1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * PRNG: Pseudo Random Number Generator
4 * Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
7 * (C) Neil Horman <nhorman@tuxdriver.com>
10 #include <crypto/internal/rng.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/string.h>
17 #define DEFAULT_PRNG_KEY "0123456789abcdef"
18 #define DEFAULT_PRNG_KSZ 16
19 #define DEFAULT_BLK_SZ 16
20 #define DEFAULT_V_SEED "zaybxcwdveuftgsh"
23 * Flags for the prng_context flags field
26 #define PRNG_FIXED_SIZE 0x1
27 #define PRNG_NEED_RESET 0x2
30 * Note: DT is our counter value
31 * I is our intermediate value
32 * V is our seed vector
33 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
34 * for implementation details
40 unsigned char rand_data
[DEFAULT_BLK_SZ
];
41 unsigned char last_rand_data
[DEFAULT_BLK_SZ
];
42 unsigned char DT
[DEFAULT_BLK_SZ
];
43 unsigned char I
[DEFAULT_BLK_SZ
];
44 unsigned char V
[DEFAULT_BLK_SZ
];
46 struct crypto_cipher
*tfm
;
52 static void hexdump(char *note
, unsigned char *buf
, unsigned int len
)
55 printk(KERN_CRIT
"%s", note
);
56 print_hex_dump(KERN_CONT
, "", DUMP_PREFIX_OFFSET
,
62 #define dbgprint(format, args...) do {\
64 printk(format, ##args);\
67 static void xor_vectors(unsigned char *in1
, unsigned char *in2
,
68 unsigned char *out
, unsigned int size
)
72 for (i
= 0; i
< size
; i
++)
73 out
[i
] = in1
[i
] ^ in2
[i
];
77 * Returns DEFAULT_BLK_SZ bytes of random data per call
78 * returns 0 if generation succeeded, <0 if something went wrong
80 static int _get_more_prng_bytes(struct prng_context
*ctx
, int cont_test
)
83 unsigned char tmp
[DEFAULT_BLK_SZ
];
84 unsigned char *output
= NULL
;
87 dbgprint(KERN_CRIT
"Calling _get_more_prng_bytes for context %p\n",
90 hexdump("Input DT: ", ctx
->DT
, DEFAULT_BLK_SZ
);
91 hexdump("Input I: ", ctx
->I
, DEFAULT_BLK_SZ
);
92 hexdump("Input V: ", ctx
->V
, DEFAULT_BLK_SZ
);
95 * This algorithm is a 3 stage state machine
97 for (i
= 0; i
< 3; i
++) {
102 * Start by encrypting the counter value
103 * This gives us an intermediate value I
105 memcpy(tmp
, ctx
->DT
, DEFAULT_BLK_SZ
);
107 hexdump("tmp stage 0: ", tmp
, DEFAULT_BLK_SZ
);
112 * Next xor I with our secret vector V
113 * encrypt that result to obtain our
114 * pseudo random data which we output
116 xor_vectors(ctx
->I
, ctx
->V
, tmp
, DEFAULT_BLK_SZ
);
117 hexdump("tmp stage 1: ", tmp
, DEFAULT_BLK_SZ
);
118 output
= ctx
->rand_data
;
122 * First check that we didn't produce the same
123 * random data that we did last time around through this
125 if (!memcmp(ctx
->rand_data
, ctx
->last_rand_data
,
128 panic("cprng %p Failed repetition check!\n",
133 "ctx %p Failed repetition check!\n",
136 ctx
->flags
|= PRNG_NEED_RESET
;
139 memcpy(ctx
->last_rand_data
, ctx
->rand_data
,
143 * Lastly xor the random data with I
144 * and encrypt that to obtain a new secret vector V
146 xor_vectors(ctx
->rand_data
, ctx
->I
, tmp
,
149 hexdump("tmp stage 2: ", tmp
, DEFAULT_BLK_SZ
);
154 /* do the encryption */
155 crypto_cipher_encrypt_one(ctx
->tfm
, output
, tmp
);
160 * Now update our DT value
162 for (i
= DEFAULT_BLK_SZ
- 1; i
>= 0; i
--) {
168 dbgprint("Returning new block for context %p\n", ctx
);
169 ctx
->rand_data_valid
= 0;
171 hexdump("Output DT: ", ctx
->DT
, DEFAULT_BLK_SZ
);
172 hexdump("Output I: ", ctx
->I
, DEFAULT_BLK_SZ
);
173 hexdump("Output V: ", ctx
->V
, DEFAULT_BLK_SZ
);
174 hexdump("New Random Data: ", ctx
->rand_data
, DEFAULT_BLK_SZ
);
179 /* Our exported functions */
180 static int get_prng_bytes(char *buf
, size_t nbytes
, struct prng_context
*ctx
,
183 unsigned char *ptr
= buf
;
184 unsigned int byte_count
= (unsigned int)nbytes
;
188 spin_lock_bh(&ctx
->prng_lock
);
191 if (ctx
->flags
& PRNG_NEED_RESET
)
195 * If the FIXED_SIZE flag is on, only return whole blocks of
199 if (ctx
->flags
& PRNG_FIXED_SIZE
) {
200 if (nbytes
< DEFAULT_BLK_SZ
)
202 byte_count
= DEFAULT_BLK_SZ
;
206 * Return 0 in case of success as mandated by the kernel
207 * crypto API interface definition.
