2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
43 #include <linux/interrupt.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 #include <linux/errqueue.h>
60 #include <net/protocol.h>
63 #include <net/checksum.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
71 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
72 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
74 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
75 struct pipe_buffer
*buf
)
80 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
81 struct pipe_buffer
*buf
)
86 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
87 struct pipe_buffer
*buf
)
93 /* Pipe buffer operations for a socket. */
94 static struct pipe_buf_operations sock_pipe_buf_ops
= {
96 .map
= generic_pipe_buf_map
,
97 .unmap
= generic_pipe_buf_unmap
,
98 .confirm
= generic_pipe_buf_confirm
,
99 .release
= sock_pipe_buf_release
,
100 .steal
= sock_pipe_buf_steal
,
101 .get
= sock_pipe_buf_get
,
105 * Keep out-of-line to prevent kernel bloat.
106 * __builtin_return_address is not used because it is not always
111 * skb_over_panic - private function
116 * Out of line support code for skb_put(). Not user callable.
118 void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
120 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
121 "data:%p tail:%#lx end:%#lx dev:%s\n",
122 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
123 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
124 skb
->dev
? skb
->dev
->name
: "<NULL>");
127 EXPORT_SYMBOL(skb_over_panic
);
130 * skb_under_panic - private function
135 * Out of line support code for skb_push(). Not user callable.
138 void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
140 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
141 "data:%p tail:%#lx end:%#lx dev:%s\n",
142 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
143 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
144 skb
->dev
? skb
->dev
->name
: "<NULL>");
147 EXPORT_SYMBOL(skb_under_panic
);
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
156 * __alloc_skb - allocate a network buffer
157 * @size: size to allocate
158 * @gfp_mask: allocation mask
159 * @fclone: allocate from fclone cache instead of head cache
160 * and allocate a cloned (child) skb
161 * @node: numa node to allocate memory on
163 * Allocate a new &sk_buff. The returned buffer has no headroom and a
164 * tail room of size bytes. The object has a reference count of one.
165 * The return is the buffer. On a failure the return is %NULL.
167 * Buffers may only be allocated from interrupts using a @gfp_mask of
170 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
171 int fclone
, int node
)
173 struct kmem_cache
*cache
;
174 struct skb_shared_info
*shinfo
;
178 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
181 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
185 size
= SKB_DATA_ALIGN(size
);
186 data
= kmalloc_node_track_caller(size
+ sizeof(struct skb_shared_info
),
192 * Only clear those fields we need to clear, not those that we will
193 * actually initialise below. Hence, don't put any more fields after
194 * the tail pointer in struct sk_buff!
196 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
197 skb
->truesize
= size
+ sizeof(struct sk_buff
);
198 atomic_set(&skb
->users
, 1);
201 skb_reset_tail_pointer(skb
);
202 skb
->end
= skb
->tail
+ size
;
203 /* make sure we initialize shinfo sequentially */
204 shinfo
= skb_shinfo(skb
);
205 atomic_set(&shinfo
->dataref
, 1);
206 shinfo
->nr_frags
= 0;
207 shinfo
->gso_size
= 0;
208 shinfo
->gso_segs
= 0;
209 shinfo
->gso_type
= 0;
210 shinfo
->ip6_frag_id
= 0;
211 shinfo
->tx_flags
.flags
= 0;
212 shinfo
->frag_list
= NULL
;
213 memset(&shinfo
->hwtstamps
, 0, sizeof(shinfo
->hwtstamps
));
216 struct sk_buff
*child
= skb
+ 1;
217 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
219 skb
->fclone
= SKB_FCLONE_ORIG
;
220 atomic_set(fclone_ref
, 1);
222 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
227 kmem_cache_free(cache
, skb
);
231 EXPORT_SYMBOL(__alloc_skb
);
234 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
235 * @dev: network device to receive on
236 * @length: length to allocate
237 * @gfp_mask: get_free_pages mask, passed to alloc_skb
239 * Allocate a new &sk_buff and assign it a usage count of one. The
240 * buffer has unspecified headroom built in. Users should allocate
241 * the headroom they think they need without accounting for the
242 * built in space. The built in space is used for optimisations.
244 * %NULL is returned if there is no free memory.
246 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
247 unsigned int length
, gfp_t gfp_mask
)
249 int node
= dev
->dev
.parent
? dev_to_node(dev
->dev
.parent
) : -1;
252 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, node
);
254 skb_reserve(skb
, NET_SKB_PAD
);
259 EXPORT_SYMBOL(__netdev_alloc_skb
);
261 struct page
*__netdev_alloc_page(struct net_device
*dev
, gfp_t gfp_mask
)
263 int node
= dev
->dev
.parent
? dev_to_node(dev
->dev
.parent
) : -1;
266 page
= alloc_pages_node(node
, gfp_mask
, 0);
269 EXPORT_SYMBOL(__netdev_alloc_page
);
271 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
274 skb_fill_page_desc(skb
, i
, page
, off
, size
);
276 skb
->data_len
+= size
;
277 skb
->truesize
+= size
;
279 EXPORT_SYMBOL(skb_add_rx_frag
);
282 * dev_alloc_skb - allocate an skbuff for receiving
283 * @length: length to allocate
285 * Allocate a new &sk_buff and assign it a usage count of one. The
286 * buffer has unspecified headroom built in. Users should allocate
287 * the headroom they think they need without accounting for the
288 * built in space. The built in space is used for optimisations.
290 * %NULL is returned if there is no free memory. Although this function
291 * allocates memory it can be called from an interrupt.
293 struct sk_buff
*dev_alloc_skb(unsigned int length
)
296 * There is more code here than it seems:
297 * __dev_alloc_skb is an inline
299 return __dev_alloc_skb(length
, GFP_ATOMIC
);
301 EXPORT_SYMBOL(dev_alloc_skb
);
303 static void skb_drop_list(struct sk_buff
**listp
)
305 struct sk_buff
*list
= *listp
;
310 struct sk_buff
*this = list
;
316 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
318 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
321 static void skb_clone_fraglist(struct sk_buff
*skb
)
323 struct sk_buff
*list
;
325 for (list
= skb_shinfo(skb
)->frag_list
; list
; list
= list
->next
)
329 static void skb_release_data(struct sk_buff
*skb
)
332 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
333 &skb_shinfo(skb
)->dataref
)) {
334 if (skb_shinfo(skb
)->nr_frags
) {
336 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
337 put_page(skb_shinfo(skb
)->frags
[i
].page
);
340 if (skb_shinfo(skb
)->frag_list
)
341 skb_drop_fraglist(skb
);
348 * Free an skbuff by memory without cleaning the state.
350 static void kfree_skbmem(struct sk_buff
*skb
)
352 struct sk_buff
*other
;
353 atomic_t
*fclone_ref
;
355 switch (skb
->fclone
) {
356 case SKB_FCLONE_UNAVAILABLE
:
357 kmem_cache_free(skbuff_head_cache
, skb
);
360 case SKB_FCLONE_ORIG
:
361 fclone_ref
= (atomic_t
*) (skb
+ 2);
362 if (atomic_dec_and_test(fclone_ref
))
363 kmem_cache_free(skbuff_fclone_cache
, skb
);
366 case SKB_FCLONE_CLONE
:
367 fclone_ref
= (atomic_t
*) (skb
+ 1);
370 /* The clone portion is available for
371 * fast-cloning again.
373 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
375 if (atomic_dec_and_test(fclone_ref
))
376 kmem_cache_free(skbuff_fclone_cache
, other
);
381 static void skb_release_head_state(struct sk_buff
*skb
)
383 dst_release(skb
->dst
);
385 secpath_put(skb
->sp
);
387 if (skb
->destructor
) {
389 skb
->destructor(skb
);
391 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
392 nf_conntrack_put(skb
->nfct
);
393 nf_conntrack_put_reasm(skb
->nfct_reasm
);
395 #ifdef CONFIG_BRIDGE_NETFILTER
396 nf_bridge_put(skb
->nf_bridge
);
398 /* XXX: IS this still necessary? - JHS */
399 #ifdef CONFIG_NET_SCHED
401 #ifdef CONFIG_NET_CLS_ACT
407 /* Free everything but the sk_buff shell. */
408 static void skb_release_all(struct sk_buff
*skb
)
410 skb_release_head_state(skb
);
411 skb_release_data(skb
);
415 * __kfree_skb - private function
418 * Free an sk_buff. Release anything attached to the buffer.
