2 * Freescale Memory Controller kernel module
4 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
5 * ARM-based Layerscape SoCs including LS2xxx. Originally split
6 * out from mpc85xx_edac EDAC driver.
8 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
10 * Author: Dave Jiang <djiang@mvista.com>
12 * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
13 * the terms of the GNU General Public License version 2. This program
14 * is licensed "as is" without any warranty of any kind, whether express
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/ctype.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/edac.h>
24 #include <linux/smp.h>
25 #include <linux/gfp.h>
27 #include <linux/of_platform.h>
28 #include <linux/of_device.h>
29 #include <linux/of_address.h>
30 #include "edac_module.h"
31 #include "edac_core.h"
32 #include "fsl_ddr_edac.h"
34 #define EDAC_MOD_STR "fsl_ddr_edac"
36 static int edac_mc_idx
;
38 static u32 orig_ddr_err_disable
;
39 static u32 orig_ddr_err_sbe
;
40 static bool little_endian
;
42 static inline u32
ddr_in32(void __iomem
*addr
)
44 return little_endian
? ioread32(addr
) : ioread32be(addr
);
47 static inline void ddr_out32(void __iomem
*addr
, u32 value
)
50 iowrite32(value
, addr
);
52 iowrite32be(value
, addr
);
55 /************************ MC SYSFS parts ***********************************/
57 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
59 static ssize_t
fsl_mc_inject_data_hi_show(struct device
*dev
,
60 struct device_attribute
*mattr
,
63 struct mem_ctl_info
*mci
= to_mci(dev
);
64 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
65 return sprintf(data
, "0x%08x",
66 ddr_in32(pdata
->mc_vbase
+ FSL_MC_DATA_ERR_INJECT_HI
));
69 static ssize_t
fsl_mc_inject_data_lo_show(struct device
*dev
,
70 struct device_attribute
*mattr
,
73 struct mem_ctl_info
*mci
= to_mci(dev
);
74 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
75 return sprintf(data
, "0x%08x",
76 ddr_in32(pdata
->mc_vbase
+ FSL_MC_DATA_ERR_INJECT_LO
));
79 static ssize_t
fsl_mc_inject_ctrl_show(struct device
*dev
,
80 struct device_attribute
*mattr
,
83 struct mem_ctl_info
*mci
= to_mci(dev
);
84 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
85 return sprintf(data
, "0x%08x",
86 ddr_in32(pdata
->mc_vbase
+ FSL_MC_ECC_ERR_INJECT
));
89 static ssize_t
fsl_mc_inject_data_hi_store(struct device
*dev
,
90 struct device_attribute
*mattr
,
91 const char *data
, size_t count
)
93 struct mem_ctl_info
*mci
= to_mci(dev
);
94 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
99 rc
= kstrtoul(data
, 0, &val
);
103 ddr_out32(pdata
->mc_vbase
+ FSL_MC_DATA_ERR_INJECT_HI
, val
);
109 static ssize_t
fsl_mc_inject_data_lo_store(struct device
*dev
,
110 struct device_attribute
*mattr
,
111 const char *data
, size_t count
)
113 struct mem_ctl_info
*mci
= to_mci(dev
);
114 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
118 if (isdigit(*data
)) {
119 rc
= kstrtoul(data
, 0, &val
);
123 ddr_out32(pdata
->mc_vbase
+ FSL_MC_DATA_ERR_INJECT_LO
, val
);
129 static ssize_t
fsl_mc_inject_ctrl_store(struct device
*dev
,
130 struct device_attribute
*mattr
,
131 const char *data
, size_t count
)
133 struct mem_ctl_info
*mci
= to_mci(dev
);
134 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
138 if (isdigit(*data
)) {
139 rc
= kstrtoul(data
, 0, &val
);
143 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ECC_ERR_INJECT
, val
);
149 DEVICE_ATTR(inject_data_hi
, S_IRUGO
| S_IWUSR
,
150 fsl_mc_inject_data_hi_show
, fsl_mc_inject_data_hi_store
);
151 DEVICE_ATTR(inject_data_lo
, S_IRUGO
| S_IWUSR
,
152 fsl_mc_inject_data_lo_show
, fsl_mc_inject_data_lo_store
);
153 DEVICE_ATTR(inject_ctrl
, S_IRUGO
| S_IWUSR
,
154 fsl_mc_inject_ctrl_show
, fsl_mc_inject_ctrl_store
);
156 static struct attribute
*fsl_ddr_dev_attrs
[] = {
157 &dev_attr_inject_data_hi
.attr
,
158 &dev_attr_inject_data_lo
.attr
,
159 &dev_attr_inject_ctrl
.attr
,
163 ATTRIBUTE_GROUPS(fsl_ddr_dev
);
165 /**************************** MC Err device ***************************/
168 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
169 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
170 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
171 * below correspond to Freescale's manuals.
