1 // SPDX-License-Identifier: GPL-2.0
3 * Scheduler topology setup/handling methods
5 #include <linux/sched.h>
6 #include <linux/mutex.h>
7 #include <linux/sched/isolation.h>
11 DEFINE_MUTEX(sched_domains_mutex
);
13 /* Protected by sched_domains_mutex: */
14 cpumask_var_t sched_domains_tmpmask
;
15 cpumask_var_t sched_domains_tmpmask2
;
17 #ifdef CONFIG_SCHED_DEBUG
19 static int __init
sched_debug_setup(char *str
)
21 sched_debug_enabled
= true;
25 early_param("sched_debug", sched_debug_setup
);
27 static inline bool sched_debug(void)
29 return sched_debug_enabled
;
32 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
33 struct cpumask
*groupmask
)
35 struct sched_group
*group
= sd
->groups
;
37 cpumask_clear(groupmask
);
39 printk(KERN_DEBUG
"%*s domain-%d: ", level
, "", level
);
41 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
42 printk("does not load-balance\n");
44 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
49 printk(KERN_CONT
"span=%*pbl level=%s\n",
50 cpumask_pr_args(sched_domain_span(sd
)), sd
->name
);
52 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
53 printk(KERN_ERR
"ERROR: domain->span does not contain "
56 if (!cpumask_test_cpu(cpu
, sched_group_span(group
))) {
57 printk(KERN_ERR
"ERROR: domain->groups does not contain"
61 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
65 printk(KERN_ERR
"ERROR: group is NULL\n");
69 if (!cpumask_weight(sched_group_span(group
))) {
70 printk(KERN_CONT
"\n");
71 printk(KERN_ERR
"ERROR: empty group\n");
75 if (!(sd
->flags
& SD_OVERLAP
) &&
76 cpumask_intersects(groupmask
, sched_group_span(group
))) {
77 printk(KERN_CONT
"\n");
78 printk(KERN_ERR
"ERROR: repeated CPUs\n");
82 cpumask_or(groupmask
, groupmask
, sched_group_span(group
));
84 printk(KERN_CONT
" %d:{ span=%*pbl",
86 cpumask_pr_args(sched_group_span(group
)));
88 if ((sd
->flags
& SD_OVERLAP
) &&
89 !cpumask_equal(group_balance_mask(group
), sched_group_span(group
))) {
90 printk(KERN_CONT
" mask=%*pbl",
91 cpumask_pr_args(group_balance_mask(group
)));
94 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
)
95 printk(KERN_CONT
" cap=%lu", group
->sgc
->capacity
);
97 if (group
== sd
->groups
&& sd
->child
&&
98 !cpumask_equal(sched_domain_span(sd
->child
),
99 sched_group_span(group
))) {
100 printk(KERN_ERR
"ERROR: domain->groups does not match domain->child\n");
103 printk(KERN_CONT
" }");
107 if (group
!= sd
->groups
)
108 printk(KERN_CONT
",");
110 } while (group
!= sd
->groups
);
111 printk(KERN_CONT
"\n");
113 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
114 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
117 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
118 printk(KERN_ERR
"ERROR: parent span is not a superset "
119 "of domain->span\n");
123 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
127 if (!sched_debug_enabled
)
131 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
135 printk(KERN_DEBUG
"CPU%d attaching sched-domain(s):\n", cpu
);
138 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
146 #else /* !CONFIG_SCHED_DEBUG */
148 # define sched_debug_enabled 0
149 # define sched_domain_debug(sd, cpu) do { } while (0)
150 static inline bool sched_debug(void)
154 #endif /* CONFIG_SCHED_DEBUG */
156 static int sd_degenerate(struct sched_domain
*sd
)
158 if (cpumask_weight(sched_domain_span(sd
)) == 1)
161 /* Following flags need at least 2 groups */
162 if (sd
->flags
& (SD_LOAD_BALANCE
|
166 SD_SHARE_CPUCAPACITY
|
167 SD_ASYM_CPUCAPACITY
|
168 SD_SHARE_PKG_RESOURCES
|
169 SD_SHARE_POWERDOMAIN
)) {
170 if (sd
->groups
!= sd
->groups
->next
)
174 /* Following flags don't use groups */
175 if (sd
->flags
& (SD_WAKE_AFFINE
))
182 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
184 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
186 if (sd_degenerate(parent
))
189 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
192 /* Flags needing groups don't count if only 1 group in parent */
193 if (parent
->groups
== parent
->groups
->next
) {
194 pflags
&= ~(SD_LOAD_BALANCE
|
198 SD_ASYM_CPUCAPACITY
|
199 SD_SHARE_CPUCAPACITY
|
200 SD_SHARE_PKG_RESOURCES
|
202 SD_SHARE_POWERDOMAIN
);
203 if (nr_node_ids
== 1)
204 pflags
&= ~SD_SERIALIZE
;
206 if (~cflags
& pflags
)
212 static void free_rootdomain(struct rcu_head
*rcu
)
214 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
216 cpupri_cleanup(&rd
->cpupri
);
217 cpudl_cleanup(&rd
->cpudl
);
218 free_cpumask_var(rd
->dlo_mask
);
219 free_cpumask_var(rd
->rto_mask
);
220 free_cpumask_var(rd
->online
);
221 free_cpumask_var(rd
->span
);
225 void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
227 struct root_domain
*old_rd
= NULL
;
230 raw_spin_lock_irqsave(&rq
->lock
, flags
);
235 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
238 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
241 * If we dont want to free the old_rd yet then
242 * set old_rd to NULL to skip the freeing later
245 if (!atomic_dec_and_test(&old_rd
->refcount
))
249 atomic_inc(&rd
->refcount
);
252 cpumask_set_cpu(rq
->cpu
, rd
->span
);
253 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
256 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
259 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
262 static int init_rootdomain(struct root_domain
*rd
)
264 if (!zalloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
266 if (!zalloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
268 if (!zalloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
270 if (!zalloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
273 #ifdef HAVE_RT_PUSH_IPI
275 raw_spin_lock_init(&rd
->rto_lock
);
276 init_irq_work(&rd
->rto_push_work
, rto_push_irq_work_func
);
279 init_dl_bw(&rd
->dl_bw
);
280 if (cpudl_init(&rd
->cpudl
) != 0)
283 if (cpupri_init(&rd
->cpupri
) != 0)
288 cpudl_cleanup(&rd
->cpudl
);
290 free_cpumask_var(rd
->rto_mask
);
292 free_cpumask_var(rd
->dlo_mask
);
294 free_cpumask_var(rd
->online
);
296 free_cpumask_var(rd
->span
);
302 * By default the system creates a single root-domain with all CPUs as
303 * members (mimicking the global state we have today).
