ata: start separating SATA specific code from libata-core.c
[linux/fpc-iii.git] / drivers / pci / controller / vmd.c
blobdac91d60701de2a40d75a2ebc38043d3b77c42fe
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
23 #define VMD_CFGBAR 0
24 #define VMD_MEMBAR1 2
25 #define VMD_MEMBAR2 4
27 #define PCI_REG_VMCAP 0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG 0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK 0x70
32 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
34 #define MB2_SHADOW_OFFSET 0x2000
35 #define MB2_SHADOW_SIZE 16
37 enum vmd_features {
39 * Device may contain registers which hint the physical location of the
40 * membars, in order to allow proper address translation during
41 * resource assignment to enable guest virtualization
43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
46 * Device may provide root port configuration information which limits
47 * bus numbering
49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
53 * Lock for manipulating VMD IRQ lists.
55 static DEFINE_RAW_SPINLOCK(list_lock);
57 /**
58 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
59 * @node: list item for parent traversal.
60 * @irq: back pointer to parent.
61 * @enabled: true if driver enabled IRQ
62 * @virq: the virtual IRQ value provided to the requesting driver.
64 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
65 * a VMD IRQ using this structure.
67 struct vmd_irq {
68 struct list_head node;
69 struct vmd_irq_list *irq;
70 bool enabled;
71 unsigned int virq;
74 /**
75 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
76 * @irq_list: the list of irq's the VMD one demuxes to.
77 * @srcu: SRCU struct for local synchronization.
78 * @count: number of child IRQs assigned to this vector; used to track
79 * sharing.
81 struct vmd_irq_list {
82 struct list_head irq_list;
83 struct srcu_struct srcu;
84 unsigned int count;
87 struct vmd_dev {
88 struct pci_dev *dev;
90 spinlock_t cfg_lock;
91 char __iomem *cfgbar;
93 int msix_count;
94 struct vmd_irq_list *irqs;
96 struct pci_sysdata sysdata;
97 struct resource resources[3];
98 struct irq_domain *irq_domain;
99 struct pci_bus *bus;
100 u8 busn_start;
103 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
105 return container_of(bus->sysdata, struct vmd_dev, sysdata);
108 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
109 struct vmd_irq_list *irqs)
111 return irqs - vmd->irqs;
115 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
116 * but the MSI entry for the hardware it's driving will be programmed with a
117 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
118 * domain into one of its own, and the VMD driver de-muxes these for the
119 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
120 * and irq_chip to set this up.
122 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
124 struct vmd_irq *vmdirq = data->chip_data;
125 struct vmd_irq_list *irq = vmdirq->irq;
126 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
128 msg->address_hi = MSI_ADDR_BASE_HI;
129 msg->address_lo = MSI_ADDR_BASE_LO |
130 MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
131 msg->data = 0;
135 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
137 static void vmd_irq_enable(struct irq_data *data)
139 struct vmd_irq *vmdirq = data->chip_data;
140 unsigned long flags;
142 raw_spin_lock_irqsave(&list_lock, flags);
143 WARN_ON(vmdirq->enabled);
144 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
145 vmdirq->enabled = true;
146 raw_spin_unlock_irqrestore(&list_lock, flags);
148 data->chip->irq_unmask(data);
151 static void vmd_irq_disable(struct irq_data *data)
153 struct vmd_irq *vmdirq = data->chip_data;
154 unsigned long flags;
156 data->chip->irq_mask(data);
158 raw_spin_lock_irqsave(&list_lock, flags);
159 if (vmdirq->enabled) {
160 list_del_rcu(&vmdirq->node);
161 vmdirq->enabled = false;
163 raw_spin_unlock_irqrestore(&list_lock, flags);
167 * XXX: Stubbed until we develop acceptable way to not create conflicts with
168 * other devices sharing the same vector.
170 static int vmd_irq_set_affinity(struct irq_data *data,
171 const struct cpumask *dest, bool force)
173 return -EINVAL;
176 static struct irq_chip vmd_msi_controller = {
177 .name = "VMD-MSI",
178 .irq_enable = vmd_irq_enable,
179 .irq_disable = vmd_irq_disable,
180 .irq_compose_msi_msg = vmd_compose_msi_msg,
181 .irq_set_affinity = vmd_irq_set_affinity,
184 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
185 msi_alloc_info_t *arg)
187 return 0;
191 * XXX: We can be even smarter selecting the best IRQ once we solve the
192 * affinity problem.
194 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
196 int i, best = 1;
197 unsigned long flags;
199 if (vmd->msix_count == 1)
200 return &vmd->irqs[0];
203 * White list for fast-interrupt handlers. All others will share the
204 * "slow" interrupt vector.
