1 // SPDX-License-Identifier: GPL-2.0-only
3 * Framework for buffer objects that can be shared across devices/subsystems.
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
32 static inline int is_dma_buf_file(struct file
*);
35 struct list_head head
;
39 static struct dma_buf_list db_list
;
41 static char *dmabuffs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
43 struct dma_buf
*dmabuf
;
44 char name
[DMA_BUF_NAME_LEN
];
47 dmabuf
= dentry
->d_fsdata
;
48 dma_resv_lock(dmabuf
->resv
, NULL
);
50 ret
= strlcpy(name
, dmabuf
->name
, DMA_BUF_NAME_LEN
);
51 dma_resv_unlock(dmabuf
->resv
);
53 return dynamic_dname(dentry
, buffer
, buflen
, "/%s:%s",
54 dentry
->d_name
.name
, ret
> 0 ? name
: "");
57 static const struct dentry_operations dma_buf_dentry_ops
= {
58 .d_dname
= dmabuffs_dname
,
61 static struct vfsmount
*dma_buf_mnt
;
63 static int dma_buf_fs_init_context(struct fs_context
*fc
)
65 struct pseudo_fs_context
*ctx
;
67 ctx
= init_pseudo(fc
, DMA_BUF_MAGIC
);
70 ctx
->dops
= &dma_buf_dentry_ops
;
74 static struct file_system_type dma_buf_fs_type
= {
76 .init_fs_context
= dma_buf_fs_init_context
,
77 .kill_sb
= kill_anon_super
,
80 static int dma_buf_release(struct inode
*inode
, struct file
*file
)
82 struct dma_buf
*dmabuf
;
84 if (!is_dma_buf_file(file
))
87 dmabuf
= file
->private_data
;
89 BUG_ON(dmabuf
->vmapping_counter
);
92 * Any fences that a dma-buf poll can wait on should be signaled
93 * before releasing dma-buf. This is the responsibility of each
94 * driver that uses the reservation objects.
96 * If you hit this BUG() it means someone dropped their ref to the
97 * dma-buf while still having pending operation to the buffer.
99 BUG_ON(dmabuf
->cb_shared
.active
|| dmabuf
->cb_excl
.active
);
101 dmabuf
->ops
->release(dmabuf
);
103 mutex_lock(&db_list
.lock
);
104 list_del(&dmabuf
->list_node
);
105 mutex_unlock(&db_list
.lock
);
107 if (dmabuf
->resv
== (struct dma_resv
*)&dmabuf
[1])
108 dma_resv_fini(dmabuf
->resv
);
110 module_put(dmabuf
->owner
);
116 static int dma_buf_mmap_internal(struct file
*file
, struct vm_area_struct
*vma
)
118 struct dma_buf
*dmabuf
;
120 if (!is_dma_buf_file(file
))
123 dmabuf
= file
->private_data
;
125 /* check if buffer supports mmap */
126 if (!dmabuf
->ops
->mmap
)
129 /* check for overflowing the buffer's size */
130 if (vma
->vm_pgoff
+ vma_pages(vma
) >
131 dmabuf
->size
>> PAGE_SHIFT
)
134 return dmabuf
->ops
->mmap(dmabuf
, vma
);
137 static loff_t
dma_buf_llseek(struct file
*file
, loff_t offset
, int whence
)
139 struct dma_buf
*dmabuf
;
142 if (!is_dma_buf_file(file
))
145 dmabuf
= file
->private_data
;
147 /* only support discovering the end of the buffer,
148 but also allow SEEK_SET to maintain the idiomatic
149 SEEK_END(0), SEEK_CUR(0) pattern */
150 if (whence
== SEEK_END
)
152 else if (whence
== SEEK_SET
)
160 return base
+ offset
;
166 * To support cross-device and cross-driver synchronization of buffer access
167 * implicit fences (represented internally in the kernel with &struct fence) can
168 * be attached to a &dma_buf. The glue for that and a few related things are
169 * provided in the &dma_resv structure.
171 * Userspace can query the state of these implicitly tracked fences using poll()
172 * and related system calls:
174 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
175 * most recent write or exclusive fence.
177 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
178 * all attached fences, shared and exclusive ones.
180 * Note that this only signals the completion of the respective fences, i.e. the
181 * DMA transfers are complete. Cache flushing and any other necessary
182 * preparations before CPU access can begin still need to happen.