305 struct root_domain def_root_domain
;
307 void init_defrootdomain(void)
309 init_rootdomain(&def_root_domain
);
311 atomic_set(&def_root_domain
.refcount
, 1);
314 static struct root_domain
*alloc_rootdomain(void)
316 struct root_domain
*rd
;
318 rd
= kzalloc(sizeof(*rd
), GFP_KERNEL
);
322 if (init_rootdomain(rd
) != 0) {
330 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
332 struct sched_group
*tmp
, *first
;
341 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
344 if (atomic_dec_and_test(&sg
->ref
))
347 } while (sg
!= first
);
350 static void destroy_sched_domain(struct sched_domain
*sd
)
353 * A normal sched domain may have multiple group references, an
354 * overlapping domain, having private groups, only one. Iterate,
355 * dropping group/capacity references, freeing where none remain.
357 free_sched_groups(sd
->groups
, 1);
359 if (sd
->shared
&& atomic_dec_and_test(&sd
->shared
->ref
))
364 static void destroy_sched_domains_rcu(struct rcu_head
*rcu
)
366 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
369 struct sched_domain
*parent
= sd
->parent
;
370 destroy_sched_domain(sd
);
375 static void destroy_sched_domains(struct sched_domain
*sd
)
378 call_rcu(&sd
->rcu
, destroy_sched_domains_rcu
);
382 * Keep a special pointer to the highest sched_domain that has
383 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
384 * allows us to avoid some pointer chasing select_idle_sibling().
386 * Also keep a unique ID per domain (we use the first CPU number in
387 * the cpumask of the domain), this allows us to quickly tell if
388 * two CPUs are in the same cache domain, see cpus_share_cache().
390 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
391 DEFINE_PER_CPU(int, sd_llc_size
);
392 DEFINE_PER_CPU(int, sd_llc_id
);
393 DEFINE_PER_CPU(struct sched_domain_shared
*, sd_llc_shared
);
394 DEFINE_PER_CPU(struct sched_domain
*, sd_numa
);
395 DEFINE_PER_CPU(struct sched_domain
*, sd_asym
);
397 static void update_top_cache_domain(int cpu
)
399 struct sched_domain_shared
*sds
= NULL
;
400 struct sched_domain
*sd
;
404 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
406 id
= cpumask_first(sched_domain_span(sd
));
407 size
= cpumask_weight(sched_domain_span(sd
));
411 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
412 per_cpu(sd_llc_size
, cpu
) = size
;
413 per_cpu(sd_llc_id
, cpu
) = id
;
414 rcu_assign_pointer(per_cpu(sd_llc_shared
, cpu
), sds
);
416 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
417 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
419 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
420 rcu_assign_pointer(per_cpu(sd_asym
, cpu
), sd
);
424 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
425 * hold the hotplug lock.
428 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
430 struct rq
*rq
= cpu_rq(cpu
);
431 struct sched_domain
*tmp
;
433 /* Remove the sched domains which do not contribute to scheduling. */
434 for (tmp
= sd
; tmp
; ) {
435 struct sched_domain
*parent
= tmp
->parent
;
439 if (sd_parent_degenerate(tmp
, parent
)) {
440 tmp
->parent
= parent
->parent
;
442 parent
->parent
->child
= tmp
;
444 * Transfer SD_PREFER_SIBLING down in case of a
445 * degenerate parent; the spans match for this
446 * so the property transfers.
448 if (parent
->flags
& SD_PREFER_SIBLING
)
449 tmp
->flags
|= SD_PREFER_SIBLING
;
450 destroy_sched_domain(parent
);
455 if (sd
&& sd_degenerate(sd
)) {
458 destroy_sched_domain(tmp
);
463 sched_domain_debug(sd
, cpu
);
465 rq_attach_root(rq
, rd
);
467 rcu_assign_pointer(rq
->sd
, sd
);
468 dirty_sched_domain_sysctl(cpu
);
469 destroy_sched_domains(tmp
);
471 update_top_cache_domain(cpu
);
475 struct sched_domain
** __percpu sd
;
476 struct root_domain
*rd
;
487 * Return the canonical balance CPU for this group, this is the first CPU
488 * of this group that's also in the balance mask.
490 * The balance mask are all those CPUs that could actually end up at this
491 * group. See build_balance_mask().
493 * Also see should_we_balance().
495 int group_balance_cpu(struct sched_group
*sg
)
497 return cpumask_first(group_balance_mask(sg
));
502 * NUMA topology (first read the regular topology blurb below)
504 * Given a node-distance table, for example:
512 * which represents a 4 node ring topology like:
520 * We want to construct domains and groups to represent this. The way we go
521 * about doing this is to build the domains on 'hops'. For each NUMA level we
522 * construct the mask of all nodes reachable in @level hops.
