ipv6: Remove some pointless conditionals before kfree_skb()
[linux/fpc-iii.git] / net / core / skbuff.c
blob33640d99c8ed65794458f4a673e45724232ef520
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 #include <linux/errqueue.h>
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
69 #include "kmap_skb.h"
71 static struct kmem_cache *skbuff_head_cache __read_mostly;
72 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
75 struct pipe_buffer *buf)
77 put_page(buf->page);
80 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
81 struct pipe_buffer *buf)
83 get_page(buf->page);
86 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
89 return 1;
93 /* Pipe buffer operations for a socket. */
94 static struct pipe_buf_operations sock_pipe_buf_ops = {
95 .can_merge = 0,
96 .map = generic_pipe_buf_map,
97 .unmap = generic_pipe_buf_unmap,
98 .confirm = generic_pipe_buf_confirm,
99 .release = sock_pipe_buf_release,
100 .steal = sock_pipe_buf_steal,
101 .get = sock_pipe_buf_get,
105 * Keep out-of-line to prevent kernel bloat.
106 * __builtin_return_address is not used because it is not always
107 * reliable.
111 * skb_over_panic - private function
112 * @skb: buffer
113 * @sz: size
114 * @here: address
116 * Out of line support code for skb_put(). Not user callable.
118 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
120 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
121 "data:%p tail:%#lx end:%#lx dev:%s\n",
122 here, skb->len, sz, skb->head, skb->data,
123 (unsigned long)skb->tail, (unsigned long)skb->end,
124 skb->dev ? skb->dev->name : "<NULL>");
125 BUG();
127 EXPORT_SYMBOL(skb_over_panic);
130 * skb_under_panic - private function
131 * @skb: buffer
132 * @sz: size
133 * @here: address
135 * Out of line support code for skb_push(). Not user callable.
138 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
141 "data:%p tail:%#lx end:%#lx dev:%s\n",
142 here, skb->len, sz, skb->head, skb->data,
143 (unsigned long)skb->tail, (unsigned long)skb->end,
144 skb->dev ? skb->dev->name : "<NULL>");
145 BUG();
147 EXPORT_SYMBOL(skb_under_panic);
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
151 * [BEEP] leaks.
156 * __alloc_skb - allocate a network buffer
157 * @size: size to allocate
158 * @gfp_mask: allocation mask
159 * @fclone: allocate from fclone cache instead of head cache
160 * and allocate a cloned (child) skb
161 * @node: numa node to allocate memory on
163 * Allocate a new &sk_buff. The returned buffer has no headroom and a
164 * tail room of size bytes. The object has a reference count of one.
165 * The return is the buffer. On a failure the return is %NULL.
167 * Buffers may only be allocated from interrupts using a @gfp_mask of
168 * %GFP_ATOMIC.
170 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
171 int fclone, int node)
173 struct kmem_cache *cache;
174 struct skb_shared_info *shinfo;
175 struct sk_buff *skb;
176 u8 *data;
178 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180 /* Get the HEAD */
181 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
182 if (!skb)
183 goto out;
185 size = SKB_DATA_ALIGN(size);
186 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
187 gfp_mask, node);
188 if (!data)
189 goto nodata;
192 * Only clear those fields we need to clear, not those that we will
193 * actually initialise below. Hence, don't put any more fields after
194 * the tail pointer in struct sk_buff!
196 memset(skb, 0, offsetof(struct sk_buff, tail));
197 skb->truesize = size + sizeof(struct sk_buff);
198 atomic_set(&skb->users, 1);
199 skb->head = data;
200 skb->data = data;
201 skb_reset_tail_pointer(skb);
202 skb->end = skb->tail + size;
203 /* make sure we initialize shinfo sequentially */
204 shinfo = skb_shinfo(skb);
205 atomic_set(&shinfo->dataref, 1);
206 shinfo->nr_frags = 0;
207 shinfo->gso_size = 0;
208 shinfo->gso_segs = 0;
209 shinfo->gso_type = 0;
210 shinfo->ip6_frag_id = 0;
211 shinfo->tx_flags.flags = 0;
212 shinfo->frag_list = NULL;
213 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
215 if (fclone) {
216 struct sk_buff *child = skb + 1;
217 atomic_t *fclone_ref = (atomic_t *) (child + 1);
219 skb->fclone = SKB_FCLONE_ORIG;
220 atomic_set(fclone_ref, 1);
222 child->fclone = SKB_FCLONE_UNAVAILABLE;
224 out:
225 return skb;
226 nodata:
227 kmem_cache_free(cache, skb);
228 skb = NULL;
229 goto out;
231 EXPORT_SYMBOL(__alloc_skb);
234 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
235 * @dev: network device to receive on
236 * @length: length to allocate
237 * @gfp_mask: get_free_pages mask, passed to alloc_skb
239 * Allocate a new &sk_buff and assign it a usage count of one. The
240 * buffer has unspecified headroom built in. Users should allocate
241 * the headroom they think they need without accounting for the
242 * built in space. The built in space is used for optimisations.
244 * %NULL is returned if there is no free memory.
246 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
247 unsigned int length, gfp_t gfp_mask)
249 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
250 struct sk_buff *skb;
252 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
253 if (likely(skb)) {
254 skb_reserve(skb, NET_SKB_PAD);
255 skb->dev = dev;
257 return skb;
259 EXPORT_SYMBOL(__netdev_alloc_skb);
261 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
263 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
264 struct page *page;
266 page = alloc_pages_node(node, gfp_mask, 0);
267 return page;
269 EXPORT_SYMBOL(__netdev_alloc_page);
271 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
272 int size)
274 skb_fill_page_desc(skb, i, page, off, size);
275 skb->len += size;
276 skb->data_len += size;
277 skb->truesize += size;
279 EXPORT_SYMBOL(skb_add_rx_frag);
282 * dev_alloc_skb - allocate an skbuff for receiving
283 * @length: length to allocate
285 * Allocate a new &sk_buff and assign it a usage count of one. The
286 * buffer has unspecified headroom built in. Users should allocate
287 * the headroom they think they need without accounting for the
288 * built in space. The built in space is used for optimisations.
290 * %NULL is returned if there is no free memory. Although this function
291 * allocates memory it can be called from an interrupt.
293 struct sk_buff *dev_alloc_skb(unsigned int length)
296 * There is more code here than it seems:
297 * __dev_alloc_skb is an inline
299 return __dev_alloc_skb(length, GFP_ATOMIC);
301 EXPORT_SYMBOL(dev_alloc_skb);
303 static void skb_drop_list(struct sk_buff **listp)
305 struct sk_buff *list = *listp;
307 *listp = NULL;
309 do {
310 struct sk_buff *this = list;
311 list = list->next;
312 kfree_skb(this);
313 } while (list);
316 static inline void skb_drop_fraglist(struct sk_buff *skb)
318 skb_drop_list(&skb_shinfo(skb)->frag_list);
321 static void skb_clone_fraglist(struct sk_buff *skb)
323 struct sk_buff *list;
325 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
326 skb_get(list);
329 static void skb_release_data(struct sk_buff *skb)
331 if (!skb->cloned ||
332 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
333 &skb_shinfo(skb)->dataref)) {
334 if (skb_shinfo(skb)->nr_frags) {
335 int i;
336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
337 put_page(skb_shinfo(skb)->frags[i].page);
340 if (skb_shinfo(skb)->frag_list)
341 skb_drop_fraglist(skb);
343 kfree(skb->head);
348 * Free an skbuff by memory without cleaning the state.