419 * Clean the state. This is an internal helper function. Users should
420 * always call kfree_skb
423 void __kfree_skb(struct sk_buff
*skb
)
425 skb_release_all(skb
);
428 EXPORT_SYMBOL(__kfree_skb
);
431 * kfree_skb - free an sk_buff
432 * @skb: buffer to free
434 * Drop a reference to the buffer and free it if the usage count has
437 void kfree_skb(struct sk_buff
*skb
)
441 if (likely(atomic_read(&skb
->users
) == 1))
443 else if (likely(!atomic_dec_and_test(&skb
->users
)))
447 EXPORT_SYMBOL(kfree_skb
);
450 * skb_recycle_check - check if skb can be reused for receive
452 * @skb_size: minimum receive buffer size
454 * Checks that the skb passed in is not shared or cloned, and
455 * that it is linear and its head portion at least as large as
456 * skb_size so that it can be recycled as a receive buffer.
457 * If these conditions are met, this function does any necessary
458 * reference count dropping and cleans up the skbuff as if it
459 * just came from __alloc_skb().
461 int skb_recycle_check(struct sk_buff
*skb
, int skb_size
)
463 struct skb_shared_info
*shinfo
;
465 if (skb_is_nonlinear(skb
) || skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
468 skb_size
= SKB_DATA_ALIGN(skb_size
+ NET_SKB_PAD
);
469 if (skb_end_pointer(skb
) - skb
->head
< skb_size
)
472 if (skb_shared(skb
) || skb_cloned(skb
))
475 skb_release_head_state(skb
);
476 shinfo
= skb_shinfo(skb
);
477 atomic_set(&shinfo
->dataref
, 1);
478 shinfo
->nr_frags
= 0;
479 shinfo
->gso_size
= 0;
480 shinfo
->gso_segs
= 0;
481 shinfo
->gso_type
= 0;
482 shinfo
->ip6_frag_id
= 0;
483 shinfo
->frag_list
= NULL
;
485 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
486 skb
->data
= skb
->head
+ NET_SKB_PAD
;
487 skb_reset_tail_pointer(skb
);
491 EXPORT_SYMBOL(skb_recycle_check
);
493 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
495 new->tstamp
= old
->tstamp
;
497 new->transport_header
= old
->transport_header
;
498 new->network_header
= old
->network_header
;
499 new->mac_header
= old
->mac_header
;
500 new->dst
= dst_clone(old
->dst
);
502 new->sp
= secpath_get(old
->sp
);
504 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
505 new->csum_start
= old
->csum_start
;
506 new->csum_offset
= old
->csum_offset
;
507 new->local_df
= old
->local_df
;
508 new->pkt_type
= old
->pkt_type
;
509 new->ip_summed
= old
->ip_summed
;
510 skb_copy_queue_mapping(new, old
);
511 new->priority
= old
->priority
;
512 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
513 new->ipvs_property
= old
->ipvs_property
;
515 new->protocol
= old
->protocol
;
516 new->mark
= old
->mark
;
518 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
519 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
520 new->nf_trace
= old
->nf_trace
;
522 #ifdef CONFIG_NET_SCHED
523 new->tc_index
= old
->tc_index
;
524 #ifdef CONFIG_NET_CLS_ACT
525 new->tc_verd
= old
->tc_verd
;
528 new->vlan_tci
= old
->vlan_tci
;
530 skb_copy_secmark(new, old
);
533 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
535 #define C(x) n->x = skb->x
537 n
->next
= n
->prev
= NULL
;
539 __copy_skb_header(n
, skb
);
544 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
547 n
->destructor
= NULL
;
554 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
558 atomic_set(&n
->users
, 1);
560 atomic_inc(&(skb_shinfo(skb
)->dataref
));
568 * skb_morph - morph one skb into another
569 * @dst: the skb to receive the contents
570 * @src: the skb to supply the contents
572 * This is identical to skb_clone except that the target skb is
573 * supplied by the user.
575 * The target skb is returned upon exit.
577 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
579 skb_release_all(dst
);
580 return __skb_clone(dst
, src
);
582 EXPORT_SYMBOL_GPL(skb_morph
);
585 * skb_clone - duplicate an sk_buff
586 * @skb: buffer to clone
587 * @gfp_mask: allocation priority
589 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
590 * copies share the same packet data but not structure. The new
591 * buffer has a reference count of 1. If the allocation fails the
592 * function returns %NULL otherwise the new buffer is returned.
594 * If this function is called from an interrupt gfp_mask() must be
598 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
603 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
604 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
605 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
606 n
->fclone
= SKB_FCLONE_CLONE
;
607 atomic_inc(fclone_ref
);
609 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
612 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
615 return __skb_clone(n
, skb
);
617 EXPORT_SYMBOL(skb_clone
);
619 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
621 #ifndef NET_SKBUFF_DATA_USES_OFFSET
623 * Shift between the two data areas in bytes
625 unsigned long offset
= new->data
- old
->data
;
628 __copy_skb_header(new, old
);
630 #ifndef NET_SKBUFF_DATA_USES_OFFSET
631 /* {transport,network,mac}_header are relative to skb->head */
632 new->transport_header
+= offset
;
633 new->network_header
+= offset
;
634 new->mac_header
+= offset
;
636 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
637 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
638 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
642 * skb_copy - create private copy of an sk_buff
643 * @skb: buffer to copy
644 * @gfp_mask: allocation priority
646 * Make a copy of both an &sk_buff and its data. This is used when the
647 * caller wishes to modify the data and needs a private copy of the
648 * data to alter. Returns %NULL on failure or the pointer to the buffer
649 * on success. The returned buffer has a reference count of 1.
651 * As by-product this function converts non-linear &sk_buff to linear
652 * one, so that &sk_buff becomes completely private and caller is allowed
653 * to modify all the data of returned buffer. This means that this
654 * function is not recommended for use in circumstances when only
655 * header is going to be modified. Use pskb_copy() instead.
658 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
660 int headerlen
= skb
->data
- skb
->head
;
662 * Allocate the copy buffer
665 #ifdef NET_SKBUFF_DATA_USES_OFFSET
666 n
= alloc_skb(skb
->end
+ skb
->data_len
, gfp_mask
);
668 n
= alloc_skb(skb
->end
- skb
->head
+ skb
->data_len
, gfp_mask
);
673 /* Set the data pointer */
674 skb_reserve(n
, headerlen
);
675 /* Set the tail pointer and length */
676 skb_put(n
, skb
->len
);
678 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
681 copy_skb_header(n
, skb
);
684 EXPORT_SYMBOL(skb_copy
);
687 * pskb_copy - create copy of an sk_buff with private head.
688 * @skb: buffer to copy
689 * @gfp_mask: allocation priority
691 * Make a copy of both an &sk_buff and part of its data, located
692 * in header. Fragmented data remain shared. This is used when
693 * the caller wishes to modify only header of &sk_buff and needs
694 * private copy of the header to alter. Returns %NULL on failure
695 * or the pointer to the buffer on success.
696 * The returned buffer has a reference count of 1.
699 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
702 * Allocate the copy buffer
705 #ifdef NET_SKBUFF_DATA_USES_OFFSET
706 n
= alloc_skb(skb
->end
, gfp_mask
);
708 n
= alloc_skb(skb
->end
- skb
->head
, gfp_mask
);
713 /* Set the data pointer */
714 skb_reserve(n
, skb
->data
- skb
->head
);
715 /* Set the tail pointer and length */
716 skb_put(n
, skb_headlen(skb
));
718 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
720 n
->truesize
+= skb
->data_len
;
721 n
->data_len
= skb
->data_len
;
724 if (skb_shinfo(skb
)->nr_frags
) {
727 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
728 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
729 get_page(skb_shinfo(n
)->frags
[i
].page
);
731 skb_shinfo(n
)->nr_frags
= i
;
734 if (skb_shinfo(skb
)->frag_list
) {
735 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
736 skb_clone_fraglist(n
);
739 copy_skb_header(n
, skb
);
743 EXPORT_SYMBOL(pskb_copy
);
746 * pskb_expand_head - reallocate header of &sk_buff
747 * @skb: buffer to reallocate
748 * @nhead: room to add at head
749 * @ntail: room to add at tail
750 * @gfp_mask: allocation priority
752 * Expands (or creates identical copy, if &nhead and &ntail are zero)
753 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
754 * reference count of 1. Returns zero in the case of success or error,
755 * if expansion failed. In the last case, &sk_buff is not changed.
