ata: start separating SATA specific code from libata-core.c
[linux/fpc-iii.git] / drivers / iommu / dma-iommu.c
bloba2e96a5fd9a7b3a6d9e2bf35ea1a8d7bdc78f1f2
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
5 * Copyright (C) 2014-2015 ARM Ltd.
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-contiguous.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/dma-noncoherent.h>
16 #include <linux/gfp.h>
17 #include <linux/huge_mm.h>
18 #include <linux/iommu.h>
19 #include <linux/iova.h>
20 #include <linux/irq.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/pci.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
28 struct iommu_dma_msi_page {
29 struct list_head list;
30 dma_addr_t iova;
31 phys_addr_t phys;
34 enum iommu_dma_cookie_type {
35 IOMMU_DMA_IOVA_COOKIE,
36 IOMMU_DMA_MSI_COOKIE,
39 struct iommu_dma_cookie {
40 enum iommu_dma_cookie_type type;
41 union {
42 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
43 struct iova_domain iovad;
44 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
45 dma_addr_t msi_iova;
47 struct list_head msi_page_list;
49 /* Domain for flush queue callback; NULL if flush queue not in use */
50 struct iommu_domain *fq_domain;
53 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
55 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
56 return cookie->iovad.granule;
57 return PAGE_SIZE;
60 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
62 struct iommu_dma_cookie *cookie;
64 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
65 if (cookie) {
66 INIT_LIST_HEAD(&cookie->msi_page_list);
67 cookie->type = type;
69 return cookie;
72 /**
73 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
74 * @domain: IOMMU domain to prepare for DMA-API usage
76 * IOMMU drivers should normally call this from their domain_alloc
77 * callback when domain->type == IOMMU_DOMAIN_DMA.
79 int iommu_get_dma_cookie(struct iommu_domain *domain)
81 if (domain->iova_cookie)
82 return -EEXIST;
84 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
85 if (!domain->iova_cookie)
86 return -ENOMEM;
88 return 0;
90 EXPORT_SYMBOL(iommu_get_dma_cookie);
92 /**
93 * iommu_get_msi_cookie - Acquire just MSI remapping resources
94 * @domain: IOMMU domain to prepare
95 * @base: Start address of IOVA region for MSI mappings
97 * Users who manage their own IOVA allocation and do not want DMA API support,
98 * but would still like to take advantage of automatic MSI remapping, can use
99 * this to initialise their own domain appropriately. Users should reserve a
100 * contiguous IOVA region, starting at @base, large enough to accommodate the
101 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
102 * used by the devices attached to @domain.
104 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
106 struct iommu_dma_cookie *cookie;
108 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
109 return -EINVAL;
111 if (domain->iova_cookie)
112 return -EEXIST;
114 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
115 if (!cookie)
116 return -ENOMEM;
118 cookie->msi_iova = base;
119 domain->iova_cookie = cookie;
120 return 0;
122 EXPORT_SYMBOL(iommu_get_msi_cookie);
125 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
126 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
127 * iommu_get_msi_cookie()
129 * IOMMU drivers should normally call this from their domain_free callback.
131 void iommu_put_dma_cookie(struct iommu_domain *domain)
133 struct iommu_dma_cookie *cookie = domain->iova_cookie;
134 struct iommu_dma_msi_page *msi, *tmp;
136 if (!cookie)
137 return;
139 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
140 put_iova_domain(&cookie->iovad);
142 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
143 list_del(&msi->list);
144 kfree(msi);
146 kfree(cookie);
147 domain->iova_cookie = NULL;
149 EXPORT_SYMBOL(iommu_put_dma_cookie);
152 * iommu_dma_get_resv_regions - Reserved region driver helper
153 * @dev: Device from iommu_get_resv_regions()
154 * @list: Reserved region list from iommu_get_resv_regions()
156 * IOMMU drivers can use this to implement their .get_resv_regions callback
157 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
158 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
159 * reservation.
