SHARE_CPUCAPACITY |
200 SD_SHARE_PKG_RESOURCES |
201 SD_PREFER_SIBLING |
202 SD_SHARE_POWERDOMAIN);
203 if (nr_node_ids == 1)
204 pflags &= ~SD_SERIALIZE;
206 if (~cflags & pflags)
207 return 0;
209 return 1;
212 static void free_rootdomain(struct rcu_head *rcu)
214 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
216 cpupri_cleanup(&rd->cpupri);
217 cpudl_cleanup(&rd->cpudl);
218 free_cpumask_var(rd->dlo_mask);
219 free_cpumask_var(rd->rto_mask);
220 free_cpumask_var(rd->online);
221 free_cpumask_var(rd->span);
222 kfree(rd);
225 void rq_attach_root(struct rq *rq, struct root_domain *rd)
227 struct root_domain *old_rd = NULL;
228 unsigned long flags;
230 raw_spin_lock_irqsave(&rq->lock, flags);
232 if (rq->rd) {
233 old_rd = rq->rd;
235 if (cpumask_test_cpu(rq->cpu, old_rd->online))
236 set_rq_offline(rq);
238 cpumask_clear_cpu(rq->cpu, old_rd->span);
241 * If we dont want to free the old_rd yet then
242 * set old_rd to NULL to skip the freeing later
243 * in this function:
245 if (!atomic_dec_and_test(&old_rd->refcount))
246 old_rd = NULL;
249 atomic_inc(&rd->refcount);
250 rq->rd = rd;
252 cpumask_set_cpu(rq->cpu, rd->span);
253 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
254 set_rq_online(rq);
256 raw_spin_unlock_irqrestore(&rq->lock, flags);
258 if (old_rd)
259 call_rcu_sched(&old_rd->rcu, free_rootdomain);
262 static int init_rootdomain(struct root_domain *rd)
264 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
265 goto out;
266 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
267 goto free_span;
268 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
269 goto free_online;
270 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
271 goto free_dlo_mask;
273 #ifdef HAVE_RT_PUSH_IPI
274 rd->rto_cpu = -1;
275 raw_spin_lock_init(&rd->rto_lock);
276 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
277 #endif
279 init_dl_bw(&rd->dl_bw);
280 if (cpudl_init(&rd->cpudl) != 0)
281 goto free_rto_mask;
283 if (cpupri_init(&rd->cpupri) != 0)
284 goto free_cpudl;
285 return 0;
287 free_cpudl:
288 cpudl_cleanup(&rd->cpudl);
289 free_rto_mask:
290 free_cpumask_var(rd->rto_mask);
291 free_dlo_mask:
292 free_cpumask_var(rd->dlo_mask);
293 free_online:
294 free_cpumask_var(rd->online);
295 free_span:
296 free_cpumask_var(rd->span);
297 out:
298 return -ENOMEM;
302 * By default the system creates a single root-domain with all CPUs as
303 * members (mimicking the global state we have today).
305 struct root_domain def_root_domain;
307 void init_defrootdomain(void)
309 init_rootdomain(&def_root_domain);
311 atomic_set(&def_root_domain.refcount, 1);
314 static struct root_domain *alloc_rootdomain(void)
316 struct root_domain *rd;
318 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
319 if (!rd)
320 return NULL;
322 if (init_rootdomain(rd) != 0) {
323 kfree(rd);
324 return NULL;
327 return rd;
330 static void free_sched_groups(struct sched_group *sg, int free_sgc)
332 struct sched_group *tmp, *first;
334 if (!sg)
335 return;
337 first = sg;
338 do {
339 tmp = sg->next;
341 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
342 kfree(sg->sgc);
344 if (atomic_dec_and_test(&sg->ref))
345 kfree(sg);
346 sg = tmp;
347 } while (sg != first);
350 static void destroy_sched_domain(struct sched_domain *sd)
353 * A normal sched domain may have multiple group references, an
354 * overlapping domain, having private groups, only one. Iterate,
355 * dropping group/capacity references, freeing where none remain.
357 free_sched_groups(sd->groups, 1);
359 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
360 kfree(sd->shared);
361 kfree(sd);
364 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
366 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
368 while (sd) {
369 struct sched_domain *parent = sd->parent;
370 destroy_sched_domain(sd);
371 sd = parent;
375 static void destroy_sched_domains(struct sched_domain *sd)
377 if (sd)
378 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
382 * Keep a special pointer to the highest sched_domain that has
383 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
384 * allows us to avoid some pointer chasing select_idle_sibling().
386 * Also keep a unique ID per domain (we use the first CPU number in
387 * the cpumask of the domain), this allows us to quickly tell if
388 * two CPUs are in the same cache domain, see cpus_share_cache().
390 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
391 DEFINE_PER_CPU(int, sd_llc_size);
392 DEFINE_PER_CPU(int, sd_llc_id);
393 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
394 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
395 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
397 static void update_top_cache_domain(int cpu)
399 struct sched_domain_shared *sds = NULL;
400 struct sched_domain *sd;
401 int id = cpu;
402 int size = 1;
404 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
405 if (sd) {
406 id = cpumask_first(sched_domain_span(sd));
407 size = cpumask_weight(sched_domain_span(sd));
408 sds = sd->shared;
411 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
412 per_cpu(sd_llc_size, cpu) = size;
413 per_cpu(sd_llc_id, cpu) = id;
414 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
416 sd = lowest_flag_domain(cpu, SD_NUMA);
417 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
419 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
420 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
424 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
425 * hold the hotplug lock.
