ata: start separating SATA specific code from libata-core.c
[linux/fpc-iii.git] / drivers / lightnvm / pblk-rb.c
blob5abb1705b03975b30991685e8450f45bf9e8975a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016 CNEX Labs
4 * Initial release: Javier Gonzalez <javier@cnexlabs.com>
6 * Based upon the circular ringbuffer.
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * pblk-rb.c - pblk's write buffer
20 #include <linux/circ_buf.h>
22 #include "pblk.h"
24 static DECLARE_RWSEM(pblk_rb_lock);
26 static void pblk_rb_data_free(struct pblk_rb *rb)
28 struct pblk_rb_pages *p, *t;
30 down_write(&pblk_rb_lock);
31 list_for_each_entry_safe(p, t, &rb->pages, list) {
32 free_pages((unsigned long)page_address(p->pages), p->order);
33 list_del(&p->list);
34 kfree(p);
36 up_write(&pblk_rb_lock);
39 void pblk_rb_free(struct pblk_rb *rb)
41 pblk_rb_data_free(rb);
42 vfree(rb->entries);
46 * pblk_rb_calculate_size -- calculate the size of the write buffer
48 static unsigned int pblk_rb_calculate_size(unsigned int nr_entries,
49 unsigned int threshold)
51 unsigned int thr_sz = 1 << (get_count_order(threshold + NVM_MAX_VLBA));
52 unsigned int max_sz = max(thr_sz, nr_entries);
53 unsigned int max_io;
55 /* Alloc a write buffer that can (i) fit at least two split bios
56 * (considering max I/O size NVM_MAX_VLBA, and (ii) guarantee that the
57 * threshold will be respected
59 max_io = (1 << max((int)(get_count_order(max_sz)),
60 (int)(get_count_order(NVM_MAX_VLBA << 1))));
61 if ((threshold + NVM_MAX_VLBA) >= max_io)
62 max_io <<= 1;
64 return max_io;
68 * Initialize ring buffer. The data and metadata buffers must be previously
69 * allocated and their size must be a power of two
70 * (Documentation/core-api/circular-buffers.rst)
72 int pblk_rb_init(struct pblk_rb *rb, unsigned int size, unsigned int threshold,
73 unsigned int seg_size)
75 struct pblk *pblk = container_of(rb, struct pblk, rwb);
76 struct pblk_rb_entry *entries;
77 unsigned int init_entry = 0;
78 unsigned int max_order = MAX_ORDER - 1;
79 unsigned int power_size, power_seg_sz;
80 unsigned int alloc_order, order, iter;
81 unsigned int nr_entries;
83 nr_entries = pblk_rb_calculate_size(size, threshold);
84 entries = vzalloc(array_size(nr_entries, sizeof(struct pblk_rb_entry)));
85 if (!entries)
86 return -ENOMEM;
88 power_size = get_count_order(nr_entries);
89 power_seg_sz = get_count_order(seg_size);
91 down_write(&pblk_rb_lock);
92 rb->entries = entries;
93 rb->seg_size = (1 << power_seg_sz);
94 rb->nr_entries = (1 << power_size);
95 rb->mem = rb->subm = rb->sync = rb->l2p_update = 0;
96 rb->back_thres = threshold;
97 rb->flush_point = EMPTY_ENTRY;
99 spin_lock_init(&rb->w_lock);
100 spin_lock_init(&rb->s_lock);
102 INIT_LIST_HEAD(&rb->pages);
104 alloc_order = power_size;
105 if (alloc_order >= max_order) {
106 order = max_order;
107 iter = (1 << (alloc_order - max_order));
108 } else {
109 order = alloc_order;
110 iter = 1;
113 do {
114 struct pblk_rb_entry *entry;
115 struct pblk_rb_pages *page_set;
116 void *kaddr;
117 unsigned long set_size;
118 int i;
120 page_set = kmalloc(sizeof(struct pblk_rb_pages), GFP_KERNEL);
121 if (!page_set) {
122 up_write(&pblk_rb_lock);
123 vfree(entries);
124 return -ENOMEM;
127 page_set->order = order;
128 page_set->pages = alloc_pages(GFP_KERNEL, order);
129 if (!page_set->pages) {
130 kfree(page_set);
131 pblk_rb_data_free(rb);
132 up_write(&pblk_rb_lock);
133 vfree(entries);
134 return -ENOMEM;
136 kaddr = page_address(page_set->pages);
138 entry = &rb->entries[init_entry];
139 entry->data = kaddr;
140 entry->cacheline = pblk_cacheline_to_addr(init_entry++);
141 entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