161 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
164 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
165 iort_iommu_msi_get_resv_regions(dev, list);
168 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
170 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
171 phys_addr_t start, phys_addr_t end)
173 struct iova_domain *iovad = &cookie->iovad;
174 struct iommu_dma_msi_page *msi_page;
175 int i, num_pages;
177 start -= iova_offset(iovad, start);
178 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
180 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
181 if (!msi_page)
182 return -ENOMEM;
184 for (i = 0; i < num_pages; i++) {
185 msi_page[i].phys = start;
186 msi_page[i].iova = start;
187 INIT_LIST_HEAD(&msi_page[i].list);
188 list_add(&msi_page[i].list, &cookie->msi_page_list);
189 start += iovad->granule;
192 return 0;
195 static int iova_reserve_pci_windows(struct pci_dev *dev,
196 struct iova_domain *iovad)
198 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
199 struct resource_entry *window;
200 unsigned long lo, hi;
201 phys_addr_t start = 0, end;
203 resource_list_for_each_entry(window, &bridge->windows) {
204 if (resource_type(window->res) != IORESOURCE_MEM)
205 continue;
207 lo = iova_pfn(iovad, window->res->start - window->offset);
208 hi = iova_pfn(iovad, window->res->end - window->offset);
209 reserve_iova(iovad, lo, hi);
212 /* Get reserved DMA windows from host bridge */
213 resource_list_for_each_entry(window, &bridge->dma_ranges) {
214 end = window->res->start - window->offset;
215 resv_iova:
216 if (end > start) {
217 lo = iova_pfn(iovad, start);
218 hi = iova_pfn(iovad, end);
219 reserve_iova(iovad, lo, hi);
220 } else {
221 /* dma_ranges list should be sorted */
222 dev_err(&dev->dev, "Failed to reserve IOVA\n");
223 return -EINVAL;
226 start = window->res->end - window->offset + 1;
227 /* If window is last entry */
228 if (window->node.next == &bridge->dma_ranges &&
229 end != ~(phys_addr_t)0) {
230 end = ~(phys_addr_t)0;
231 goto resv_iova;
235 return 0;
238 static int iova_reserve_iommu_regions(struct device *dev,
239 struct iommu_domain *domain)
241 struct iommu_dma_cookie *cookie = domain->iova_cookie;
242 struct iova_domain *iovad = &cookie->iovad;
243 struct iommu_resv_region *region;
244 LIST_HEAD(resv_regions);
245 int ret = 0;
247 if (dev_is_pci(dev)) {
248 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
249 if (ret)
250 return ret;
253 iommu_get_resv_regions(dev, &resv_regions);
254 list_for_each_entry(region, &resv_regions, list) {
255 unsigned long lo, hi;
257 /* We ARE the software that manages these! */
258 if (region->type == IOMMU_RESV_SW_MSI)
259 continue;
261 lo = iova_pfn(iovad, region->start);
262 hi = iova_pfn(iovad, region->start + region->length - 1);
263 reserve_iova(iovad, lo, hi);
265 if (region->type == IOMMU_RESV_MSI)
266 ret = cookie_init_hw_msi_region(cookie, region->start,
267 region->start + region->length);
268 if (ret)
269 break;
271 iommu_put_resv_regions(dev, &resv_regions);
273 return ret;
276 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
278 struct iommu_dma_cookie *cookie;
279 struct iommu_domain *domain;
281 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
282 domain = cookie->fq_domain;
284 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
285 * implies that ops->flush_iotlb_all must be non-NULL.
287 domain->ops->flush_iotlb_all(domain);
291 * iommu_dma_init_domain - Initialise a DMA mapping domain
292 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
293 * @base: IOVA at which the mappable address space starts
294 * @size: Size of IOVA space
295 * @dev: Device the domain is being initialised for
297 * @base and @size should be exact multiples of IOMMU page granularity to
298 * avoid rounding surprises. If necessary, we reserve the page at address 0
299 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
300 * any change which could make prior IOVAs invalid will fail.