427 static void
428 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
430 struct rq *rq = cpu_rq(cpu);
431 struct sched_domain *tmp;
433 /* Remove the sched domains which do not contribute to scheduling. */
434 for (tmp = sd; tmp; ) {
435 struct sched_domain *parent = tmp->parent;
436 if (!parent)
437 break;
439 if (sd_parent_degenerate(tmp, parent)) {
440 tmp->parent = parent->parent;
441 if (parent->parent)
442 parent->parent->child = tmp;
444 * Transfer SD_PREFER_SIBLING down in case of a
445 * degenerate parent; the spans match for this
446 * so the property transfers.
448 if (parent->flags & SD_PREFER_SIBLING)
449 tmp->flags |= SD_PREFER_SIBLING;
450 destroy_sched_domain(parent);
451 } else
452 tmp = tmp->parent;
455 if (sd && sd_degenerate(sd)) {
456 tmp = sd;
457 sd = sd->parent;
458 destroy_sched_domain(tmp);
459 if (sd)
460 sd->child = NULL;
463 sched_domain_debug(sd, cpu);
465 rq_attach_root(rq, rd);
466 tmp = rq->sd;
467 rcu_assign_pointer(rq->sd, sd);
468 dirty_sched_domain_sysctl(cpu);
469 destroy_sched_domains(tmp);
471 update_top_cache_domain(cpu);
474 struct s_data {
475 struct sched_domain ** __percpu sd;
476 struct root_domain *rd;
479 enum s_alloc {
480 sa_rootdomain,
481 sa_sd,
482 sa_sd_storage,
483 sa_none,
487 * Return the canonical balance CPU for this group, this is the first CPU
488 * of this group that's also in the balance mask.
490 * The balance mask are all those CPUs that could actually end up at this
491 * group. See build_balance_mask().
493 * Also see should_we_balance().
495 int group_balance_cpu(struct sched_group *sg)
497 return cpumask_first(group_balance_mask(sg));
502 * NUMA topology (first read the regular topology blurb below)
504 * Given a node-distance table, for example:
506 * node 0 1 2 3
507 * 0: 10 20 30 20
508 * 1: 20 10 20 30
509 * 2: 30 20 10 20
510 * 3: 20 30 20 10
512 * which represents a 4 node ring topology like:
514 * 0 ----- 1
515 * | |
516 * | |
517 * | |
518 * 3 ----- 2
520 * We want to construct domains and groups to represent this. The way we go
521 * about doing this is to build the domains on 'hops'. For each NUMA level we
522 * construct the mask of all nodes reachable in @level hops.
524 * For the above NUMA topology that gives 3 levels:
526 * NUMA-2 0-3 0-3 0-3 0-3
527 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
529 * NUMA-1 0-1,3 0-2 1-3 0,2-3
530 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
532 * NUMA-0 0 1 2 3
535 * As can be seen; things don't nicely line up as with the regular topology.
536 * When we iterate a domain in child domain chunks some nodes can be
537 * represented multiple times -- hence the "overlap" naming for this part of
538 * the topology.
540 * In order to minimize this overlap, we only build enough groups to cover the
541 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
543 * Because:
545 * - the first group of each domain is its child domain; this
546 * gets us the first 0-1,3
547 * - the only uncovered node is 2, who's child domain is 1-3.
549 * However, because of the overlap, computing a unique CPU for each group is
550 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
551 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
552 * end up at those groups (they would end up in group: 0-1,3).
554 * To correct this we have to introduce the group balance mask. This mask
555 * will contain those CPUs in the group that can reach this group given the
556 * (child) domain tree.
558 * With this we can once again compute balance_cpu and sched_group_capacity
559 * relations.
561 * XXX include words on how balance_cpu is unique and therefore can be
562 * used for sched_group_capacity links.
565 * Another 'interesting' topology is:
567 * node 0 1 2 3
568 * 0: 10 20 20 30
569 * 1: 20 10 20 20
570 * 2: 20 20 10 20
571 * 3: 30 20 20 10
573 * Which looks a little like:
575 * 0 ----- 1
576 * | / |
577 * | / |
578 * | / |
579 * 2 ----- 3
581 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
582 * are not.
584 * This leads to a few particularly weird cases where the sched_domain's are
585 * not of the same number for each cpu. Consider:
587 * NUMA-2 0-3 0-3
588 * groups: {0-2},{1-3} {1-3},{0-2}
590 * NUMA-1 0-2 0-3 0-3 1-3
592 * NUMA-0 0 1 2 3
598 * Build the balance mask; it contains only those CPUs that can arrive at this
599 * group and should be considered to continue balancing.
601 * We do this during the group creation pass, therefore the group information
602 * isn't complete yet, however since each group represents a (child) domain we
603 * can fully construct this using the sched_domain bits (which are already
604 * complete).
606 static void
607 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
609 const struct cpumask *sg_span = sched_group_span(sg);
610 struct sd_data *sdd = sd->private;
611 struct sched_domain *sibling;
612 int i;
614 cpumask_clear(mask);
616 for_each_cpu(i, sg_span) {
617 sibling = *per_cpu_ptr(sdd->sd, i);
620 * Can happen in the asymmetric case, where these siblings are
621 * unused. The mask will not be empty because those CPUs that
622 * do have the top domain _should_ span the domain.
624 if (!sibling->child)
625 continue;
627 /* If we would not end up here, we can't continue from here */
628 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
629 continue;
631 cpumask_set_cpu(i, mask);
634 /* We must not have empty masks here */
635 WARN_ON_ONCE(cpumask_empty(mask));
639 * XXX: This creates per-node group entries; since the load-balancer will
640 * immediately access remote memory to construct this group's load-balance
641 * statistics having the groups node local is of dubious benefit.