143 set_size = (1 << order);
144 for (i = 1; i < set_size; i++) {
145 entry = &rb->entries[init_entry];
146 entry->cacheline = pblk_cacheline_to_addr(init_entry++);
147 entry->data = kaddr + (i * rb->seg_size);
148 entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
149 bio_list_init(&entry->w_ctx.bios);
152 list_add_tail(&page_set->list, &rb->pages);
153 iter--;
154 } while (iter > 0);
155 up_write(&pblk_rb_lock);
157 #ifdef CONFIG_NVM_PBLK_DEBUG
158 atomic_set(&rb->inflight_flush_point, 0);
159 #endif
162 * Initialize rate-limiter, which controls access to the write buffer
163 * by user and GC I/O
165 pblk_rl_init(&pblk->rl, rb->nr_entries, threshold);
167 return 0;
170 static void clean_wctx(struct pblk_w_ctx *w_ctx)
172 int flags;
174 flags = READ_ONCE(w_ctx->flags);
175 WARN_ONCE(!(flags & PBLK_SUBMITTED_ENTRY),
176 "pblk: overwriting unsubmitted data\n");
178 /* Release flags on context. Protect from writes and reads */
179 smp_store_release(&w_ctx->flags, PBLK_WRITABLE_ENTRY);
180 pblk_ppa_set_empty(&w_ctx->ppa);
181 w_ctx->lba = ADDR_EMPTY;
184 #define pblk_rb_ring_count(head, tail, size) CIRC_CNT(head, tail, size)
185 #define pblk_rb_ring_space(rb, head, tail, size) \
186 (CIRC_SPACE(head, tail, size))
189 * Buffer space is calculated with respect to the back pointer signaling
190 * synchronized entries to the media.
192 static unsigned int pblk_rb_space(struct pblk_rb *rb)
194 unsigned int mem = READ_ONCE(rb->mem);
195 unsigned int sync = READ_ONCE(rb->sync);
197 return pblk_rb_ring_space(rb, mem, sync, rb->nr_entries);
200 unsigned int pblk_rb_ptr_wrap(struct pblk_rb *rb, unsigned int p,
201 unsigned int nr_entries)
203 return (p + nr_entries) & (rb->nr_entries - 1);
207 * Buffer count is calculated with respect to the submission entry signaling the
208 * entries that are available to send to the media
210 unsigned int pblk_rb_read_count(struct pblk_rb *rb)
212 unsigned int mem = READ_ONCE(rb->mem);
213 unsigned int subm = READ_ONCE(rb->subm);
215 return pblk_rb_ring_count(mem, subm, rb->nr_entries);
218 unsigned int pblk_rb_sync_count(struct pblk_rb *rb)
220 unsigned int mem = READ_ONCE(rb->mem);
221 unsigned int sync = READ_ONCE(rb->sync);
223 return pblk_rb_ring_count(mem, sync, rb->nr_entries);
226 unsigned int pblk_rb_read_commit(struct pblk_rb *rb, unsigned int nr_entries)
228 unsigned int subm;
230 subm = READ_ONCE(rb->subm);
231 /* Commit read means updating submission pointer */
232 smp_store_release(&rb->subm, pblk_rb_ptr_wrap(rb, subm, nr_entries));
234 return subm;
237 static int __pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int to_update)
239 struct pblk *pblk = container_of(rb, struct pblk, rwb);
240 struct pblk_line *line;
241 struct pblk_rb_entry *entry;
242 struct pblk_w_ctx *w_ctx;
243 unsigned int user_io = 0, gc_io = 0;
244 unsigned int i;
245 int flags;
247 for (i = 0; i < to_update; i++) {
248 entry = &rb->entries[rb->l2p_update];
249 w_ctx = &entry->w_ctx;
251 flags = READ_ONCE(entry->w_ctx.flags);
252 if (flags & PBLK_IOTYPE_USER)
253 user_io++;
254 else if (flags & PBLK_IOTYPE_GC)
255 gc_io++;
256 else
257 WARN(1, "pblk: unknown IO type\n");
259 pblk_update_map_dev(pblk, w_ctx->lba, w_ctx->ppa,
260 entry->cacheline);
262 line = pblk_ppa_to_line(pblk, w_ctx->ppa);
263 atomic_dec(&line->sec_to_update);
264 kref_put(&line->ref, pblk_line_put);
265 clean_wctx(w_ctx);
266 rb->l2p_update = pblk_rb_ptr_wrap(rb, rb->l2p_update, 1);
269 pblk_rl_out(&pblk->rl, user_io, gc_io);
271 return 0;
275 * When we move the l2p_update pointer, we update the l2p table - lookups will
276 * point to the physical address instead of to the cacheline in the write buffer
277 * from this moment on.