185 static void dma_buf_poll_cb(struct dma_fence
*fence
, struct dma_fence_cb
*cb
)
187 struct dma_buf_poll_cb_t
*dcb
= (struct dma_buf_poll_cb_t
*)cb
;
190 spin_lock_irqsave(&dcb
->poll
->lock
, flags
);
191 wake_up_locked_poll(dcb
->poll
, dcb
->active
);
193 spin_unlock_irqrestore(&dcb
->poll
->lock
, flags
);
196 static __poll_t
dma_buf_poll(struct file
*file
, poll_table
*poll
)
198 struct dma_buf
*dmabuf
;
199 struct dma_resv
*resv
;
200 struct dma_resv_list
*fobj
;
201 struct dma_fence
*fence_excl
;
203 unsigned shared_count
, seq
;
205 dmabuf
= file
->private_data
;
206 if (!dmabuf
|| !dmabuf
->resv
)
211 poll_wait(file
, &dmabuf
->poll
, poll
);
213 events
= poll_requested_events(poll
) & (EPOLLIN
| EPOLLOUT
);
218 seq
= read_seqcount_begin(&resv
->seq
);
221 fobj
= rcu_dereference(resv
->fence
);
223 shared_count
= fobj
->shared_count
;
226 fence_excl
= rcu_dereference(resv
->fence_excl
);
227 if (read_seqcount_retry(&resv
->seq
, seq
)) {
232 if (fence_excl
&& (!(events
& EPOLLOUT
) || shared_count
== 0)) {
233 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_excl
;
234 __poll_t pevents
= EPOLLIN
;
236 if (shared_count
== 0)
239 spin_lock_irq(&dmabuf
->poll
.lock
);
241 dcb
->active
|= pevents
;
244 dcb
->active
= pevents
;
245 spin_unlock_irq(&dmabuf
->poll
.lock
);
247 if (events
& pevents
) {
248 if (!dma_fence_get_rcu(fence_excl
)) {
249 /* force a recheck */
251 dma_buf_poll_cb(NULL
, &dcb
->cb
);
252 } else if (!dma_fence_add_callback(fence_excl
, &dcb
->cb
,
255 dma_fence_put(fence_excl
);
258 * No callback queued, wake up any additional
261 dma_fence_put(fence_excl
);
262 dma_buf_poll_cb(NULL
, &dcb
->cb
);
267 if ((events
& EPOLLOUT
) && shared_count
> 0) {
268 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_shared
;
271 /* Only queue a new callback if no event has fired yet */
272 spin_lock_irq(&dmabuf
->poll
.lock
);
276 dcb
->active
= EPOLLOUT
;
277 spin_unlock_irq(&dmabuf
->poll
.lock
);
279 if (!(events
& EPOLLOUT
))
282 for (i
= 0; i
< shared_count
; ++i
) {
283 struct dma_fence
*fence
= rcu_dereference(fobj
->shared
[i
]);
285 if (!dma_fence_get_rcu(fence
)) {
287 * fence refcount dropped to zero, this means
288 * that fobj has been freed
290 * call dma_buf_poll_cb and force a recheck!
293 dma_buf_poll_cb(NULL
, &dcb
->cb
);
296 if (!dma_fence_add_callback(fence
, &dcb
->cb
,
298 dma_fence_put(fence
);
302 dma_fence_put(fence
);
305 /* No callback queued, wake up any additional waiters. */
306 if (i
== shared_count
)
307 dma_buf_poll_cb(NULL
, &dcb
->cb
);
316 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
317 * The name of the dma-buf buffer can only be set when the dma-buf is not
318 * attached to any devices. It could theoritically support changing the
319 * name of the dma-buf if the same piece of memory is used for multiple
320 * purpose between different devices.
322 * @dmabuf [in] dmabuf buffer that will be renamed.
323 * @buf: [in] A piece of userspace memory that contains the name of
326 * Returns 0 on success. If the dma-buf buffer is already attached to
327 * devices, return -EBUSY.