211 dbgprint(KERN_CRIT
"getting %d random bytes for context %p\n",
216 if (ctx
->rand_data_valid
== DEFAULT_BLK_SZ
) {
217 if (_get_more_prng_bytes(ctx
, do_cont_test
) < 0) {
218 memset(buf
, 0, nbytes
);
225 * Copy any data less than an entire block
227 if (byte_count
< DEFAULT_BLK_SZ
) {
229 while (ctx
->rand_data_valid
< DEFAULT_BLK_SZ
) {
230 *ptr
= ctx
->rand_data
[ctx
->rand_data_valid
];
233 ctx
->rand_data_valid
++;
240 * Now copy whole blocks
242 for (; byte_count
>= DEFAULT_BLK_SZ
; byte_count
-= DEFAULT_BLK_SZ
) {
243 if (ctx
->rand_data_valid
== DEFAULT_BLK_SZ
) {
244 if (_get_more_prng_bytes(ctx
, do_cont_test
) < 0) {
245 memset(buf
, 0, nbytes
);
250 if (ctx
->rand_data_valid
> 0)
252 memcpy(ptr
, ctx
->rand_data
, DEFAULT_BLK_SZ
);
253 ctx
->rand_data_valid
+= DEFAULT_BLK_SZ
;
254 ptr
+= DEFAULT_BLK_SZ
;
258 * Now go back and get any remaining partial block
264 spin_unlock_bh(&ctx
->prng_lock
);
265 dbgprint(KERN_CRIT
"returning %d from get_prng_bytes in context %p\n",
270 static void free_prng_context(struct prng_context
*ctx
)
272 crypto_free_cipher(ctx
->tfm
);
275 static int reset_prng_context(struct prng_context
*ctx
,
276 const unsigned char *key
, size_t klen
,
277 const unsigned char *V
, const unsigned char *DT
)
280 const unsigned char *prng_key
;
282 spin_lock_bh(&ctx
->prng_lock
);
283 ctx
->flags
|= PRNG_NEED_RESET
;
285 prng_key
= (key
!= NULL
) ? key
: (unsigned char *)DEFAULT_PRNG_KEY
;
288 klen
= DEFAULT_PRNG_KSZ
;
291 memcpy(ctx
->V
, V
, DEFAULT_BLK_SZ
);
293 memcpy(ctx
->V
, DEFAULT_V_SEED
, DEFAULT_BLK_SZ
);
296 memcpy(ctx
->DT
, DT
, DEFAULT_BLK_SZ
);
298 memset(ctx
->DT
, 0, DEFAULT_BLK_SZ
);
300 memset(ctx
->rand_data
, 0, DEFAULT_BLK_SZ
);
301 memset(ctx
->last_rand_data
, 0, DEFAULT_BLK_SZ
);
303 ctx
->rand_data_valid
= DEFAULT_BLK_SZ
;
305 ret
= crypto_cipher_setkey(ctx
->tfm
, prng_key
, klen
);
307 dbgprint(KERN_CRIT
"PRNG: setkey() failed flags=%x\n",
308 crypto_cipher_get_flags(ctx
->tfm
));
313 ctx
->flags
&= ~PRNG_NEED_RESET
;
315 spin_unlock_bh(&ctx
->prng_lock
);
319 static int cprng_init(struct crypto_tfm
*tfm
)
321 struct prng_context
*ctx
= crypto_tfm_ctx(tfm
);
323 spin_lock_init(&ctx
->prng_lock
);
324 ctx
->tfm
= crypto_alloc_cipher("aes", 0, 0);
325 if (IS_ERR(ctx
->tfm
)) {
326 dbgprint(KERN_CRIT
"Failed to alloc tfm for context %p\n",
328 return PTR_ERR(ctx
->tfm
);
331 if (reset_prng_context(ctx
, NULL
, DEFAULT_PRNG_KSZ
, NULL
, NULL
) < 0)
335 * after allocation, we should always force the user to reset
336 * so they don't inadvertently use the insecure default values
337 * without specifying them intentially
339 ctx
->flags
|= PRNG_NEED_RESET
;
343 static void cprng_exit(struct crypto_tfm
*tfm
)
345 free_prng_context(crypto_tfm_ctx(tfm
));
348 static int cprng_get_random(struct crypto_rng
*tfm
,
349 const u8
*src
, unsigned int slen
,
350 u8
*rdata
, unsigned int dlen
)
352 struct prng_context
*prng
= crypto_rng_ctx(tfm