757 * All the pointers pointing into skb header may change and must be
758 * reloaded after call to this function.
761 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
766 #ifdef NET_SKBUFF_DATA_USES_OFFSET
767 int size
= nhead
+ skb
->end
+ ntail
;
769 int size
= nhead
+ (skb
->end
- skb
->head
) + ntail
;
778 size
= SKB_DATA_ALIGN(size
);
780 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
784 /* Copy only real data... and, alas, header. This should be
785 * optimized for the cases when header is void. */
786 #ifdef NET_SKBUFF_DATA_USES_OFFSET
787 memcpy(data
+ nhead
, skb
->head
, skb
->tail
);
789 memcpy(data
+ nhead
, skb
->head
, skb
->tail
- skb
->head
);
791 memcpy(data
+ size
, skb_end_pointer(skb
),
792 sizeof(struct skb_shared_info
));
794 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
795 get_page(skb_shinfo(skb
)->frags
[i
].page
);
797 if (skb_shinfo(skb
)->frag_list
)
798 skb_clone_fraglist(skb
);
800 skb_release_data(skb
);
802 off
= (data
+ nhead
) - skb
->head
;
806 #ifdef NET_SKBUFF_DATA_USES_OFFSET
810 skb
->end
= skb
->head
+ size
;
812 /* {transport,network,mac}_header and tail are relative to skb->head */
814 skb
->transport_header
+= off
;
815 skb
->network_header
+= off
;
816 skb
->mac_header
+= off
;
817 skb
->csum_start
+= nhead
;
821 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
827 EXPORT_SYMBOL(pskb_expand_head
);
829 /* Make private copy of skb with writable head and some headroom */
831 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
833 struct sk_buff
*skb2
;
834 int delta
= headroom
- skb_headroom(skb
);
837 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
839 skb2
= skb_clone(skb
, GFP_ATOMIC
);
840 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
848 EXPORT_SYMBOL(skb_realloc_headroom
);
851 * skb_copy_expand - copy and expand sk_buff
852 * @skb: buffer to copy
853 * @newheadroom: new free bytes at head
854 * @newtailroom: new free bytes at tail
855 * @gfp_mask: allocation priority
857 * Make a copy of both an &sk_buff and its data and while doing so
858 * allocate additional space.
860 * This is used when the caller wishes to modify the data and needs a
861 * private copy of the data to alter as well as more space for new fields.
862 * Returns %NULL on failure or the pointer to the buffer
863 * on success. The returned buffer has a reference count of 1.
865 * You must pass %GFP_ATOMIC as the allocation priority if this function
866 * is called from an interrupt.
868 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
869 int newheadroom
, int newtailroom
,
873 * Allocate the copy buffer
875 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
877 int oldheadroom
= skb_headroom(skb
);
878 int head_copy_len
, head_copy_off
;
884 skb_reserve(n
, newheadroom
);
886 /* Set the tail pointer and length */
887 skb_put(n
, skb
->len
);
889 head_copy_len
= oldheadroom
;
891 if (newheadroom
<= head_copy_len
)
892 head_copy_len
= newheadroom
;
894 head_copy_off
= newheadroom
- head_copy_len
;
896 /* Copy the linear header and data. */
897 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
898 skb
->len
+ head_copy_len
))
901 copy_skb_header(n
, skb
);
903 off
= newheadroom
- oldheadroom
;
904 n
->csum_start
+= off
;
905 #ifdef NET_SKBUFF_DATA_USES_OFFSET
906 n
->transport_header
+= off
;
907 n
->network_header
+= off
;
908 n
->mac_header
+= off
;
913 EXPORT_SYMBOL(skb_copy_expand
);
916 * skb_pad - zero pad the tail of an skb
917 * @skb: buffer to pad
920 * Ensure that a buffer is followed by a padding area that is zero
921 * filled. Used by network drivers which may DMA or transfer data
922 * beyond the buffer end onto the wire.
924 * May return error in out of memory cases. The skb is freed on error.
927 int skb_pad(struct sk_buff
*skb
, int pad
)
932 /* If the skbuff is non linear tailroom is always zero.. */
933 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
934 memset(skb
->data
+skb
->len
, 0, pad
);
938 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
939 if (likely(skb_cloned(skb
) || ntail
> 0)) {
940 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
945 /* FIXME: The use of this function with non-linear skb's really needs
948 err
= skb_linearize(skb
);
952 memset(skb
->data
+ skb
->len
, 0, pad
);
959 EXPORT_SYMBOL(skb_pad
);
962 * skb_put - add data to a buffer
963 * @skb: buffer to use
964 * @len: amount of data to add
966 * This function extends the used data area of the buffer. If this would
967 * exceed the total buffer size the kernel will panic. A pointer to the
968 * first byte of the extra data is returned.
970 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
972 unsigned char *tmp
= skb_tail_pointer(skb
);
973 SKB_LINEAR_ASSERT(skb
);
976 if (unlikely(skb
->tail
> skb
->end
))
977 skb_over_panic(skb
, len
, __builtin_return_address(0));
980 EXPORT_SYMBOL(skb_put
);
983 * skb_push - add data to the start of a buffer
984 * @skb: buffer to use
985 * @len: amount of data to add
987 * This function extends the used data area of the buffer at the buffer
988 * start. If this would exceed the total buffer headroom the kernel will
989 * panic. A pointer to the first byte of the extra data is returned.
991 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
995 if (unlikely(skb
->data
<skb
->head
))
996 skb_under_panic(skb
, len
, __builtin_return_address(0));
999 EXPORT_SYMBOL(skb_push
);
1002 * skb_pull - remove data from the start of a buffer
1003 * @skb: buffer to use
1004 * @len: amount of data to remove
1006 * This function removes data from the start of a buffer, returning
1007 * the memory to the headroom. A pointer to the next data in the buffer
1008 * is returned. Once the data has been pulled future pushes will overwrite
1011 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1013 return unlikely(len
> skb
->len
) ? NULL
: __skb_pull(skb
, len
);
1015 EXPORT_SYMBOL(skb_pull
);
1018 * skb_trim - remove end from a buffer
1019 * @skb: buffer to alter
1022 * Cut the length of a buffer down by removing data from the tail. If
1023 * the buffer is already under the length specified it is not modified.
1024 * The skb must be linear.
1026 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1029 __skb_trim(skb
, len
);
1031 EXPORT_SYMBOL(skb_trim
);
1033 /* Trims skb to length len. It can change skb pointers.
1036 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1038 struct sk_buff
**fragp
;
1039 struct sk_buff
*frag
;
1040 int offset
= skb_headlen(skb
);
1041 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1045 if (skb_cloned(skb
) &&
1046 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1053 for (; i
< nfrags
; i
++) {
1054 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
1061 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
1064 skb_shinfo(skb
)->nr_frags
= i
;
1066 for (; i
< nfrags
; i
++)
1067 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1069 if (skb_shinfo(skb
)->frag_list
)
1070 skb_drop_fraglist(skb
);
1074 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1075 fragp
= &frag
->next
) {
1076 int end
= offset
+ frag
->len
;
1078 if (skb_shared(frag
)) {
1079 struct sk_buff
*nfrag
;
1081 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1082 if (unlikely(!nfrag
))
1085 nfrag
->next
= frag
->next
;
1097 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1101 skb_drop_list(&frag
->next
);
1106 if (len
> skb_headlen(skb
)) {
1107 skb
->data_len
-= skb
->len
- len
;
1112 skb_set_tail_pointer(skb
, len
);
1117 EXPORT_SYMBOL(___pskb_trim
);
1120 * __pskb_pull_tail - advance tail of skb header
1121 * @skb: buffer to reallocate
1122 * @delta: number of bytes to advance tail
1124 * The function makes a sense only on a fragmented &sk_buff,
1125 * it expands header moving its tail forward and copying necessary
1126 * data from fragmented part.
1128 * &sk_buff MUST have reference count of 1.
1130 * Returns %NULL (and &sk_buff does not change) if pull failed
1131 * or value of new tail of skb in the case of success.
1133 * All the pointers pointing into skb header may change and must be
1134 * reloaded after call to this function.
1137 /* Moves tail of skb head forward, copying data from fragmented part,
1138 * when it is necessary.
1139 * 1. It may fail due to malloc failure.
1140 * 2. It may change skb pointers.