524 * For the above NUMA topology that gives 3 levels:
526 * NUMA-2 0-3 0-3 0-3 0-3
527 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
529 * NUMA-1 0-1,3 0-2 1-3 0,2-3
530 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
535 * As can be seen; things don't nicely line up as with the regular topology.
536 * When we iterate a domain in child domain chunks some nodes can be
537 * represented multiple times -- hence the "overlap" naming for this part of
540 * In order to minimize this overlap, we only build enough groups to cover the
541 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
545 * - the first group of each domain is its child domain; this
546 * gets us the first 0-1,3
547 * - the only uncovered node is 2, who's child domain is 1-3.
549 * However, because of the overlap, computing a unique CPU for each group is
550 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
551 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
552 * end up at those groups (they would end up in group: 0-1,3).
554 * To correct this we have to introduce the group balance mask. This mask
555 * will contain those CPUs in the group that can reach this group given the
556 * (child) domain tree.
558 * With this we can once again compute balance_cpu and sched_group_capacity
561 * XXX include words on how balance_cpu is unique and therefore can be
562 * used for sched_group_capacity links.
565 * Another 'interesting' topology is:
573 * Which looks a little like:
581 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
584 * This leads to a few particularly weird cases where the sched_domain's are
585 * not of the same number for each cpu. Consider:
588 * groups: {0-2},{1-3} {1-3},{0-2}
590 * NUMA-1 0-2 0-3 0-3 1-3
598 * Build the balance mask; it contains only those CPUs that can arrive at this
599 * group and should be considered to continue balancing.
601 * We do this during the group creation pass, therefore the group information
602 * isn't complete yet, however since each group represents a (child) domain we
603 * can fully construct this using the sched_domain bits (which are already
607 build_balance_mask(struct sched_domain
*sd
, struct sched_group
*sg
, struct cpumask
*mask
)
609 const struct cpumask
*sg_span
= sched_group_span(sg
);
610 struct sd_data
*sdd
= sd
->private;
611 struct sched_domain
*sibling
;
616 for_each_cpu(i
, sg_span
) {
617 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
620 * Can happen in the asymmetric case, where these siblings are
621 * unused. The mask will not be empty because those CPUs that
622 * do have the top domain _should_ span the domain.
627 /* If we would not end up here, we can't continue from here */
628 if (!cpumask_equal(sg_span
, sched_domain_span(sibling
->child
)))
631 cpumask_set_cpu(i
, mask
);
634 /* We must not have empty masks here */
635 WARN_ON_ONCE(cpumask_empty(mask
));
639 * XXX: This creates per-node group entries; since the load-balancer will
640 * immediately access remote memory to construct this group's load-balance
641 * statistics having the groups node local is of dubious benefit.
643 static struct sched_group
*
644 build_group_from_child_sched_domain(struct sched_domain
*sd
, int cpu
)
646 struct sched_group
*sg
;
647 struct cpumask
*sg_span
;
649 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
650 GFP_KERNEL
, cpu_to_node(cpu
));
655 sg_span
= sched_group_span(sg
);
657 cpumask_copy(sg_span
, sched_domain_span(sd
->child
));
659 cpumask_copy(sg_span
, sched_domain_span(sd
));
661 atomic_inc(&sg
->ref
);
665 static void init_overlap_sched_group(struct sched_domain
*sd
,
666 struct sched_group
*sg
)
668 struct cpumask
*mask
= sched_domains_tmpmask2
;
669 struct sd_data
*sdd
= sd
->private;
670 struct cpumask
*sg_span
;
673 build_balance_mask(sd
, sg
, mask
);
674 cpu
= cpumask_first_and(sched_group_span(sg
), mask
);
676 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
677 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
678 cpumask_copy(group_balance_mask(sg
), mask
);
680 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg
), mask
));
683 * Initialize sgc->capacity such that even if we mess up the
684 * domains and no possible iteration will get us here, we won't
687 sg_span
= sched_group_span(sg
);
688 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
689 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
693 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
695 struct sched_group
*first
= NULL
, *last
= NULL
, *sg
;
696 const struct cpumask
*span
= sched_domain_span(sd
);
697 struct cpumask
*covered
= sched_domains_tmpmask
;
698 struct sd_data
*sdd
= sd
->private;
699 struct sched_domain
*sibling
;
702 cpumask_clear(covered
);
704 for_each_cpu_wrap(i
, span
, cpu
) {
705 struct cpumask
*sg_span
;
707 if (cpumask_test_cpu(i
, covered
))
710 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
713 * Asymmetric node setups can result in situations where the
714 * domain tree is of unequal depth, make sure to skip domains
715 * that already cover the entire range.
717 * In that case build_sched_domains() will have terminated the
718 * iteration early and our sibling sd spans will be empty.
719 * Domains should always include the CPU they're built on, so
722 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
725 sg
= build_group_from_child_sched_domain(sibling
, cpu
);
729 sg_span
= sched_group_span(sg
);
730 cpumask_or(covered
, covered
, sg_span
);
732 init_overlap_sched_group(sd
, sg
);
746 free_sched_groups(first
, 0);
753 * Package topology (also see the load-balance blurb in fair.c)
755 * The scheduler builds a tree structure to represent a number of important
756 * topology features. By default (default_topology[]) these include:
758 * - Simultaneous multithreading (SMT)
759 * - Multi-Core Cache (MC)
762 * Where the last one more or less denotes everything up to a NUMA node.