330 static long dma_buf_set_name(struct dma_buf
*dmabuf
, const char __user
*buf
)
332 char *name
= strndup_user(buf
, DMA_BUF_NAME_LEN
);
336 return PTR_ERR(name
);
338 dma_resv_lock(dmabuf
->resv
, NULL
);
339 if (!list_empty(&dmabuf
->attachments
)) {
348 dma_resv_unlock(dmabuf
->resv
);
352 static long dma_buf_ioctl(struct file
*file
,
353 unsigned int cmd
, unsigned long arg
)
355 struct dma_buf
*dmabuf
;
356 struct dma_buf_sync sync
;
357 enum dma_data_direction direction
;
360 dmabuf
= file
->private_data
;
363 case DMA_BUF_IOCTL_SYNC
:
364 if (copy_from_user(&sync
, (void __user
*) arg
, sizeof(sync
)))
367 if (sync
.flags
& ~DMA_BUF_SYNC_VALID_FLAGS_MASK
)
370 switch (sync
.flags
& DMA_BUF_SYNC_RW
) {
371 case DMA_BUF_SYNC_READ
:
372 direction
= DMA_FROM_DEVICE
;
374 case DMA_BUF_SYNC_WRITE
:
375 direction
= DMA_TO_DEVICE
;
377 case DMA_BUF_SYNC_RW
:
378 direction
= DMA_BIDIRECTIONAL
;
384 if (sync
.flags
& DMA_BUF_SYNC_END
)
385 ret
= dma_buf_end_cpu_access(dmabuf
, direction
);
387 ret
= dma_buf_begin_cpu_access(dmabuf
, direction
);
391 case DMA_BUF_SET_NAME
:
392 return dma_buf_set_name(dmabuf
, (const char __user
*)arg
);
399 static void dma_buf_show_fdinfo(struct seq_file
*m
, struct file
*file
)
401 struct dma_buf
*dmabuf
= file
->private_data
;
403 seq_printf(m
, "size:\t%zu\n", dmabuf
->size
);
404 /* Don't count the temporary reference taken inside procfs seq_show */
405 seq_printf(m
, "count:\t%ld\n", file_count(dmabuf
->file
) - 1);
406 seq_printf(m
, "exp_name:\t%s\n", dmabuf
->exp_name
);
407 dma_resv_lock(dmabuf
->resv
, NULL
);
409 seq_printf(m
, "name:\t%s\n", dmabuf
->name
);
410 dma_resv_unlock(dmabuf
->resv
);
413 static const struct file_operations dma_buf_fops
= {
414 .release
= dma_buf_release
,
415 .mmap
= dma_buf_mmap_internal
,
416 .llseek
= dma_buf_llseek
,
417 .poll
= dma_buf_poll
,
418 .unlocked_ioctl
= dma_buf_ioctl
,
419 .compat_ioctl
= compat_ptr_ioctl
,
420 .show_fdinfo
= dma_buf_show_fdinfo
,
424 * is_dma_buf_file - Check if struct file* is associated with dma_buf
426 static inline int is_dma_buf_file(struct file
*file
)
428 return file
->f_op
== &dma_buf_fops
;
431 static struct file
*dma_buf_getfile(struct dma_buf
*dmabuf
, int flags
)
434 struct inode
*inode
= alloc_anon_inode(dma_buf_mnt
->mnt_sb
);
437 return ERR_CAST(inode
);
439 inode
->i_size
= dmabuf
->size
;
440 inode_set_bytes(inode
, dmabuf
->size
);
442 file
= alloc_file_pseudo(inode
, dma_buf_mnt
, "dmabuf",
443 flags
, &dma_buf_fops
);
446 file
->f_flags
= flags
& (O_ACCMODE
| O_NONBLOCK
);
447 file
->private_data
= dmabuf
;
448 file
->f_path
.dentry
->d_fsdata
= dmabuf
;
458 * DOC: dma buf device access
460 * For device DMA access to a shared DMA buffer the usual sequence of operations
463 * 1. The exporter defines his exporter instance using
464 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
465 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
466 * as a file descriptor by calling dma_buf_fd().
468 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
469 * to share with: First the filedescriptor is converted to a &dma_buf using
470 * dma_buf_get(). Then the buffer is attached to the device using
473 * Up to this stage the exporter is still free to migrate or reallocate the
476 * 3. Once the buffer is attached to all devices userspace can initiate DMA
477 * access to the shared buffer. In the kernel this is done by calling
478 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
480 * 4. Once a driver is done with a shared buffer it needs to call
481 * dma_buf_detach() (after cleaning up any mappings) and then release the
482 * reference acquired with dma_buf_get by calling dma_buf_put().
484 * For the detailed semantics exporters are expected to implement see
489 * dma_buf_export - Creates a new dma_buf, and associates an anon file
490 * with this buffer, so it can be exported.
491 * Also connect the allocator specific data and ops to the buffer.
492 * Additionally, provide a name string for exporter; useful in debugging.
494 * @exp_info: [in] holds all the export related information provided
495 * by the exporter. see &struct dma_buf_export_info
496 * for further details.
498 * Returns, on success, a newly created dma_buf object, which wraps the
499 * supplied private data and operations for dma_buf_ops. On either missing
500 * ops, or error in allocating struct dma_buf, will return negative error.