1142 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1144 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1146 /* If skb has not enough free space at tail, get new one
1147 * plus 128 bytes for future expansions. If we have enough
1148 * room at tail, reallocate without expansion only if skb is cloned.
1150 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1152 if (eat
> 0 || skb_cloned(skb
)) {
1153 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1158 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1161 /* Optimization: no fragments, no reasons to preestimate
1162 * size of pulled pages. Superb.
1164 if (!skb_shinfo(skb
)->frag_list
)
1167 /* Estimate size of pulled pages. */
1169 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1170 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
1172 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1175 /* If we need update frag list, we are in troubles.
1176 * Certainly, it possible to add an offset to skb data,
1177 * but taking into account that pulling is expected to
1178 * be very rare operation, it is worth to fight against
1179 * further bloating skb head and crucify ourselves here instead.
1180 * Pure masohism, indeed. 8)8)
1183 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1184 struct sk_buff
*clone
= NULL
;
1185 struct sk_buff
*insp
= NULL
;
1190 if (list
->len
<= eat
) {
1191 /* Eaten as whole. */
1196 /* Eaten partially. */
1198 if (skb_shared(list
)) {
1199 /* Sucks! We need to fork list. :-( */
1200 clone
= skb_clone(list
, GFP_ATOMIC
);
1206 /* This may be pulled without
1210 if (!pskb_pull(list
, eat
)) {
1219 /* Free pulled out fragments. */
1220 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1221 skb_shinfo(skb
)->frag_list
= list
->next
;
1224 /* And insert new clone at head. */
1227 skb_shinfo(skb
)->frag_list
= clone
;
1230 /* Success! Now we may commit changes to skb data. */
1235 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1236 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1237 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1238 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1240 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1242 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1243 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1249 skb_shinfo(skb
)->nr_frags
= k
;
1252 skb
->data_len
-= delta
;
1254 return skb_tail_pointer(skb
);
1256 EXPORT_SYMBOL(__pskb_pull_tail
);
1258 /* Copy some data bits from skb to kernel buffer. */
1260 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1263 int start
= skb_headlen(skb
);
1265 if (offset
> (int)skb
->len
- len
)
1269 if ((copy
= start
- offset
) > 0) {
1272 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1273 if ((len
-= copy
) == 0)
1279 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1282 WARN_ON(start
> offset
+ len
);
1284 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1285 if ((copy
= end
- offset
) > 0) {
1291 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1293 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1294 offset
- start
, copy
);
1295 kunmap_skb_frag(vaddr
);
1297 if ((len
-= copy
) == 0)
1305 if (skb_shinfo(skb
)->frag_list
) {
1306 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1308 for (; list
; list
= list
->next
) {
1311 WARN_ON(start
> offset
+ len
);
1313 end
= start
+ list
->len
;
1314 if ((copy
= end
- offset
) > 0) {
1317 if (skb_copy_bits(list
, offset
- start
,
1320 if ((len
-= copy
) == 0)
1334 EXPORT_SYMBOL(skb_copy_bits
);
1337 * Callback from splice_to_pipe(), if we need to release some pages
1338 * at the end of the spd in case we error'ed out in filling the pipe.
1340 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1342 put_page(spd
->pages
[i
]);
1345 static inline struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1346 unsigned int *offset
,
1347 struct sk_buff
*skb
)
1349 struct sock
*sk
= skb
->sk
;
1350 struct page
*p
= sk
->sk_sndmsg_page
;
1355 p
= sk
->sk_sndmsg_page
= alloc_pages(sk
->sk_allocation
, 0);
1359 off
= sk
->sk_sndmsg_off
= 0;
1360 /* hold one ref to this page until it's full */
1364 off
= sk
->sk_sndmsg_off
;
1365 mlen
= PAGE_SIZE
- off
;
1366 if (mlen
< 64 && mlen
< *len
) {
1371 *len
= min_t(unsigned int, *len
, mlen
);
1374 memcpy(page_address(p
) + off
, page_address(page
) + *offset
, *len
);
1375 sk
->sk_sndmsg_off
+= *len
;
1383 * Fill page/offset/length into spd, if it can hold more pages.
1385 static inline int spd_fill_page(struct splice_pipe_desc
*spd
, struct page
*page
,
1386 unsigned int *len
, unsigned int offset
,
1387 struct sk_buff
*skb
, int linear
)
1389 if (unlikely(spd
->nr_pages
== PIPE_BUFFERS
))
1393 page
= linear_to_page(page
, len
, &offset
, skb
);
1399 spd
->pages
[spd
->nr_pages
] = page
;
1400 spd
->partial
[spd
->nr_pages
].len
= *len
;
1401 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1407 static inline void __segment_seek(struct page
**page
, unsigned int *poff
,
1408 unsigned int *plen
, unsigned int off
)
1413 n
= *poff
/ PAGE_SIZE
;
1415 *page
= nth_page(*page
, n
);
1417 *poff
= *poff
% PAGE_SIZE
;
1421 static inline int __splice_segment(struct page
*page
, unsigned int poff
,
1422 unsigned int plen
, unsigned int *off
,
1423 unsigned int *len
, struct sk_buff
*skb
,
1424 struct splice_pipe_desc
*spd
, int linear
)
1429 /* skip this segment if already processed */
1435 /* ignore any bits we already processed */
1437 __segment_seek(&page
, &poff
, &plen
, *off
);
1442 unsigned int flen
= min(*len
, plen
);
1444 /* the linear region may spread across several pages */
1445 flen
= min_t(unsigned int, flen
, PAGE_SIZE
- poff
);
1447 if (spd_fill_page(spd
, page
, &flen
, poff
, skb
, linear
))
1450 __segment_seek(&page
, &poff
, &plen
, flen
);
1453 } while (*len
&& plen
);
1459 * Map linear and fragment data from the skb to spd. It reports failure if the
1460 * pipe is full or if we already spliced the requested length.
1462 static int __skb_splice_bits(struct sk_buff
*skb
, unsigned int *offset
,
1464 struct splice_pipe_desc
*spd
)
1469 * map the linear part
1471 if (__splice_segment(virt_to_page(skb
->data
),
1472 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1474 offset
, len
, skb
, spd
, 1))
1478 * then map the fragments
1480 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1481 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1483 if (__splice_segment(f
->page
, f
->page_offset
, f
->size
,
1484 offset
, len
, skb
, spd
, 0))
1492 * Map data from the skb to a pipe. Should handle both the linear part,
1493 * the fragments, and the frag list. It does NOT handle frag lists within
1494 * the frag list, if such a thing exists. We'd probably need to recurse to
1495 * handle that cleanly.
1497 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1498 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1501 struct partial_page partial
[PIPE_BUFFERS
];
1502 struct page
*pages
[PIPE_BUFFERS
];
1503 struct splice_pipe_desc spd
= {
1507 .ops
= &sock_pipe_buf_ops
,
1508 .spd_release
= sock_spd_release
,
1512 * __skb_splice_bits() only fails if the output has no room left,
1513 * so no point in going over the frag_list for the error case.
1515 if (__skb_splice_bits(skb
, &offset
, &tlen
, &spd
))
1521 * now see if we have a frag_list to map
1523 if (skb_shinfo(skb
)->frag_list
) {
1524 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1526 for (; list
&& tlen
; list
= list
->next
) {
1527 if (__skb_splice_bits(list
, &offset
, &tlen
, &spd
))
1534 struct sock
*sk
= skb
->sk
;
1538 * Drop the socket lock, otherwise we have reverse
1539 * locking dependencies between sk_lock and i_mutex
1540 * here as compared to sendfile(). We enter here
1541 * with the socket lock held, and splice_to_pipe() will
1542 * grab the pipe inode lock. For sendfile() emulation,
1543 * we call into ->sendpage() with the i_mutex lock held
1544 * and networking will grab the socket lock.
1547 ret
= splice_to_pipe(pipe
, &spd
);
1556 * skb_store_bits - store bits from kernel buffer to skb
1557 * @skb: destination buffer
1558 * @offset: offset in destination
1559 * @from: source buffer
1560 * @len: number of bytes to copy
1562 * Copy the specified number of bytes from the source buffer to the
1563 * destination skb. This function handles all the messy bits of
1564 * traversing fragment lists and such.