350 static void kfree_skbmem(struct sk_buff *skb)
352 struct sk_buff *other;
353 atomic_t *fclone_ref;
355 switch (skb->fclone) {
356 case SKB_FCLONE_UNAVAILABLE:
357 kmem_cache_free(skbuff_head_cache, skb);
358 break;
360 case SKB_FCLONE_ORIG:
361 fclone_ref = (atomic_t *) (skb + 2);
362 if (atomic_dec_and_test(fclone_ref))
363 kmem_cache_free(skbuff_fclone_cache, skb);
364 break;
366 case SKB_FCLONE_CLONE:
367 fclone_ref = (atomic_t *) (skb + 1);
368 other = skb - 1;
370 /* The clone portion is available for
371 * fast-cloning again.
373 skb->fclone = SKB_FCLONE_UNAVAILABLE;
375 if (atomic_dec_and_test(fclone_ref))
376 kmem_cache_free(skbuff_fclone_cache, other);
377 break;
381 static void skb_release_head_state(struct sk_buff *skb)
383 dst_release(skb->dst);
384 #ifdef CONFIG_XFRM
385 secpath_put(skb->sp);
386 #endif
387 if (skb->destructor) {
388 WARN_ON(in_irq());
389 skb->destructor(skb);
391 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
392 nf_conntrack_put(skb->nfct);
393 nf_conntrack_put_reasm(skb->nfct_reasm);
394 #endif
395 #ifdef CONFIG_BRIDGE_NETFILTER
396 nf_bridge_put(skb->nf_bridge);
397 #endif
398 /* XXX: IS this still necessary? - JHS */
399 #ifdef CONFIG_NET_SCHED
400 skb->tc_index = 0;
401 #ifdef CONFIG_NET_CLS_ACT
402 skb->tc_verd = 0;
403 #endif
404 #endif
407 /* Free everything but the sk_buff shell. */
408 static void skb_release_all(struct sk_buff *skb)
410 skb_release_head_state(skb);
411 skb_release_data(skb);
415 * __kfree_skb - private function
416 * @skb: buffer
418 * Free an sk_buff. Release anything attached to the buffer.
419 * Clean the state. This is an internal helper function. Users should
420 * always call kfree_skb
423 void __kfree_skb(struct sk_buff *skb)
425 skb_release_all(skb);
426 kfree_skbmem(skb);
428 EXPORT_SYMBOL(__kfree_skb);
431 * kfree_skb - free an sk_buff
432 * @skb: buffer to free
434 * Drop a reference to the buffer and free it if the usage count has
435 * hit zero.
437 void kfree_skb(struct sk_buff *skb)
439 if (unlikely(!skb))
440 return;
441 if (likely(atomic_read(&skb->users) == 1))
442 smp_rmb();
443 else if (likely(!atomic_dec_and_test(&skb->users)))
444 return;
445 __kfree_skb(skb);
447 EXPORT_SYMBOL(kfree_skb);
450 * skb_recycle_check - check if skb can be reused for receive
451 * @skb: buffer
452 * @skb_size: minimum receive buffer size
454 * Checks that the skb passed in is not shared or cloned, and
455 * that it is linear and its head portion at least as large as
456 * skb_size so that it can be recycled as a receive buffer.
457 * If these conditions are met, this function does any necessary
458 * reference count dropping and cleans up the skbuff as if it
459 * just came from __alloc_skb().
461 int skb_recycle_check(struct sk_buff *skb, int skb_size)
463 struct skb_shared_info *shinfo;
465 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
466 return 0;
468 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
469 if (skb_end_pointer(skb) - skb->head < skb_size)
470 return 0;
472 if (skb_shared(skb) || skb_cloned(skb))
473 return 0;
475 skb_release_head_state(skb);
476 shinfo = skb_shinfo(skb);
477 atomic_set(&shinfo->dataref, 1);
478 shinfo->nr_frags = 0;
479 shinfo->gso_size = 0;
480 shinfo->gso_segs = 0;
481 shinfo->gso_type = 0;
482 shinfo->ip6_frag_id = 0;
483 shinfo->frag_list = NULL;
485 memset(skb, 0, offsetof(struct sk_buff, tail));
486 skb->data = skb->head + NET_SKB_PAD;
487 skb_reset_tail_pointer(skb);
489 return 1;
491 EXPORT_SYMBOL(skb_recycle_check);
493 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
495 new->tstamp = old->tstamp;
496 new->dev = old->dev;
497 new->transport_header = old->transport_header;
498 new->network_header = old->network_header;
499 new->mac_header = old->mac_header;
500 new->dst = dst_clone(old->dst);
501 #ifdef CONFIG_XFRM
502 new->sp = secpath_get(old->sp);
503 #endif
504 memcpy(new->cb, old->cb, sizeof(old->cb));
505 new->csum_start = old->csum_start;
506 new->csum_offset = old->csum_offset;
507 new->local_df = old->local_df;
508 new->pkt_type = old->pkt_type;
509 new->ip_summed = old->ip_summed;
510 skb_copy_queue_mapping(new, old);
511 new->priority = old->priority;
512 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
513 new->ipvs_property = old->ipvs_property;
514 #endif
515 new->protocol = old->protocol;
516 new->mark = old->mark;
517 __nf_copy(new, old);
518 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
519 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
520 new->nf_trace = old->nf_trace;
521 #endif
522 #ifdef CONFIG_NET_SCHED
523 new->tc_index = old->tc_index;
524 #ifdef CONFIG_NET_CLS_ACT
525 new->tc_verd = old->tc_verd;
526 #endif
527 #endif
528 new->vlan_tci = old->vlan_tci;
530 skb_copy_secmark(new, old);
533 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
535 #define C(x) n->x = skb->x
537 n->next = n->prev = NULL;
538 n->sk = NULL;
539 __copy_skb_header(n, skb);
541 C(len);
542 C(data_len);
543 C(mac_len);
544 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
545 n->cloned = 1;
546 n->nohdr = 0;
547 n->destructor = NULL;
548 C(iif);
549 C(tail);
550 C(end);
551 C(head);
552 C(data);
553 C(truesize);
554 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
555 C(do_not_encrypt);
556 C(requeue);
557 #endif
558 atomic_set(&n->users, 1);
560 atomic_inc(&(skb_shinfo(skb)->dataref));
561 skb->cloned = 1;
563 return n;
564 #undef C
568 * skb_morph - morph one skb into another
569 * @dst: the skb to receive the contents
570 * @src: the skb to supply the contents
572 * This is identical to skb_clone except that the target skb is
573 * supplied by the user.
575 * The target skb is returned upon exit.
577 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
579 skb_release_all(dst);
580 return __skb_clone(dst, src);
582 EXPORT_SYMBOL_GPL(skb_morph);
585 * skb_clone - duplicate an sk_buff
586 * @skb: buffer to clone
587 * @gfp_mask: allocation priority
589 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
590 * copies share the same packet data but not structure. The new
591 * buffer has a reference count of 1. If the allocation fails the
592 * function returns %NULL otherwise the new buffer is returned.
594 * If this function is called from an interrupt gfp_mask() must be
595 * %GFP_ATOMIC.