502 * For most cases the easiest way to create @exp_info is through the
503 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
505 struct dma_buf
*dma_buf_export(const struct dma_buf_export_info
*exp_info
)
507 struct dma_buf
*dmabuf
;
508 struct dma_resv
*resv
= exp_info
->resv
;
510 size_t alloc_size
= sizeof(struct dma_buf
);
514 alloc_size
+= sizeof(struct dma_resv
);
516 /* prevent &dma_buf[1] == dma_buf->resv */
519 if (WARN_ON(!exp_info
->priv
521 || !exp_info
->ops
->map_dma_buf
522 || !exp_info
->ops
->unmap_dma_buf
523 || !exp_info
->ops
->release
)) {
524 return ERR_PTR(-EINVAL
);
527 if (WARN_ON(exp_info
->ops
->cache_sgt_mapping
&&
528 exp_info
->ops
->dynamic_mapping
))
529 return ERR_PTR(-EINVAL
);
531 if (!try_module_get(exp_info
->owner
))
532 return ERR_PTR(-ENOENT
);
534 dmabuf
= kzalloc(alloc_size
, GFP_KERNEL
);
540 dmabuf
->priv
= exp_info
->priv
;
541 dmabuf
->ops
= exp_info
->ops
;
542 dmabuf
->size
= exp_info
->size
;
543 dmabuf
->exp_name
= exp_info
->exp_name
;
544 dmabuf
->owner
= exp_info
->owner
;
545 init_waitqueue_head(&dmabuf
->poll
);
546 dmabuf
->cb_excl
.poll
= dmabuf
->cb_shared
.poll
= &dmabuf
->poll
;
547 dmabuf
->cb_excl
.active
= dmabuf
->cb_shared
.active
= 0;
550 resv
= (struct dma_resv
*)&dmabuf
[1];
555 file
= dma_buf_getfile(dmabuf
, exp_info
->flags
);
561 file
->f_mode
|= FMODE_LSEEK
;
564 mutex_init(&dmabuf
->lock
);
565 INIT_LIST_HEAD(&dmabuf
->attachments
);
567 mutex_lock(&db_list
.lock
);
568 list_add(&dmabuf
->list_node
, &db_list
.head
);
569 mutex_unlock(&db_list
.lock
);
576 module_put(exp_info
->owner
);
579 EXPORT_SYMBOL_GPL(dma_buf_export
);
582 * dma_buf_fd - returns a file descriptor for the given dma_buf
583 * @dmabuf: [in] pointer to dma_buf for which fd is required.
584 * @flags: [in] flags to give to fd
586 * On success, returns an associated 'fd'. Else, returns error.
588 int dma_buf_fd(struct dma_buf
*dmabuf
, int flags
)
592 if (!dmabuf
|| !dmabuf
->file
)
595 fd
= get_unused_fd_flags(flags
);
599 fd_install(fd
, dmabuf
->file
);
603 EXPORT_SYMBOL_GPL(dma_buf_fd
);
606 * dma_buf_get - returns the dma_buf structure related to an fd
607 * @fd: [in] fd associated with the dma_buf to be returned
609 * On success, returns the dma_buf structure associated with an fd; uses
610 * file's refcounting done by fget to increase refcount. returns ERR_PTR
613 struct dma_buf
*dma_buf_get(int fd
)
620 return ERR_PTR(-EBADF
);
622 if (!is_dma_buf_file(file
)) {
624 return ERR_PTR(-EINVAL
);
627 return file
->private_data
;
629 EXPORT_SYMBOL_GPL(dma_buf_get
);
632 * dma_buf_put - decreases refcount of the buffer
633 * @dmabuf: [in] buffer to reduce refcount of
635 * Uses file's refcounting done implicitly by fput().
637 * If, as a result of this call, the refcount becomes 0, the 'release' file
638 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
639 * in turn, and frees the memory allocated for dmabuf when exported.
641 void dma_buf_put(struct dma_buf
*dmabuf
)
643 if (WARN_ON(!dmabuf
|| !dmabuf
->file
))
648 EXPORT_SYMBOL_GPL(dma_buf_put
);
651 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
652 * calls attach() of dma_buf_ops to allow device-specific attach functionality
653 * @dmabuf: [in] buffer to attach device to.
654 * @dev: [in] device to be attached.
655 * @dynamic_mapping: [in] calling convention for map/unmap
657 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
658 * must be cleaned up by calling dma_buf_detach().
662 * A pointer to newly created &dma_buf_attachment on success, or a negative
663 * error code wrapped into a pointer on failure.
665 * Note that this can fail if the backing storage of @dmabuf is in a place not
666 * accessible to @dev, and cannot be moved to a more suitable place. This is
667 * indicated with the error code -EBUSY.