173 static unsigned int ecc_table
[16] = {
176 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
177 0x00ff00ff, 0x00fff0ff,
178 0x0f0f0f0f, 0x0f0fff00,
179 0x11113333, 0x7777000f,
180 0x22224444, 0x8888222f,
181 0x44448888, 0xffff4441,
182 0x8888ffff, 0x11118882,
183 0xffff1111, 0x22221114, /* Syndrome bit 0 */
187 * Calculate the correct ECC value for a 64-bit value specified by high:low
189 static u8
calculate_ecc(u32 high
, u32 low
)
198 for (i
= 0; i
< 8; i
++) {
199 mask_high
= ecc_table
[i
* 2];
200 mask_low
= ecc_table
[i
* 2 + 1];
203 for (j
= 0; j
< 32; j
++) {
204 if ((mask_high
>> j
) & 1)
205 bit_cnt
^= (high
>> j
) & 1;
206 if ((mask_low
>> j
) & 1)
207 bit_cnt
^= (low
>> j
) & 1;
217 * Create the syndrome code which is generated if the data line specified by
218 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
219 * User's Manual and 9-61 in the MPC8572 User's Manual.
221 static u8
syndrome_from_bit(unsigned int bit
) {
226 * Cycle through the upper or lower 32-bit portion of each value in
227 * ecc_table depending on if 'bit' is in the upper or lower half of
230 for (i
= bit
< 32; i
< 16; i
+= 2)
231 syndrome
|= ((ecc_table
[i
] >> (bit
% 32)) & 1) << (i
/ 2);
237 * Decode data and ecc syndrome to determine what went wrong
238 * Note: This can only decode single-bit errors
240 static void sbe_ecc_decode(u32 cap_high
, u32 cap_low
, u32 cap_ecc
,
241 int *bad_data_bit
, int *bad_ecc_bit
)
250 * Calculate the ECC of the captured data and XOR it with the captured
251 * ECC to find an ECC syndrome value we can search for
253 syndrome
= calculate_ecc(cap_high
, cap_low
) ^ cap_ecc
;
255 /* Check if a data line is stuck... */
256 for (i
= 0; i
< 64; i
++) {
257 if (syndrome
== syndrome_from_bit(i
)) {
263 /* If data is correct, check ECC bits for errors... */
264 for (i
= 0; i
< 8; i
++) {
265 if ((syndrome
>> i
) & 0x1) {
272 #define make64(high, low) (((u64)(high) << 32) | (low))
274 static void fsl_mc_check(struct mem_ctl_info
*mci
)
276 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
277 struct csrow_info
*csrow
;
289 err_detect
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_ERR_DETECT
);
293 fsl_mc_printk(mci
, KERN_ERR
, "Err Detect Register: %#8.8x\n",
296 /* no more processing if not ECC bit errors */
297 if (!(err_detect
& (DDR_EDE_SBE
| DDR_EDE_MBE
))) {
298 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_DETECT
, err_detect
);
302 syndrome
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_CAPTURE_ECC
);
304 /* Mask off appropriate bits of syndrome based on bus width */
305 bus_width
= (ddr_in32(pdata
->mc_vbase
+ FSL_MC_DDR_SDRAM_CFG
) &
306 DSC_DBW_MASK
) ? 32 : 64;
313 ddr_in32(pdata
->mc_vbase
+ FSL_MC_CAPTURE_EXT_ADDRESS
),
314 ddr_in32(pdata
->mc_vbase
+ FSL_MC_CAPTURE_ADDRESS
));
315 pfn
= err_addr
>> PAGE_SHIFT
;
317 for (row_index
= 0; row_index
< mci
->nr_csrows
; row_index
++) {
318 csrow
= mci
->csrows
[row_index
];
319 if ((pfn
>= csrow
->first_page
) && (pfn
<= csrow
->last_page
))
323 cap_high
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_CAPTURE_DATA_HI
);
324 cap_low
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_CAPTURE_DATA_LO
);
327 * Analyze single-bit errors on 64-bit wide buses
328 * TODO: Add support for 32-bit wide buses
330 if ((err_detect
& DDR_EDE_SBE
) && (bus_width
== 64)) {
331 sbe_ecc_decode(cap_high
