Merge tag 'riscv-for-linus-5.8-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / crypto / ansi_cprng.c
blobc475c1129ff2a67991ada8aa82d4f0093867e32b
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PRNG: Pseudo Random Number Generator
4 * Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
5 * AES 128 cipher
7 * (C) Neil Horman <nhorman@tuxdriver.com>
8 */
10 #include <crypto/internal/rng.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/string.h>
17 #define DEFAULT_PRNG_KEY "0123456789abcdef"
18 #define DEFAULT_PRNG_KSZ 16
19 #define DEFAULT_BLK_SZ 16
20 #define DEFAULT_V_SEED "zaybxcwdveuftgsh"
23 * Flags for the prng_context flags field
26 #define PRNG_FIXED_SIZE 0x1
27 #define PRNG_NEED_RESET 0x2
30 * Note: DT is our counter value
31 * I is our intermediate value
32 * V is our seed vector
33 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
34 * for implementation details
38 struct prng_context {
39 spinlock_t prng_lock;
40 unsigned char rand_data[DEFAULT_BLK_SZ];
41 unsigned char last_rand_data[DEFAULT_BLK_SZ];
42 unsigned char DT[DEFAULT_BLK_SZ];
43 unsigned char I[DEFAULT_BLK_SZ];
44 unsigned char V[DEFAULT_BLK_SZ];
45 u32 rand_data_valid;
46 struct crypto_cipher *tfm;
47 u32 flags;
50 static int dbg;
52 static void hexdump(char *note, unsigned char *buf, unsigned int len)
54 if (dbg) {
55 printk(KERN_CRIT "%s", note);
56 print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
57 16, 1,
58 buf, len, false);
62 #define dbgprint(format, args...) do {\
63 if (dbg)\
64 printk(format, ##args);\
65 } while (0)
67 static void xor_vectors(unsigned char *in1, unsigned char *in2,
68 unsigned char *out, unsigned int size)
70 int i;
72 for (i = 0; i < size; i++)
73 out[i] = in1[i] ^ in2[i];
77 * Returns DEFAULT_BLK_SZ bytes of random data per call
78 * returns 0 if generation succeeded, <0 if something went wrong
80 static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
82 int i;
83 unsigned char tmp[DEFAULT_BLK_SZ];
84 unsigned char *output = NULL;
87 dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
88 ctx);
90 hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
91 hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
92 hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
95 * This algorithm is a 3 stage state machine
97 for (i = 0; i < 3; i++) {
99 switch (i) {
100 case 0:
102 * Start by encrypting the counter value
103 * This gives us an intermediate value I
105 memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
106 output = ctx->I;
107 hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
108 break;
109 case 1:
112 * Next xor I with our secret vector V
113 * encrypt that result to obtain our
114 * pseudo random data which we output
116 xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
117 hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
118 output = ctx->rand_data;
119 break;
120 case 2:
122 * First check that we didn't produce the same
123 * random data that we did last time around through this
125 if (!memcmp(ctx->rand_data, ctx->last_rand_data,
126 DEFAULT_BLK_SZ)) {
127 if (cont_test) {
128 panic("cprng %p Failed repetition check!\n",
129 ctx);
132 printk(KERN_ERR
133 "ctx %p Failed repetition check!\n",
134 ctx);
136 ctx->flags |= PRNG_NEED_RESET;
137 return -EINVAL;
139 memcpy(ctx->last_rand_data, ctx->rand_data,
140 DEFAULT_BLK_SZ);
143 * Lastly xor the random data with I
144 * and encrypt that to obtain a new secret vector V
146 xor_vectors(ctx->rand_data, ctx->I, tmp,
147 DEFAULT_BLK_SZ);
148 output = ctx->V;
149 hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
150 break;
154 /* do the encryption */
155 crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
160 * Now update our DT value
162 for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
163 ctx->DT[i] += 1;
164 if (ctx->DT[i] != 0)
165 break;
168 dbgprint("Returning new block for context %p\n", ctx);
169 ctx->rand_data_valid = 0;
171 hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
172 hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
173 hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
174 hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
176 return 0;
179 /* Our exported functions */
180 static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
181 int do_cont_test)
183 unsigned char *ptr = buf;
184 unsigned int byte_count = (unsigned int)nbytes;
185 int err;
188 spin_lock_bh(&ctx->prng_lock);
190 err = -EINVAL;
191 if (ctx->flags & PRNG_NEED_RESET)
192 goto done;
195 * If the FIXED_SIZE flag is on, only return whole blocks of
196 * pseudo random data
198 err = -EINVAL;
199 if (ctx->flags & PRNG_FIXED_SIZE) {
200 if (nbytes < DEFAULT_BLK_SZ)
201 goto done;
202 byte_count = DEFAULT_BLK_SZ;
206 * Return 0 in case of success as mandated by the kernel
207 * crypto API interface definition.