1567 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1570 int start
= skb_headlen(skb
);
1572 if (offset
> (int)skb
->len
- len
)
1575 if ((copy
= start
- offset
) > 0) {
1578 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1579 if ((len
-= copy
) == 0)
1585 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1586 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1589 WARN_ON(start
> offset
+ len
);
1591 end
= start
+ frag
->size
;
1592 if ((copy
= end
- offset
) > 0) {
1598 vaddr
= kmap_skb_frag(frag
);
1599 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1601 kunmap_skb_frag(vaddr
);
1603 if ((len
-= copy
) == 0)
1611 if (skb_shinfo(skb
)->frag_list
) {
1612 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1614 for (; list
; list
= list
->next
) {
1617 WARN_ON(start
> offset
+ len
);
1619 end
= start
+ list
->len
;
1620 if ((copy
= end
- offset
) > 0) {
1623 if (skb_store_bits(list
, offset
- start
,
1626 if ((len
-= copy
) == 0)
1640 EXPORT_SYMBOL(skb_store_bits
);
1642 /* Checksum skb data. */
1644 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1645 int len
, __wsum csum
)
1647 int start
= skb_headlen(skb
);
1648 int i
, copy
= start
- offset
;
1651 /* Checksum header. */
1655 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1656 if ((len
-= copy
) == 0)
1662 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1665 WARN_ON(start
> offset
+ len
);
1667 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1668 if ((copy
= end
- offset
) > 0) {
1671 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1675 vaddr
= kmap_skb_frag(frag
);
1676 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1677 offset
- start
, copy
, 0);
1678 kunmap_skb_frag(vaddr
);
1679 csum
= csum_block_add(csum
, csum2
, pos
);
1688 if (skb_shinfo(skb
)->frag_list
) {
1689 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1691 for (; list
; list
= list
->next
) {
1694 WARN_ON(start
> offset
+ len
);
1696 end
= start
+ list
->len
;
1697 if ((copy
= end
- offset
) > 0) {
1701 csum2
= skb_checksum(list
, offset
- start
,
1703 csum
= csum_block_add(csum
, csum2
, pos
);
1704 if ((len
-= copy
) == 0)
1716 EXPORT_SYMBOL(skb_checksum
);
1718 /* Both of above in one bottle. */
1720 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1721 u8
*to
, int len
, __wsum csum
)
1723 int start
= skb_headlen(skb
);
1724 int i
, copy
= start
- offset
;
1731 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1733 if ((len
-= copy
) == 0)
1740 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1743 WARN_ON(start
> offset
+ len
);
1745 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1746 if ((copy
= end
- offset
) > 0) {
1749 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1753 vaddr
= kmap_skb_frag(frag
);
1754 csum2
= csum_partial_copy_nocheck(vaddr
+
1758 kunmap_skb_frag(vaddr
);
1759 csum
= csum_block_add(csum
, csum2
, pos
);
1769 if (skb_shinfo(skb
)->frag_list
) {
1770 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1772 for (; list
; list
= list
->next
) {
1776 WARN_ON(start
> offset
+ len
);
1778 end
= start
+ list
->len
;
1779 if ((copy
= end
- offset
) > 0) {
1782 csum2
= skb_copy_and_csum_bits(list
,
1785 csum
= csum_block_add(csum
, csum2
, pos
);
1786 if ((len
-= copy
) == 0)
1798 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1800 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1805 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1806 csstart
= skb
->csum_start
- skb_headroom(skb
);
1808 csstart
= skb_headlen(skb
);
1810 BUG_ON(csstart
> skb_headlen(skb
));
1812 skb_copy_from_linear_data(skb
, to
, csstart
);
1815 if (csstart
!= skb
->len
)
1816 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1817 skb
->len
- csstart
, 0);
1819 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1820 long csstuff
= csstart
+ skb
->csum_offset
;
1822 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1825 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1828 * skb_dequeue - remove from the head of the queue
1829 * @list: list to dequeue from
1831 * Remove the head of the list. The list lock is taken so the function
1832 * may be used safely with other locking list functions. The head item is
1833 * returned or %NULL if the list is empty.
1836 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1838 unsigned long flags
;
1839 struct sk_buff
*result
;
1841 spin_lock_irqsave(&list
->lock
, flags
);
1842 result
= __skb_dequeue(list
);
1843 spin_unlock_irqrestore(&list
->lock
, flags
);
1846 EXPORT_SYMBOL(skb_dequeue
);
1849 * skb_dequeue_tail - remove from the tail of the queue
1850 * @list: list to dequeue from
1852 * Remove the tail of the list. The list lock is taken so the function
1853 * may be used safely with other locking list functions. The tail item is
1854 * returned or %NULL if the list is empty.
1856 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1858 unsigned long flags
;
1859 struct sk_buff
*result
;
1861 spin_lock_irqsave(&list
->lock
, flags
);
1862 result
= __skb_dequeue_tail(list
);
1863 spin_unlock_irqrestore(&list
->lock
, flags
);
1866 EXPORT_SYMBOL(skb_dequeue_tail
);
1869 * skb_queue_purge - empty a list
1870 * @list: list to empty
1872 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1873 * the list and one reference dropped. This function takes the list
1874 * lock and is atomic with respect to other list locking functions.
1876 void skb_queue_purge(struct sk_buff_head
*list
)
1878 struct sk_buff
*skb
;
1879 while ((skb
= skb_dequeue(list
)) != NULL
)
1882 EXPORT_SYMBOL(skb_queue_purge
);
1885 * skb_queue_head - queue a buffer at the list head
1886 * @list: list to use
1887 * @newsk: buffer to queue
1889 * Queue a buffer at the start of the list. This function takes the
1890 * list lock and can be used safely with other locking &sk_buff functions
1893 * A buffer cannot be placed on two lists at the same time.
1895 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1897 unsigned long flags
;
1899 spin_lock_irqsave(&list
->lock
, flags
);
1900 __skb_queue_head(list
, newsk
);
1901 spin_unlock_irqrestore(&list
->lock
, flags
);
1903 EXPORT_SYMBOL(skb_queue_head
);
1906 * skb_queue_tail - queue a buffer at the list tail
1907 * @list: list to use
1908 * @newsk: buffer to queue
1910 * Queue a buffer at the tail of the list. This function takes the
1911 * list lock and can be used safely with other locking &sk_buff functions
1914 * A buffer cannot be placed on two lists at the same time.
1916 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1918 unsigned long flags
;
1920 spin_lock_irqsave(&list
->lock
, flags
);
1921 __skb_queue_tail(list
, newsk
);
1922 spin_unlock_irqrestore(&list
->lock
, flags
);
1924 EXPORT_SYMBOL(skb_queue_tail
);
1927 * skb_unlink - remove a buffer from a list
1928 * @skb: buffer to remove
1929 * @list: list to use
1931 * Remove a packet from a list. The list locks are taken and this
1932 * function is atomic with respect to other list locked calls
1934 * You must know what list the SKB is on.
1936 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1938 unsigned long flags
;
1940 spin_lock_irqsave(&list
->lock
, flags
);
1941 __skb_unlink(skb
, list
);
1942 spin_unlock_irqrestore(&list
->lock
, flags
);
1944 EXPORT_SYMBOL(skb_unlink
);
1947 * skb_append - append a buffer
1948 * @old: buffer to insert after
1949 * @newsk: buffer to insert
1950 * @list: list to use
1952 * Place a packet after a given packet in a list. The list locks are taken
1953 * and this function is atomic with respect to other list locked calls.
1954 * A buffer cannot be placed on two lists at the same time.
1956 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1958 unsigned long flags
;
1960 spin_lock_irqsave(&list
->lock
, flags
);
1961 __skb_queue_after(list
, old
, newsk
);
1962 spin_unlock_irqrestore(&list
->lock
, flags
);
1964 EXPORT_SYMBOL(skb_append
);
1967 * skb_insert - insert a buffer
1968 * @old: buffer to insert before
1969 * @newsk: buffer to insert
1970 * @list: list to use
1972 * Place a packet before a given packet in a list. The list locks are
1973 * taken and this function is atomic with respect to other list locked
1976 * A buffer cannot be placed on two lists at the same time.