302 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
303 u64 size, struct device *dev)
305 struct iommu_dma_cookie *cookie = domain->iova_cookie;
306 unsigned long order, base_pfn;
307 struct iova_domain *iovad;
308 int attr;
310 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
311 return -EINVAL;
313 iovad = &cookie->iovad;
315 /* Use the smallest supported page size for IOVA granularity */
316 order = __ffs(domain->pgsize_bitmap);
317 base_pfn = max_t(unsigned long, 1, base >> order);
319 /* Check the domain allows at least some access to the device... */
320 if (domain->geometry.force_aperture) {
321 if (base > domain->geometry.aperture_end ||
322 base + size <= domain->geometry.aperture_start) {
323 pr_warn("specified DMA range outside IOMMU capability\n");
324 return -EFAULT;
326 /* ...then finally give it a kicking to make sure it fits */
327 base_pfn = max_t(unsigned long, base_pfn,
328 domain->geometry.aperture_start >> order);
331 /* start_pfn is always nonzero for an already-initialised domain */
332 if (iovad->start_pfn) {
333 if (1UL << order != iovad->granule ||
334 base_pfn != iovad->start_pfn) {
335 pr_warn("Incompatible range for DMA domain\n");
336 return -EFAULT;
339 return 0;
342 init_iova_domain(iovad, 1UL << order, base_pfn);
344 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
345 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
346 cookie->fq_domain = domain;
347 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
350 if (!dev)
351 return 0;
353 return iova_reserve_iommu_regions(dev, domain);
356 static int iommu_dma_deferred_attach(struct device *dev,
357 struct iommu_domain *domain)
359 const struct iommu_ops *ops = domain->ops;
361 if (!is_kdump_kernel())
362 return 0;
364 if (unlikely(ops->is_attach_deferred &&
365 ops->is_attach_deferred(domain, dev)))
366 return iommu_attach_device(domain, dev);
368 return 0;
372 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
373 * page flags.
374 * @dir: Direction of DMA transfer
375 * @coherent: Is the DMA master cache-coherent?
376 * @attrs: DMA attributes for the mapping
378 * Return: corresponding IOMMU API page protection flags
380 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
381 unsigned long attrs)
383 int prot = coherent ? IOMMU_CACHE : 0;
385 if (attrs & DMA_ATTR_PRIVILEGED)
386 prot |= IOMMU_PRIV;
388 switch (dir) {
389 case DMA_BIDIRECTIONAL:
390 return prot | IOMMU_READ | IOMMU_WRITE;
391 case DMA_TO_DEVICE:
392 return prot | IOMMU_READ;
393 case DMA_FROM_DEVICE:
394 return prot | IOMMU_WRITE;
395 default:
396 return 0;
400 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
401 size_t size, u64 dma_limit, struct device *dev)
403 struct iommu_dma_cookie *cookie = domain->iova_cookie;
404 struct iova_domain *iovad = &cookie->iovad;
405 unsigned long shift, iova_len, iova = 0;
407 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
408 cookie->msi_iova += size;
409 return cookie->msi_iova - size;
412 shift = iova_shift(iovad);
413 iova_len = size >> shift;
415 * Freeing non-power-of-two-sized allocations back into the IOVA caches
416 * will come back to bite us badly, so we have to waste a bit of space
417 * rounding up anything cacheable to make sure that can't happen. The
418 * order of the unadjusted size will still match upon freeing.
420 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
421 iova_len = roundup_pow_of_two(iova_len);
423 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
425 if (domain->geometry.force_aperture)
426 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
428 /* Try to get PCI devices a SAC address */
429 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
430 iova = alloc_iova_fast(iovad, iova_len,
431 DMA_BIT_MASK(32) >> shift, false);
433 if (!iova)
434 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
435 true);
437 return (dma_addr_t)iova << shift;
440 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
441 dma_addr_t iova, size_t size)
443 struct iova_domain *iovad = &cookie->iovad;
445 /* The MSI case is only ever cleaning up its most recent allocation */
446 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
447 cookie->msi_iova -= size;
448 else if (cookie->fq_domain) /* non-strict mode */
449 queue_iova(iovad, iova_pfn(iovad, iova),
450 size >> iova_shift(iovad), 0);
451 else
452 free_iova_fast(iovad, iova_pfn(iovad, iova),
453 size >> iova_shift(iovad));
456 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
457 size_t size)
459 struct iommu_domain *domain = iommu_get_dma_domain(dev);
460 struct iommu_dma_cookie *cookie = domain->iova_cookie;
461 struct iova_domain *iovad = &cookie->iovad;
462 size_t iova_off = iova_offset(iovad, dma_addr);
463 struct iommu_iotlb_gather iotlb_gather;
464 size_t unmapped;
466 dma_addr -= iova_off;
467 size = iova_align(iovad, size + iova_off);
468 iommu_iotlb_gather_init(&iotlb_gather);
470 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
471 WARN_ON(unmapped != size);
473 if (!cookie->fq_domain)
474 iommu_tlb_sync(domain, &iotlb_gather);
475 iommu_dma_free_iova(cookie, dma_addr, size);
478 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