669 struct dma_buf_attachment
*
670 dma_buf_dynamic_attach(struct dma_buf
*dmabuf
, struct device
*dev
,
671 bool dynamic_mapping
)
673 struct dma_buf_attachment
*attach
;
676 if (WARN_ON(!dmabuf
|| !dev
))
677 return ERR_PTR(-EINVAL
);
679 attach
= kzalloc(sizeof(*attach
), GFP_KERNEL
);
681 return ERR_PTR(-ENOMEM
);
684 attach
->dmabuf
= dmabuf
;
685 attach
->dynamic_mapping
= dynamic_mapping
;
687 if (dmabuf
->ops
->attach
) {
688 ret
= dmabuf
->ops
->attach(dmabuf
, attach
);
692 dma_resv_lock(dmabuf
->resv
, NULL
);
693 list_add(&attach
->node
, &dmabuf
->attachments
);
694 dma_resv_unlock(dmabuf
->resv
);
696 /* When either the importer or the exporter can't handle dynamic
697 * mappings we cache the mapping here to avoid issues with the
698 * reservation object lock.
700 if (dma_buf_attachment_is_dynamic(attach
) !=
701 dma_buf_is_dynamic(dmabuf
)) {
702 struct sg_table
*sgt
;
704 if (dma_buf_is_dynamic(attach
->dmabuf
))
705 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
707 sgt
= dmabuf
->ops
->map_dma_buf(attach
, DMA_BIDIRECTIONAL
);
709 sgt
= ERR_PTR(-ENOMEM
);
714 if (dma_buf_is_dynamic(attach
->dmabuf
))
715 dma_resv_unlock(attach
->dmabuf
->resv
);
717 attach
->dir
= DMA_BIDIRECTIONAL
;
727 if (dma_buf_is_dynamic(attach
->dmabuf
))
728 dma_resv_unlock(attach
->dmabuf
->resv
);
730 dma_buf_detach(dmabuf
, attach
);
733 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach
);
736 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
737 * @dmabuf: [in] buffer to attach device to.
738 * @dev: [in] device to be attached.
740 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
743 struct dma_buf_attachment
*dma_buf_attach(struct dma_buf
*dmabuf
,
746 return dma_buf_dynamic_attach(dmabuf
, dev
, false);
748 EXPORT_SYMBOL_GPL(dma_buf_attach
);
751 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
752 * optionally calls detach() of dma_buf_ops for device-specific detach
753 * @dmabuf: [in] buffer to detach from.
754 * @attach: [in] attachment to be detached; is free'd after this call.
756 * Clean up a device attachment obtained by calling dma_buf_attach().
758 void dma_buf_detach(struct dma_buf
*dmabuf
, struct dma_buf_attachment
*attach
)
760 if (WARN_ON(!dmabuf
|| !attach
))
764 if (dma_buf_is_dynamic(attach
->dmabuf
))
765 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
767 dmabuf
->ops
->unmap_dma_buf(attach
, attach
->sgt
, attach
->dir
);
769 if (dma_buf_is_dynamic(attach
->dmabuf
))
770 dma_resv_unlock(attach
->dmabuf
->resv
);
773 dma_resv_lock(dmabuf
->resv
, NULL
);
774 list_del(&attach
->node
);
775 dma_resv_unlock(dmabuf
->resv
);
776 if (dmabuf
->ops
->detach
)
777 dmabuf
->ops
->detach(dmabuf
, attach
);
781 EXPORT_SYMBOL_GPL(dma_buf_detach
);
784 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
785 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
787 * @attach: [in] attachment whose scatterlist is to be returned
788 * @direction: [in] direction of DMA transfer
790 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
791 * on error. May return -EINTR if it is interrupted by a signal.
793 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
794 * the underlying backing storage is pinned for as long as a mapping exists,
795 * therefore users/importers should not hold onto a mapping for undue amounts of
798 struct sg_table
*dma_buf_map_attachment(struct dma_buf_attachment
*attach
,
799 enum dma_data_direction direction
)
801 struct sg_table
*sg_table
;
805 if (WARN_ON(!attach
|| !attach
->dmabuf
))
806 return ERR_PTR(-EINVAL
);
808 if (dma_buf_attachment_is_dynamic(attach
))
809 dma_resv_assert_held(attach
->dmabuf
->resv
);
813 * Two mappings with different directions for the same
814 * attachment are not allowed.