1978 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1980 unsigned long flags
;
1982 spin_lock_irqsave(&list
->lock
, flags
);
1983 __skb_insert(newsk
, old
->prev
, old
, list
);
1984 spin_unlock_irqrestore(&list
->lock
, flags
);
1986 EXPORT_SYMBOL(skb_insert
);
1988 static inline void skb_split_inside_header(struct sk_buff
*skb
,
1989 struct sk_buff
* skb1
,
1990 const u32 len
, const int pos
)
1994 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
1996 /* And move data appendix as is. */
1997 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1998 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2000 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2001 skb_shinfo(skb
)->nr_frags
= 0;
2002 skb1
->data_len
= skb
->data_len
;
2003 skb1
->len
+= skb1
->data_len
;
2006 skb_set_tail_pointer(skb
, len
);
2009 static inline void skb_split_no_header(struct sk_buff
*skb
,
2010 struct sk_buff
* skb1
,
2011 const u32 len
, int pos
)
2014 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2016 skb_shinfo(skb
)->nr_frags
= 0;
2017 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2019 skb
->data_len
= len
- pos
;
2021 for (i
= 0; i
< nfrags
; i
++) {
2022 int size
= skb_shinfo(skb
)->frags
[i
].size
;
2024 if (pos
+ size
> len
) {
2025 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2029 * We have two variants in this case:
2030 * 1. Move all the frag to the second
2031 * part, if it is possible. F.e.
2032 * this approach is mandatory for TUX,
2033 * where splitting is expensive.
2034 * 2. Split is accurately. We make this.
2036 get_page(skb_shinfo(skb
)->frags
[i
].page
);
2037 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2038 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
2039 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
2040 skb_shinfo(skb
)->nr_frags
++;
2044 skb_shinfo(skb
)->nr_frags
++;
2047 skb_shinfo(skb1
)->nr_frags
= k
;
2051 * skb_split - Split fragmented skb to two parts at length len.
2052 * @skb: the buffer to split
2053 * @skb1: the buffer to receive the second part
2054 * @len: new length for skb
2056 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2058 int pos
= skb_headlen(skb
);
2060 if (len
< pos
) /* Split line is inside header. */
2061 skb_split_inside_header(skb
, skb1
, len
, pos
);
2062 else /* Second chunk has no header, nothing to copy. */
2063 skb_split_no_header(skb
, skb1
, len
, pos
);
2065 EXPORT_SYMBOL(skb_split
);
2067 /* Shifting from/to a cloned skb is a no-go.
2069 * Caller cannot keep skb_shinfo related pointers past calling here!
2071 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2073 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2077 * skb_shift - Shifts paged data partially from skb to another
2078 * @tgt: buffer into which tail data gets added
2079 * @skb: buffer from which the paged data comes from
2080 * @shiftlen: shift up to this many bytes
2082 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2083 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2084 * It's up to caller to free skb if everything was shifted.
2086 * If @tgt runs out of frags, the whole operation is aborted.
2088 * Skb cannot include anything else but paged data while tgt is allowed
2089 * to have non-paged data as well.
2091 * TODO: full sized shift could be optimized but that would need
2092 * specialized skb free'er to handle frags without up-to-date nr_frags.
2094 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2096 int from
, to
, merge
, todo
;
2097 struct skb_frag_struct
*fragfrom
, *fragto
;
2099 BUG_ON(shiftlen
> skb
->len
);
2100 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2104 to
= skb_shinfo(tgt
)->nr_frags
;
2105 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2107 /* Actual merge is delayed until the point when we know we can
2108 * commit all, so that we don't have to undo partial changes
2111 !skb_can_coalesce(tgt
, to
, fragfrom
->page
, fragfrom
->page_offset
)) {
2116 todo
-= fragfrom
->size
;
2118 if (skb_prepare_for_shift(skb
) ||
2119 skb_prepare_for_shift(tgt
))
2122 /* All previous frag pointers might be stale! */
2123 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2124 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2126 fragto
->size
+= shiftlen
;
2127 fragfrom
->size
-= shiftlen
;
2128 fragfrom
->page_offset
+= shiftlen
;
2136 /* Skip full, not-fitting skb to avoid expensive operations */
2137 if ((shiftlen
== skb
->len
) &&
2138 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2141 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2144 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2145 if (to
== MAX_SKB_FRAGS
)
2148 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2149 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2151 if (todo
>= fragfrom
->size
) {
2152 *fragto
= *fragfrom
;
2153 todo
-= fragfrom
->size
;
2158 get_page(fragfrom
->page
);
2159 fragto
->page
= fragfrom
->page
;
2160 fragto
->page_offset
= fragfrom
->page_offset
;
2161 fragto
->size
= todo
;
2163 fragfrom
->page_offset
+= todo
;
2164 fragfrom
->size
-= todo
;
2172 /* Ready to "commit" this state change to tgt */
2173 skb_shinfo(tgt
)->nr_frags
= to
;
2176 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2177 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2179 fragto
->size
+= fragfrom
->size
;
2180 put_page(fragfrom
->page
);
2183 /* Reposition in the original skb */
2185 while (from
< skb_shinfo(skb
)->nr_frags
)
2186 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2187 skb_shinfo(skb
)->nr_frags
= to
;
2189 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2192 /* Most likely the tgt won't ever need its checksum anymore, skb on
2193 * the other hand might need it if it needs to be resent
2195 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2196 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2198 /* Yak, is it really working this way? Some helper please? */
2199 skb
->len
-= shiftlen
;
2200 skb
->data_len
-= shiftlen
;
2201 skb
->truesize
-= shiftlen
;
2202 tgt
->len
+= shiftlen
;
2203 tgt
->data_len
+= shiftlen
;
2204 tgt
->truesize
+= shiftlen
;
2210 * skb_prepare_seq_read - Prepare a sequential read of skb data
2211 * @skb: the buffer to read
2212 * @from: lower offset of data to be read
2213 * @to: upper offset of data to be read
2214 * @st: state variable
2216 * Initializes the specified state variable. Must be called before
2217 * invoking skb_seq_read() for the first time.
2219 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2220 unsigned int to
, struct skb_seq_state
*st
)
2222 st
->lower_offset
= from
;
2223 st
->upper_offset
= to
;
2224 st
->root_skb
= st
->cur_skb
= skb
;
2225 st
->frag_idx
= st
->stepped_offset
= 0;
2226 st
->frag_data
= NULL
;
2228 EXPORT_SYMBOL(skb_prepare_seq_read
);
2231 * skb_seq_read - Sequentially read skb data
2232 * @consumed: number of bytes consumed by the caller so far
2233 * @data: destination pointer for data to be returned
2234 * @st: state variable
2236 * Reads a block of skb data at &consumed relative to the
2237 * lower offset specified to skb_prepare_seq_read(). Assigns
2238 * the head of the data block to &data and returns the length
2239 * of the block or 0 if the end of the skb data or the upper
2240 * offset has been reached.
2242 * The caller is not required to consume all of the data
2243 * returned, i.e. &consumed is typically set to the number
2244 * of bytes already consumed and the next call to
2245 * skb_seq_read() will return the remaining part of the block.
2247 * Note 1: The size of each block of data returned can be arbitary,
2248 * this limitation is the cost for zerocopy seqeuental
2249 * reads of potentially non linear data.
2251 * Note 2: Fragment lists within fragments are not implemented
2252 * at the moment, state->root_skb could be replaced with
2253 * a stack for this purpose.
2255 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2256 struct skb_seq_state
*st
)
2258 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2261 if (unlikely(abs_offset
>= st
->upper_offset
))
2265 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2267 if (abs_offset
< block_limit
) {
2268 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2269 return block_limit
- abs_offset
;
2272 if (st
->frag_idx
== 0 && !st
->frag_data
)
2273 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2275 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2276 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2277 block_limit
= frag
->size
+ st
->stepped_offset
;
2279 if (abs_offset
< block_limit
) {
2281 st
->frag_data
= kmap_skb_frag(frag
);
2283 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2284 (abs_offset
- st
->stepped_offset
);
2286 return block_limit
- abs_offset
;
2289 if (st
->frag_data
) {
2290 kunmap_skb_frag(st
->frag_data
);
2291 st
->frag_data
= NULL
;
2295 st
->stepped_offset
+= frag
->size
;
2298 if (st
->frag_data
) {
2299 kunmap_skb_frag(st
->frag_data
);
2300 st
->frag_data
= NULL
;
2303 if (st
->root_skb
== st
->cur_skb
&&
2304 skb_shinfo(st
->root_skb
)->frag_list
) {
2305 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2308 } else if (st
->cur_skb
->next
) {
2309 st
->cur_skb
= st
->cur_skb
->next
;
2316 EXPORT_SYMBOL(skb_seq_read
);
2319 * skb_abort_seq_read - Abort a sequential read of skb data
2320 * @st: state variable
2322 * Must be called if skb_seq_read() was not called until it
2325 void skb_abort_seq_read(struct skb_seq_state
*st
)
2328 kunmap_skb_frag(st
->frag_data
);
2330 EXPORT_SYMBOL(skb_abort_seq_read
);
2332 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2334 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2335 struct ts_config
*conf
,
2336 struct ts_state
*state
)
2338 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2341 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2343 skb_abort_seq_read(TS_SKB_CB(state
));
2347 * skb_find_text - Find a text pattern in skb data
2348 * @skb: the buffer to look in
2349 * @from: search offset
2351 * @config: textsearch configuration
2352 * @state: uninitialized textsearch state variable
2354 * Finds a pattern in the skb data according to the specified
2355 * textsearch configuration. Use textsearch_next() to retrieve
2356 * subsequent occurrences of the pattern. Returns the offset
2357 * to the first occurrence or UINT_MAX if no match was found.