479 size_t size, int prot, u64 dma_mask)
481 struct iommu_domain *domain = iommu_get_dma_domain(dev);
482 struct iommu_dma_cookie *cookie = domain->iova_cookie;
483 struct iova_domain *iovad = &cookie->iovad;
484 size_t iova_off = iova_offset(iovad, phys);
485 dma_addr_t iova;
487 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
488 return DMA_MAPPING_ERROR;
490 size = iova_align(iovad, size + iova_off);
492 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
493 if (!iova)
494 return DMA_MAPPING_ERROR;
496 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
497 iommu_dma_free_iova(cookie, iova, size);
498 return DMA_MAPPING_ERROR;
500 return iova + iova_off;
503 static void __iommu_dma_free_pages(struct page **pages, int count)
505 while (count--)
506 __free_page(pages[count]);
507 kvfree(pages);
510 static struct page **__iommu_dma_alloc_pages(struct device *dev,
511 unsigned int count, unsigned long order_mask, gfp_t gfp)
513 struct page **pages;
514 unsigned int i = 0, nid = dev_to_node(dev);
516 order_mask &= (2U << MAX_ORDER) - 1;
517 if (!order_mask)
518 return NULL;
520 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
521 if (!pages)
522 return NULL;
524 /* IOMMU can map any pages, so himem can also be used here */
525 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
527 while (count) {
528 struct page *page = NULL;
529 unsigned int order_size;
532 * Higher-order allocations are a convenience rather
533 * than a necessity, hence using __GFP_NORETRY until
534 * falling back to minimum-order allocations.
536 for (order_mask &= (2U << __fls(count)) - 1;
537 order_mask; order_mask &= ~order_size) {
538 unsigned int order = __fls(order_mask);
539 gfp_t alloc_flags = gfp;
541 order_size = 1U << order;
542 if (order_mask > order_size)
543 alloc_flags |= __GFP_NORETRY;
544 page = alloc_pages_node(nid, alloc_flags, order);
545 if (!page)
546 continue;
547 if (!order)
548 break;
549 if (!PageCompound(page)) {
550 split_page(page, order);
551 break;
552 } else if (!split_huge_page(page)) {
553 break;
555 __free_pages(page, order);
557 if (!page) {
558 __iommu_dma_free_pages(pages, i);
559 return NULL;
561 count -= order_size;
562 while (order_size--)
563 pages[i++] = page++;
565 return pages;
569 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
570 * @dev: Device to allocate memory for. Must be a real device
571 * attached to an iommu_dma_domain
572 * @size: Size of buffer in bytes
573 * @dma_handle: Out argument for allocated DMA handle
574 * @gfp: Allocation flags
575 * @attrs: DMA attributes for this allocation
577 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
578 * but an IOMMU which supports smaller pages might not map the whole thing.
580 * Return: Mapped virtual address, or NULL on failure.
582 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
583 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
585 struct iommu_domain *domain = iommu_get_dma_domain(dev);
586 struct iommu_dma_cookie *cookie = domain->iova_cookie;
587 struct iova_domain *iovad = &cookie->iovad;
588 bool coherent = dev_is_dma_coherent(dev);
589 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
590 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
591 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
592 struct page **pages;
593 struct sg_table sgt;
594 dma_addr_t iova;
595 void *vaddr;
597 *dma_handle = DMA_MAPPING_ERROR;
599 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
600 return NULL;
602 min_size = alloc_sizes & -alloc_sizes;
603 if (min_size < PAGE_SIZE) {
604 min_size = PAGE_SIZE;
605 alloc_sizes |= PAGE_SIZE;
606 } else {
607 size = ALIGN(size, min_size);
609 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
610 alloc_sizes = min_size;
612 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
613 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
614 gfp);
615 if (!pages)
616 return NULL;
618 size = iova_align(iovad, size);
619 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
620 if (!iova)
621 goto out_free_pages;
623 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
624 goto out_free_iova;
626 if (!(ioprot & IOMMU_CACHE)) {
627 struct scatterlist *sg;
628 int i;
630 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
631 arch_dma_prep_coherent(sg_page(sg), sg->length);
634 if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
635 < size)
636 goto out_free_sg;
638 vaddr = dma_common_pages_remap(pages, size, prot,
639 __builtin_return_address(0));
640 if (!vaddr)
641 goto out_unmap;
643 *dma_handle = iova;
644 sg_free_table(&sgt);
645 return vaddr;
647 out_unmap:
648 __iommu_dma_unmap(dev, iova, size);
649 out_free_sg:
650 sg_free_table(&sgt);
651 out_free_iova:
652 iommu_dma_free_iova(cookie, iova, size);
653 out_free_pages:
654 __iommu_dma_free_pages(pages, count);
655 return NULL;
659 * __iommu_dma_mmap - Map a buffer into provided user VMA
660 * @pages: Array representing buffer from __iommu_dma_alloc()
661 * @size: Size of buffer in bytes
662 * @vma: VMA describing requested userspace mapping
664 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
665 * for verifying the correct size and protection of @vma beforehand.