598 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
600 struct sk_buff *n;
602 n = skb + 1;
603 if (skb->fclone == SKB_FCLONE_ORIG &&
604 n->fclone == SKB_FCLONE_UNAVAILABLE) {
605 atomic_t *fclone_ref = (atomic_t *) (n + 1);
606 n->fclone = SKB_FCLONE_CLONE;
607 atomic_inc(fclone_ref);
608 } else {
609 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
610 if (!n)
611 return NULL;
612 n->fclone = SKB_FCLONE_UNAVAILABLE;
615 return __skb_clone(n, skb);
617 EXPORT_SYMBOL(skb_clone);
619 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
621 #ifndef NET_SKBUFF_DATA_USES_OFFSET
623 * Shift between the two data areas in bytes
625 unsigned long offset = new->data - old->data;
626 #endif
628 __copy_skb_header(new, old);
630 #ifndef NET_SKBUFF_DATA_USES_OFFSET
631 /* {transport,network,mac}_header are relative to skb->head */
632 new->transport_header += offset;
633 new->network_header += offset;
634 new->mac_header += offset;
635 #endif
636 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
637 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
638 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
642 * skb_copy - create private copy of an sk_buff
643 * @skb: buffer to copy
644 * @gfp_mask: allocation priority
646 * Make a copy of both an &sk_buff and its data. This is used when the
647 * caller wishes to modify the data and needs a private copy of the
648 * data to alter. Returns %NULL on failure or the pointer to the buffer
649 * on success. The returned buffer has a reference count of 1.
651 * As by-product this function converts non-linear &sk_buff to linear
652 * one, so that &sk_buff becomes completely private and caller is allowed
653 * to modify all the data of returned buffer. This means that this
654 * function is not recommended for use in circumstances when only
655 * header is going to be modified. Use pskb_copy() instead.
658 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
660 int headerlen = skb->data - skb->head;
662 * Allocate the copy buffer
664 struct sk_buff *n;
665 #ifdef NET_SKBUFF_DATA_USES_OFFSET
666 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
667 #else
668 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
669 #endif
670 if (!n)
671 return NULL;
673 /* Set the data pointer */
674 skb_reserve(n, headerlen);
675 /* Set the tail pointer and length */
676 skb_put(n, skb->len);
678 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
679 BUG();
681 copy_skb_header(n, skb);
682 return n;
684 EXPORT_SYMBOL(skb_copy);
687 * pskb_copy - create copy of an sk_buff with private head.
688 * @skb: buffer to copy
689 * @gfp_mask: allocation priority
691 * Make a copy of both an &sk_buff and part of its data, located
692 * in header. Fragmented data remain shared. This is used when
693 * the caller wishes to modify only header of &sk_buff and needs
694 * private copy of the header to alter. Returns %NULL on failure
695 * or the pointer to the buffer on success.
696 * The returned buffer has a reference count of 1.
699 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
702 * Allocate the copy buffer
704 struct sk_buff *n;
705 #ifdef NET_SKBUFF_DATA_USES_OFFSET
706 n = alloc_skb(skb->end, gfp_mask);
707 #else
708 n = alloc_skb(skb->end - skb->head, gfp_mask);
709 #endif
710 if (!n)
711 goto out;
713 /* Set the data pointer */
714 skb_reserve(n, skb->data - skb->head);
715 /* Set the tail pointer and length */
716 skb_put(n, skb_headlen(skb));
717 /* Copy the bytes */
718 skb_copy_from_linear_data(skb, n->data, n->len);
720 n->truesize += skb->data_len;
721 n->data_len = skb->data_len;
722 n->len = skb->len;
724 if (skb_shinfo(skb)->nr_frags) {
725 int i;
727 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
728 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
729 get_page(skb_shinfo(n)->frags[i].page);
731 skb_shinfo(n)->nr_frags = i;
734 if (skb_shinfo(skb)->frag_list) {
735 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
736 skb_clone_fraglist(n);
739 copy_skb_header(n, skb);
740 out:
741 return n;
743 EXPORT_SYMBOL(pskb_copy);
746 * pskb_expand_head - reallocate header of &sk_buff
747 * @skb: buffer to reallocate
748 * @nhead: room to add at head
749 * @ntail: room to add at tail
750 * @gfp_mask: allocation priority
752 * Expands (or creates identical copy, if &nhead and &ntail are zero)
753 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
754 * reference count of 1. Returns zero in the case of success or error,
755 * if expansion failed. In the last case, &sk_buff is not changed.
757 * All the pointers pointing into skb header may change and must be
758 * reloaded after call to this function.
761 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
762 gfp_t gfp_mask)
764 int i;
765 u8 *data;
766 #ifdef NET_SKBUFF_DATA_USES_OFFSET
767 int size = nhead + skb->end + ntail;
768 #else
769 int size = nhead + (skb->end - skb->head) + ntail;
770 #endif
771 long off;
773 BUG_ON(nhead < 0);
775 if (skb_shared(skb))
776 BUG();
778 size = SKB_DATA_ALIGN(size);
780 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
781 if (!data)
782 goto nodata;
784 /* Copy only real data... and, alas, header. This should be
785 * optimized for the cases when header is void. */
786 #ifdef NET_SKBUFF_DATA_USES_OFFSET
787 memcpy(data + nhead, skb->head, skb->tail);
788 #else
789 memcpy(data + nhead, skb->head, skb->tail - skb->head);
790 #endif
791 memcpy(data + size, skb_end_pointer(skb),
792 sizeof(struct skb_shared_info));
794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
795 get_page(skb_shinfo(skb)->frags[i].page);
797 if (skb_shinfo(skb)->frag_list)
798 skb_clone_fraglist(skb);
800 skb_release_data(skb);
802 off = (data + nhead) - skb->head;
804 skb->head = data;
805 skb->data += off;
806 #ifdef NET_SKBUFF_DATA_USES_OFFSET
807 skb->end = size;
808 off = nhead;
809 #else
810 skb->end = skb->head + size;
811 #endif
812 /* {transport,network,mac}_header and tail are relative to skb->head */
813 skb->tail += off;
814 skb->transport_header += off;
815 skb->network_header += off;
816 skb->mac_header += off;
817 skb->csum_start += nhead;
818 skb->cloned = 0;
819 skb->hdr_len = 0;
820 skb->nohdr = 0;
821 atomic_set(&skb_shinfo(skb)->dataref, 1);
822 return 0;
824 nodata:
825 return -ENOMEM;
827 EXPORT_SYMBOL(pskb_expand_head);
829 /* Make private copy of skb with writable head and some headroom */
831 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
833 struct sk_buff *skb2;
834 int delta = headroom - skb_headroom(skb);
836 if (delta <= 0)
837 skb2 = pskb_copy(skb, GFP_ATOMIC);
838 else {
839 skb2 = skb_clone(skb, GFP_ATOMIC);
840 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
841 GFP_ATOMIC)) {
842 kfree_skb(skb2);
843 skb2 = NULL;
846 return skb2;
848 EXPORT_SYMBOL(skb_realloc_headroom);
851 * skb_copy_expand - copy and expand sk_buff
852 * @skb: buffer to copy
853 * @newheadroom: new free bytes at head
854 * @newtailroom: new free bytes at tail
855 * @gfp_mask: allocation priority
857 * Make a copy of both an &sk_buff and its data and while doing so
858 * allocate additional space.
860 * This is used when the caller wishes to modify the data and needs a
861 * private copy of the data to alter as well as more space for new fields.
862 * Returns %NULL on failure or the pointer to the buffer
863 * on success. The returned buffer has a reference count of 1.