279 static int pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int nr_entries,
280 unsigned int mem, unsigned int sync)
282 unsigned int space, count;
283 int ret = 0;
285 lockdep_assert_held(&rb->w_lock);
287 /* Update l2p only as buffer entries are being overwritten */
288 space = pblk_rb_ring_space(rb, mem, rb->l2p_update, rb->nr_entries);
289 if (space > nr_entries)
290 goto out;
292 count = nr_entries - space;
293 /* l2p_update used exclusively under rb->w_lock */
294 ret = __pblk_rb_update_l2p(rb, count);
296 out:
297 return ret;
301 * Update the l2p entry for all sectors stored on the write buffer. This means
302 * that all future lookups to the l2p table will point to a device address, not
303 * to the cacheline in the write buffer.
305 void pblk_rb_sync_l2p(struct pblk_rb *rb)
307 unsigned int sync;
308 unsigned int to_update;
310 spin_lock(&rb->w_lock);
312 /* Protect from reads and writes */
313 sync = smp_load_acquire(&rb->sync);
315 to_update = pblk_rb_ring_count(sync, rb->l2p_update, rb->nr_entries);
316 __pblk_rb_update_l2p(rb, to_update);
318 spin_unlock(&rb->w_lock);
322 * Write @nr_entries to ring buffer from @data buffer if there is enough space.
323 * Typically, 4KB data chunks coming from a bio will be copied to the ring
324 * buffer, thus the write will fail if not all incoming data can be copied.
327 static void __pblk_rb_write_entry(struct pblk_rb *rb, void *data,
328 struct pblk_w_ctx w_ctx,
329 struct pblk_rb_entry *entry)
331 memcpy(entry->data, data, rb->seg_size);
333 entry->w_ctx.lba = w_ctx.lba;
334 entry->w_ctx.ppa = w_ctx.ppa;
337 void pblk_rb_write_entry_user(struct pblk_rb *rb, void *data,
338 struct pblk_w_ctx w_ctx, unsigned int ring_pos)
340 struct pblk *pblk = container_of(rb, struct pblk, rwb);
341 struct pblk_rb_entry *entry;
342 int flags;
344 entry = &rb->entries[ring_pos];
345 flags = READ_ONCE(entry->w_ctx.flags);
346 #ifdef CONFIG_NVM_PBLK_DEBUG
347 /* Caller must guarantee that the entry is free */
348 BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
349 #endif
351 __pblk_rb_write_entry(rb, data, w_ctx, entry);
353 pblk_update_map_cache(pblk, w_ctx.lba, entry->cacheline);
354 flags = w_ctx.flags | PBLK_WRITTEN_DATA;
356 /* Release flags on write context. Protect from writes */
357 smp_store_release(&entry->w_ctx.flags, flags);
360 void pblk_rb_write_entry_gc(struct pblk_rb *rb, void *data,
361 struct pblk_w_ctx w_ctx, struct pblk_line *line,
362 u64 paddr, unsigned int ring_pos)
364 struct pblk *pblk = container_of(rb, struct pblk, rwb);
365 struct pblk_rb_entry *entry;
366 int flags;
368 entry = &rb->entries[ring_pos];
369 flags = READ_ONCE(entry->w_ctx.flags);
370 #ifdef CONFIG_NVM_PBLK_DEBUG
371 /* Caller must guarantee that the entry is free */
372 BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