2359 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2360 unsigned int to
, struct ts_config
*config
,
2361 struct ts_state
*state
)
2365 config
->get_next_block
= skb_ts_get_next_block
;
2366 config
->finish
= skb_ts_finish
;
2368 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2370 ret
= textsearch_find(config
, state
);
2371 return (ret
<= to
- from
? ret
: UINT_MAX
);
2373 EXPORT_SYMBOL(skb_find_text
);
2376 * skb_append_datato_frags: - append the user data to a skb
2377 * @sk: sock structure
2378 * @skb: skb structure to be appened with user data.
2379 * @getfrag: call back function to be used for getting the user data
2380 * @from: pointer to user message iov
2381 * @length: length of the iov message
2383 * Description: This procedure append the user data in the fragment part
2384 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2386 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2387 int (*getfrag
)(void *from
, char *to
, int offset
,
2388 int len
, int odd
, struct sk_buff
*skb
),
2389 void *from
, int length
)
2392 skb_frag_t
*frag
= NULL
;
2393 struct page
*page
= NULL
;
2399 /* Return error if we don't have space for new frag */
2400 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2401 if (frg_cnt
>= MAX_SKB_FRAGS
)
2404 /* allocate a new page for next frag */
2405 page
= alloc_pages(sk
->sk_allocation
, 0);
2407 /* If alloc_page fails just return failure and caller will
2408 * free previous allocated pages by doing kfree_skb()
2413 /* initialize the next frag */
2414 sk
->sk_sndmsg_page
= page
;
2415 sk
->sk_sndmsg_off
= 0;
2416 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2417 skb
->truesize
+= PAGE_SIZE
;
2418 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2420 /* get the new initialized frag */
2421 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2422 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2424 /* copy the user data to page */
2425 left
= PAGE_SIZE
- frag
->page_offset
;
2426 copy
= (length
> left
)? left
: length
;
2428 ret
= getfrag(from
, (page_address(frag
->page
) +
2429 frag
->page_offset
+ frag
->size
),
2430 offset
, copy
, 0, skb
);
2434 /* copy was successful so update the size parameters */
2435 sk
->sk_sndmsg_off
+= copy
;
2438 skb
->data_len
+= copy
;
2442 } while (length
> 0);
2446 EXPORT_SYMBOL(skb_append_datato_frags
);
2449 * skb_pull_rcsum - pull skb and update receive checksum
2450 * @skb: buffer to update
2451 * @len: length of data pulled
2453 * This function performs an skb_pull on the packet and updates
2454 * the CHECKSUM_COMPLETE checksum. It should be used on
2455 * receive path processing instead of skb_pull unless you know
2456 * that the checksum difference is zero (e.g., a valid IP header)
2457 * or you are setting ip_summed to CHECKSUM_NONE.
2459 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2461 BUG_ON(len
> skb
->len
);
2463 BUG_ON(skb
->len
< skb
->data_len
);
2464 skb_postpull_rcsum(skb
, skb
->data
, len
);
2465 return skb
->data
+= len
;
2468 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2471 * skb_segment - Perform protocol segmentation on skb.
2472 * @skb: buffer to segment
2473 * @features: features for the output path (see dev->features)
2475 * This function performs segmentation on the given skb. It returns
2476 * a pointer to the first in a list of new skbs for the segments.
2477 * In case of error it returns ERR_PTR(err).
2479 struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
)
2481 struct sk_buff
*segs
= NULL
;
2482 struct sk_buff
*tail
= NULL
;
2483 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2484 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2485 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2486 unsigned int offset
= doffset
;
2487 unsigned int headroom
;
2489 int sg
= features
& NETIF_F_SG
;
2490 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2495 __skb_push(skb
, doffset
);
2496 headroom
= skb_headroom(skb
);
2497 pos
= skb_headlen(skb
);
2500 struct sk_buff
*nskb
;
2505 len
= skb
->len
- offset
;
2509 hsize
= skb_headlen(skb
) - offset
;
2512 if (hsize
> len
|| !sg
)
2515 if (!hsize
&& i
>= nfrags
) {
2516 BUG_ON(fskb
->len
!= len
);
2519 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2522 if (unlikely(!nskb
))
2525 hsize
= skb_end_pointer(nskb
) - nskb
->head
;
2526 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2531 nskb
->truesize
+= skb_end_pointer(nskb
) - nskb
->head
-
2533 skb_release_head_state(nskb
);
2534 __skb_push(nskb
, doffset
);
2536 nskb
= alloc_skb(hsize
+ doffset
+ headroom
,
2539 if (unlikely(!nskb
))
2542 skb_reserve(nskb
, headroom
);
2543 __skb_put(nskb
, doffset
);
2552 __copy_skb_header(nskb
, skb
);
2553 nskb
->mac_len
= skb
->mac_len
;
2555 skb_reset_mac_header(nskb
);
2556 skb_set_network_header(nskb
, skb
->mac_len
);
2557 nskb
->transport_header
= (nskb
->network_header
+
2558 skb_network_header_len(skb
));
2559 skb_copy_from_linear_data(skb
, nskb
->data
, doffset
);
2561 if (pos
>= offset
+ len
)
2565 nskb
->ip_summed
= CHECKSUM_NONE
;
2566 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2572 frag
= skb_shinfo(nskb
)->frags
;
2574 skb_copy_from_linear_data_offset(skb
, offset
,
2575 skb_put(nskb
, hsize
), hsize
);
2577 while (pos
< offset
+ len
&& i
< nfrags
) {
2578 *frag
= skb_shinfo(skb
)->frags
[i
];
2579 get_page(frag
->page
);
2583 frag
->page_offset
+= offset
- pos
;
2584 frag
->size
-= offset
- pos
;
2587 skb_shinfo(nskb
)->nr_frags
++;
2589 if (pos
+ size
<= offset
+ len
) {
2593 frag
->size
-= pos
+ size
- (offset
+ len
);
2600 if (pos
< offset
+ len
) {
2601 struct sk_buff
*fskb2
= fskb
;
2603 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2609 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2615 BUG_ON(skb_shinfo(nskb
)->frag_list
);
2616 skb_shinfo(nskb
)->frag_list
= fskb2
;
2620 nskb
->data_len
= len
- hsize
;
2621 nskb
->len
+= nskb
->data_len
;
2622 nskb
->truesize
+= nskb
->data_len
;
2623 } while ((offset
+= len
) < skb
->len
);
2628 while ((skb
= segs
)) {
2632 return ERR_PTR(err
);
2634 EXPORT_SYMBOL_GPL(skb_segment
);
2636 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2638 struct sk_buff
*p
= *head
;
2639 struct sk_buff
*nskb
;
2640 unsigned int headroom
;
2641 unsigned int len
= skb_gro_len(skb
);
2643 if (p
->len
+ len
>= 65536)
2646 if (skb_shinfo(p
)->frag_list
)
2648 else if (skb_headlen(skb
) <= skb_gro_offset(skb
)) {
2649 if (skb_shinfo(p
)->nr_frags
+ skb_shinfo(skb
)->nr_frags
>
2653 skb_shinfo(skb
)->frags
[0].page_offset
+=
2654 skb_gro_offset(skb
) - skb_headlen(skb
);
2655 skb_shinfo(skb
)->frags
[0].size
-=
2656 skb_gro_offset(skb
) - skb_headlen(skb
);
2658 memcpy(skb_shinfo(p
)->frags
+ skb_shinfo(p
)->nr_frags
,
2659 skb_shinfo(skb
)->frags
,
2660 skb_shinfo(skb
)->nr_frags
* sizeof(skb_frag_t
));
2662 skb_shinfo(p
)->nr_frags
+= skb_shinfo(skb
)->nr_frags
;
2663 skb_shinfo(skb
)->nr_frags
= 0;
2665 skb
->truesize
-= skb
->data_len
;
2666 skb
->len
-= skb
->data_len
;
2669 NAPI_GRO_CB(skb
)->free
= 1;
2673 headroom
= skb_headroom(p
);
2674 nskb
= netdev_alloc_skb(p
->dev
, headroom
+ skb_gro_offset(p
));
2675 if (unlikely(!nskb
))
2678 __copy_skb_header(nskb
, p
);
2679 nskb
->mac_len
= p
->mac_len
;
2681 skb_reserve(nskb
, headroom
);
2682 __skb_put(nskb
, skb_gro_offset(p
));
2684 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
2685 skb_set_network_header(nskb
, skb_network_offset(p
));
2686 skb_set_transport_header(nskb