865 * You must pass %GFP_ATOMIC as the allocation priority if this function
866 * is called from an interrupt.
868 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
869 int newheadroom, int newtailroom,
870 gfp_t gfp_mask)
873 * Allocate the copy buffer
875 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
876 gfp_mask);
877 int oldheadroom = skb_headroom(skb);
878 int head_copy_len, head_copy_off;
879 int off;
881 if (!n)
882 return NULL;
884 skb_reserve(n, newheadroom);
886 /* Set the tail pointer and length */
887 skb_put(n, skb->len);
889 head_copy_len = oldheadroom;
890 head_copy_off = 0;
891 if (newheadroom <= head_copy_len)
892 head_copy_len = newheadroom;
893 else
894 head_copy_off = newheadroom - head_copy_len;
896 /* Copy the linear header and data. */
897 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
898 skb->len + head_copy_len))
899 BUG();
901 copy_skb_header(n, skb);
903 off = newheadroom - oldheadroom;
904 n->csum_start += off;
905 #ifdef NET_SKBUFF_DATA_USES_OFFSET
906 n->transport_header += off;
907 n->network_header += off;
908 n->mac_header += off;
909 #endif
911 return n;
913 EXPORT_SYMBOL(skb_copy_expand);
916 * skb_pad - zero pad the tail of an skb
917 * @skb: buffer to pad
918 * @pad: space to pad
920 * Ensure that a buffer is followed by a padding area that is zero
921 * filled. Used by network drivers which may DMA or transfer data
922 * beyond the buffer end onto the wire.
924 * May return error in out of memory cases. The skb is freed on error.
927 int skb_pad(struct sk_buff *skb, int pad)
929 int err;
930 int ntail;
932 /* If the skbuff is non linear tailroom is always zero.. */
933 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
934 memset(skb->data+skb->len, 0, pad);
935 return 0;
938 ntail = skb->data_len + pad - (skb->end - skb->tail);
939 if (likely(skb_cloned(skb) || ntail > 0)) {
940 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
941 if (unlikely(err))
942 goto free_skb;
945 /* FIXME: The use of this function with non-linear skb's really needs
946 * to be audited.
948 err = skb_linearize(skb);
949 if (unlikely(err))
950 goto free_skb;
952 memset(skb->data + skb->len, 0, pad);
953 return 0;
955 free_skb:
956 kfree_skb(skb);
957 return err;
959 EXPORT_SYMBOL(skb_pad);
962 * skb_put - add data to a buffer
963 * @skb: buffer to use
964 * @len: amount of data to add
966 * This function extends the used data area of the buffer. If this would
967 * exceed the total buffer size the kernel will panic. A pointer to the
968 * first byte of the extra data is returned.
970 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
972 unsigned char *tmp = skb_tail_pointer(skb);
973 SKB_LINEAR_ASSERT(skb);
974 skb->tail += len;
975 skb->len += len;
976 if (unlikely(skb->tail > skb->end))
977 skb_over_panic(skb, len, __builtin_return_address(0));
978 return tmp;
980 EXPORT_SYMBOL(skb_put);
983 * skb_push - add data to the start of a buffer
984 * @skb: buffer to use
985 * @len: amount of data to add
987 * This function extends the used data area of the buffer at the buffer
988 * start. If this would exceed the total buffer headroom the kernel will
989 * panic. A pointer to the first byte of the extra data is returned.
991 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
993 skb->data -= len;
994 skb->len += len;
995 if (unlikely(skb->data<skb->head))
996 skb_under_panic(skb, len, __builtin_return_address(0));
997 return skb->data;
999 EXPORT_SYMBOL(skb_push);
1002 * skb_pull - remove data from the start of a buffer
1003 * @skb: buffer to use
1004 * @len: amount of data to remove
1006 * This function removes data from the start of a buffer, returning
1007 * the memory to the headroom. A pointer to the next data in the buffer
1008 * is returned. Once the data has been pulled future pushes will overwrite
1009 * the old data.
1011 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1013 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1015 EXPORT_SYMBOL(skb_pull);
1018 * skb_trim - remove end from a buffer
1019 * @skb: buffer to alter
1020 * @len: new length
1022 * Cut the length of a buffer down by removing data from the tail. If
1023 * the buffer is already under the length specified it is not modified.
1024 * The skb must be linear.
1026 void skb_trim(struct sk_buff *skb, unsigned int len)
1028 if (skb->len > len)
1029 __skb_trim(skb, len);
1031 EXPORT_SYMBOL(skb_trim);
1033 /* Trims skb to length len. It can change skb pointers.
1036 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1038 struct sk_buff **fragp;
1039 struct sk_buff *frag;
1040 int offset = skb_headlen(skb);
1041 int nfrags = skb_shinfo(skb)->nr_frags;
1042 int i;
1043 int err;
1045 if (skb_cloned(skb) &&
1046 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1047 return err;
1049 i = 0;
1050 if (offset >= len)
1051 goto drop_pages;
1053 for (; i < nfrags; i++) {
1054 int end = offset + skb_shinfo(skb)->frags[i].size;
1056 if (end < len) {
1057 offset = end;
1058 continue;
1061 skb_shinfo(skb)->frags[i++].size = len - offset;
1063 drop_pages:
1064 skb_shinfo(skb)->nr_frags = i;
1066 for (; i < nfrags; i++)
1067 put_page(skb_shinfo(skb)->frags[i].page);
1069 if (skb_shinfo(skb)->frag_list)
1070 skb_drop_fraglist(skb);
1071 goto done;
1074 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1075 fragp = &frag->next) {
1076 int end = offset + frag->len;
1078 if (skb_shared(frag)) {
1079 struct sk_buff *nfrag;
1081 nfrag = skb_clone(frag, GFP_ATOMIC);
1082 if (unlikely(!nfrag))
1083 return -ENOMEM;
1085 nfrag->next = frag->next;
1086 kfree_skb(frag);
1087 frag = nfrag;
1088 *fragp = frag;
1091 if (end < len) {
1092 offset = end;
1093 continue;
1096 if (end > len &&
1097 unlikely((err = pskb_trim(frag, len - offset))))
1098 return err;
1100 if (frag->next)
1101 skb_drop_list(&frag->next);
1102 break;
1105 done:
1106 if (len > skb_headlen(skb)) {
1107 skb->data_len -= skb->len - len;
1108 skb->len = len;
1109 } else {
1110 skb->len = len;
1111 skb->data_len = 0;
1112 skb_set_tail_pointer(skb, len);
1115 return 0;
1117 EXPORT_SYMBOL(___pskb_trim);
1120 * __pskb_pull_tail - advance tail of skb header
1121 * @skb: buffer to reallocate
1122 * @delta: number of bytes to advance tail
1124 * The function makes a sense only on a fragmented &sk_buff,
1125 * it expands header moving its tail forward and copying necessary
1126 * data from fragmented part.
1128 * &sk_buff MUST have reference count of 1.
1130 * Returns %NULL (and &sk_buff does not change) if pull failed
1131 * or value of new tail of skb in the case of success.
1133 * All the pointers pointing into skb header may change and must be
1134 * reloaded after call to this function.
1137 /* Moves tail of skb head forward, copying data from fragmented part,
1138 * when it is necessary.
1139 * 1. It may fail due to malloc failure.
1140 * 2. It may change skb pointers.