667 static int __iommu_dma_mmap(struct page **pages, size_t size,
668 struct vm_area_struct *vma)
670 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
673 static void iommu_dma_sync_single_for_cpu(struct device *dev,
674 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
676 phys_addr_t phys;
678 if (dev_is_dma_coherent(dev))
679 return;
681 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
682 arch_sync_dma_for_cpu(phys, size, dir);
685 static void iommu_dma_sync_single_for_device(struct device *dev,
686 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
688 phys_addr_t phys;
690 if (dev_is_dma_coherent(dev))
691 return;
693 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
694 arch_sync_dma_for_device(phys, size, dir);
697 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
698 struct scatterlist *sgl, int nelems,
699 enum dma_data_direction dir)
701 struct scatterlist *sg;
702 int i;
704 if (dev_is_dma_coherent(dev))
705 return;
707 for_each_sg(sgl, sg, nelems, i)
708 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
711 static void iommu_dma_sync_sg_for_device(struct device *dev,
712 struct scatterlist *sgl, int nelems,
713 enum dma_data_direction dir)
715 struct scatterlist *sg;
716 int i;
718 if (dev_is_dma_coherent(dev))
719 return;
721 for_each_sg(sgl, sg, nelems, i)
722 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
725 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
726 unsigned long offset, size_t size, enum dma_data_direction dir,
727 unsigned long attrs)
729 phys_addr_t phys = page_to_phys(page) + offset;
730 bool coherent = dev_is_dma_coherent(dev);
731 int prot = dma_info_to_prot(dir, coherent, attrs);
732 dma_addr_t dma_handle;
734 dma_handle = __iommu_dma_map(dev, phys, size, prot, dma_get_mask(dev));
735 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
736 dma_handle != DMA_MAPPING_ERROR)
737 arch_sync_dma_for_device(phys, size, dir);
738 return dma_handle;
741 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
742 size_t size, enum dma_data_direction dir, unsigned long attrs)
744 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
745 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
746 __iommu_dma_unmap(dev, dma_handle, size);
750 * Prepare a successfully-mapped scatterlist to give back to the caller.
752 * At this point the segments are already laid out by iommu_dma_map_sg() to
753 * avoid individually crossing any boundaries, so we merely need to check a
754 * segment's start address to avoid concatenating across one.
756 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
757 dma_addr_t dma_addr)
759 struct scatterlist *s, *cur = sg;
760 unsigned long seg_mask = dma_get_seg_boundary(dev);
761 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
762 int i, count = 0;
764 for_each_sg(sg, s, nents, i) {
765 /* Restore this segment's original unaligned fields first */
766 unsigned int s_iova_off = sg_dma_address(s);
767 unsigned int s_length = sg_dma_len(s);
768 unsigned int s_iova_len = s->length;
770 s->offset += s_iova_off;
771 s->length = s_length;
772 sg_dma_address(s) = DMA_MAPPING_ERROR;
773 sg_dma_len(s) = 0;
776 * Now fill in the real DMA data. If...