209 err = 0;
211 dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
212 byte_count, ctx);
215 remainder:
216 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
217 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
218 memset(buf, 0, nbytes);
219 err = -EINVAL;
220 goto done;
225 * Copy any data less than an entire block
227 if (byte_count < DEFAULT_BLK_SZ) {
228 empty_rbuf:
229 while (ctx->rand_data_valid < DEFAULT_BLK_SZ) {
230 *ptr = ctx->rand_data[ctx->rand_data_valid];
231 ptr++;
232 byte_count--;
233 ctx->rand_data_valid++;
234 if (byte_count == 0)
235 goto done;
240 * Now copy whole blocks
242 for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
243 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
244 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
245 memset(buf, 0, nbytes);
246 err = -EINVAL;
247 goto done;
250 if (ctx->rand_data_valid > 0)
251 goto empty_rbuf;
252 memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
253 ctx->rand_data_valid += DEFAULT_BLK_SZ;
254 ptr += DEFAULT_BLK_SZ;
258 * Now go back and get any remaining partial block
260 if (byte_count)
261 goto remainder;
263 done:
264 spin_unlock_bh(&ctx->prng_lock);
265 dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
266 err, ctx);
267 return err;
270 static void free_prng_context(struct prng_context *ctx)
272 crypto_free_cipher(ctx->tfm);
275 static int reset_prng_context(struct prng_context *ctx,
276 const unsigned char *key, size_t klen,
277 const unsigned char *V, const unsigned char *DT)
279 int ret;
280 const unsigned char *prng_key;
282 spin_lock_bh(&ctx->prng_lock);
283 ctx->flags |= PRNG_NEED_RESET;
285 prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
287 if (!key)
288 klen = DEFAULT_PRNG_KSZ;
290 if (V)
291 memcpy(ctx->V, V, DEFAULT_BLK_SZ);
292 else
293 memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
295 if (DT)
296 memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
297 else
298 memset(ctx->DT, 0, DEFAULT_BLK_SZ);
300 memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
301 memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
303 ctx->rand_data_valid = DEFAULT_BLK_SZ;
305 ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
306 if (ret) {
307 dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
308 crypto_cipher_get_flags(ctx->tfm));
309 goto out;
312 ret = 0;
313 ctx->flags &= ~PRNG_NEED_RESET;
314 out:
315 spin_unlock_bh(&ctx->prng_lock);
316 return ret;
319 static int cprng_init(struct crypto_tfm *tfm)
321 struct prng_context *ctx = crypto_tfm_ctx(tfm);
323 spin_lock_init(&ctx->prng_lock);
324 ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
325 if (IS_ERR(ctx->tfm)) {
326 dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
327 ctx);
328 return PTR_ERR(ctx->tfm);
331 if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
332 return -EINVAL;
335 * after allocation, we should always force the user to reset
336 * so they don't inadvertently use the insecure default values
337 * without specifying them intentially
339 ctx->flags |= PRNG_NEED_RESET;
340 return 0;
343 static void cprng_exit(struct crypto_tfm *tfm)
345 free_prng_context(crypto_tfm_ctx(tfm));
348 static int cprng_get_random(struct crypto_rng *tfm,
349 const u8 *src, unsigned int slen,
350 u8 *rdata, unsigned int dlen)