1142 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1144 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1146 /* If skb has not enough free space at tail, get new one
1147 * plus 128 bytes for future expansions. If we have enough
1148 * room at tail, reallocate without expansion only if skb is cloned.
1150 int i, k, eat = (skb->tail + delta) - skb->end;
1152 if (eat > 0 || skb_cloned(skb)) {
1153 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1154 GFP_ATOMIC))
1155 return NULL;
1158 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1159 BUG();
1161 /* Optimization: no fragments, no reasons to preestimate
1162 * size of pulled pages. Superb.
1164 if (!skb_shinfo(skb)->frag_list)
1165 goto pull_pages;
1167 /* Estimate size of pulled pages. */
1168 eat = delta;
1169 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1170 if (skb_shinfo(skb)->frags[i].size >= eat)
1171 goto pull_pages;
1172 eat -= skb_shinfo(skb)->frags[i].size;
1175 /* If we need update frag list, we are in troubles.
1176 * Certainly, it possible to add an offset to skb data,
1177 * but taking into account that pulling is expected to
1178 * be very rare operation, it is worth to fight against
1179 * further bloating skb head and crucify ourselves here instead.
1180 * Pure masohism, indeed. 8)8)
1182 if (eat) {
1183 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1184 struct sk_buff *clone = NULL;
1185 struct sk_buff *insp = NULL;
1187 do {
1188 BUG_ON(!list);
1190 if (list->len <= eat) {
1191 /* Eaten as whole. */
1192 eat -= list->len;
1193 list = list->next;
1194 insp = list;
1195 } else {
1196 /* Eaten partially. */
1198 if (skb_shared(list)) {
1199 /* Sucks! We need to fork list. :-( */
1200 clone = skb_clone(list, GFP_ATOMIC);
1201 if (!clone)
1202 return NULL;
1203 insp = list->next;
1204 list = clone;
1205 } else {
1206 /* This may be pulled without
1207 * problems. */
1208 insp = list;
1210 if (!pskb_pull(list, eat)) {
1211 if (clone)
1212 kfree_skb(clone);
1213 return NULL;
1215 break;
1217 } while (eat);
1219 /* Free pulled out fragments. */
1220 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1221 skb_shinfo(skb)->frag_list = list->next;
1222 kfree_skb(list);
1224 /* And insert new clone at head. */
1225 if (clone) {
1226 clone->next = list;
1227 skb_shinfo(skb)->frag_list = clone;
1230 /* Success! Now we may commit changes to skb data. */
1232 pull_pages:
1233 eat = delta;
1234 k = 0;
1235 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1236 if (skb_shinfo(skb)->frags[i].size <= eat) {
1237 put_page(skb_shinfo(skb)->frags[i].page);
1238 eat -= skb_shinfo(skb)->frags[i].size;
1239 } else {
1240 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1241 if (eat) {
1242 skb_shinfo(skb)->frags[k].page_offset += eat;
1243 skb_shinfo(skb)->frags[k].size -= eat;
1244 eat = 0;
1246 k++;
1249 skb_shinfo(skb)->nr_frags = k;
1251 skb->tail += delta;
1252 skb->data_len -= delta;
1254 return skb_tail_pointer(skb);
1256 EXPORT_SYMBOL(__pskb_pull_tail);
1258 /* Copy some data bits from skb to kernel buffer. */
1260 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1262 int i, copy;
1263 int start = skb_headlen(skb);
1265 if (offset > (int)skb->len - len)
1266 goto fault;
1268 /* Copy header. */
1269 if ((copy = start - offset) > 0) {
1270 if (copy > len)
1271 copy = len;
1272 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1273 if ((len -= copy) == 0)
1274 return 0;
1275 offset += copy;
1276 to += copy;
1279 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1280 int end;
1282 WARN_ON(start > offset + len);
1284 end = start + skb_shinfo(skb)->frags[i].size;
1285 if ((copy = end - offset) > 0) {
1286 u8 *vaddr;
1288 if (copy > len)
1289 copy = len;
1291 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1292 memcpy(to,
1293 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1294 offset - start, copy);
1295 kunmap_skb_frag(vaddr);
1297 if ((len -= copy) == 0)
1298 return 0;
1299 offset += copy;
1300 to += copy;
1302 start = end;
1305 if (skb_shinfo(skb)->frag_list) {
1306 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1308 for (; list; list = list->next) {
1309 int end;
1311 WARN_ON(start > offset + len);
1313 end = start + list->len;
1314 if ((copy = end - offset) > 0) {
1315 if (copy > len)
1316 copy = len;
1317 if (skb_copy_bits(list, offset - start,
1318 to, copy))
1319 goto fault;
1320 if ((len -= copy) == 0)
1321 return 0;
1322 offset += copy;
1323 to += copy;
1325 start = end;
1328 if (!len)
1329 return 0;
1331 fault:
1332 return -EFAULT;
1334 EXPORT_SYMBOL(skb_copy_bits);
1337 * Callback from splice_to_pipe(), if we need to release some pages
1338 * at the end of the spd in case we error'ed out in filling the pipe.
1340 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1342 put_page(spd->pages[i]);
1345 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1346 unsigned int *offset,
1347 struct sk_buff *skb)
1349 struct sock *sk = skb->sk;
1350 struct page *p = sk->sk_sndmsg_page;
1351 unsigned int off;
1353 if (!p) {
1354 new_page:
1355 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1356 if (!p)
1357 return NULL;
1359 off = sk->sk_sndmsg_off = 0;
1360 /* hold one ref to this page until it's full */
1361 } else {
1362 unsigned int mlen;
1364 off = sk->sk_sndmsg_off;
1365 mlen = PAGE_SIZE - off;
1366 if (mlen < 64 && mlen < *len) {
1367 put_page(p);
1368 goto new_page;
1371 *len = min_t(unsigned int, *len, mlen);
1374 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1375 sk->sk_sndmsg_off += *len;
1376 *offset = off;
1377 get_page(p);
1379 return p;
1383 * Fill page/offset/length into spd, if it can hold more pages.
1385 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1386 unsigned int *len, unsigned int offset,
1387 struct sk_buff *skb, int linear)
1389 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1390 return 1;
1392 if (linear) {
1393 page = linear_to_page(page, len, &offset, skb);
1394 if (!page)
1395 return 1;
1396 } else
1397 get_page(page);
1399 spd->pages[spd->nr_pages] = page;
1400 spd->partial[spd->nr_pages].len = *len;
1401 spd->partial[spd->nr_pages].offset = offset;
1402 spd->nr_pages++;
1404 return 0;
1407 static inline void __segment_seek(struct page **page, unsigned int *poff,
1408 unsigned int *plen, unsigned int off)
1410 unsigned long n;
1412 *poff += off;
1413 n = *poff / PAGE_SIZE;
1414 if (n)
1415 *page = nth_page(*page, n);
1417 *poff = *poff % PAGE_SIZE;
1418 *plen -= off;
1421 static inline int __splice_segment(struct page *page, unsigned int poff,
1422 unsigned int plen, unsigned int *off,
1423 unsigned int *len, struct sk_buff *skb,
1424 struct splice_pipe_desc *spd, int linear)
1426 if (!*len)
1427 return 1;
1429 /* skip this segment if already processed */
1430 if (*off >= plen) {
1431 *off -= plen;
1432 return 0;
1435 /* ignore any bits we already processed */
1436 if (*off) {
1437 __segment_seek(&page, &poff, &plen, *off);
1438 *off = 0;
1441 do {
1442 unsigned int flen = min(*len, plen);
1444 /* the linear region may spread across several pages */
1445 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1447 if (spd_fill_page(spd, page, &flen, poff, skb, linear))
1448 return 1;
1450 __segment_seek(&page, &poff, &plen, flen);
1451 *len -= flen;
1453 } while (*len && plen);
1455 return 0;
1459 * Map linear and fragment data from the skb to spd. It reports failure if the
1460 * pipe is full or if we already spliced the requested length.