764 * The tree consists of 3 primary data structures:
766 * sched_domain -> sched_group -> sched_group_capacity
770 * The sched_domains are per-cpu and have a two way link (parent & child) and
771 * denote the ever growing mask of CPUs belonging to that level of topology.
773 * Each sched_domain has a circular (double) linked list of sched_group's, each
774 * denoting the domains of the level below (or individual CPUs in case of the
775 * first domain level). The sched_group linked by a sched_domain includes the
776 * CPU of that sched_domain [*].
778 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
780 * CPU 0 1 2 3 4 5 6 7
784 * SMT [ ] [ ] [ ] [ ]
788 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
789 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
790 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
792 * CPU 0 1 2 3 4 5 6 7
794 * One way to think about it is: sched_domain moves you up and down among these
795 * topology levels, while sched_group moves you sideways through it, at child
796 * domain granularity.
798 * sched_group_capacity ensures each unique sched_group has shared storage.
800 * There are two related construction problems, both require a CPU that
801 * uniquely identify each group (for a given domain):
803 * - The first is the balance_cpu (see should_we_balance() and the
804 * load-balance blub in fair.c); for each group we only want 1 CPU to
805 * continue balancing at a higher domain.
807 * - The second is the sched_group_capacity; we want all identical groups
808 * to share a single sched_group_capacity.
810 * Since these topologies are exclusive by construction. That is, its
811 * impossible for an SMT thread to belong to multiple cores, and cores to
812 * be part of multiple caches. There is a very clear and unique location
813 * for each CPU in the hierarchy.
815 * Therefore computing a unique CPU for each group is trivial (the iteration
816 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
817 * group), we can simply pick the first CPU in each group.
820 * [*] in other words, the first group of each domain is its child domain.
823 static struct sched_group
*get_group(int cpu
, struct sd_data
*sdd
)
825 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
826 struct sched_domain
*child
= sd
->child
;
827 struct sched_group
*sg
;
830 cpu
= cpumask_first(sched_domain_span(child
));
832 sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
833 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
835 /* For claim_allocations: */
836 atomic_inc(&sg
->ref
);
837 atomic_inc(&sg
->sgc
->ref
);
840 cpumask_copy(sched_group_span(sg
), sched_domain_span(child
));
841 cpumask_copy(group_balance_mask(sg
), sched_group_span(sg
));
843 cpumask_set_cpu(cpu
, sched_group_span(sg
));
844 cpumask_set_cpu(cpu
, group_balance_mask(sg
));
847 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sched_group_span(sg
));
848 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
854 * build_sched_groups will build a circular linked list of the groups
855 * covered by the given span, and will set each group's ->cpumask correctly,
856 * and ->cpu_capacity to 0.
858 * Assumes the sched_domain tree is fully constructed
861 build_sched_groups(struct sched_domain
*sd
, int cpu
)
863 struct sched_group
*first
= NULL
, *last
= NULL
;
864 struct sd_data
*sdd
= sd
->private;
865 const struct cpumask
*span
= sched_domain_span(sd
);
866 struct cpumask
*covered
;
869 lockdep_assert_held(&sched_domains_mutex
);
870 covered
= sched_domains_tmpmask
;
872 cpumask_clear(covered
);
874 for_each_cpu_wrap(i
, span
, cpu
) {
875 struct sched_group
*sg
;
877 if (cpumask_test_cpu(i
, covered
))
880 sg
= get_group(i
, sdd
);
882 cpumask_or(covered
, covered
, sched_group_span(sg
));
897 * Initialize sched groups cpu_capacity.
899 * cpu_capacity indicates the capacity of sched group, which is used while
900 * distributing the load between different sched groups in a sched domain.
901 * Typically cpu_capacity for all the groups in a sched domain will be same
902 * unless there are asymmetries in the topology. If there are asymmetries,
903 * group having more cpu_capacity will pickup more load compared to the
904 * group having less cpu_capacity.
906 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
908 struct sched_group
*sg
= sd
->groups
;
913 int cpu
, max_cpu
= -1;
915 sg
->group_weight
= cpumask_weight(sched_group_span(sg
));
917 if (!(sd
->flags
& SD_ASYM_PACKING
))
920 for_each_cpu(cpu
, sched_group_span(sg
)) {
923 else if (sched_asym_prefer(cpu
, max_cpu
))
926 sg
->asym_prefer_cpu
= max_cpu
;
930 } while (sg
!= sd
->groups
);
932 if (cpu
!= group_balance_cpu(sg
))
935 update_group_capacity(sd
, cpu
);
939 * Initializers for schedule domains
940 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
943 static int default_relax_domain_level
= -1;
944 int sched_domain_level_max
;
946 static int __init
setup_relax_domain_level(char *str
)
948 if (kstrtoint(str
, 0, &default_relax_domain_level
))
949 pr_warn("Unable to set relax_domain_level\n");
953 __setup("relax_domain_level=", setup_relax_domain_level
);
955 static void set_domain_attribute(struct sched_domain
*sd
,
956 struct sched_domain_attr
*attr
)
960 if (!attr
|| attr
->relax_domain_level
< 0) {
961 if (default_relax_domain_level
< 0)
964 request
= default_relax_domain_level
;
966 request
= attr
->relax_domain_level
;
967 if (request
< sd
->level
) {
968 /* Turn off idle balance on this domain: */
969 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
971 /* Turn on idle balance on this domain: */
972 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
976 static void __sdt_free(const struct cpumask
*cpu_map
);
977 static int __sdt_alloc(const struct cpumask
*cpu_map
);
979 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
980 const struct cpumask
*cpu_map
)
984 if (!atomic_read(&d
->rd
->refcount
))
985 free_rootdomain(&d
->rd
->rcu
);
999 __visit_domain_allocation_hell(struct s_data
*d
, const struct cpumask
*cpu_map
)
1001 memset(d
, 0, sizeof(*d
));
1003 if (__sdt_alloc(cpu_map
))
1004 return sa_sd_storage
;
1005 d
->sd
= alloc_percpu(struct sched_domain
*);
1007 return sa_sd_storage
;
1008 d
->rd
= alloc_rootdomain();
1011 return sa_rootdomain
;
1015 * NULL the sd_data elements we've used to build the sched_domain and
1016 * sched_group structure so that the subsequent __free_domain_allocs()
1017 * will not free the data we're using.