816 if (attach
->dir
!= direction
&&
817 attach
->dir
!= DMA_BIDIRECTIONAL
)
818 return ERR_PTR(-EBUSY
);
823 if (dma_buf_is_dynamic(attach
->dmabuf
))
824 dma_resv_assert_held(attach
->dmabuf
->resv
);
826 sg_table
= attach
->dmabuf
->ops
->map_dma_buf(attach
, direction
);
828 sg_table
= ERR_PTR(-ENOMEM
);
830 if (!IS_ERR(sg_table
) && attach
->dmabuf
->ops
->cache_sgt_mapping
) {
831 attach
->sgt
= sg_table
;
832 attach
->dir
= direction
;
837 EXPORT_SYMBOL_GPL(dma_buf_map_attachment
);
840 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
841 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
843 * @attach: [in] attachment to unmap buffer from
844 * @sg_table: [in] scatterlist info of the buffer to unmap
845 * @direction: [in] direction of DMA transfer
847 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
849 void dma_buf_unmap_attachment(struct dma_buf_attachment
*attach
,
850 struct sg_table
*sg_table
,
851 enum dma_data_direction direction
)
855 if (WARN_ON(!attach
|| !attach
->dmabuf
|| !sg_table
))
858 if (dma_buf_attachment_is_dynamic(attach
))
859 dma_resv_assert_held(attach
->dmabuf
->resv
);
861 if (attach
->sgt
== sg_table
)
864 if (dma_buf_is_dynamic(attach
->dmabuf
))
865 dma_resv_assert_held(attach
->dmabuf
->resv
);
867 attach
->dmabuf
->ops
->unmap_dma_buf(attach
, sg_table
, direction
);
869 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment
);
874 * There are mutliple reasons for supporting CPU access to a dma buffer object:
876 * - Fallback operations in the kernel, for example when a device is connected
877 * over USB and the kernel needs to shuffle the data around first before
878 * sending it away. Cache coherency is handled by braketing any transactions
879 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
882 * Since for most kernel internal dma-buf accesses need the entire buffer, a
883 * vmap interface is introduced. Note that on very old 32-bit architectures
884 * vmalloc space might be limited and result in vmap calls failing.
887 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
888 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
890 * The vmap call can fail if there is no vmap support in the exporter, or if
891 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
892 * that the dma-buf layer keeps a reference count for all vmap access and
893 * calls down into the exporter's vmap function only when no vmapping exists,
894 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
895 * provided by taking the dma_buf->lock mutex.
897 * - For full compatibility on the importer side with existing userspace
898 * interfaces, which might already support mmap'ing buffers. This is needed in
899 * many processing pipelines (e.g. feeding a software rendered image into a
900 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
901 * framework already supported this and for DMA buffer file descriptors to
902 * replace ION buffers mmap support was needed.
904 * There is no special interfaces, userspace simply calls mmap on the dma-buf
905 * fd. But like for CPU access there's a need to braket the actual access,
906 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
907 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
910 * Some systems might need some sort of cache coherency management e.g. when
911 * CPU and GPU domains are being accessed through dma-buf at the same time.
912 * To circumvent this problem there are begin/end coherency markers, that
913 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
914 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
915 * sequence would be used like following:
918 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
919 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
920 * want (with the new data being consumed by say the GPU or the scanout
922 * - munmap once you don't need the buffer any more
924 * For correctness and optimal performance, it is always required to use
925 * SYNC_START and SYNC_END before and after, respectively, when accessing the
926 * mapped address. Userspace cannot rely on coherent access, even when there
927 * are systems where it just works without calling these ioctls.
929 * - And as a CPU fallback in userspace processing pipelines.
931 * Similar to the motivation for kernel cpu access it is again important that
932 * the userspace code of a given importing subsystem can use the same
933 * interfaces with a imported dma-buf buffer object as with a native buffer
934 * object. This is especially important for drm where the userspace part of
935 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
936 * use a different way to mmap a buffer rather invasive.
938 * The assumption in the current dma-buf interfaces is that redirecting the
939 * initial mmap is all that's needed. A survey of some of the existing
940 * subsystems shows that no driver seems to do any nefarious thing like
941 * syncing up with outstanding asynchronous processing on the device or
942 * allocating special resources at fault time. So hopefully this is good
943 * enough, since adding interfaces to intercept pagefaults and allow pte
944 * shootdowns would increase the complexity quite a bit.
947 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
950 * If the importing subsystem simply provides a special-purpose mmap call to
951 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
952 * equally achieve that for a dma-buf object.
955 static int __dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
956 enum dma_data_direction direction
)
958 bool write
= (direction
== DMA_BIDIRECTIONAL
||
959 direction
== DMA_TO_DEVICE
);
960 struct dma_resv
*resv
= dmabuf
->resv
;
963 /* Wait on any implicit rendering fences */
964 ret
= dma_resv_wait_timeout_rcu(resv
, write
, true,
965 MAX_SCHEDULE_TIMEOUT
);
973 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
974 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
975 * preparations. Coherency is only guaranteed in the specified range for the
976 * specified access direction.
977 * @dmabuf: [in] buffer to prepare cpu access for.
978 * @direction: [in] length of range for cpu access.
980 * After the cpu access is complete the caller should call
981 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
982 * it guaranteed to be coherent with other DMA access.
984 * Can return negative error values, returns 0 on success.