643 static struct sched_group *
644 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
646 struct sched_group *sg;
647 struct cpumask *sg_span;
649 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
650 GFP_KERNEL, cpu_to_node(cpu));
652 if (!sg)
653 return NULL;
655 sg_span = sched_group_span(sg);
656 if (sd->child)
657 cpumask_copy(sg_span, sched_domain_span(sd->child));
658 else
659 cpumask_copy(sg_span, sched_domain_span(sd));
661 atomic_inc(&sg->ref);
662 return sg;
665 static void init_overlap_sched_group(struct sched_domain *sd,
666 struct sched_group *sg)
668 struct cpumask *mask = sched_domains_tmpmask2;
669 struct sd_data *sdd = sd->private;
670 struct cpumask *sg_span;
671 int cpu;
673 build_balance_mask(sd, sg, mask);
674 cpu = cpumask_first_and(sched_group_span(sg), mask);
676 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
677 if (atomic_inc_return(&sg->sgc->ref) == 1)
678 cpumask_copy(group_balance_mask(sg), mask);
679 else
680 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
683 * Initialize sgc->capacity such that even if we mess up the
684 * domains and no possible iteration will get us here, we won't
685 * die on a /0 trap.
687 sg_span = sched_group_span(sg);
688 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
689 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
692 static int
693 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
695 struct sched_group *first = NULL, *last = NULL, *sg;
696 const struct cpumask *span = sched_domain_span(sd);
697 struct cpumask *covered = sched_domains_tmpmask;
698 struct sd_data *sdd = sd->private;
699 struct sched_domain *sibling;
700 int i;
702 cpumask_clear(covered);
704 for_each_cpu_wrap(i, span, cpu) {
705 struct cpumask *sg_span;
707 if (cpumask_test_cpu(i, covered))
708 continue;
710 sibling = *per_cpu_ptr(sdd->sd, i);
713 * Asymmetric node setups can result in situations where the
714 * domain tree is of unequal depth, make sure to skip domains
715 * that already cover the entire range.
717 * In that case build_sched_domains() will have terminated the
718 * iteration early and our sibling sd spans will be empty.
719 * Domains should always include the CPU they're built on, so
720 * check that.
722 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
723 continue;
725 sg = build_group_from_child_sched_domain(sibling, cpu);
726 if (!sg)
727 goto fail;
729 sg_span = sched_group_span(sg);
730 cpumask_or(covered, covered, sg_span);
732 init_overlap_sched_group(sd, sg);
734 if (!first)
735 first = sg;
736 if (last)
737 last->next = sg;
738 last = sg;
739 last->next = first;
741 sd->groups = first;
743 return 0;
745 fail:
746 free_sched_groups(first, 0);
748 return -ENOMEM;
753 * Package topology (also see the load-balance blurb in fair.c)
755 * The scheduler builds a tree structure to represent a number of important
756 * topology features. By default (default_topology[]) these include:
758 * - Simultaneous multithreading (SMT)
759 * - Multi-Core Cache (MC)
760 * - Package (DIE)
762 * Where the last one more or less denotes everything up to a NUMA node.
764 * The tree consists of 3 primary data structures:
766 * sched_domain -> sched_group -> sched_group_capacity
767 * ^ ^ ^ ^
768 * `-' `-'
770 * The sched_domains are per-cpu and have a two way link (parent & child) and
771 * denote the ever growing mask of CPUs belonging to that level of topology.
773 * Each sched_domain has a circular (double) linked list of sched_group's, each
774 * denoting the domains of the level below (or individual CPUs in case of the
775 * first domain level). The sched_group linked by a sched_domain includes the
776 * CPU of that sched_domain [*].
778 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
780 * CPU 0 1 2 3 4 5 6 7
782 * DIE [ ]
783 * MC [ ] [ ]
784 * SMT [ ] [ ] [ ] [ ]
786 * - or -
788 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
789 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
790 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
792 * CPU 0 1 2 3 4 5 6 7
794 * One way to think about it is: sched_domain moves you up and down among these
795 * topology levels, while sched_group moves you sideways through it, at child
796 * domain granularity.
798 * sched_group_capacity ensures each unique sched_group has shared storage.
800 * There are two related construction problems, both require a CPU that
801 * uniquely identify each group (for a given domain):
803 * - The first is the balance_cpu (see should_we_balance() and the
804 * load-balance blub in fair.c); for each group we only want 1 CPU to
805 * continue balancing at a higher domain.
807 * - The second is the sched_group_capacity; we want all identical groups
808 * to share a single sched_group_capacity.
810 * Since these topologies are exclusive by construction. That is, its
811 * impossible for an SMT thread to belong to multiple cores, and cores to
812 * be part of multiple caches. There is a very clear and unique location
813 * for each CPU in the hierarchy.
815 * Therefore computing a unique CPU for each group is trivial (the iteration
816 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
817 * group), we can simply pick the first CPU in each group.
820 * [*] in other words, the first group of each domain is its child domain.
823 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
825 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
826 struct sched_domain *child = sd->child;
827 struct sched_group *sg;
829 if (child)
830 cpu = cpumask_first(sched_domain_span(child));
832 sg = *per_cpu_ptr(sdd->sg, cpu);
833 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
835 /* For claim_allocations: */
836 atomic_inc(&sg->ref);
837 atomic_inc(&sg->sgc->ref);
839 if (child) {
840 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
841 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
842 } else {
843 cpumask_set_cpu(cpu, sched_group_span(sg));
844 cpumask_set_cpu(cpu, group_balance_mask(sg));
847 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
848 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
850 return sg;
854 * build_sched_groups will build a circular linked list of the groups
855 * covered by the given span, and will set each group's ->cpumask correctly,
856 * and ->cpu_capacity to 0.