1019 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
1021 struct sd_data
*sdd
= sd
->private;
1023 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
1024 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
1026 if (atomic_read(&(*per_cpu_ptr(sdd
->sds
, cpu
))->ref
))
1027 *per_cpu_ptr(sdd
->sds
, cpu
) = NULL
;
1029 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
1030 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
1032 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
1033 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
1037 static int sched_domains_numa_levels
;
1038 enum numa_topology_type sched_numa_topology_type
;
1039 static int *sched_domains_numa_distance
;
1040 int sched_max_numa_distance
;
1041 static struct cpumask
***sched_domains_numa_masks
;
1042 static int sched_domains_curr_level
;
1046 * SD_flags allowed in topology descriptions.
1048 * These flags are purely descriptive of the topology and do not prescribe
1049 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1052 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1053 * SD_SHARE_PKG_RESOURCES - describes shared caches
1054 * SD_NUMA - describes NUMA topologies
1055 * SD_SHARE_POWERDOMAIN - describes shared power domain
1056 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
1058 * Odd one out, which beside describing the topology has a quirk also
1059 * prescribes the desired behaviour that goes along with it:
1061 * SD_ASYM_PACKING - describes SMT quirks
1063 #define TOPOLOGY_SD_FLAGS \
1064 (SD_SHARE_CPUCAPACITY | \
1065 SD_SHARE_PKG_RESOURCES | \
1068 SD_ASYM_CPUCAPACITY | \
1069 SD_SHARE_POWERDOMAIN)
1071 static struct sched_domain
*
1072 sd_init(struct sched_domain_topology_level
*tl
,
1073 const struct cpumask
*cpu_map
,
1074 struct sched_domain
*child
, int cpu
)
1076 struct sd_data
*sdd
= &tl
->data
;
1077 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
1078 int sd_id
, sd_weight
, sd_flags
= 0;
1082 * Ugly hack to pass state to sd_numa_mask()...
1084 sched_domains_curr_level
= tl
->numa_level
;
1087 sd_weight
= cpumask_weight(tl
->mask(cpu
));
1090 sd_flags
= (*tl
->sd_flags
)();
1091 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
1092 "wrong sd_flags in topology description\n"))
1093 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
1095 *sd
= (struct sched_domain
){
1096 .min_interval
= sd_weight
,
1097 .max_interval
= 2*sd_weight
,
1099 .imbalance_pct
= 125,
1101 .cache_nice_tries
= 0,
1108 .flags
= 1*SD_LOAD_BALANCE
1109 | 1*SD_BALANCE_NEWIDLE
1114 | 0*SD_SHARE_CPUCAPACITY
1115 | 0*SD_SHARE_PKG_RESOURCES
1117 | 0*SD_PREFER_SIBLING
1122 .last_balance
= jiffies
,
1123 .balance_interval
= sd_weight
,
1125 .max_newidle_lb_cost
= 0,
1126 .next_decay_max_lb_cost
= jiffies
,
1128 #ifdef CONFIG_SCHED_DEBUG
1133 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
1134 sd_id
= cpumask_first(sched_domain_span(sd
));
1137 * Convert topological properties into behaviour.
1140 if (sd
->flags
& SD_ASYM_CPUCAPACITY
) {
1141 struct sched_domain
*t
= sd
;
1143 for_each_lower_domain(t
)
1144 t
->flags
|= SD_BALANCE_WAKE
;
1147 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
1148 sd
->flags
|= SD_PREFER_SIBLING
;
1149 sd
->imbalance_pct
= 110;
1150 sd
->smt_gain
= 1178; /* ~15% */
1152 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1153 sd
->flags
|= SD_PREFER_SIBLING
;
1154 sd
->imbalance_pct
= 117;
1155 sd
->cache_nice_tries
= 1;
1159 } else if (sd
->flags
& SD_NUMA
) {
1160 sd
->cache_nice_tries
= 2;
1164 sd
->flags
|= SD_SERIALIZE
;
1165 if (sched_domains_numa_distance
[tl
->numa_level
] > RECLAIM_DISTANCE
) {
1166 sd
->flags
&= ~(SD_BALANCE_EXEC
|
1173 sd
->flags
|= SD_PREFER_SIBLING
;
1174 sd
->cache_nice_tries
= 1;
1180 * For all levels sharing cache; connect a sched_domain_shared
1183 if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1184 sd
->shared
= *per_cpu_ptr(sdd
->sds
, sd_id
);
1185 atomic_inc(&sd
->shared
->ref
);
1186 atomic_set(&sd
->shared
->nr_busy_cpus
, sd_weight
);
1195 * Topology list, bottom-up.