373 #endif
375 __pblk_rb_write_entry(rb, data, w_ctx, entry);
377 if (!pblk_update_map_gc(pblk, w_ctx.lba, entry->cacheline, line, paddr))
378 entry->w_ctx.lba = ADDR_EMPTY;
380 flags = w_ctx.flags | PBLK_WRITTEN_DATA;
382 /* Release flags on write context. Protect from writes */
383 smp_store_release(&entry->w_ctx.flags, flags);
386 static int pblk_rb_flush_point_set(struct pblk_rb *rb, struct bio *bio,
387 unsigned int pos)
389 struct pblk_rb_entry *entry;
390 unsigned int sync, flush_point;
392 pblk_rb_sync_init(rb, NULL);
393 sync = READ_ONCE(rb->sync);
395 if (pos == sync) {
396 pblk_rb_sync_end(rb, NULL);
397 return 0;
400 #ifdef CONFIG_NVM_PBLK_DEBUG
401 atomic_inc(&rb->inflight_flush_point);
402 #endif
404 flush_point = (pos == 0) ? (rb->nr_entries - 1) : (pos - 1);
405 entry = &rb->entries[flush_point];
407 /* Protect flush points */
408 smp_store_release(&rb->flush_point, flush_point);
410 if (bio)
411 bio_list_add(&entry->w_ctx.bios, bio);
413 pblk_rb_sync_end(rb, NULL);
415 return bio ? 1 : 0;
418 static int __pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
419 unsigned int *pos)
421 unsigned int mem;
422 unsigned int sync;
423 unsigned int threshold;
425 sync = READ_ONCE(rb->sync);
426 mem = READ_ONCE(rb->mem);
428 threshold = nr_entries + rb->back_thres;
430 if (pblk_rb_ring_space(rb, mem, sync, rb->nr_entries) < threshold)
431 return 0;
433 if (pblk_rb_update_l2p(rb, nr_entries, mem, sync))
434 return 0;
436 *pos = mem;
438 return 1;
441 static int pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
442 unsigned int *pos)
444 if (!__pblk_rb_may_write(rb, nr_entries, pos))
445 return 0;
447 /* Protect from read count */
448 smp_store_release(&rb->mem, pblk_rb_ptr_wrap(rb, *pos, nr_entries));
449 return 1;
452 void pblk_rb_flush(struct pblk_rb *rb)
454 struct pblk *pblk = container_of(rb, struct pblk, rwb);
455 unsigned int mem = READ_ONCE(rb->mem);
457 if (pblk_rb_flush_point_set(rb, NULL, mem))
458 return;
460 pblk_write_kick(pblk);
463 static int pblk_rb_may_write_flush(struct pblk_rb *rb, unsigned int nr_entries,
464 unsigned int *pos, struct bio *bio,
465 int *io_ret)
467 unsigned int mem;
469 if (!__pblk_rb_may_write(rb, nr_entries, pos))
470 return 0;
472 mem = pblk_rb_ptr_wrap(rb, *pos, nr_entries);
473 *io_ret = NVM_IO_DONE;
475 if (bio->bi_opf & REQ_PREFLUSH) {
476 struct pblk *pblk = container_of(rb, struct pblk, rwb);
478 atomic64_inc(&pblk->nr_flush);
479 if (pblk_rb_flush_point_set(&pblk->rwb, bio, mem))
480 *io_ret = NVM_IO_OK;
483 /* Protect from read count */
484 smp_store_release(&rb->mem, mem);
486 return 1;
490 * Atomically check that (i) there is space on the write buffer for the
491 * incoming I/O, and (ii) the current I/O type has enough budget in the write
492 * buffer (rate-limiter).