);
354 return get_prng_bytes(rdata
, dlen
, prng
, 0);
358 * This is the cprng_registered reset method the seed value is
359 * interpreted as the tuple { V KEY DT}
360 * V and KEY are required during reset, and DT is optional, detected
361 * as being present by testing the length of the seed
363 static int cprng_reset(struct crypto_rng
*tfm
,
364 const u8
*seed
, unsigned int slen
)
366 struct prng_context
*prng
= crypto_rng_ctx(tfm
);
367 const u8
*key
= seed
+ DEFAULT_BLK_SZ
;
370 if (slen
< DEFAULT_PRNG_KSZ
+ DEFAULT_BLK_SZ
)
373 if (slen
>= (2 * DEFAULT_BLK_SZ
+ DEFAULT_PRNG_KSZ
))
374 dt
= key
+ DEFAULT_PRNG_KSZ
;
376 reset_prng_context(prng
, key
, DEFAULT_PRNG_KSZ
, seed
, dt
);
378 if (prng
->flags
& PRNG_NEED_RESET
)
383 #ifdef CONFIG_CRYPTO_FIPS
384 static int fips_cprng_get_random(struct crypto_rng
*tfm
,
385 const u8
*src
, unsigned int slen
,
386 u8
*rdata
, unsigned int dlen
)
388 struct prng_context
*prng
= crypto_rng_ctx(tfm
);
390 return get_prng_bytes(rdata
, dlen
, prng
, 1);
393 static int fips_cprng_reset(struct crypto_rng
*tfm
,
394 const u8
*seed
, unsigned int slen
)
396 u8 rdata
[DEFAULT_BLK_SZ
];
397 const u8
*key
= seed
+ DEFAULT_BLK_SZ
;
400 struct prng_context
*prng
= crypto_rng_ctx(tfm
);
402 if (slen
< DEFAULT_PRNG_KSZ
+ DEFAULT_BLK_SZ
)
405 /* fips strictly requires seed != key */
406 if (!memcmp(seed
, key
, DEFAULT_PRNG_KSZ
))
409 rc
= cprng_reset(tfm
, seed
, slen
);
414 /* this primes our continuity test */
415 rc
= get_prng_bytes(rdata
, DEFAULT_BLK_SZ
, prng
, 0);
416 prng
->rand_data_valid
= DEFAULT_BLK_SZ
;
423 static struct rng_alg rng_algs
[] = { {
424 .generate
= cprng_get_random
,
426 .seedsize
= DEFAULT_PRNG_KSZ
+ 2 * DEFAULT_BLK_SZ
,
428 .cra_name
= "stdrng",
429 .cra_driver_name
= "ansi_cprng",
431 .cra_ctxsize
= sizeof(struct prng_context
),
432 .cra_module
= THIS_MODULE
,
433 .cra_init
= cprng_init
,
434 .cra_exit
= cprng_exit
,
436 #ifdef CONFIG_CRYPTO_FIPS
438 .generate
= fips_cprng_get_random
,
439 .seed
= fips_cprng_reset
,
440 .seedsize
= DEFAULT_PRNG_KSZ
+ 2 * DEFAULT_BLK_SZ
,
442 .cra_name
= "fips(ansi_cprng)",
443 .cra_driver_name
= "fips_ansi_cprng",
445 .cra_ctxsize
= sizeof(struct prng_context
),
446 .cra_module
= THIS_MODULE
,
447 .cra_init
= cprng_init
,
448 .cra_exit
= cprng_exit
,
453 /* Module initalization */
454 static int __init
prng_mod_init(void)
456 return crypto_register_rngs(rng_algs
, ARRAY_SIZE(rng_algs
));
459 static void __exit
prng_mod_fini(void)
461 crypto_unregister_rngs(rng_algs
, ARRAY_SIZE(rng_algs
));
464 MODULE_LICENSE("GPL");
465 MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
466 MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
467 module_param(dbg
, int, 0);
468 MODULE_PARM_DESC(dbg
, "Boolean to enable debugging (0/1 == off/on)");
469 subsys_initcall(prng_mod_init
);
470 module_exit(prng_mod_fini
);
471 MODULE_ALIAS_CRYPTO("stdrng");
472 MODULE_ALIAS_CRYPTO("ansi_cprng");