1197 static struct sched_domain_topology_level default_topology
[] = {
1198 #ifdef CONFIG_SCHED_SMT
1199 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
1201 #ifdef CONFIG_SCHED_MC
1202 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
1204 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
1208 static struct sched_domain_topology_level
*sched_domain_topology
=
1211 #define for_each_sd_topology(tl) \
1212 for (tl = sched_domain_topology; tl->mask; tl++)
1214 void set_sched_topology(struct sched_domain_topology_level
*tl
)
1216 if (WARN_ON_ONCE(sched_smp_initialized
))
1219 sched_domain_topology
= tl
;
1224 static const struct cpumask
*sd_numa_mask(int cpu
)
1226 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
1229 static void sched_numa_warn(const char *str
)
1231 static int done
= false;
1239 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
1241 for (i
= 0; i
< nr_node_ids
; i
++) {
1242 printk(KERN_WARNING
" ");
1243 for (j
= 0; j
< nr_node_ids
; j
++)
1244 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
1245 printk(KERN_CONT
"\n");
1247 printk(KERN_WARNING
"\n");
1250 bool find_numa_distance(int distance
)
1254 if (distance
== node_distance(0, 0))
1257 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1258 if (sched_domains_numa_distance
[i
] == distance
)
1266 * A system can have three types of NUMA topology:
1267 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1268 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1269 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1271 * The difference between a glueless mesh topology and a backplane
1272 * topology lies in whether communication between not directly
1273 * connected nodes goes through intermediary nodes (where programs
1274 * could run), or through backplane controllers. This affects
1275 * placement of programs.
1277 * The type of topology can be discerned with the following tests:
1278 * - If the maximum distance between any nodes is 1 hop, the system
1279 * is directly connected.
1280 * - If for two nodes A and B, located N > 1 hops away from each other,
1281 * there is an intermediary node C, which is < N hops away from both
1282 * nodes A and B, the system is a glueless mesh.
1284 static void init_numa_topology_type(void)
1288 n
= sched_max_numa_distance
;
1290 if (sched_domains_numa_levels
<= 1) {
1291 sched_numa_topology_type
= NUMA_DIRECT
;
1295 for_each_online_node(a
) {
1296 for_each_online_node(b
) {
1297 /* Find two nodes furthest removed from each other. */
1298 if (node_distance(a
, b
) < n
)
1301 /* Is there an intermediary node between a and b? */
1302 for_each_online_node(c
) {
1303 if (node_distance(a
, c
) < n
&&
1304 node_distance(b
, c
) < n
) {
1305 sched_numa_topology_type
=
1311 sched_numa_topology_type
= NUMA_BACKPLANE
;
1317 void sched_init_numa(void)
1319 int next_distance
, curr_distance
= node_distance(0, 0);
1320 struct sched_domain_topology_level
*tl
;
1324 sched_domains_numa_distance
= kzalloc(sizeof(int) * nr_node_ids
, GFP_KERNEL
);
1325 if (!sched_domains_numa_distance
)
1328 /* Includes NUMA identity node at level 0. */
1329 sched_domains_numa_distance
[level
++] = curr_distance
;
1330 sched_domains_numa_levels
= level
;
1333 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1334 * unique distances in the node_distance() table.
1336 * Assumes node_distance(0,j) includes all distances in
1337 * node_distance(i,j) in order to avoid cubic time.
1339 next_distance
= curr_distance
;
1340 for (i
= 0; i
< nr_node_ids
; i
++) {
1341 for (j
= 0; j
< nr_node_ids
; j
++) {
1342 for (k
= 0; k
< nr_node_ids
; k
++) {
1343 int distance
= node_distance(i
, k
);
1345 if (distance
> curr_distance
&&
1346 (distance
< next_distance
||
1347 next_distance
== curr_distance
))
1348 next_distance
= distance
;
1351 * While not a strong assumption it would be nice to know
1352 * about cases where if node A is connected to B, B is not
1353 * equally connected to A.
1355 if (sched_debug() && node_distance(k
, i
) != distance
)
1356 sched_numa_warn("Node-distance not symmetric");
1358 if (sched_debug() && i
&& !find_numa_distance(distance
))
1359 sched_numa_warn("Node-0 not representative");
1361 if (next_distance
!= curr_distance
) {
1362 sched_domains_numa_distance
[level
++] = next_distance
;
1363 sched_domains_numa_levels
= level
;
1364 curr_distance
= next_distance
;
1369 * In case of sched_debug() we verify the above assumption.
1379 * 'level' contains the number of unique distances
1381 * The sched_domains_numa_distance[] array includes the actual distance
1386 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1387 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1388 * the array will contain less then 'level' members. This could be
1389 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1390 * in other functions.
1392 * We reset it to 'level' at the end of this function.
1394 sched_domains_numa_levels
= 0;
1396 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
1397 if (!sched_domains_numa_masks
)
1401 * Now for each level, construct a mask per node which contains all
1402 * CPUs of nodes that are that many hops away from us.
1404 for (i
= 0; i
< level
; i
++) {
1405 sched_domains_numa_masks
[i
] =
1406 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
1407 if (!sched_domains_numa_masks
[i
])
1410 for (j
= 0; j
< nr_node_ids
; j
++) {
1411 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
1415 sched_domains_numa_masks
[i
][j
] = mask
;
1418 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
1421 cpumask_or(mask
, mask
, cpumask_of_node(k
));
1426 /* Compute default topology size */
1427 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
1429 tl
= kzalloc((i
+ level
+ 1) *
1430 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
1435 * Copy the default topology bits..
1437 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
1438 tl
[i
] = sched_domain_topology
[i
];
1441 * Add the NUMA identity distance, aka single NODE.
1443 tl
[i
++] = (struct sched_domain_topology_level
){
1444 .mask
= sd_numa_mask
,
1450 * .. and append 'j' levels of NUMA goodness.