1462 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1463 unsigned int *len,
1464 struct splice_pipe_desc *spd)
1466 int seg;
1469 * map the linear part
1471 if (__splice_segment(virt_to_page(skb->data),
1472 (unsigned long) skb->data & (PAGE_SIZE - 1),
1473 skb_headlen(skb),
1474 offset, len, skb, spd, 1))
1475 return 1;
1478 * then map the fragments
1480 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1481 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1483 if (__splice_segment(f->page, f->page_offset, f->size,
1484 offset, len, skb, spd, 0))
1485 return 1;
1488 return 0;
1492 * Map data from the skb to a pipe. Should handle both the linear part,
1493 * the fragments, and the frag list. It does NOT handle frag lists within
1494 * the frag list, if such a thing exists. We'd probably need to recurse to
1495 * handle that cleanly.
1497 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1498 struct pipe_inode_info *pipe, unsigned int tlen,
1499 unsigned int flags)
1501 struct partial_page partial[PIPE_BUFFERS];
1502 struct page *pages[PIPE_BUFFERS];
1503 struct splice_pipe_desc spd = {
1504 .pages = pages,
1505 .partial = partial,
1506 .flags = flags,
1507 .ops = &sock_pipe_buf_ops,
1508 .spd_release = sock_spd_release,
1512 * __skb_splice_bits() only fails if the output has no room left,
1513 * so no point in going over the frag_list for the error case.
1515 if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1516 goto done;
1517 else if (!tlen)
1518 goto done;
1521 * now see if we have a frag_list to map
1523 if (skb_shinfo(skb)->frag_list) {
1524 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1526 for (; list && tlen; list = list->next) {
1527 if (__skb_splice_bits(list, &offset, &tlen, &spd))
1528 break;
1532 done:
1533 if (spd.nr_pages) {
1534 struct sock *sk = skb->sk;
1535 int ret;
1538 * Drop the socket lock, otherwise we have reverse
1539 * locking dependencies between sk_lock and i_mutex
1540 * here as compared to sendfile(). We enter here
1541 * with the socket lock held, and splice_to_pipe() will
1542 * grab the pipe inode lock. For sendfile() emulation,
1543 * we call into ->sendpage() with the i_mutex lock held
1544 * and networking will grab the socket lock.
1546 release_sock(sk);
1547 ret = splice_to_pipe(pipe, &spd);
1548 lock_sock(sk);
1549 return ret;
1552 return 0;
1556 * skb_store_bits - store bits from kernel buffer to skb
1557 * @skb: destination buffer
1558 * @offset: offset in destination
1559 * @from: source buffer
1560 * @len: number of bytes to copy
1562 * Copy the specified number of bytes from the source buffer to the
1563 * destination skb. This function handles all the messy bits of
1564 * traversing fragment lists and such.
1567 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1569 int i, copy;
1570 int start = skb_headlen(skb);
1572 if (offset > (int)skb->len - len)
1573 goto fault;
1575 if ((copy = start - offset) > 0) {
1576 if (copy > len)
1577 copy = len;
1578 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1579 if ((len -= copy) == 0)
1580 return 0;
1581 offset += copy;
1582 from += copy;
1585 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1586 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1587 int end;
1589 WARN_ON(start > offset + len);
1591 end = start + frag->size;
1592 if ((copy = end - offset) > 0) {
1593 u8 *vaddr;
1595 if (copy > len)
1596 copy = len;
1598 vaddr = kmap_skb_frag(frag);
1599 memcpy(vaddr + frag->page_offset + offset - start,
1600 from, copy);
1601 kunmap_skb_frag(vaddr);
1603 if ((len -= copy) == 0)
1604 return 0;
1605 offset += copy;
1606 from += copy;
1608 start = end;
1611 if (skb_shinfo(skb)->frag_list) {
1612 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1614 for (; list; list = list->next) {
1615 int end;
1617 WARN_ON(start > offset + len);
1619 end = start + list->len;
1620 if ((copy = end - offset) > 0) {
1621 if (copy > len)
1622 copy = len;
1623 if (skb_store_bits(list, offset - start,
1624 from, copy))
1625 goto fault;
1626 if ((len -= copy) == 0)
1627 return 0;
1628 offset += copy;
1629 from += copy;
1631 start = end;
1634 if (!len)
1635 return 0;
1637 fault:
1638 return -EFAULT;
1640 EXPORT_SYMBOL(skb_store_bits);
1642 /* Checksum skb data. */
1644 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1645 int len, __wsum csum)
1647 int start = skb_headlen(skb);
1648 int i, copy = start - offset;
1649 int pos = 0;
1651 /* Checksum header. */
1652 if (copy > 0) {
1653 if (copy > len)
1654 copy = len;
1655 csum = csum_partial(skb->data + offset, copy, csum);
1656 if ((len -= copy) == 0)
1657 return csum;
1658 offset += copy;
1659 pos = copy;
1662 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1663 int end;
1665 WARN_ON(start > offset + len);
1667 end = start + skb_shinfo(skb)->frags[i].size;
1668 if ((copy = end - offset) > 0) {
1669 __wsum csum2;
1670 u8 *vaddr;
1671 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1673 if (copy > len)
1674 copy = len;
1675 vaddr = kmap_skb_frag(frag);
1676 csum2 = csum_partial(vaddr + frag->page_offset +
1677 offset - start, copy, 0);
1678 kunmap_skb_frag(vaddr);
1679 csum = csum_block_add(csum, csum2, pos);
1680 if (!(len -= copy))
1681 return csum;
1682 offset += copy;
1683 pos += copy;
1685 start = end;
1688 if (skb_shinfo(skb)->frag_list) {
1689 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1691 for (; list; list = list->next) {
1692 int end;
1694 WARN_ON(start > offset + len);
1696 end = start + list->len;
1697 if ((copy = end - offset) > 0) {
1698 __wsum csum2;
1699 if (copy > len)
1700 copy = len;
1701 csum2 = skb_checksum(list, offset - start,
1702 copy, 0);
1703 csum = csum_block_add(csum, csum2, pos);
1704 if ((len -= copy) == 0)
1705 return csum;
1706 offset += copy;
1707 pos += copy;
1709 start = end;
1712 BUG_ON(len);
1714 return csum;
1716 EXPORT_SYMBOL(skb_checksum);
1718 /* Both of above in one bottle. */
1720 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1721 u8 *to, int len, __wsum csum)
1723 int start = skb_headlen(skb);
1724 int i, copy = start - offset;
1725 int pos = 0;
1727 /* Copy header. */
1728 if (copy > 0) {
1729 if (copy > len)
1730 copy = len;
1731 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1732 copy, csum);
1733 if ((len -= copy) == 0)
1734 return csum;
1735 offset += copy;
1736 to += copy;
1737 pos = copy;
1740 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1741 int end;
1743 WARN_ON(start > offset + len);
1745 end = start + skb_shinfo(skb)->frags[i].size;
1746 if ((copy = end - offset) > 0) {
1747 __wsum csum2;
1748 u8 *vaddr;
1749 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1751 if (copy > len)
1752 copy = len;
1753 vaddr = kmap_skb_frag(frag);
1754 csum2 = csum_partial_copy_nocheck(vaddr +
1755 frag->page_offset +
1756 offset - start, to,
1757 copy, 0);
1758 kunmap_skb_frag(vaddr);
1759 csum = csum_block_add(csum, csum2, pos);
1760 if (!(len -= copy))
1761 return csum;
1762 offset += copy;
1763 to += copy;
1764 pos += copy;
1766 start = end;
1769 if (skb_shinfo(skb)->frag_list) {
1770 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1772 for (; list; list = list->next) {
1773 __wsum csum2;
1774 int end;
1776 WARN_ON(start > offset + len);
1778 end = start + list->len;
1779 if ((copy = end - offset) > 0) {
1780 if (copy > len)
1781 copy = len;
1782 csum2 = skb_copy_and_csum_bits(list,
1783 offset - start,
1784 to, copy, 0);
1785 csum = csum_block_add(csum, csum2, pos);
1786 if ((len -= copy) == 0)
1787 return csum;
1788 offset += copy;
1789 to += copy;
1790 pos += copy;
1792 start = end;
1795 BUG_ON(len);
1796 return csum;
1798 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1800 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1802 __wsum csum;
1803 long csstart;
1805 if (skb->ip_summed == CHECKSUM_PARTIAL)
1806 csstart = skb->csum_start - skb_headroom(skb);
1807 else
1808 csstart = skb_headlen(skb);
1810 BUG_ON(csstart > skb_headlen(skb));
1812 skb_copy_from_linear_data(skb, to, csstart);
1814 csum = 0;
1815 if (csstart != skb->len)
1816 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1817 skb->len - csstart, 0);
1819 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1820 long csstuff = csstart + skb->csum_offset;
1822 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1825 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1828 * skb_dequeue - remove from the head of the queue
1829 * @list: list to dequeue from
1831 * Remove the head of the list. The list lock is taken so the function
1832 * may be used safely with other locking list functions. The head item is
1833 * returned or %NULL if the list is empty.