858 * Assumes the sched_domain tree is fully constructed
860 static int
861 build_sched_groups(struct sched_domain *sd, int cpu)
863 struct sched_group *first = NULL, *last = NULL;
864 struct sd_data *sdd = sd->private;
865 const struct cpumask *span = sched_domain_span(sd);
866 struct cpumask *covered;
867 int i;
869 lockdep_assert_held(&sched_domains_mutex);
870 covered = sched_domains_tmpmask;
872 cpumask_clear(covered);
874 for_each_cpu_wrap(i, span, cpu) {
875 struct sched_group *sg;
877 if (cpumask_test_cpu(i, covered))
878 continue;
880 sg = get_group(i, sdd);
882 cpumask_or(covered, covered, sched_group_span(sg));
884 if (!first)
885 first = sg;
886 if (last)
887 last->next = sg;
888 last = sg;
890 last->next = first;
891 sd->groups = first;
893 return 0;
897 * Initialize sched groups cpu_capacity.
899 * cpu_capacity indicates the capacity of sched group, which is used while
900 * distributing the load between different sched groups in a sched domain.
901 * Typically cpu_capacity for all the groups in a sched domain will be same
902 * unless there are asymmetries in the topology. If there are asymmetries,
903 * group having more cpu_capacity will pickup more load compared to the
904 * group having less cpu_capacity.
906 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
908 struct sched_group *sg = sd->groups;
910 WARN_ON(!sg);
912 do {
913 int cpu, max_cpu = -1;
915 sg->group_weight = cpumask_weight(sched_group_span(sg));
917 if (!(sd->flags & SD_ASYM_PACKING))
918 goto next;
920 for_each_cpu(cpu, sched_group_span(sg)) {
921 if (max_cpu < 0)
922 max_cpu = cpu;
923 else if (sched_asym_prefer(cpu, max_cpu))
924 max_cpu = cpu;
926 sg->asym_prefer_cpu = max_cpu;
928 next:
929 sg = sg->next;
930 } while (sg != sd->groups);
932 if (cpu != group_balance_cpu(sg))
933 return;
935 update_group_capacity(sd, cpu);
939 * Initializers for schedule domains
940 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
943 static int default_relax_domain_level = -1;
944 int sched_domain_level_max;
946 static int __init setup_relax_domain_level(char *str)
948 if (kstrtoint(str, 0, &default_relax_domain_level))
949 pr_warn("Unable to set relax_domain_level\n");
951 return 1;
953 __setup("relax_domain_level=", setup_relax_domain_level);
955 static void set_domain_attribute(struct sched_domain *sd,
956 struct sched_domain_attr *attr)
958 int request;
960 if (!attr || attr->relax_domain_level < 0) {
961 if (default_relax_domain_level < 0)
962 return;
963 else
964 request = default_relax_domain_level;
965 } else
966 request = attr->relax_domain_level;
967 if (request < sd->level) {
968 /* Turn off idle balance on this domain: */
969 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
970 } else {
971 /* Turn on idle balance on this domain: */
972 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
976 static void __sdt_free(const struct cpumask *cpu_map);
977 static int __sdt_alloc(const struct cpumask *cpu_map);
979 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
980 const struct cpumask *cpu_map)
982 switch (what) {
983 case sa_rootdomain:
984 if (!atomic_read(&d->rd->refcount))
985 free_rootdomain(&d->rd->rcu);
986 /* Fall through */
987 case sa_sd:
988 free_percpu(d->sd);
989 /* Fall through */
990 case sa_sd_storage:
991 __sdt_free(cpu_map);
992 /* Fall through */
993 case sa_none:
994 break;
998 static enum s_alloc
999 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1001 memset(d, 0, sizeof(*d));
1003 if (__sdt_alloc(cpu_map))
1004 return sa_sd_storage;
1005 d->sd = alloc_percpu(struct sched_domain *);
1006 if (!d->sd)
1007 return sa_sd_storage;
1008 d->rd = alloc_rootdomain();
1009 if (!d->rd)
1010 return sa_sd;
1011 return sa_rootdomain;
1015 * NULL the sd_data elements we've used to build the sched_domain and
1016 * sched_group structure so that the subsequent __free_domain_allocs()
1017 * will not free the data we're using.
1019 static void claim_allocations(int cpu, struct sched_domain *sd)
1021 struct sd_data *sdd = sd->private;
1023 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1024 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1026 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1027 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1029 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1030 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1032 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1033 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1036 #ifdef CONFIG_NUMA
1037 static int sched_domains_numa_levels;
1038 enum numa_topology_type sched_numa_topology_type;
1039 static int *sched_domains_numa_distance;
1040 int sched_max_numa_distance;
1041 static struct cpumask ***sched_domains_numa_masks;
1042 static int sched_domains_curr_level;
1043 #endif
1046 * SD_flags allowed in topology descriptions.
1048 * These flags are purely descriptive of the topology and do not prescribe
1049 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1050 * function:
1052 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1053 * SD_SHARE_PKG_RESOURCES - describes shared caches
1054 * SD_NUMA - describes NUMA topologies
1055 * SD_SHARE_POWERDOMAIN - describes shared power domain
1056 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
1058 * Odd one out, which beside describing the topology has a quirk also
1059 * prescribes the desired behaviour that goes along with it:
1061 * SD_ASYM_PACKING - describes SMT quirks
1063 #define TOPOLOGY_SD_FLAGS \
1064 (SD_SHARE_CPUCAPACITY | \
1065 SD_SHARE_PKG_RESOURCES | \
1066 SD_NUMA | \
1067 SD_ASYM_PACKING | \
1068 SD_ASYM_CPUCAPACITY | \
1069 SD_SHARE_POWERDOMAIN)
1071 static struct sched_domain *
1072 sd_init(struct sched_domain_topology_level *tl,
1073 const struct cpumask *cpu_map,
1074 struct sched_domain *child, int cpu)
1076 struct sd_data *sdd = &tl->data;
1077 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1078 int sd_id, sd_weight, sd_flags = 0;
1080 #ifdef CONFIG_NUMA
1082 * Ugly hack to pass state to sd_numa_mask()...