1452 for (j
= 1; j
< level
; i
++, j
++) {
1453 tl
[i
] = (struct sched_domain_topology_level
){
1454 .mask
= sd_numa_mask
,
1455 .sd_flags
= cpu_numa_flags
,
1456 .flags
= SDTL_OVERLAP
,
1462 sched_domain_topology
= tl
;
1464 sched_domains_numa_levels
= level
;
1465 sched_max_numa_distance
= sched_domains_numa_distance
[level
- 1];
1467 init_numa_topology_type();
1470 void sched_domains_numa_masks_set(unsigned int cpu
)
1472 int node
= cpu_to_node(cpu
);
1475 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1476 for (j
= 0; j
< nr_node_ids
; j
++) {
1477 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
1478 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1483 void sched_domains_numa_masks_clear(unsigned int cpu
)
1487 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1488 for (j
= 0; j
< nr_node_ids
; j
++)
1489 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1493 #endif /* CONFIG_NUMA */
1495 static int __sdt_alloc(const struct cpumask
*cpu_map
)
1497 struct sched_domain_topology_level
*tl
;
1500 for_each_sd_topology(tl
) {
1501 struct sd_data
*sdd
= &tl
->data
;
1503 sdd
->sd
= alloc_percpu(struct sched_domain
*);
1507 sdd
->sds
= alloc_percpu(struct sched_domain_shared
*);
1511 sdd
->sg
= alloc_percpu(struct sched_group
*);
1515 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
1519 for_each_cpu(j
, cpu_map
) {
1520 struct sched_domain
*sd
;
1521 struct sched_domain_shared
*sds
;
1522 struct sched_group
*sg
;
1523 struct sched_group_capacity
*sgc
;
1525 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
1526 GFP_KERNEL
, cpu_to_node(j
));
1530 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
1532 sds
= kzalloc_node(sizeof(struct sched_domain_shared
),
1533 GFP_KERNEL
, cpu_to_node(j
));
1537 *per_cpu_ptr(sdd
->sds
, j
) = sds
;
1539 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
1540 GFP_KERNEL
, cpu_to_node(j
));
1546 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
1548 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
1549 GFP_KERNEL
, cpu_to_node(j
));
1553 #ifdef CONFIG_SCHED_DEBUG
1557 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
1564 static void __sdt_free(const struct cpumask
*cpu_map
)
1566 struct sched_domain_topology_level
*tl
;
1569 for_each_sd_topology(tl
) {
1570 struct sd_data
*sdd
= &tl
->data
;
1572 for_each_cpu(j
, cpu_map
) {
1573 struct sched_domain
*sd
;
1576 sd
= *per_cpu_ptr(sdd
->sd
, j
);
1577 if (sd
&& (sd
->flags
& SD_OVERLAP
))
1578 free_sched_groups(sd
->groups
, 0);
1579 kfree(*per_cpu_ptr(sdd
->sd
, j
));
1583 kfree(*per_cpu_ptr(sdd
->sds
, j
));
1585 kfree(*per_cpu_ptr(sdd
->sg
, j
));
1587 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
1589 free_percpu(sdd
->sd
);
1591 free_percpu(sdd
->sds
);
1593 free_percpu(sdd
->sg
);
1595 free_percpu(sdd
->sgc
);
1600 static struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
1601 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
1602 struct sched_domain
*child
, int cpu
)
1604 struct sched_domain
*sd
= sd_init(tl
, cpu_map
, child
, cpu
);
1607 sd
->level
= child
->level
+ 1;
1608 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
1611 if (!cpumask_subset(sched_domain_span(child
),
1612 sched_domain_span(sd
))) {
1613 pr_err("BUG: arch topology borken\n");
1614 #ifdef CONFIG_SCHED_DEBUG
1615 pr_err(" the %s domain not a subset of the %s domain\n",
1616 child
->name
, sd
->name
);
1618 /* Fixup, ensure @sd has at least @child cpus. */
1619 cpumask_or(sched_domain_span(sd
),
1620 sched_domain_span(sd
),
1621 sched_domain_span(child
));
1625 set_domain_attribute(sd
, attr
);
1631 * Build sched domains for a given set of CPUs and attach the sched domains
1632 * to the individual CPUs
1635 build_sched_domains(const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
)
1637 enum s_alloc alloc_state
;
1638 struct sched_domain
*sd
;
1640 struct rq
*rq
= NULL
;
1641 int i
, ret
= -ENOMEM
;
1643 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
1644 if (alloc_state
!= sa_rootdomain
)
1647 /* Set up domains for CPUs specified by the cpu_map: */
1648 for_each_cpu(i
, cpu_map
) {
1649 struct sched_domain_topology_level
*tl
;
1652 for_each_sd_topology(tl
) {
1653 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, i
);
1654 if (tl
== sched_domain_topology
)
1655 *per_cpu_ptr(d
.sd
, i
) = sd
;
1656 if (tl
->flags
& SDTL_OVERLAP
)
1657 sd
->flags
|= SD_OVERLAP
;
1658 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
1663 /* Build the groups for the domains */
1664 for_each_cpu(i
, cpu_map
) {
1665 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
1666 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
1667 if (sd
->flags
& SD_OVERLAP
) {
1668 if (build_overlap_sched_groups(sd
, i
))
1671 if (build_sched_groups(sd
, i
))
1677 /* Calculate CPU capacity for physical packages and nodes */
1678 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
1679 if (!cpumask_test_cpu(i
, cpu_map
))
1682 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
1683 claim_allocations(i
, sd
);
1684 init_sched_groups_capacity(i
, sd
);
1688 /* Attach the domains */
1690 for_each_cpu(i
, cpu_map
) {
1692 sd
= *per_cpu_ptr(d
.sd
, i
);
1694 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1695 if (rq
->cpu_capacity_orig
> READ_ONCE(d
.rd
->max_cpu_capacity
))
1696 WRITE_ONCE(d
.rd
->max_cpu_capacity
, rq
->cpu_capacity_orig
);
1698 cpu_attach_domain(sd
, d
.rd
, i
);
1702 if (rq
&& sched_debug_enabled
) {
1703 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1704 cpumask_pr_args(cpu_map
), rq
->rd
->max_cpu_capacity
);
1709 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
1713 /* Current sched domains: */
1714 static cpumask_var_t
*doms_cur
;
1716 /* Number of sched domains in 'doms_cur': */
1717 static int ndoms_cur
;
1719 /* Attribues of custom domains in 'doms_cur' */
1720 static struct sched_domain_attr
*dattr_cur
;
1723 * Special case: If a kmalloc() of a doms_cur partition (array of
1724 * cpumask) fails, then fallback to a single sched domain,
1725 * as determined by the single cpumask fallback_doms.