494 int pblk_rb_may_write_user(struct pblk_rb *rb, struct bio *bio,
495 unsigned int nr_entries, unsigned int *pos)
497 struct pblk *pblk = container_of(rb, struct pblk, rwb);
498 int io_ret;
500 spin_lock(&rb->w_lock);
501 io_ret = pblk_rl_user_may_insert(&pblk->rl, nr_entries);
502 if (io_ret) {
503 spin_unlock(&rb->w_lock);
504 return io_ret;
507 if (!pblk_rb_may_write_flush(rb, nr_entries, pos, bio, &io_ret)) {
508 spin_unlock(&rb->w_lock);
509 return NVM_IO_REQUEUE;
512 pblk_rl_user_in(&pblk->rl, nr_entries);
513 spin_unlock(&rb->w_lock);
515 return io_ret;
519 * Look at pblk_rb_may_write_user comment
521 int pblk_rb_may_write_gc(struct pblk_rb *rb, unsigned int nr_entries,
522 unsigned int *pos)
524 struct pblk *pblk = container_of(rb, struct pblk, rwb);
526 spin_lock(&rb->w_lock);
527 if (!pblk_rl_gc_may_insert(&pblk->rl, nr_entries)) {
528 spin_unlock(&rb->w_lock);
529 return 0;
532 if (!pblk_rb_may_write(rb, nr_entries, pos)) {
533 spin_unlock(&rb->w_lock);
534 return 0;
537 pblk_rl_gc_in(&pblk->rl, nr_entries);
538 spin_unlock(&rb->w_lock);
540 return 1;
544 * Read available entries on rb and add them to the given bio. To avoid a memory
545 * copy, a page reference to the write buffer is used to be added to the bio.
547 * This function is used by the write thread to form the write bio that will
548 * persist data on the write buffer to the media.
550 unsigned int pblk_rb_read_to_bio(struct pblk_rb *rb, struct nvm_rq *rqd,
551 unsigned int pos, unsigned int nr_entries,
552 unsigned int count)
554 struct pblk *pblk = container_of(rb, struct pblk, rwb);
555 struct request_queue *q = pblk->dev->q;
556 struct pblk_c_ctx *c_ctx = nvm_rq_to_pdu(rqd);
557 struct bio *bio = rqd->bio;
558 struct pblk_rb_entry *entry;
559 struct page *page;
560 unsigned int pad = 0, to_read = nr_entries;
561 unsigned int i;
562 int flags;
564 if (count < nr_entries) {
565 pad = nr_entries - count;
566 to_read = count;
569 /* Add space for packed metadata if in use*/
570 pad += (pblk->min_write_pgs - pblk->min_write_pgs_data);
572 c_ctx->sentry = pos;
573 c_ctx->nr_valid = to_read;
574 c_ctx->nr_padded = pad;
576 for (i = 0; i < to_read; i++) {
577 entry = &rb->entries[pos];
579 /* A write has been allowed into the buffer, but data is still
580 * being copied to it. It is ok to busy wait.
582 try:
583 flags = READ_ONCE(entry->w_ctx.flags);
584 if (!(flags & PBLK_WRITTEN_DATA)) {
585 io_schedule();
586 goto try;
589 page = virt_to_page(entry->data);
590 if (!page) {
591 pblk_err(pblk, "could not allocate write bio page\n");
592 flags &= ~PBLK_WRITTEN_DATA;
593 flags |= PBLK_SUBMITTED_ENTRY;
594 /* Release flags on context. Protect from writes */
595 smp_store_release(&entry->w_ctx.flags, flags);
596 return NVM_IO_ERR;
599 if (bio_add_pc_page(q, bio, page, rb->seg_size, 0) !=
600 rb->seg_size) {
601 pblk_err(pblk, "could not add page to write bio\n");
602 flags &= ~PBLK_WRITTEN_DATA;
603 flags |= PBLK_SUBMITTED_ENTRY;
604 /* Release flags on context. Protect from writes */
605 smp_store_release(&entry->w_ctx.flags, flags);
606 return NVM_IO_ERR;
609 flags &= ~PBLK_WRITTEN_DATA;
610 flags |= PBLK_SUBMITTED_ENTRY;
612 /* Release flags on context. Protect from writes */
613 smp_store_release(&entry->w_ctx.flags, flags);
615 pos = pblk_rb_ptr_wrap(rb, pos, 1);
618 if (pad) {
619 if (pblk_bio_add_pages(pblk, bio, GFP_KERNEL, pad)) {
620 pblk_err(pblk, "could not pad page in write bio\n");
621 return NVM_IO_ERR;
624 if (pad < pblk->min_write_pgs)
625 atomic64_inc(&pblk->pad_dist[pad - 1]);
626 else
627 pblk_warn(pblk, "padding more than min. sectors\n");
629 atomic64_add(pad, &pblk->pad_wa);
632 #ifdef CONFIG_NVM_PBLK_DEBUG
633 atomic_long_add(pad, &pblk->padded_writes);
634 #endif
636 return NVM_IO_OK;
640 * Copy to bio only if the lba matches the one on the given cache entry.