, cap_low
, syndrome
,
332 &bad_data_bit
, &bad_ecc_bit
);
334 if (bad_data_bit
!= -1)
335 fsl_mc_printk(mci
, KERN_ERR
,
336 "Faulty Data bit: %d\n", bad_data_bit
);
337 if (bad_ecc_bit
!= -1)
338 fsl_mc_printk(mci
, KERN_ERR
,
339 "Faulty ECC bit: %d\n", bad_ecc_bit
);
341 fsl_mc_printk(mci
, KERN_ERR
,
342 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
343 cap_high
^ (1 << (bad_data_bit
- 32)),
344 cap_low
^ (1 << bad_data_bit
),
345 syndrome
^ (1 << bad_ecc_bit
));
348 fsl_mc_printk(mci
, KERN_ERR
,
349 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
350 cap_high
, cap_low
, syndrome
);
351 fsl_mc_printk(mci
, KERN_ERR
, "Err addr: %#8.8llx\n", err_addr
);
352 fsl_mc_printk(mci
, KERN_ERR
, "PFN: %#8.8x\n", pfn
);
354 /* we are out of range */
355 if (row_index
== mci
->nr_csrows
)
356 fsl_mc_printk(mci
, KERN_ERR
, "PFN out of range!\n");
358 if (err_detect
& DDR_EDE_SBE
)
359 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED
, mci
, 1,
360 pfn
, err_addr
& ~PAGE_MASK
, syndrome
,
364 if (err_detect
& DDR_EDE_MBE
)
365 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED
, mci
, 1,
366 pfn
, err_addr
& ~PAGE_MASK
, syndrome
,
370 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_DETECT
, err_detect
);
373 static irqreturn_t
fsl_mc_isr(int irq
, void *dev_id
)
375 struct mem_ctl_info
*mci
= dev_id
;
376 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
379 err_detect
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_ERR_DETECT
);
388 static void fsl_ddr_init_csrows(struct mem_ctl_info
*mci
)
390 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
391 struct csrow_info
*csrow
;
392 struct dimm_info
*dimm
;
399 sdram_ctl
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_DDR_SDRAM_CFG
);
401 sdtype
= sdram_ctl
& DSC_SDTYPE_MASK
;
402 if (sdram_ctl
& DSC_RD_EN
) {
440 for (index
= 0; index
< mci
->nr_csrows
; index
++) {
444 csrow
= mci
->csrows
[index
];
445 dimm
= csrow
->channels
[0]->dimm
;
447 cs_bnds
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_CS_BNDS_0
+
448 (index
* FSL_MC_CS_BNDS_OFS
));
450 start
= (cs_bnds
& 0xffff0000) >> 16;
451 end
= (cs_bnds
& 0x0000ffff);
454 continue; /* not populated */
456 start
<<= (24 - PAGE_SHIFT
);
457 end
<<= (24 - PAGE_SHIFT
);
458 end
|= (1 << (24 - PAGE_SHIFT
)) - 1;
460 csrow
->first_page
= start
;
461 csrow
->last_page
= end
;
463 dimm
->nr_pages
= end
+ 1 - start
;
466 dimm
->dtype
= DEV_UNKNOWN
;
467 if (sdram_ctl
& DSC_X32_EN
)
468 dimm
->dtype
= DEV_X32
;
469 dimm
->edac_mode
= EDAC_SECDED
;
473 int fsl_mc_err_probe(struct platform_device
*op
)
475 struct mem_ctl_info
*mci
;
476 struct edac_mc_layer layers
[2];
477 struct fsl_mc_pdata
*pdata
;
482 if (!devres_open_group(&op
->dev
, fsl_mc_err_probe
, GFP_KERNEL
))
485 layers
[0].type
= EDAC_MC_LAYER_CHIP_SELECT
;
487 layers
[0].is_virt_csrow
= true;
488 layers
[1].type
= EDAC_MC_LAYER_CHANNEL
;
490 layers
[1].is_virt_csrow
= false;
491 mci
= edac_mc_alloc(edac_mc_idx
, ARRAY_SIZE(layers
), layers
,
494 devres_release_group(&op
->dev
, fsl_mc_err_probe
);
498 pdata
= mci
->pvt_info
;
499 pdata
->name
= "fsl_mc_err";
500 mci
->pdev
= &op
->dev
;
501 pdata
->edac_idx
= edac_mc_idx
++;
502 dev_set_drvdata(mci
->pdev
, mci
);
503 mci
->ctl_name
= pdata
->name
;
504 mci
->dev_name
= pdata
->name
;
507 * Get the endianness of DDR controller registers.