206 switch (msi_desc_to_pci_dev(desc)->class) {
207 case PCI_CLASS_STORAGE_EXPRESS:
208 break;
209 default:
210 return &vmd->irqs[0];
213 raw_spin_lock_irqsave(&list_lock, flags);
214 for (i = 1; i < vmd->msix_count; i++)
215 if (vmd->irqs[i].count < vmd->irqs[best].count)
216 best = i;
217 vmd->irqs[best].count++;
218 raw_spin_unlock_irqrestore(&list_lock, flags);
220 return &vmd->irqs[best];
223 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
224 unsigned int virq, irq_hw_number_t hwirq,
225 msi_alloc_info_t *arg)
227 struct msi_desc *desc = arg->desc;
228 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
229 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
230 unsigned int index, vector;
232 if (!vmdirq)
233 return -ENOMEM;
235 INIT_LIST_HEAD(&vmdirq->node);
236 vmdirq->irq = vmd_next_irq(vmd, desc);
237 vmdirq->virq = virq;
238 index = index_from_irqs(vmd, vmdirq->irq);
239 vector = pci_irq_vector(vmd->dev, index);
241 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
242 handle_untracked_irq, vmd, NULL);
243 return 0;
246 static void vmd_msi_free(struct irq_domain *domain,
247 struct msi_domain_info *info, unsigned int virq)
249 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
250 unsigned long flags;
252 synchronize_srcu(&vmdirq->irq->srcu);
254 /* XXX: Potential optimization to rebalance */
255 raw_spin_lock_irqsave(&list_lock, flags);
256 vmdirq->irq->count--;
257 raw_spin_unlock_irqrestore(&list_lock, flags);
259 kfree(vmdirq);
262 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
263 int nvec, msi_alloc_info_t *arg)
265 struct pci_dev *pdev = to_pci_dev(dev);
266 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
268 if (nvec > vmd->msix_count)
269 return vmd->msix_count;
271 memset(arg, 0, sizeof(*arg));
272 return 0;
275 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
277 arg->desc = desc;
280 static struct msi_domain_ops vmd_msi_domain_ops = {
281 .get_hwirq = vmd_get_hwirq,
282 .msi_init = vmd_msi_init,
283 .msi_free = vmd_msi_free,
284 .msi_prepare = vmd_msi_prepare,
285 .set_desc = vmd_set_desc,
288 static struct msi_domain_info vmd_msi_domain_info = {
289 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
290 MSI_FLAG_PCI_MSIX,
291 .ops = &vmd_msi_domain_ops,
292 .chip = &vmd_msi_controller,
295 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
296 unsigned int devfn, int reg, int len)
298 char __iomem *addr = vmd->cfgbar +
299 ((bus->number - vmd->busn_start) << 20) +
300 (devfn << 12) + reg;
302 if ((addr - vmd->cfgbar) + len >=
303 resource_size(&vmd->dev->resource[VMD_CFGBAR]))
304 return NULL;
306 return addr;
310 * CPU may deadlock if config space is not serialized on some versions of this
311 * hardware, so all config space access is done under a spinlock.
313 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
314 int len, u32 *value)
316 struct vmd_dev *vmd = vmd_from_bus(bus);
317 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
318 unsigned long flags;
319 int ret = 0;
321 if (!addr)
322 return -EFAULT;
324 spin_lock_irqsave(&vmd->cfg_lock, flags);
325 switch (len) {
326 case 1:
327 *value = readb(addr);
328 break;
329 case 2:
330 *value = readw(addr);
331 break;
332 case 4:
333 *value = readl(addr);
334 break;
335 default:
336 ret = -EINVAL;
337 break;
339 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
340 return ret;
344 * VMD h/w converts non-posted config writes to posted memory writes. The
345 * read-back in this function forces the completion so it returns only after
346 * the config space was written, as expected.
348 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
349 int len, u32 value)
351 struct vmd_dev *vmd = vmd_from_bus(bus);
352 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
353 unsigned long flags;
354 int ret = 0;
356 if (!addr)
357 return -EFAULT;
359 spin_lock_irqsave(&vmd->cfg_lock, flags);
360 switch (len) {
361 case 1:
362 writeb(value, addr);
363 readb(addr);
364 break;
365 case 2:
366 writew(value, addr);
367 readw(addr);
368 break;
369 case 4:
370 writel(value, addr);
371 readl(addr);
372 break;
373 default:
374 ret = -EINVAL;
375 break;
377 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
378 return ret;
381 static struct pci_ops vmd_ops = {
382 .read = vmd_pci_read,
383 .write = vmd_pci_write,
386 static void vmd_attach_resources(struct vmd_dev *vmd)
388 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
389 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
392 static void vmd_detach_resources(struct vmd_dev *vmd)
394 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
395 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
399 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
400 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
401 * 16 bits are the PCI Segment Group (domain) number. Other bits are
402 * currently reserved.