641 * Otherwise, it means that the entry has been overwritten, and the bio should
642 * be directed to disk.
644 int pblk_rb_copy_to_bio(struct pblk_rb *rb, struct bio *bio, sector_t lba,
645 struct ppa_addr ppa)
647 struct pblk *pblk = container_of(rb, struct pblk, rwb);
648 struct pblk_rb_entry *entry;
649 struct pblk_w_ctx *w_ctx;
650 struct ppa_addr l2p_ppa;
651 u64 pos = pblk_addr_to_cacheline(ppa);
652 void *data;
653 int flags;
654 int ret = 1;
657 #ifdef CONFIG_NVM_PBLK_DEBUG
658 /* Caller must ensure that the access will not cause an overflow */
659 BUG_ON(pos >= rb->nr_entries);
660 #endif
661 entry = &rb->entries[pos];
662 w_ctx = &entry->w_ctx;
663 flags = READ_ONCE(w_ctx->flags);
665 spin_lock(&rb->w_lock);
666 spin_lock(&pblk->trans_lock);
667 l2p_ppa = pblk_trans_map_get(pblk, lba);
668 spin_unlock(&pblk->trans_lock);
670 /* Check if the entry has been overwritten or is scheduled to be */
671 if (!pblk_ppa_comp(l2p_ppa, ppa) || w_ctx->lba != lba ||
672 flags & PBLK_WRITABLE_ENTRY) {
673 ret = 0;
674 goto out;
676 data = bio_data(bio);
677 memcpy(data, entry->data, rb->seg_size);
679 out:
680 spin_unlock(&rb->w_lock);
681 return ret;
684 struct pblk_w_ctx *pblk_rb_w_ctx(struct pblk_rb *rb, unsigned int pos)
686 unsigned int entry = pblk_rb_ptr_wrap(rb, pos, 0);
688 return &rb->entries[entry].w_ctx;
691 unsigned int pblk_rb_sync_init(struct pblk_rb *rb, unsigned long *flags)
692 __acquires(&rb->s_lock)
694 if (flags)
695 spin_lock_irqsave(&rb->s_lock, *flags);
696 else
697 spin_lock_irq(&rb->s_lock);
699 return rb->sync;
702 void pblk_rb_sync_end(struct pblk_rb *rb, unsigned long *flags)
703 __releases(&rb->s_lock)
705 lockdep_assert_held(&rb->s_lock);
707 if (flags)
708 spin_unlock_irqrestore(&rb->s_lock, *flags);
709 else
710 spin_unlock_irq(&rb->s_lock);
713 unsigned int pblk_rb_sync_advance(struct pblk_rb *rb, unsigned int nr_entries)
715 unsigned int sync, flush_point;
716 lockdep_assert_held(&rb->s_lock);
718 sync = READ_ONCE(rb->sync);
719 flush_point = READ_ONCE(rb->flush_point);
721 if (flush_point != EMPTY_ENTRY) {
722 unsigned int secs_to_flush;
724 secs_to_flush = pblk_rb_ring_count(flush_point, sync,
725 rb->nr_entries);
726 if (secs_to_flush < nr_entries) {
727 /* Protect flush points */
728 smp_store_release(&rb->flush_point, EMPTY_ENTRY);
732 sync = pblk_rb_ptr_wrap(rb, sync, nr_entries);
734 /* Protect from counts */
735 smp_store_release(&rb->sync, sync);
737 return sync;
740 /* Calculate how many sectors to submit up to the current flush point. */
741 unsigned int pblk_rb_flush_point_count(struct pblk_rb *rb)