1084 sched_domains_curr_level = tl->numa_level;
1085 #endif
1087 sd_weight = cpumask_weight(tl->mask(cpu));
1089 if (tl->sd_flags)
1090 sd_flags = (*tl->sd_flags)();
1091 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1092 "wrong sd_flags in topology description\n"))
1093 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1095 *sd = (struct sched_domain){
1096 .min_interval = sd_weight,
1097 .max_interval = 2*sd_weight,
1098 .busy_factor = 32,
1099 .imbalance_pct = 125,
1101 .cache_nice_tries = 0,
1102 .busy_idx = 0,
1103 .idle_idx = 0,
1104 .newidle_idx = 0,
1105 .wake_idx = 0,
1106 .forkexec_idx = 0,
1108 .flags = 1*SD_LOAD_BALANCE
1109 | 1*SD_BALANCE_NEWIDLE
1110 | 1*SD_BALANCE_EXEC
1111 | 1*SD_BALANCE_FORK
1112 | 0*SD_BALANCE_WAKE
1113 | 1*SD_WAKE_AFFINE
1114 | 0*SD_SHARE_CPUCAPACITY
1115 | 0*SD_SHARE_PKG_RESOURCES
1116 | 0*SD_SERIALIZE
1117 | 0*SD_PREFER_SIBLING
1118 | 0*SD_NUMA
1119 | sd_flags
1122 .last_balance = jiffies,
1123 .balance_interval = sd_weight,
1124 .smt_gain = 0,
1125 .max_newidle_lb_cost = 0,
1126 .next_decay_max_lb_cost = jiffies,
1127 .child = child,
1128 #ifdef CONFIG_SCHED_DEBUG
1129 .name = tl->name,
1130 #endif
1133 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1134 sd_id = cpumask_first(sched_domain_span(sd));
1137 * Convert topological properties into behaviour.
1140 if (sd->flags & SD_ASYM_CPUCAPACITY) {
1141 struct sched_domain *t = sd;
1143 for_each_lower_domain(t)
1144 t->flags |= SD_BALANCE_WAKE;
1147 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1148 sd->flags |= SD_PREFER_SIBLING;
1149 sd->imbalance_pct = 110;
1150 sd->smt_gain = 1178; /* ~15% */
1152 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1153 sd->flags |= SD_PREFER_SIBLING;
1154 sd->imbalance_pct = 117;
1155 sd->cache_nice_tries = 1;
1156 sd->busy_idx = 2;
1158 #ifdef CONFIG_NUMA
1159 } else if (sd->flags & SD_NUMA) {
1160 sd->cache_nice_tries = 2;
1161 sd->busy_idx = 3;
1162 sd->idle_idx = 2;
1164 sd->flags |= SD_SERIALIZE;
1165 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1166 sd->flags &= ~(SD_BALANCE_EXEC |
1167 SD_BALANCE_FORK |
1168 SD_WAKE_AFFINE);
1171 #endif
1172 } else {
1173 sd->flags |= SD_PREFER_SIBLING;
1174 sd->cache_nice_tries = 1;
1175 sd->busy_idx = 2;
1176 sd->idle_idx = 1;
1180 * For all levels sharing cache; connect a sched_domain_shared
1181 * instance.
1183 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1184 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1185 atomic_inc(&sd->shared->ref);
1186 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1189 sd->private = sdd;
1191 return sd;
1195 * Topology list, bottom-up.
1197 static struct sched_domain_topology_level default_topology[] = {
1198 #ifdef CONFIG_SCHED_SMT
1199 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1200 #endif
1201 #ifdef CONFIG_SCHED_MC
1202 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1203 #endif
1204 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1205 { NULL, },
1208 static struct sched_domain_topology_level *sched_domain_topology =
1209 default_topology;
1211 #define for_each_sd_topology(tl) \
1212 for (tl = sched_domain_topology; tl->mask; tl++)
1214 void set_sched_topology(struct sched_domain_topology_level *tl)
1216 if (WARN_ON_ONCE(sched_smp_initialized))
1217 return;
1219 sched_domain_topology = tl;
1222 #ifdef CONFIG_NUMA
1224 static const struct cpumask *sd_numa_mask(int cpu)
1226 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1229 static void sched_numa_warn(const char *str)
1231 static int done = false;
1232 int i,j;
1234 if (done)
1235 return;
1237 done = true;
1239 printk(KERN_WARNING "ERROR: %s\n\n", str);
1241 for (i = 0; i < nr_node_ids; i++) {
1242 printk(KERN_WARNING " ");
1243 for (j = 0; j < nr_node_ids; j++)
1244 printk(KERN_CONT "%02d ", node_distance(i,j));
1245 printk(KERN_CONT "\n");
1247 printk(KERN_WARNING "\n");
1250 bool find_numa_distance(int distance)
1252 int i;
1254 if (distance == node_distance(0, 0))
1255 return true;
1257 for (i = 0; i < sched_domains_numa_levels; i++) {
1258 if (sched_domains_numa_distance[i] == distance)
1259 return true;
1262 return false;
1266 * A system can have three types of NUMA topology:
1267 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1268 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1269 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1271 * The difference between a glueless mesh topology and a backplane
1272 * topology lies in whether communication between not directly
1273 * connected nodes goes through intermediary nodes (where programs
1274 * could run), or through backplane controllers. This affects
1275 * placement of programs.
1277 * The type of topology can be discerned with the following tests:
1278 * - If the maximum distance between any nodes is 1 hop, the system
1279 * is directly connected.
1280 * - If for two nodes A and B, located N > 1 hops away from each other,
1281 * there is an intermediary node C, which is < N hops away from both
1282 * nodes A and B, the system is a glueless mesh.