1836 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1838 unsigned long flags;
1839 struct sk_buff *result;
1841 spin_lock_irqsave(&list->lock, flags);
1842 result = __skb_dequeue(list);
1843 spin_unlock_irqrestore(&list->lock, flags);
1844 return result;
1846 EXPORT_SYMBOL(skb_dequeue);
1849 * skb_dequeue_tail - remove from the tail of the queue
1850 * @list: list to dequeue from
1852 * Remove the tail of the list. The list lock is taken so the function
1853 * may be used safely with other locking list functions. The tail item is
1854 * returned or %NULL if the list is empty.
1856 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1858 unsigned long flags;
1859 struct sk_buff *result;
1861 spin_lock_irqsave(&list->lock, flags);
1862 result = __skb_dequeue_tail(list);
1863 spin_unlock_irqrestore(&list->lock, flags);
1864 return result;
1866 EXPORT_SYMBOL(skb_dequeue_tail);
1869 * skb_queue_purge - empty a list
1870 * @list: list to empty
1872 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1873 * the list and one reference dropped. This function takes the list
1874 * lock and is atomic with respect to other list locking functions.
1876 void skb_queue_purge(struct sk_buff_head *list)
1878 struct sk_buff *skb;
1879 while ((skb = skb_dequeue(list)) != NULL)
1880 kfree_skb(skb);
1882 EXPORT_SYMBOL(skb_queue_purge);
1885 * skb_queue_head - queue a buffer at the list head
1886 * @list: list to use
1887 * @newsk: buffer to queue
1889 * Queue a buffer at the start of the list. This function takes the
1890 * list lock and can be used safely with other locking &sk_buff functions
1891 * safely.
1893 * A buffer cannot be placed on two lists at the same time.
1895 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1897 unsigned long flags;
1899 spin_lock_irqsave(&list->lock, flags);
1900 __skb_queue_head(list, newsk);
1901 spin_unlock_irqrestore(&list->lock, flags);
1903 EXPORT_SYMBOL(skb_queue_head);
1906 * skb_queue_tail - queue a buffer at the list tail
1907 * @list: list to use
1908 * @newsk: buffer to queue
1910 * Queue a buffer at the tail of the list. This function takes the
1911 * list lock and can be used safely with other locking &sk_buff functions
1912 * safely.
1914 * A buffer cannot be placed on two lists at the same time.
1916 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1918 unsigned long flags;
1920 spin_lock_irqsave(&list->lock, flags);
1921 __skb_queue_tail(list, newsk);
1922 spin_unlock_irqrestore(&list->lock, flags);
1924 EXPORT_SYMBOL(skb_queue_tail);
1927 * skb_unlink - remove a buffer from a list
1928 * @skb: buffer to remove
1929 * @list: list to use
1931 * Remove a packet from a list. The list locks are taken and this
1932 * function is atomic with respect to other list locked calls
1934 * You must know what list the SKB is on.
1936 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1938 unsigned long flags;
1940 spin_lock_irqsave(&list->lock, flags);
1941 __skb_unlink(skb, list);
1942 spin_unlock_irqrestore(&list->lock, flags);
1944 EXPORT_SYMBOL(skb_unlink);
1947 * skb_append - append a buffer
1948 * @old: buffer to insert after
1949 * @newsk: buffer to insert
1950 * @list: list to use
1952 * Place a packet after a given packet in a list. The list locks are taken
1953 * and this function is atomic with respect to other list locked calls.
1954 * A buffer cannot be placed on two lists at the same time.
1956 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1958 unsigned long flags;
1960 spin_lock_irqsave(&list->lock, flags);
1961 __skb_queue_after(list, old, newsk);
1962 spin_unlock_irqrestore(&list->lock, flags);
1964 EXPORT_SYMBOL(skb_append);
1967 * skb_insert - insert a buffer
1968 * @old: buffer to insert before
1969 * @newsk: buffer to insert
1970 * @list: list to use
1972 * Place a packet before a given packet in a list. The list locks are
1973 * taken and this function is atomic with respect to other list locked
1974 * calls.
1976 * A buffer cannot be placed on two lists at the same time.
1978 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1980 unsigned long flags;
1982 spin_lock_irqsave(&list->lock, flags);
1983 __skb_insert(newsk, old->prev, old, list);
1984 spin_unlock_irqrestore(&list->lock, flags);
1986 EXPORT_SYMBOL(skb_insert);
1988 static inline void skb_split_inside_header(struct sk_buff *skb,
1989 struct sk_buff* skb1,
1990 const u32 len, const int pos)
1992 int i;
1994 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1995 pos - len);
1996 /* And move data appendix as is. */
1997 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1998 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2000 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2001 skb_shinfo(skb)->nr_frags = 0;
2002 skb1->data_len = skb->data_len;
2003 skb1->len += skb1->data_len;
2004 skb->data_len = 0;
2005 skb->len = len;
2006 skb_set_tail_pointer(skb, len);
2009 static inline void skb_split_no_header(struct sk_buff *skb,
2010 struct sk_buff* skb1,
2011 const u32 len, int pos)
2013 int i, k = 0;
2014 const int nfrags = skb_shinfo(skb)->nr_frags;
2016 skb_shinfo(skb)->nr_frags = 0;
2017 skb1->len = skb1->data_len = skb->len - len;
2018 skb->len = len;
2019 skb->data_len = len - pos;
2021 for (i = 0; i < nfrags; i++) {
2022 int size = skb_shinfo(skb)->frags[i].size;
2024 if (pos + size > len) {
2025 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2027 if (pos < len) {
2028 /* Split frag.