777 * - there is a valid output segment to append to
778 * - and this segment starts on an IOVA page boundary
779 * - but doesn't fall at a segment boundary
780 * - and wouldn't make the resulting output segment too long
782 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
783 (max_len - cur_len >= s_length)) {
784 /* ...then concatenate it with the previous one */
785 cur_len += s_length;
786 } else {
787 /* Otherwise start the next output segment */
788 if (i > 0)
789 cur = sg_next(cur);
790 cur_len = s_length;
791 count++;
793 sg_dma_address(cur) = dma_addr + s_iova_off;
796 sg_dma_len(cur) = cur_len;
797 dma_addr += s_iova_len;
799 if (s_length + s_iova_off < s_iova_len)
800 cur_len = 0;
802 return count;
806 * If mapping failed, then just restore the original list,
807 * but making sure the DMA fields are invalidated.
809 static void __invalidate_sg(struct scatterlist *sg, int nents)
811 struct scatterlist *s;
812 int i;
814 for_each_sg(sg, s, nents, i) {
815 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
816 s->offset += sg_dma_address(s);
817 if (sg_dma_len(s))
818 s->length = sg_dma_len(s);
819 sg_dma_address(s) = DMA_MAPPING_ERROR;
820 sg_dma_len(s) = 0;
825 * The DMA API client is passing in a scatterlist which could describe
826 * any old buffer layout, but the IOMMU API requires everything to be
827 * aligned to IOMMU pages. Hence the need for this complicated bit of
828 * impedance-matching, to be able to hand off a suitably-aligned list,
829 * but still preserve the original offsets and sizes for the caller.
831 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
832 int nents, enum dma_data_direction dir, unsigned long attrs)
834 struct iommu_domain *domain = iommu_get_dma_domain(dev);
835 struct iommu_dma_cookie *cookie = domain->iova_cookie;
836 struct iova_domain *iovad = &cookie->iovad;
837 struct scatterlist *s, *prev = NULL;
838 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
839 dma_addr_t iova;
840 size_t iova_len = 0;
841 unsigned long mask = dma_get_seg_boundary(dev);
842 int i;
844 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
845 return 0;
847 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
848 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
851 * Work out how much IOVA space we need, and align the segments to
852 * IOVA granules for the IOMMU driver to handle. With some clever
853 * trickery we can modify the list in-place, but reversibly, by
854 * stashing the unaligned parts in the as-yet-unused DMA fields.
856 for_each_sg(sg, s, nents, i) {
857 size_t s_iova_off = iova_offset(iovad, s->offset);
858 size_t s_length = s->length;
859 size_t pad_len = (mask - iova_len + 1) & mask;
861 sg_dma_address(s) = s_iova_off;
862 sg_dma_len(s) = s_length;
863 s->offset -= s_iova_off;
864 s_length = iova_align(iovad, s_length + s_iova_off);
865 s->length = s_length;
868 * Due to the alignment of our single IOVA allocation, we can
869 * depend on these assumptions about the segment boundary mask:
870 * - If mask size >= IOVA size, then the IOVA range cannot
871 * possibly fall across a boundary, so we don't care.
872 * - If mask size < IOVA size, then the IOVA range must start
873 * exactly on a boundary, therefore we can lay things out
874 * based purely on segment lengths without needing to know
875 * the actual addresses beforehand.
876 * - The mask must be a power of 2, so pad_len == 0 if
877 * iova_len == 0, thus we cannot dereference prev the first
878 * time through here (i.e. before it has a meaningful value).
880 if (pad_len && pad_len < s_length - 1) {
881 prev->length += pad_len;
882 iova_len += pad_len;
885 iova_len += s_length;
886 prev = s;
889 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
890 if (!iova)
891 goto out_restore_sg;
894 * We'll leave any physical concatenation to the IOMMU driver's
895 * implementation - it knows better than we do.
897 if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
898 goto out_free_iova;
900 return __finalise_sg(dev, sg, nents, iova);
902 out_free_iova:
903 iommu_dma_free_iova(cookie, iova, iova_len);
904 out_restore_sg:
905 __invalidate_sg(sg, nents);
906 return 0;
909 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
910 int nents, enum dma_data_direction dir, unsigned long attrs)
912 dma_addr_t start, end;
913 struct scatterlist *tmp;
914 int i;
916 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
917 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
920 * The scatterlist segments are mapped into a single
921 * contiguous IOVA allocation, so this is incredibly easy.