1284 static void init_numa_topology_type(void)
1286 int a, b, c, n;
1288 n = sched_max_numa_distance;
1290 if (sched_domains_numa_levels <= 1) {
1291 sched_numa_topology_type = NUMA_DIRECT;
1292 return;
1295 for_each_online_node(a) {
1296 for_each_online_node(b) {
1297 /* Find two nodes furthest removed from each other. */
1298 if (node_distance(a, b) < n)
1299 continue;
1301 /* Is there an intermediary node between a and b? */
1302 for_each_online_node(c) {
1303 if (node_distance(a, c) < n &&
1304 node_distance(b, c) < n) {
1305 sched_numa_topology_type =
1306 NUMA_GLUELESS_MESH;
1307 return;
1311 sched_numa_topology_type = NUMA_BACKPLANE;
1312 return;
1317 void sched_init_numa(void)
1319 int next_distance, curr_distance = node_distance(0, 0);
1320 struct sched_domain_topology_level *tl;
1321 int level = 0;
1322 int i, j, k;
1324 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1325 if (!sched_domains_numa_distance)
1326 return;
1328 /* Includes NUMA identity node at level 0. */
1329 sched_domains_numa_distance[level++] = curr_distance;
1330 sched_domains_numa_levels = level;
1333 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1334 * unique distances in the node_distance() table.
1336 * Assumes node_distance(0,j) includes all distances in
1337 * node_distance(i,j) in order to avoid cubic time.
1339 next_distance = curr_distance;
1340 for (i = 0; i < nr_node_ids; i++) {
1341 for (j = 0; j < nr_node_ids; j++) {
1342 for (k = 0; k < nr_node_ids; k++) {
1343 int distance = node_distance(i, k);
1345 if (distance > curr_distance &&
1346 (distance < next_distance ||
1347 next_distance == curr_distance))
1348 next_distance = distance;
1351 * While not a strong assumption it would be nice to know
1352 * about cases where if node A is connected to B, B is not
1353 * equally connected to A.
1355 if (sched_debug() && node_distance(k, i) != distance)
1356 sched_numa_warn("Node-distance not symmetric");
1358 if (sched_debug() && i && !find_numa_distance(distance))
1359 sched_numa_warn("Node-0 not representative");
1361 if (next_distance != curr_distance) {
1362 sched_domains_numa_distance[level++] = next_distance;
1363 sched_domains_numa_levels = level;
1364 curr_distance = next_distance;
1365 } else break;
1369 * In case of sched_debug() we verify the above assumption.
1371 if (!sched_debug())
1372 break;
1375 if (!level)
1376 return;
1379 * 'level' contains the number of unique distances
1381 * The sched_domains_numa_distance[] array includes the actual distance
1382 * numbers.
1386 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1387 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1388 * the array will contain less then 'level' members. This could be
1389 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1390 * in other functions.
1392 * We reset it to 'level' at the end of this function.
1394 sched_domains_numa_levels = 0;
1396 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1397 if (!sched_domains_numa_masks)
1398 return;
1401 * Now for each level, construct a mask per node which contains all
1402 * CPUs of nodes that are that many hops away from us.
1404 for (i = 0; i < level; i++) {
1405 sched_domains_numa_masks[i] =
1406 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1407 if (!sched_domains_numa_masks[i])
1408 return;
1410 for (j = 0; j < nr_node_ids; j++) {
1411 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1412 if (!mask)
1413 return;
1415 sched_domains_numa_masks[i][j] = mask;
1417 for_each_node(k) {
1418 if (node_distance(j, k) > sched_domains_numa_distance[i])
1419 continue;
1421 cpumask_or(mask, mask, cpumask_of_node(k));
1426 /* Compute default topology size */
1427 for (i = 0; sched_domain_topology[i].mask; i++);
1429 tl = kzalloc((i + level + 1) *
1430 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1431 if (!tl)
1432 return;
1435 * Copy the default topology bits..
1437 for (i = 0; sched_domain_topology[i].mask; i++)
1438 tl[i] = sched_domain_topology[i];
1441 * Add the NUMA identity distance, aka single NODE.
1443 tl[i++] = (struct sched_domain_topology_level){
1444 .mask = sd_numa_mask,
1445 .numa_level = 0,
1446 SD_INIT_NAME(NODE)
1450 * .. and append 'j' levels of NUMA goodness.