, skb_transport_offset(p
));
2688 __skb_pull(p
, skb_gro_offset(p
));
2689 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
2690 p
->data
- skb_mac_header(p
));
2692 *NAPI_GRO_CB(nskb
) = *NAPI_GRO_CB(p
);
2693 skb_shinfo(nskb
)->frag_list
= p
;
2694 skb_shinfo(nskb
)->gso_size
= skb_shinfo(p
)->gso_size
;
2695 skb_header_release(p
);
2698 nskb
->data_len
+= p
->len
;
2699 nskb
->truesize
+= p
->len
;
2700 nskb
->len
+= p
->len
;
2703 nskb
->next
= p
->next
;
2709 if (skb_gro_offset(skb
) > skb_headlen(skb
)) {
2710 skb_shinfo(skb
)->frags
[0].page_offset
+=
2711 skb_gro_offset(skb
) - skb_headlen(skb
);
2712 skb_shinfo(skb
)->frags
[0].size
-=
2713 skb_gro_offset(skb
) - skb_headlen(skb
);
2714 skb_gro_reset_offset(skb
);
2715 skb_gro_pull(skb
, skb_headlen(skb
));
2718 __skb_pull(skb
, skb_gro_offset(skb
));
2720 p
->prev
->next
= skb
;
2722 skb_header_release(skb
);
2725 NAPI_GRO_CB(p
)->count
++;
2730 NAPI_GRO_CB(skb
)->same_flow
= 1;
2733 EXPORT_SYMBOL_GPL(skb_gro_receive
);
2735 void __init
skb_init(void)
2737 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2738 sizeof(struct sk_buff
),
2740 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2742 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2743 (2*sizeof(struct sk_buff
)) +
2746 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2751 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2752 * @skb: Socket buffer containing the buffers to be mapped
2753 * @sg: The scatter-gather list to map into
2754 * @offset: The offset into the buffer's contents to start mapping
2755 * @len: Length of buffer space to be mapped
2757 * Fill the specified scatter-gather list with mappings/pointers into a
2758 * region of the buffer space attached to a socket buffer.
2761 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2763 int start
= skb_headlen(skb
);
2764 int i
, copy
= start
- offset
;
2770 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
2772 if ((len
-= copy
) == 0)
2777 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2780 WARN_ON(start
> offset
+ len
);
2782 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
2783 if ((copy
= end
- offset
) > 0) {
2784 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2788 sg_set_page(&sg
[elt
], frag
->page
, copy
,
2789 frag
->page_offset
+offset
-start
);
2798 if (skb_shinfo(skb
)->frag_list
) {
2799 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
2801 for (; list
; list
= list
->next
) {
2804 WARN_ON(start
> offset
+ len
);
2806 end
= start
+ list
->len
;
2807 if ((copy
= end
- offset
) > 0) {
2810 elt
+= __skb_to_sgvec(list
, sg
+elt
, offset
- start
,
2812 if ((len
-= copy
) == 0)
2823 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2825 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
2827 sg_mark_end(&sg
[nsg
- 1]);
2831 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2834 * skb_cow_data - Check that a socket buffer's data buffers are writable
2835 * @skb: The socket buffer to check.
2836 * @tailbits: Amount of trailing space to be added
2837 * @trailer: Returned pointer to the skb where the @tailbits space begins
2839 * Make sure that the data buffers attached to a socket buffer are
2840 * writable. If they are not, private copies are made of the data buffers
2841 * and the socket buffer is set to use these instead.
2843 * If @tailbits is given, make sure that there is space to write @tailbits
2844 * bytes of data beyond current end of socket buffer. @trailer will be
2845 * set to point to the skb in which this space begins.
2847 * The number of scatterlist elements required to completely map the
2848 * COW'd and extended socket buffer will be returned.
2850 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
2854 struct sk_buff
*skb1
, **skb_p
;
2856 /* If skb is cloned or its head is paged, reallocate
2857 * head pulling out all the pages (pages are considered not writable
2858 * at the moment even if they are anonymous).
2860 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
2861 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
2864 /* Easy case. Most of packets will go this way. */
2865 if (!skb_shinfo(skb
)->frag_list
) {
2866 /* A little of trouble, not enough of space for trailer.
2867 * This should not happen, when stack is tuned to generate
2868 * good frames. OK, on miss we reallocate and reserve even more
2869 * space, 128 bytes is fair. */
2871 if (skb_tailroom(skb
) < tailbits
&&
2872 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
2880 /* Misery. We are in troubles, going to mincer fragments... */
2883 skb_p
= &skb_shinfo(skb
)->frag_list
;
2886 while ((skb1
= *skb_p
) != NULL
) {
2889 /* The fragment is partially pulled by someone,
2890 * this can happen on input. Copy it and everything
2893 if (skb_shared(skb1
))
2896 /* If the skb is the last, worry about trailer. */
2898 if (skb1
->next
== NULL
&& tailbits
) {
2899 if (skb_shinfo(skb1
)->nr_frags
||
2900 skb_shinfo(skb1
)->frag_list
||
2901 skb_tailroom(skb1
) < tailbits
)
2902 ntail
= tailbits
+ 128;
2908 skb_shinfo(skb1
)->nr_frags
||
2909 skb_shinfo(skb1
)->frag_list
) {
2910 struct sk_buff
*skb2
;
2912 /* Fuck, we are miserable poor guys... */
2914 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
2916 skb2
= skb_copy_expand(skb1
,
2920 if (unlikely(skb2
== NULL
))
2924 skb_set_owner_w(skb2
, skb1
->sk
);
2926 /* Looking around. Are we still alive?
2927 * OK, link new skb, drop old one */
2929 skb2
->next
= skb1
->next
;
2936 skb_p
= &skb1
->next
;
2941 EXPORT_SYMBOL_GPL(skb_cow_data
);
2943 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
2944 struct skb_shared_hwtstamps
*hwtstamps
)
2946 struct sock
*sk
= orig_skb
->sk
;
2947 struct sock_exterr_skb
*serr
;
2948 struct sk_buff
*skb
;
2954 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
2959 *skb_hwtstamps(skb
) =
2963 * no hardware time stamps available,
2964 * so keep the skb_shared_tx and only
2965 * store software time stamp
2967 skb
->tstamp
= ktime_get_real();
2970 serr
= SKB_EXT_ERR(skb
);
2971 memset(serr
, 0, sizeof(*serr
));
2972 serr
->ee
.ee_errno
= ENOMSG
;
2973 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
2974 err
= sock_queue_err_skb(sk
, skb
);
2978 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
2982 * skb_partial_csum_set - set up and verify partial csum values for packet
2983 * @skb: the skb to set
2984 * @start: the number of bytes after skb->data to start checksumming.
2985 * @off: the offset from start to place the checksum.
2987 * For untrusted partially-checksummed packets, we need to make sure the values
2988 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2990 * This function checks and sets those values and skb->ip_summed: if this
2991 * returns false you should drop the packet.
2993 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
2995 if (unlikely(start
> skb
->len
- 2) ||
2996 unlikely((int)start
+ off
> skb
->len
- 2)) {
2997 if (net_ratelimit())
2999 "bad partial csum: csum=%u/%u len=%u\n",
3000 start
, off
, skb
->len
);
3003 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3004 skb
->csum_start
= skb_headroom(skb
) + start
;
3005 skb
->csum_offset
= off
;
3008 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3010 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3012 if (net_ratelimit())
3013 pr_warning("%s: received packets cannot be forwarded"
3014 " while LRO is enabled\n", skb
->dev
->name
);
3016 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);