923 start = sg_dma_address(sg);
924 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
925 if (sg_dma_len(tmp) == 0)
926 break;
927 sg = tmp;
929 end = sg_dma_address(sg) + sg_dma_len(sg);
930 __iommu_dma_unmap(dev, start, end - start);
933 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
934 size_t size, enum dma_data_direction dir, unsigned long attrs)
936 return __iommu_dma_map(dev, phys, size,
937 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
938 dma_get_mask(dev));
941 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
942 size_t size, enum dma_data_direction dir, unsigned long attrs)
944 __iommu_dma_unmap(dev, handle, size);
947 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
949 size_t alloc_size = PAGE_ALIGN(size);
950 int count = alloc_size >> PAGE_SHIFT;
951 struct page *page = NULL, **pages = NULL;
953 /* Non-coherent atomic allocation? Easy */
954 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
955 dma_free_from_pool(cpu_addr, alloc_size))
956 return;
958 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
960 * If it the address is remapped, then it's either non-coherent
961 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
963 pages = dma_common_find_pages(cpu_addr);
964 if (!pages)
965 page = vmalloc_to_page(cpu_addr);
966 dma_common_free_remap(cpu_addr, alloc_size);
967 } else {
968 /* Lowmem means a coherent atomic or CMA allocation */
969 page = virt_to_page(cpu_addr);
972 if (pages)
973 __iommu_dma_free_pages(pages, count);
974 if (page)
975 dma_free_contiguous(dev, page, alloc_size);
978 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
979 dma_addr_t handle, unsigned long attrs)
981 __iommu_dma_unmap(dev, handle, size);
982 __iommu_dma_free(dev, size, cpu_addr);
985 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
986 struct page **pagep, gfp_t gfp, unsigned long attrs)
988 bool coherent = dev_is_dma_coherent(dev);
989 size_t alloc_size = PAGE_ALIGN(size);
990 int node = dev_to_node(dev);
991 struct page *page = NULL;
992 void *cpu_addr;
994 page = dma_alloc_contiguous(dev, alloc_size, gfp);
995 if (!page)
996 page = alloc_pages_node(node, gfp, get_order(alloc_size));
997 if (!page)
998 return NULL;
1000 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1001 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1003 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1004 prot, __builtin_return_address(0));
1005 if (!cpu_addr)
1006 goto out_free_pages;
1008 if (!coherent)
1009 arch_dma_prep_coherent(page, size);
1010 } else {
1011 cpu_addr = page_address(page);
1014 *pagep = page;
1015 memset(cpu_addr, 0, alloc_size);
1016 return cpu_addr;
1017 out_free_pages:
1018 dma_free_contiguous(dev, page, alloc_size);
1019 return NULL;
1022 static void *iommu_dma_alloc(struct device *dev, size_t size,
1023 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1025 bool coherent = dev_is_dma_coherent(dev);
1026 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1027 struct page *page = NULL;
1028 void *cpu_addr;
1030 gfp |= __GFP_ZERO;
1032 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1033 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1034 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1036 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1037 !gfpflags_allow_blocking(gfp) && !coherent)
1038 cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
1039 else
1040 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1041 if (!cpu_addr)
1042 return NULL;
1044 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1045 dev->coherent_dma_mask);
1046 if (*handle == DMA_MAPPING_ERROR) {
1047 __iommu_dma_free(dev, size, cpu_addr);
1048 return NULL;
1051 return cpu_addr;
1054 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1055 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1056 unsigned long attrs)
1058 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1059 unsigned long pfn, off = vma->vm_pgoff;
1060 int ret;
1062 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1064 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1065 return ret;
1067 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1068 return -ENXIO;
1070 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1071 struct page **pages = dma_common_find_pages(cpu_addr);
1073 if (pages)
1074 return __iommu_dma_mmap(pages, size, vma);
1075 pfn = vmalloc_to_pfn(cpu_addr);
1076 } else {
1077 pfn = page_to_pfn(virt_to_page(cpu_addr));
1080 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1081 vma->vm_end - vma->vm_start,
1082 vma->vm_page_prot);
1085 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1086 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1087 unsigned long attrs)