1452 for (j = 1; j < level; i++, j++) {
1453 tl[i] = (struct sched_domain_topology_level){
1454 .mask = sd_numa_mask,
1455 .sd_flags = cpu_numa_flags,
1456 .flags = SDTL_OVERLAP,
1457 .numa_level = j,
1458 SD_INIT_NAME(NUMA)
1462 sched_domain_topology = tl;
1464 sched_domains_numa_levels = level;
1465 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1467 init_numa_topology_type();
1470 void sched_domains_numa_masks_set(unsigned int cpu)
1472 int node = cpu_to_node(cpu);
1473 int i, j;
1475 for (i = 0; i < sched_domains_numa_levels; i++) {
1476 for (j = 0; j < nr_node_ids; j++) {
1477 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1478 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1483 void sched_domains_numa_masks_clear(unsigned int cpu)
1485 int i, j;
1487 for (i = 0; i < sched_domains_numa_levels; i++) {
1488 for (j = 0; j < nr_node_ids; j++)
1489 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1493 #endif /* CONFIG_NUMA */
1495 static int __sdt_alloc(const struct cpumask *cpu_map)
1497 struct sched_domain_topology_level *tl;
1498 int j;
1500 for_each_sd_topology(tl) {
1501 struct sd_data *sdd = &tl->data;
1503 sdd->sd = alloc_percpu(struct sched_domain *);
1504 if (!sdd->sd)
1505 return -ENOMEM;
1507 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1508 if (!sdd->sds)
1509 return -ENOMEM;
1511 sdd->sg = alloc_percpu(struct sched_group *);
1512 if (!sdd->sg)
1513 return -ENOMEM;
1515 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1516 if (!sdd->sgc)
1517 return -ENOMEM;
1519 for_each_cpu(j, cpu_map) {
1520 struct sched_domain *sd;
1521 struct sched_domain_shared *sds;
1522 struct sched_group *sg;
1523 struct sched_group_capacity *sgc;
1525 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1526 GFP_KERNEL, cpu_to_node(j));
1527 if (!sd)
1528 return -ENOMEM;
1530 *per_cpu_ptr(sdd->sd, j) = sd;
1532 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1533 GFP_KERNEL, cpu_to_node(j));
1534 if (!sds)
1535 return -ENOMEM;
1537 *per_cpu_ptr(sdd->sds, j) = sds;
1539 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1540 GFP_KERNEL, cpu_to_node(j));
1541 if (!sg)
1542 return -ENOMEM;
1544 sg->next = sg;
1546 *per_cpu_ptr(sdd->sg, j) = sg;
1548 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1549 GFP_KERNEL, cpu_to_node(j));
1550 if (!sgc)
1551 return -ENOMEM;
1553 #ifdef CONFIG_SCHED_DEBUG
1554 sgc->id = j;
1555 #endif
1557 *per_cpu_ptr(sdd->sgc, j) = sgc;
1561 return 0;
1564 static void __sdt_free(const struct cpumask *cpu_map)
1566 struct sched_domain_topology_level *tl;
1567 int j;
1569 for_each_sd_topology(tl) {
1570 struct sd_data *sdd = &tl->data;
1572 for_each_cpu(j, cpu_map) {
1573 struct sched_domain *sd;
1575 if (sdd->sd) {
1576 sd = *per_cpu_ptr(sdd->sd, j);
1577 if (sd && (sd->flags & SD_OVERLAP))
1578 free_sched_groups(sd->groups, 0);
1579 kfree(*per_cpu_ptr(sdd->sd, j));
1582 if (sdd->sds)
1583 kfree(*per_cpu_ptr(sdd->sds, j));
1584 if (sdd->sg)
1585 kfree(*per_cpu_ptr(sdd->sg, j));
1586 if (sdd->sgc)
1587 kfree(*per_cpu_ptr(sdd->sgc, j));
1589 free_percpu(sdd->sd);
1590 sdd->sd = NULL;
1591 free_percpu(sdd->sds);
1592 sdd->sds = NULL;
1593 free_percpu(sdd->sg);
1594 sdd->sg = NULL;
1595 free_percpu(sdd->sgc);
1596 sdd->sgc = NULL;
1600 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1601 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1602 struct sched_domain *child, int cpu)
1604 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1606 if (child) {
1607 sd->level = child->level + 1;
1608 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1609 child->parent = sd;
1611 if (!cpumask_subset(sched_domain_span(child),
1612 sched_domain_span(sd))) {
1613 pr_err("BUG: arch topology borken\n");
1614 #ifdef CONFIG_SCHED_DEBUG
1615 pr_err(" the %s domain not a subset of the %s domain\n",
1616 child->name, sd->name);
1617 #endif
1618 /* Fixup, ensure @sd has at least @child cpus. */
1619 cpumask_or(sched_domain_span(sd),
1620 sched_domain_span(sd),
1621 sched_domain_span(child));
1625 set_domain_attribute(sd, attr);
1627 return sd;
1631 * Build sched domains for a given set of CPUs and attach the sched domains
1632 * to the individual CPUs
1634 static int
1635 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1637 enum s_alloc alloc_state;
1638 struct sched_domain *sd;
1639 struct s_data d;
1640 struct rq *rq = NULL;
1641 int i, ret = -ENOMEM;
1643 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1644 if (alloc_state != sa_rootdomain)
1645 goto error;
1647 /* Set up domains for CPUs specified by the cpu_map: */
1648 for_each_cpu(i, cpu_map) {
1649 struct sched_domain_topology_level *tl;
1651 sd = NULL;
1652 for_each_sd_topology(tl) {
1653 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1654 if (tl == sched_domain_topology)
1655 *per_cpu_ptr(d.sd, i) = sd;
1656 if (tl->flags & SDTL_OVERLAP)
1657 sd->flags |= SD_OVERLAP;
1658 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1659 break;
1663 /* Build the groups for the domains */
1664 for_each_cpu(i, cpu_map) {
1665 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1666 sd->span_weight = cpumask_weight(sched_domain_span(sd));
1667 if (sd->flags & SD_OVERLAP) {
1668 if (build_overlap_sched_groups(sd, i))
1669 goto error;
1670 } else {
1671 if (build_sched_groups(sd, i))
1672 goto error;
1677 /* Calculate CPU capacity for physical packages and nodes */
1678 for (i = nr_cpumask_bits-1; i >= 0; i--) {
1679 if (!cpumask_test_cpu(i, cpu_map))
1680 continue;
1682 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1683 claim_allocations(i, sd);
1684 init_sched_groups_capacity(i, sd);
1688 /* Attach the domains */
1689 rcu_read_lock();
1690 for_each_cpu(i, cpu_map) {
1691 rq = cpu_rq(i);
1692 sd = *per_cpu_ptr(d.sd, i);
1694 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1695 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1696 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1698 cpu_attach_domain(sd, d.rd, i);
1700 rcu_read_unlock();
1702 if (rq && sched_debug_enabled) {
1703 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1704 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1707 ret = 0;
1708 error:
1709 __free_domain_allocs(&d, alloc_state, cpu_map);
1710 return ret;
1713 /* Current sched domains: */
1714 static cpumask_var_t *doms_cur;
1716 /* Number of sched domains in 'doms_cur': */
1717 static int ndoms_cur;
1719 /* Attribues of custom domains in 'doms_cur' */
1720 static struct sched_domain_attr *dattr_cur;
1723 * Special case: If a kmalloc() of a doms_cur partition (array of
1724 * cpumask) fails, then fallback to a single sched domain,
1725 * as determined by the single cpumask fallback_doms.