352 struct prng_context *prng = crypto_rng_ctx(tfm);
354 return get_prng_bytes(rdata, dlen, prng, 0);
358 * This is the cprng_registered reset method the seed value is
359 * interpreted as the tuple { V KEY DT}
360 * V and KEY are required during reset, and DT is optional, detected
361 * as being present by testing the length of the seed
363 static int cprng_reset(struct crypto_rng *tfm,
364 const u8 *seed, unsigned int slen)
366 struct prng_context *prng = crypto_rng_ctx(tfm);
367 const u8 *key = seed + DEFAULT_BLK_SZ;
368 const u8 *dt = NULL;
370 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
371 return -EINVAL;
373 if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
374 dt = key + DEFAULT_PRNG_KSZ;
376 reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
378 if (prng->flags & PRNG_NEED_RESET)
379 return -EINVAL;
380 return 0;
383 #ifdef CONFIG_CRYPTO_FIPS
384 static int fips_cprng_get_random(struct crypto_rng *tfm,
385 const u8 *src, unsigned int slen,
386 u8 *rdata, unsigned int dlen)
388 struct prng_context *prng = crypto_rng_ctx(tfm);
390 return get_prng_bytes(rdata, dlen, prng, 1);
393 static int fips_cprng_reset(struct crypto_rng *tfm,
394 const u8 *seed, unsigned int slen)
396 u8 rdata[DEFAULT_BLK_SZ];
397 const u8 *key = seed + DEFAULT_BLK_SZ;
398 int rc;
400 struct prng_context *prng = crypto_rng_ctx(tfm);
402 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
403 return -EINVAL;
405 /* fips strictly requires seed != key */
406 if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
407 return -EINVAL;
409 rc = cprng_reset(tfm, seed, slen);
411 if (!rc)
412 goto out;
414 /* this primes our continuity test */
415 rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
416 prng->rand_data_valid = DEFAULT_BLK_SZ;
418 out:
419 return rc;
421 #endif
423 static struct rng_alg rng_algs[] = { {
424 .generate = cprng_get_random,
425 .seed = cprng_reset,
426 .seedsize = DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
427 .base = {
428 .cra_name = "stdrng",
429 .cra_driver_name = "ansi_cprng",
430 .cra_priority = 100,
431 .cra_ctxsize = sizeof(struct prng_context),
432 .cra_module = THIS_MODULE,
433 .cra_init = cprng_init,
434 .cra_exit = cprng_exit,
436 #ifdef CONFIG_CRYPTO_FIPS
437 }, {
438 .generate = fips_cprng_get_random,
439 .seed = fips_cprng_reset,
440 .seedsize = DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
441 .base = {
442 .cra_name = "fips(ansi_cprng)",
443 .cra_driver_name = "fips_ansi_cprng",
444 .cra_priority = 300,
445 .cra_ctxsize = sizeof(struct prng_context),
446 .cra_module = THIS_MODULE,
447 .cra_init = cprng_init,
448 .cra_exit = cprng_exit,
450 #endif
451 } };
453 /* Module initalization */
454 static int __init prng_mod_init(void)
456 return crypto_register_rngs(rng_algs, ARRAY_SIZE(rng_algs));
459 static void __exit prng_mod_fini(void)
461 crypto_unregister_rngs(rng_algs, ARRAY_SIZE(rng_algs));
464 MODULE_LICENSE("GPL");
465 MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
466 MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
467 module_param(dbg, int, 0);
468 MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
469 subsys_initcall(prng_mod_init);
470 module_exit(prng_mod_fini);
471 MODULE_ALIAS_CRYPTO("stdrng");
472 MODULE_ALIAS_CRYPTO("ansi_cprng");