1089 struct page *page;
1090 int ret;
1092 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1093 struct page **pages = dma_common_find_pages(cpu_addr);
1095 if (pages) {
1096 return sg_alloc_table_from_pages(sgt, pages,
1097 PAGE_ALIGN(size) >> PAGE_SHIFT,
1098 0, size, GFP_KERNEL);
1101 page = vmalloc_to_page(cpu_addr);
1102 } else {
1103 page = virt_to_page(cpu_addr);
1106 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1107 if (!ret)
1108 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1109 return ret;
1112 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1114 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1116 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1119 static const struct dma_map_ops iommu_dma_ops = {
1120 .alloc = iommu_dma_alloc,
1121 .free = iommu_dma_free,
1122 .mmap = iommu_dma_mmap,
1123 .get_sgtable = iommu_dma_get_sgtable,
1124 .map_page = iommu_dma_map_page,
1125 .unmap_page = iommu_dma_unmap_page,
1126 .map_sg = iommu_dma_map_sg,
1127 .unmap_sg = iommu_dma_unmap_sg,
1128 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1129 .sync_single_for_device = iommu_dma_sync_single_for_device,
1130 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1131 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1132 .map_resource = iommu_dma_map_resource,
1133 .unmap_resource = iommu_dma_unmap_resource,
1134 .get_merge_boundary = iommu_dma_get_merge_boundary,
1138 * The IOMMU core code allocates the default DMA domain, which the underlying
1139 * IOMMU driver needs to support via the dma-iommu layer.
1141 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1143 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1145 if (!domain)
1146 goto out_err;
1149 * The IOMMU core code allocates the default DMA domain, which the
1150 * underlying IOMMU driver needs to support via the dma-iommu layer.
1152 if (domain->type == IOMMU_DOMAIN_DMA) {
1153 if (iommu_dma_init_domain(domain, dma_base, size, dev))
1154 goto out_err;
1155 dev->dma_ops = &iommu_dma_ops;
1158 return;
1159 out_err:
1160 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1161 dev_name(dev));
1164 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1165 phys_addr_t msi_addr, struct iommu_domain *domain)
1167 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1168 struct iommu_dma_msi_page *msi_page;
1169 dma_addr_t iova;
1170 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1171 size_t size = cookie_msi_granule(cookie);
1173 msi_addr &= ~(phys_addr_t)(size - 1);
1174 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1175 if (msi_page->phys == msi_addr)
1176 return msi_page;
1178 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1179 if (!msi_page)
1180 return NULL;
1182 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1183 if (!iova)
1184 goto out_free_page;
1186 if (iommu_map(domain, iova, msi_addr, size, prot))
1187 goto out_free_iova;
1189 INIT_LIST_HEAD(&msi_page->list);
1190 msi_page->phys = msi_addr;
1191 msi_page->iova = iova;
1192 list_add(&msi_page->list, &cookie->msi_page_list);
1193 return msi_page;
1195 out_free_iova:
1196 iommu_dma_free_iova(cookie, iova, size);
1197 out_free_page:
1198 kfree(msi_page);
1199 return NULL;
1202 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1204 struct device *dev = msi_desc_to_dev(desc);
1205 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1206 struct iommu_dma_msi_page *msi_page;
1207 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1209 if (!domain || !domain->iova_cookie) {
1210 desc->iommu_cookie = NULL;
1211 return 0;
1215 * In fact the whole prepare operation should already be serialised by
1216 * irq_domain_mutex further up the callchain, but that's pretty subtle
1217 * on its own, so consider this locking as failsafe documentation...
1219 mutex_lock(&msi_prepare_lock);
1220 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1221 mutex_unlock(&msi_prepare_lock);
1223 msi_desc_set_iommu_cookie(desc, msi_page);
1225 if (!msi_page)
1226 return -ENOMEM;
1227 return 0;
1230 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1231 struct msi_msg *msg)
1233 struct device *dev = msi_desc_to_dev(desc);
1234 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1235 const struct iommu_dma_msi_page *msi_page;
1237 msi_page = msi_desc_get_iommu_cookie(desc);
1239 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1240 return;
1242 msg->address_hi = upper_32_bits(msi_page->iova);
1243 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1244 msg->address_lo += lower_32_bits(msi_page->iova);
1247 static int iommu_dma_init(void)
1249 return iova_cache_get();
1251 arch_initcall(iommu_dma_init);