1727 static cpumask_var_t fallback_doms;
1730 * arch_update_cpu_topology lets virtualized architectures update the
1731 * CPU core maps. It is supposed to return 1 if the topology changed
1732 * or 0 if it stayed the same.
1734 int __weak arch_update_cpu_topology(void)
1736 return 0;
1739 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1741 int i;
1742 cpumask_var_t *doms;
1744 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1745 if (!doms)
1746 return NULL;
1747 for (i = 0; i < ndoms; i++) {
1748 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1749 free_sched_domains(doms, i);
1750 return NULL;
1753 return doms;
1756 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1758 unsigned int i;
1759 for (i = 0; i < ndoms; i++)
1760 free_cpumask_var(doms[i]);
1761 kfree(doms);
1765 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1766 * For now this just excludes isolated CPUs, but could be used to
1767 * exclude other special cases in the future.
1769 int sched_init_domains(const struct cpumask *cpu_map)
1771 int err;
1773 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1774 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1775 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1777 arch_update_cpu_topology();
1778 ndoms_cur = 1;
1779 doms_cur = alloc_sched_domains(ndoms_cur);
1780 if (!doms_cur)
1781 doms_cur = &fallback_doms;
1782 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
1783 err = build_sched_domains(doms_cur[0], NULL);
1784 register_sched_domain_sysctl();
1786 return err;
1790 * Detach sched domains from a group of CPUs specified in cpu_map
1791 * These CPUs will now be attached to the NULL domain
1793 static void detach_destroy_domains(const struct cpumask *cpu_map)
1795 int i;
1797 rcu_read_lock();
1798 for_each_cpu(i, cpu_map)
1799 cpu_attach_domain(NULL, &def_root_domain, i);
1800 rcu_read_unlock();
1803 /* handle null as "default" */
1804 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1805 struct sched_domain_attr *new, int idx_new)
1807 struct sched_domain_attr tmp;
1809 /* Fast path: */
1810 if (!new && !cur)
1811 return 1;
1813 tmp = SD_ATTR_INIT;
1814 return !memcmp(cur ? (cur + idx_cur) : &tmp,
1815 new ? (new + idx_new) : &tmp,
1816 sizeof(struct sched_domain_attr));
1820 * Partition sched domains as specified by the 'ndoms_new'
1821 * cpumasks in the array doms_new[] of cpumasks. This compares
1822 * doms_new[] to the current sched domain partitioning, doms_cur[].
1823 * It destroys each deleted domain and builds each new domain.
1825 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1826 * The masks don't intersect (don't overlap.) We should setup one
1827 * sched domain for each mask. CPUs not in any of the cpumasks will
1828 * not be load balanced. If the same cpumask appears both in the
1829 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1830 * it as it is.
1832 * The passed in 'doms_new' should be allocated using
1833 * alloc_sched_domains. This routine takes ownership of it and will
1834 * free_sched_domains it when done with it. If the caller failed the
1835 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1836 * and partition_sched_domains() will fallback to the single partition
1837 * 'fallback_doms', it also forces the domains to be rebuilt.
1839 * If doms_new == NULL it will be replaced with cpu_online_mask.
1840 * ndoms_new == 0 is a special case for destroying existing domains,
1841 * and it will not create the default domain.
1843 * Call with hotplug lock held
1845 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1846 struct sched_domain_attr *dattr_new)
1848 int i, j, n;
1849 int new_topology;
1851 mutex_lock(&sched_domains_mutex);
1853 /* Always unregister in case we don't destroy any domains: */
1854 unregister_sched_domain_sysctl();
1856 /* Let the architecture update CPU core mappings: */
1857 new_topology = arch_update_cpu_topology();
1859 if (!doms_new) {
1860 WARN_ON_ONCE(dattr_new);
1861 n = 0;
1862 doms_new = alloc_sched_domains(1);
1863 if (doms_new) {
1864 n = 1;
1865 cpumask_and(doms_new[0], cpu_active_mask,
1866 housekeeping_cpumask(HK_FLAG_DOMAIN));
1868 } else {
1869 n = ndoms_new;
1872 /* Destroy deleted domains: */
1873 for (i = 0; i < ndoms_cur; i++) {
1874 for (j = 0; j < n && !new_topology; j++) {
1875 if (cpumask_equal(doms_cur[i], doms_new[j])
1876 && dattrs_equal(dattr_cur, i, dattr_new, j))
1877 goto match1;
1879 /* No match - a current sched domain not in new doms_new[] */
1880 detach_destroy_domains(doms_cur[i]);
1881 match1:
1885 n = ndoms_cur;
1886 if (!doms_new) {
1887 n = 0;
1888 doms_new = &fallback_doms;
1889 cpumask_and(doms_new[0], cpu_active_mask,
1890 housekeeping_cpumask(HK_FLAG_DOMAIN));
1893 /* Build new domains: */
1894 for (i = 0; i < ndoms_new; i++) {
1895 for (j = 0; j < n && !new_topology; j++) {
1896 if (cpumask_equal(doms_new[i], doms_cur[j])
1897 && dattrs_equal(dattr_new, i, dattr_cur, j))
1898 goto match2;
1900 /* No match - add a new doms_new */
1901 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1902 match2:
1906 /* Remember the new sched domains: */
1907 if (doms_cur != &fallback_doms)
1908 free_sched_domains(doms_cur, ndoms_cur);
1910 kfree(dattr_cur);
1911 doms_cur = doms_new;
1912 dattr_cur = dattr_new;
1913 ndoms_cur = ndoms_new;
1915 register_sched_domain_sysctl();
1917 mutex_unlock(&sched_domains_mutex);