404 static int vmd_find_free_domain(void)
406 int domain = 0xffff;
407 struct pci_bus *bus = NULL;
409 while ((bus = pci_find_next_bus(bus)) != NULL)
410 domain = max_t(int, domain, pci_domain_nr(bus));
411 return domain + 1;
414 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
416 struct pci_sysdata *sd = &vmd->sysdata;
417 struct fwnode_handle *fn;
418 struct resource *res;
419 u32 upper_bits;
420 unsigned long flags;
421 LIST_HEAD(resources);
422 resource_size_t offset[2] = {0};
423 resource_size_t membar2_offset = 0x2000;
424 struct pci_bus *child;
427 * Shadow registers may exist in certain VMD device ids which allow
428 * guests to correctly assign host physical addresses to the root ports
429 * and child devices. These registers will either return the host value
430 * or 0, depending on an enable bit in the VMD device.
432 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
433 u32 vmlock;
434 int ret;
436 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
437 ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
438 if (ret || vmlock == ~0)
439 return -ENODEV;
441 if (MB2_SHADOW_EN(vmlock)) {
442 void __iomem *membar2;
444 membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
445 if (!membar2)
446 return -ENOMEM;
447 offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
448 readq(membar2 + MB2_SHADOW_OFFSET);
449 offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
450 readq(membar2 + MB2_SHADOW_OFFSET + 8);
451 pci_iounmap(vmd->dev, membar2);
456 * Certain VMD devices may have a root port configuration option which
457 * limits the bus range to between 0-127, 128-255, or 224-255
459 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
460 u16 reg16;
462 pci_read_config_word(vmd->dev, PCI_REG_VMCAP, &reg16);
463 if (BUS_RESTRICT_CAP(reg16)) {
464 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG,
465 &reg16);
467 switch (BUS_RESTRICT_CFG(reg16)) {
468 case 1:
469 vmd->busn_start = 128;
470 break;
471 case 2:
472 vmd->busn_start = 224;
473 break;
474 case 3:
475 pci_err(vmd->dev, "Unknown Bus Offset Setting\n");
476 return -ENODEV;
477 default:
478 break;
483 res = &vmd->dev->resource[VMD_CFGBAR];
484 vmd->resources[0] = (struct resource) {
485 .name = "VMD CFGBAR",
486 .start = vmd->busn_start,
487 .end = vmd->busn_start + (resource_size(res) >> 20) - 1,
488 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
492 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
493 * put 32-bit resources in the window.
495 * There's no hardware reason why a 64-bit window *couldn't*
496 * contain a 32-bit resource, but pbus_size_mem() computes the
497 * bridge window size assuming a 64-bit window will contain no
498 * 32-bit resources. __pci_assign_resource() enforces that
499 * artificial restriction to make sure everything will fit.
501 * The only way we could use a 64-bit non-prefetchable MEMBAR is
502 * if its address is <4GB so that we can convert it to a 32-bit
503 * resource. To be visible to the host OS, all VMD endpoints must
504 * be initially configured by platform BIOS, which includes setting
505 * up these resources. We can assume the device is configured
506 * according to the platform needs.
508 res = &vmd->dev->resource[VMD_MEMBAR1];
509 upper_bits = upper_32_bits(res->end);
510 flags = res->flags & ~IORESOURCE_SIZEALIGN;
511 if (!upper_bits)
512 flags &= ~IORESOURCE_MEM_64;
513 vmd->resources[1] = (struct resource) {
514 .name = "VMD MEMBAR1",
515 .start = res->start,
516 .end = res->end,
517 .flags = flags,
518 .parent = res,
521 res = &vmd->dev->resource[VMD_MEMBAR2];
522 upper_bits = upper_32_bits(res->end);
523 flags = res->flags & ~IORESOURCE_SIZEALIGN;
524 if (!upper_bits)
525 flags &= ~IORESOURCE_MEM_64;
526 vmd->resources[2] = (struct resource) {
527 .name = "VMD MEMBAR2",
528 .start = res->start + membar2_offset,
529 .end = res->end,
530 .flags = flags,
531 .parent = res,
534 sd->vmd_dev = vmd->dev;
535 sd->domain = vmd_find_free_domain();
536 if (sd->domain < 0)
537 return sd->domain;
539 sd->node = pcibus_to_node(vmd->dev->bus);
541 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
542 if (!fn)
543 return -ENODEV;
545 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
546 x86_vector_domain);
547 irq_domain_free_fwnode(fn);
548 if (!vmd->irq_domain)
549 return -ENODEV;
551 pci_add_resource(&resources, &vmd->resources[0]);
552 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
553 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
555 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
556 &vmd_ops, sd, &resources);
557 if (!vmd->bus) {
558 pci_free_resource_list(&resources);
559 irq_domain_remove(vmd->irq_domain);
560 return -ENODEV;
563 vmd_attach_resources(vmd);
564 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
566 pci_scan_child_bus(vmd->bus);
567 pci_assign_unassigned_bus_resources(vmd->bus);
570 * VMD root buses are virtual and don't return true on pci_is_pcie()
571 * and will fail pcie_bus_configure_settings() early. It can instead be
572 * run on each of the real root ports.