1727 static cpumask_var_t fallback_doms
;
1730 * arch_update_cpu_topology lets virtualized architectures update the
1731 * CPU core maps. It is supposed to return 1 if the topology changed
1732 * or 0 if it stayed the same.
1734 int __weak
arch_update_cpu_topology(void)
1739 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
1742 cpumask_var_t
*doms
;
1744 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
1747 for (i
= 0; i
< ndoms
; i
++) {
1748 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
1749 free_sched_domains(doms
, i
);
1756 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
1759 for (i
= 0; i
< ndoms
; i
++)
1760 free_cpumask_var(doms
[i
]);
1765 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1766 * For now this just excludes isolated CPUs, but could be used to
1767 * exclude other special cases in the future.
1769 int sched_init_domains(const struct cpumask
*cpu_map
)
1773 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_KERNEL
);
1774 zalloc_cpumask_var(&sched_domains_tmpmask2
, GFP_KERNEL
);
1775 zalloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
1777 arch_update_cpu_topology();
1779 doms_cur
= alloc_sched_domains(ndoms_cur
);
1781 doms_cur
= &fallback_doms
;
1782 cpumask_and(doms_cur
[0], cpu_map
, housekeeping_cpumask(HK_FLAG_DOMAIN
));
1783 err
= build_sched_domains(doms_cur
[0], NULL
);
1784 register_sched_domain_sysctl();
1790 * Detach sched domains from a group of CPUs specified in cpu_map
1791 * These CPUs will now be attached to the NULL domain
1793 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
1798 for_each_cpu(i
, cpu_map
)
1799 cpu_attach_domain(NULL
, &def_root_domain
, i
);
1803 /* handle null as "default" */
1804 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
1805 struct sched_domain_attr
*new, int idx_new
)
1807 struct sched_domain_attr tmp
;
1814 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
1815 new ? (new + idx_new
) : &tmp
,
1816 sizeof(struct sched_domain_attr
));
1820 * Partition sched domains as specified by the 'ndoms_new'
1821 * cpumasks in the array doms_new[] of cpumasks. This compares
1822 * doms_new[] to the current sched domain partitioning, doms_cur[].
1823 * It destroys each deleted domain and builds each new domain.
1825 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1826 * The masks don't intersect (don't overlap.) We should setup one
1827 * sched domain for each mask. CPUs not in any of the cpumasks will
1828 * not be load balanced. If the same cpumask appears both in the
1829 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1832 * The passed in 'doms_new' should be allocated using
1833 * alloc_sched_domains. This routine takes ownership of it and will
1834 * free_sched_domains it when done with it. If the caller failed the
1835 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1836 * and partition_sched_domains() will fallback to the single partition
1837 * 'fallback_doms', it also forces the domains to be rebuilt.
1839 * If doms_new == NULL it will be replaced with cpu_online_mask.
1840 * ndoms_new == 0 is a special case for destroying existing domains,
1841 * and it will not create the default domain.
1843 * Call with hotplug lock held
1845 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
1846 struct sched_domain_attr
*dattr_new
)
1851 mutex_lock(&sched_domains_mutex
);
1853 /* Always unregister in case we don't destroy any domains: */
1854 unregister_sched_domain_sysctl();
1856 /* Let the architecture update CPU core mappings: */
1857 new_topology
= arch_update_cpu_topology();
1860 WARN_ON_ONCE(dattr_new
);
1862 doms_new
= alloc_sched_domains(1);
1865 cpumask_and(doms_new
[0], cpu_active_mask
,
1866 housekeeping_cpumask(HK_FLAG_DOMAIN
));
1872 /* Destroy deleted domains: */
1873 for (i
= 0; i
< ndoms_cur
; i
++) {
1874 for (j
= 0; j
< n
&& !new_topology
; j
++) {
1875 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
1876 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
1879 /* No match - a current sched domain not in new doms_new[] */
1880 detach_destroy_domains(doms_cur
[i
]);
1888 doms_new
= &fallback_doms
;
1889 cpumask_and(doms_new
[0], cpu_active_mask
,
1890 housekeeping_cpumask(HK_FLAG_DOMAIN
));
1893 /* Build new domains: */
1894 for (i
= 0; i
< ndoms_new
; i
++) {
1895 for (j
= 0; j
< n
&& !new_topology
; j
++) {
1896 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
1897 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
1900 /* No match - add a new doms_new */
1901 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
1906 /* Remember the new sched domains: */
1907 if (doms_cur
!= &fallback_doms
)
1908 free_sched_domains(doms_cur
, ndoms_cur
);
1911 doms_cur
= doms_new
;
1912 dattr_cur
= dattr_new
;
1913 ndoms_cur
= ndoms_new
;
1915 register_sched_domain_sysctl();
1917 mutex_unlock(&sched_domains_mutex
);