743 unsigned int subm, sync, flush_point;
744 unsigned int submitted, to_flush;
746 /* Protect flush points */
747 flush_point = smp_load_acquire(&rb->flush_point);
748 if (flush_point == EMPTY_ENTRY)
749 return 0;
751 /* Protect syncs */
752 sync = smp_load_acquire(&rb->sync);
754 subm = READ_ONCE(rb->subm);
755 submitted = pblk_rb_ring_count(subm, sync, rb->nr_entries);
757 /* The sync point itself counts as a sector to sync */
758 to_flush = pblk_rb_ring_count(flush_point, sync, rb->nr_entries) + 1;
760 return (submitted < to_flush) ? (to_flush - submitted) : 0;
763 int pblk_rb_tear_down_check(struct pblk_rb *rb)
765 struct pblk_rb_entry *entry;
766 int i;
767 int ret = 0;
769 spin_lock(&rb->w_lock);
770 spin_lock_irq(&rb->s_lock);
772 if ((rb->mem == rb->subm) && (rb->subm == rb->sync) &&
773 (rb->sync == rb->l2p_update) &&
774 (rb->flush_point == EMPTY_ENTRY)) {
775 goto out;
778 if (!rb->entries) {
779 ret = 1;
780 goto out;
783 for (i = 0; i < rb->nr_entries; i++) {
784 entry = &rb->entries[i];
786 if (!entry->data) {
787 ret = 1;
788 goto out;
792 out:
793 spin_unlock_irq(&rb->s_lock);
794 spin_unlock(&rb->w_lock);
796 return ret;
799 unsigned int pblk_rb_wrap_pos(struct pblk_rb *rb, unsigned int pos)
801 return (pos & (rb->nr_entries - 1));
804 int pblk_rb_pos_oob(struct pblk_rb *rb, u64 pos)
806 return (pos >= rb->nr_entries);
809 ssize_t pblk_rb_sysfs(struct pblk_rb *rb, char *buf)
811 struct pblk *pblk = container_of(rb, struct pblk, rwb);
812 struct pblk_c_ctx *c;
813 ssize_t offset;
814 int queued_entries = 0;
816 spin_lock_irq(&rb->s_lock);
817 list_for_each_entry(c, &pblk->compl_list, list)
818 queued_entries++;
819 spin_unlock_irq(&rb->s_lock);
821 if (rb->flush_point != EMPTY_ENTRY)
822 offset = scnprintf(buf, PAGE_SIZE,
823 "%u\t%u\t%u\t%u\t%u\t%u\t%u - %u/%u/%u - %d\n",
824 rb->nr_entries,
825 rb->mem,
826 rb->subm,
827 rb->sync,
828 rb->l2p_update,
829 #ifdef CONFIG_NVM_PBLK_DEBUG
830 atomic_read(&rb->inflight_flush_point),
831 #else
833 #endif
834 rb->flush_point,
835 pblk_rb_read_count(rb),
836 pblk_rb_space(rb),
837 pblk_rb_flush_point_count(rb),
838 queued_entries);
839 else
840 offset = scnprintf(buf, PAGE_SIZE,
841 "%u\t%u\t%u\t%u\t%u\t%u\tNULL - %u/%u/%u - %d\n",
842 rb->nr_entries,
843 rb->mem,
844 rb->subm,
845 rb->sync,
846 rb->l2p_update,
847 #ifdef CONFIG_NVM_PBLK_DEBUG
848 atomic_read(&rb->inflight_flush_point),
849 #else
851 #endif
852 pblk_rb_read_count(rb),
853 pblk_rb_space(rb),
854 pblk_rb_flush_point_count(rb),
855 queued_entries);
857 return offset;