574 list_for_each_entry(child, &vmd->bus->children, node)
575 pcie_bus_configure_settings(child);
577 pci_bus_add_devices(vmd->bus);
579 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
580 "domain"), "Can't create symlink to domain\n");
581 return 0;
584 static irqreturn_t vmd_irq(int irq, void *data)
586 struct vmd_irq_list *irqs = data;
587 struct vmd_irq *vmdirq;
588 int idx;
590 idx = srcu_read_lock(&irqs->srcu);
591 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
592 generic_handle_irq(vmdirq->virq);
593 srcu_read_unlock(&irqs->srcu, idx);
595 return IRQ_HANDLED;
598 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
600 struct vmd_dev *vmd;
601 int i, err;
603 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
604 return -ENOMEM;
606 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
607 if (!vmd)
608 return -ENOMEM;
610 vmd->dev = dev;
611 err = pcim_enable_device(dev);
612 if (err < 0)
613 return err;
615 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
616 if (!vmd->cfgbar)
617 return -ENOMEM;
619 pci_set_master(dev);
620 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
621 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
622 return -ENODEV;
624 vmd->msix_count = pci_msix_vec_count(dev);
625 if (vmd->msix_count < 0)
626 return -ENODEV;
628 vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
629 PCI_IRQ_MSIX);
630 if (vmd->msix_count < 0)
631 return vmd->msix_count;
633 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
634 GFP_KERNEL);
635 if (!vmd->irqs)
636 return -ENOMEM;
638 for (i = 0; i < vmd->msix_count; i++) {
639 err = init_srcu_struct(&vmd->irqs[i].srcu);
640 if (err)
641 return err;
643 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
644 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
645 vmd_irq, IRQF_NO_THREAD,
646 "vmd", &vmd->irqs[i]);
647 if (err)
648 return err;
651 spin_lock_init(&vmd->cfg_lock);
652 pci_set_drvdata(dev, vmd);
653 err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
654 if (err)
655 return err;
657 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
658 vmd->sysdata.domain);
659 return 0;
662 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
664 int i;
666 for (i = 0; i < vmd->msix_count; i++)
667 cleanup_srcu_struct(&vmd->irqs[i].srcu);
670 static void vmd_remove(struct pci_dev *dev)
672 struct vmd_dev *vmd = pci_get_drvdata(dev);
674 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
675 pci_stop_root_bus(vmd->bus);
676 pci_remove_root_bus(vmd->bus);
677 vmd_cleanup_srcu(vmd);
678 vmd_detach_resources(vmd);
679 irq_domain_remove(vmd->irq_domain);
682 #ifdef CONFIG_PM_SLEEP
683 static int vmd_suspend(struct device *dev)
685 struct pci_dev *pdev = to_pci_dev(dev);
686 struct vmd_dev *vmd = pci_get_drvdata(pdev);
687 int i;
689 for (i = 0; i < vmd->msix_count; i++)
690 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
692 pci_save_state(pdev);
693 return 0;
696 static int vmd_resume(struct device *dev)
698 struct pci_dev *pdev = to_pci_dev(dev);
699 struct vmd_dev *vmd = pci_get_drvdata(pdev);
700 int err, i;
702 for (i = 0; i < vmd->msix_count; i++) {
703 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
704 vmd_irq, IRQF_NO_THREAD,
705 "vmd", &vmd->irqs[i]);
706 if (err)
707 return err;
710 pci_restore_state(pdev);
711 return 0;
713 #endif
714 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
716 static const struct pci_device_id vmd_ids[] = {
717 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
718 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
719 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
720 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
721 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
722 .driver_data = VMD_FEAT_HAS_BUS_RESTRICTIONS,},
723 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
724 .driver_data = VMD_FEAT_HAS_BUS_RESTRICTIONS,},
725 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
726 .driver_data = VMD_FEAT_HAS_BUS_RESTRICTIONS,},
727 {0,}
729 MODULE_DEVICE_TABLE(pci, vmd_ids);
731 static struct pci_driver vmd_drv = {
732 .name = "vmd",
733 .id_table = vmd_ids,
734 .probe = vmd_probe,
735 .remove = vmd_remove,
736 .driver = {
737 .pm = &vmd_dev_pm_ops,
740 module_pci_driver(vmd_drv);
742 MODULE_AUTHOR("Intel Corporation");
743 MODULE_LICENSE("GPL v2");
744 MODULE_VERSION("0.6");