986 int dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
987 enum dma_data_direction direction
)
991 if (WARN_ON(!dmabuf
))
994 if (dmabuf
->ops
->begin_cpu_access
)
995 ret
= dmabuf
->ops
->begin_cpu_access(dmabuf
, direction
);
997 /* Ensure that all fences are waited upon - but we first allow
998 * the native handler the chance to do so more efficiently if it
999 * chooses. A double invocation here will be reasonably cheap no-op.
1002 ret
= __dma_buf_begin_cpu_access(dmabuf
, direction
);
1006 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access
);
1009 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1010 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1011 * actions. Coherency is only guaranteed in the specified range for the
1012 * specified access direction.
1013 * @dmabuf: [in] buffer to complete cpu access for.
1014 * @direction: [in] length of range for cpu access.
1016 * This terminates CPU access started with dma_buf_begin_cpu_access().
1018 * Can return negative error values, returns 0 on success.
1020 int dma_buf_end_cpu_access(struct dma_buf
*dmabuf
,
1021 enum dma_data_direction direction
)
1027 if (dmabuf
->ops
->end_cpu_access
)
1028 ret
= dmabuf
->ops
->end_cpu_access(dmabuf
, direction
);
1032 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access
);
1036 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1037 * @dmabuf: [in] buffer that should back the vma
1038 * @vma: [in] vma for the mmap
1039 * @pgoff: [in] offset in pages where this mmap should start within the
1042 * This function adjusts the passed in vma so that it points at the file of the
1043 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1044 * checking on the size of the vma. Then it calls the exporters mmap function to
1045 * set up the mapping.
1047 * Can return negative error values, returns 0 on success.
1049 int dma_buf_mmap(struct dma_buf
*dmabuf
, struct vm_area_struct
*vma
,
1050 unsigned long pgoff
)
1052 struct file
*oldfile
;
1055 if (WARN_ON(!dmabuf
|| !vma
))
1058 /* check if buffer supports mmap */
1059 if (!dmabuf
->ops
->mmap
)
1062 /* check for offset overflow */
1063 if (pgoff
+ vma_pages(vma
) < pgoff
)
1066 /* check for overflowing the buffer's size */
1067 if (pgoff
+ vma_pages(vma
) >
1068 dmabuf
->size
>> PAGE_SHIFT
)
1071 /* readjust the vma */
1072 get_file(dmabuf
->file
);
1073 oldfile
= vma
->vm_file
;
1074 vma
->vm_file
= dmabuf
->file
;
1075 vma
->vm_pgoff
= pgoff
;
1077 ret
= dmabuf
->ops
->mmap(dmabuf
, vma
);
1079 /* restore old parameters on failure */
1080 vma
->vm_file
= oldfile
;
1089 EXPORT_SYMBOL_GPL(dma_buf_mmap
);
1092 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1093 * address space. Same restrictions as for vmap and friends apply.
1094 * @dmabuf: [in] buffer to vmap
1096 * This call may fail due to lack of virtual mapping address space.
1097 * These calls are optional in drivers. The intended use for them
1098 * is for mapping objects linear in kernel space for high use objects.
1099 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1101 * Returns NULL on error.
1103 void *dma_buf_vmap(struct dma_buf
*dmabuf
)
1107 if (WARN_ON(!dmabuf
))
1110 if (!dmabuf
->ops
->vmap
)
1113 mutex_lock(&dmabuf
->lock
);
1114 if (dmabuf
->vmapping_counter
) {
1115 dmabuf
->vmapping_counter
++;
1116 BUG_ON(!dmabuf
->vmap_ptr
);
1117 ptr
= dmabuf
->vmap_ptr
;
1121 BUG_ON(dmabuf
->vmap_ptr
);
1123 ptr
= dmabuf
->ops
->vmap(dmabuf
);
1124 if (WARN_ON_ONCE(IS_ERR(ptr
)))
1129 dmabuf
->vmap_ptr
= ptr
;
1130 dmabuf
->vmapping_counter
= 1;
1133 mutex_unlock(&dmabuf
->lock
);
1136 EXPORT_SYMBOL_GPL(dma_buf_vmap
);
1139 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1140 * @dmabuf: [in] buffer to vunmap
1141 * @vaddr: [in] vmap to vunmap