508 * Default is big endian.
510 little_endian
= of_property_read_bool(op
->dev
.of_node
, "little-endian");
512 res
= of_address_to_resource(op
->dev
.of_node
, 0, &r
);
514 pr_err("%s: Unable to get resource for MC err regs\n",
519 if (!devm_request_mem_region(&op
->dev
, r
.start
, resource_size(&r
),
521 pr_err("%s: Error while requesting mem region\n",
527 pdata
->mc_vbase
= devm_ioremap(&op
->dev
, r
.start
, resource_size(&r
));
528 if (!pdata
->mc_vbase
) {
529 pr_err("%s: Unable to setup MC err regs\n", __func__
);
534 sdram_ctl
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_DDR_SDRAM_CFG
);
535 if (!(sdram_ctl
& DSC_ECC_EN
)) {
537 pr_warn("%s: No ECC DIMMs discovered\n", __func__
);
542 edac_dbg(3, "init mci\n");
543 mci
->mtype_cap
= MEM_FLAG_DDR
| MEM_FLAG_RDDR
|
544 MEM_FLAG_DDR2
| MEM_FLAG_RDDR2
|
545 MEM_FLAG_DDR3
| MEM_FLAG_RDDR3
|
546 MEM_FLAG_DDR4
| MEM_FLAG_RDDR4
;
547 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
| EDAC_FLAG_SECDED
;
548 mci
->edac_cap
= EDAC_FLAG_SECDED
;
549 mci
->mod_name
= EDAC_MOD_STR
;
551 if (edac_op_state
== EDAC_OPSTATE_POLL
)
552 mci
->edac_check
= fsl_mc_check
;
554 mci
->ctl_page_to_phys
= NULL
;
556 mci
->scrub_mode
= SCRUB_SW_SRC
;
558 fsl_ddr_init_csrows(mci
);
560 /* store the original error disable bits */
561 orig_ddr_err_disable
= ddr_in32(pdata
->mc_vbase
+ FSL_MC_ERR_DISABLE
);
562 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_DISABLE
, 0);
564 /* clear all error bits */
565 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_DETECT
, ~0);
567 res
= edac_mc_add_mc_with_groups(mci
, fsl_ddr_dev_groups
);
569 edac_dbg(3, "failed edac_mc_add_mc()\n");
573 if (edac_op_state
== EDAC_OPSTATE_INT
) {
574 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_INT_EN
,
575 DDR_EIE_MBEE
| DDR_EIE_SBEE
);
577 /* store the original error management threshold */
578 orig_ddr_err_sbe
= ddr_in32(pdata
->mc_vbase
+
579 FSL_MC_ERR_SBE
) & 0xff0000;
581 /* set threshold to 1 error per interrupt */
582 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_SBE
, 0x10000);
584 /* register interrupts */
585 pdata
->irq
= platform_get_irq(op
, 0);
586 res
= devm_request_irq(&op
->dev
, pdata
->irq
,
589 "[EDAC] MC err", mci
);
591 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
592 __func__
, pdata
->irq
);
597 pr_info(EDAC_MOD_STR
" acquired irq %d for MC\n",
601 devres_remove_group(&op
->dev
, fsl_mc_err_probe
);
602 edac_dbg(3, "success\n");
603 pr_info(EDAC_MOD_STR
" MC err registered\n");
608 edac_mc_del_mc(&op
->dev
);
610 devres_release_group(&op
->dev
, fsl_mc_err_probe
);
615 int fsl_mc_err_remove(struct platform_device
*op
)
617 struct mem_ctl_info
*mci
= dev_get_drvdata(&op
->dev
);
618 struct fsl_mc_pdata
*pdata
= mci
->pvt_info
;
622 if (edac_op_state
== EDAC_OPSTATE_INT
) {
623 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_INT_EN
, 0);
626 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_DISABLE
,
627 orig_ddr_err_disable
);
628 ddr_out32(pdata
->mc_vbase
+ FSL_MC_ERR_SBE
, orig_ddr_err_sbe
);
630 edac_mc_del_mc(&op
->dev
);