1143 void dma_buf_vunmap(struct dma_buf
*dmabuf
, void *vaddr
)
1145 if (WARN_ON(!dmabuf
))
1148 BUG_ON(!dmabuf
->vmap_ptr
);
1149 BUG_ON(dmabuf
->vmapping_counter
== 0);
1150 BUG_ON(dmabuf
->vmap_ptr
!= vaddr
);
1152 mutex_lock(&dmabuf
->lock
);
1153 if (--dmabuf
->vmapping_counter
== 0) {
1154 if (dmabuf
->ops
->vunmap
)
1155 dmabuf
->ops
->vunmap(dmabuf
, vaddr
);
1156 dmabuf
->vmap_ptr
= NULL
;
1158 mutex_unlock(&dmabuf
->lock
);
1160 EXPORT_SYMBOL_GPL(dma_buf_vunmap
);
1162 #ifdef CONFIG_DEBUG_FS
1163 static int dma_buf_debug_show(struct seq_file
*s
, void *unused
)
1166 struct dma_buf
*buf_obj
;
1167 struct dma_buf_attachment
*attach_obj
;
1168 struct dma_resv
*robj
;
1169 struct dma_resv_list
*fobj
;
1170 struct dma_fence
*fence
;
1172 int count
= 0, attach_count
, shared_count
, i
;
1175 ret
= mutex_lock_interruptible(&db_list
.lock
);
1180 seq_puts(s
, "\nDma-buf Objects:\n");
1181 seq_printf(s
, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1182 "size", "flags", "mode", "count", "ino");
1184 list_for_each_entry(buf_obj
, &db_list
.head
, list_node
) {
1186 ret
= dma_resv_lock_interruptible(buf_obj
->resv
, NULL
);
1190 seq_printf(s
, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1192 buf_obj
->file
->f_flags
, buf_obj
->file
->f_mode
,
1193 file_count(buf_obj
->file
),
1195 file_inode(buf_obj
->file
)->i_ino
,
1196 buf_obj
->name
?: "");
1198 robj
= buf_obj
->resv
;
1200 seq
= read_seqcount_begin(&robj
->seq
);
1202 fobj
= rcu_dereference(robj
->fence
);
1203 shared_count
= fobj
? fobj
->shared_count
: 0;
1204 fence
= rcu_dereference(robj
->fence_excl
);
1205 if (!read_seqcount_retry(&robj
->seq
, seq
))
1211 seq_printf(s
, "\tExclusive fence: %s %s %ssignalled\n",
1212 fence
->ops
->get_driver_name(fence
),
1213 fence
->ops
->get_timeline_name(fence
),
1214 dma_fence_is_signaled(fence
) ? "" : "un");
1215 for (i
= 0; i
< shared_count
; i
++) {
1216 fence
= rcu_dereference(fobj
->shared
[i
]);
1217 if (!dma_fence_get_rcu(fence
))
1219 seq_printf(s
, "\tShared fence: %s %s %ssignalled\n",
1220 fence
->ops
->get_driver_name(fence
),
1221 fence
->ops
->get_timeline_name(fence
),
1222 dma_fence_is_signaled(fence
) ? "" : "un");
1223 dma_fence_put(fence
);
1227 seq_puts(s
, "\tAttached Devices:\n");
1230 list_for_each_entry(attach_obj
, &buf_obj
->attachments
, node
) {
1231 seq_printf(s
, "\t%s\n", dev_name(attach_obj
->dev
));
1234 dma_resv_unlock(buf_obj
->resv
);
1236 seq_printf(s
, "Total %d devices attached\n\n",
1240 size
+= buf_obj
->size
;
1243 seq_printf(s
, "\nTotal %d objects, %zu bytes\n", count
, size
);
1245 mutex_unlock(&db_list
.lock
);
1249 mutex_unlock(&db_list
.lock
);
1253 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug
);
1255 static struct dentry
*dma_buf_debugfs_dir
;
1257 static int dma_buf_init_debugfs(void)
1262 d
= debugfs_create_dir("dma_buf", NULL
);
1266 dma_buf_debugfs_dir
= d
;
1268 d
= debugfs_create_file("bufinfo", S_IRUGO
, dma_buf_debugfs_dir
,
1269 NULL
, &dma_buf_debug_fops
);
1271 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1272 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1273 dma_buf_debugfs_dir
= NULL
;
1280 static void dma_buf_uninit_debugfs(void)
1282 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1285 static inline int dma_buf_init_debugfs(void)
1289 static inline void dma_buf_uninit_debugfs(void)
1294 static int __init
dma_buf_init(void)
1296 dma_buf_mnt
= kern_mount(&dma_buf_fs_type
);
1297 if (IS_ERR(dma_buf_mnt
))
1298 return PTR_ERR(dma_buf_mnt
);
1300 mutex_init(&db_list
.lock
);
1301 INIT_LIST_HEAD(&db_list
.head
);
1302 dma_buf_init_debugfs();
1305 subsys_initcall(dma_buf_init
);
1307 static void __exit
dma_buf_deinit(void)
1309 dma_buf_uninit_debugfs();
1310 kern_unmount(dma_buf_mnt
);
1312 __exitcall(dma_buf_deinit
);