2029 * We have two variants in this case:
2030 * 1. Move all the frag to the second
2031 * part, if it is possible. F.e.
2032 * this approach is mandatory for TUX,
2033 * where splitting is expensive.
2034 * 2. Split is accurately. We make this.
2036 get_page(skb_shinfo(skb)->frags[i].page);
2037 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2038 skb_shinfo(skb1)->frags[0].size -= len - pos;
2039 skb_shinfo(skb)->frags[i].size = len - pos;
2040 skb_shinfo(skb)->nr_frags++;
2042 k++;
2043 } else
2044 skb_shinfo(skb)->nr_frags++;
2045 pos += size;
2047 skb_shinfo(skb1)->nr_frags = k;
2051 * skb_split - Split fragmented skb to two parts at length len.
2052 * @skb: the buffer to split
2053 * @skb1: the buffer to receive the second part
2054 * @len: new length for skb
2056 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2058 int pos = skb_headlen(skb);
2060 if (len < pos) /* Split line is inside header. */
2061 skb_split_inside_header(skb, skb1, len, pos);
2062 else /* Second chunk has no header, nothing to copy. */
2063 skb_split_no_header(skb, skb1, len, pos);
2065 EXPORT_SYMBOL(skb_split);
2067 /* Shifting from/to a cloned skb is a no-go.
2069 * Caller cannot keep skb_shinfo related pointers past calling here!
2071 static int skb_prepare_for_shift(struct sk_buff *skb)
2073 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2077 * skb_shift - Shifts paged data partially from skb to another
2078 * @tgt: buffer into which tail data gets added
2079 * @skb: buffer from which the paged data comes from
2080 * @shiftlen: shift up to this many bytes
2082 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2083 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2084 * It's up to caller to free skb if everything was shifted.
2086 * If @tgt runs out of frags, the whole operation is aborted.
2088 * Skb cannot include anything else but paged data while tgt is allowed
2089 * to have non-paged data as well.
2091 * TODO: full sized shift could be optimized but that would need
2092 * specialized skb free'er to handle frags without up-to-date nr_frags.
2094 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2096 int from, to, merge, todo;
2097 struct skb_frag_struct *fragfrom, *fragto;
2099 BUG_ON(shiftlen > skb->len);
2100 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2102 todo = shiftlen;
2103 from = 0;
2104 to = skb_shinfo(tgt)->nr_frags;
2105 fragfrom = &skb_shinfo(skb)->frags[from];
2107 /* Actual merge is delayed until the point when we know we can
2108 * commit all, so that we don't have to undo partial changes
2110 if (!to ||
2111 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2112 merge = -1;
2113 } else {
2114 merge = to - 1;
2116 todo -= fragfrom->size;
2117 if (todo < 0) {
2118 if (skb_prepare_for_shift(skb) ||
2119 skb_prepare_for_shift(tgt))
2120 return 0;
2122 /* All previous frag pointers might be stale! */
2123 fragfrom = &skb_shinfo(skb)->frags[from];
2124 fragto = &skb_shinfo(tgt)->frags[merge];
2126 fragto->size += shiftlen;
2127 fragfrom->size -= shiftlen;
2128 fragfrom->page_offset += shiftlen;
2130 goto onlymerged;
2133 from++;
2136 /* Skip full, not-fitting skb to avoid expensive operations */
2137 if ((shiftlen == skb->len) &&
2138 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2139 return 0;
2141 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2142 return 0;
2144 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2145 if (to == MAX_SKB_FRAGS)
2146 return 0;
2148 fragfrom = &skb_shinfo(skb)->frags[from];
2149 fragto = &skb_shinfo(tgt)->frags[to];
2151 if (todo >= fragfrom->size) {
2152 *fragto = *fragfrom;
2153 todo -= fragfrom->size;
2154 from++;
2155 to++;
2157 } else {
2158 get_page(fragfrom->page);
2159 fragto->page = fragfrom->page;
2160 fragto->page_offset = fragfrom->page_offset;
2161 fragto->size = todo;
2163 fragfrom->page_offset += todo;
2164 fragfrom->size -= todo;
2165 todo = 0;
2167 to++;
2168 break;
2172 /* Ready to "commit" this state change to tgt */
2173 skb_shinfo(tgt)->nr_frags = to;
2175 if (merge >= 0) {
2176 fragfrom = &skb_shinfo(skb)->frags[0];
2177 fragto = &skb_shinfo(tgt)->frags[merge];
2179 fragto->size += fragfrom->size;
2180 put_page(fragfrom->page);
2183 /* Reposition in the original skb */
2184 to = 0;
2185 while (from < skb_shinfo(skb)->nr_frags)
2186 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2187 skb_shinfo(skb)->nr_frags = to;
2189 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2191 onlymerged:
2192 /* Most likely the tgt won't ever need its checksum anymore, skb on
2193 * the other hand might need it if it needs to be resent
2195 tgt->ip_summed = CHECKSUM_PARTIAL;
2196 skb->ip_summed = CHECKSUM_PARTIAL;
2198 /* Yak, is it really working this way? Some helper please? */
2199 skb->len -= shiftlen;
2200 skb->data_len -= shiftlen;
2201 skb->truesize -= shiftlen;
2202 tgt->len += shiftlen;
2203 tgt->data_len += shiftlen;
2204 tgt->truesize += shiftlen;
2206 return shiftlen;
2210 * skb_prepare_seq_read - Prepare a sequential read of skb data
2211 * @skb: the buffer to read
2212 * @from: lower offset of data to be read
2213 * @to: upper offset of data to be read
2214 * @st: state variable
2216 * Initializes the specified state variable. Must be called before
2217 * invoking skb_seq_read() for the first time.
2219 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2220 unsigned int to, struct skb_seq_state *st)
2222 st->lower_offset = from;
2223 st->upper_offset = to;
2224 st->root_skb = st->cur_skb = skb;
2225 st->frag_idx = st->stepped_offset = 0;
2226 st->frag_data = NULL;
2228 EXPORT_SYMBOL(skb_prepare_seq_read);
2231 * skb_seq_read - Sequentially read skb data
2232 * @consumed: number of bytes consumed by the caller so far
2233 * @data: destination pointer for data to be returned
2234 * @st: state variable
2236 * Reads a block of skb data at &consumed relative to the
2237 * lower offset specified to skb_prepare_seq_read(). Assigns
2238 * the head of the data block to &data and returns the length
2239 * of the block or 0 if the end of the skb data or the upper
2240 * offset has been reached.
2242 * The caller is not required to consume all of the data
2243 * returned, i.e. &consumed is typically set to the number
2244 * of bytes already consumed and the next call to
2245 * skb_seq_read() will return the remaining part of the block.
2247 * Note 1: The size of each block of data returned can be arbitary,
2248 * this limitation is the cost for zerocopy seqeuental
2249 * reads of potentially non linear data.
2251 * Note 2: Fragment lists within fragments are not implemented
2252 * at the moment, state->root_skb could be replaced with
2253 * a stack for this purpose.
2255 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2256 struct skb_seq_state *st)
2258 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2259 skb_frag_t *frag;
2261 if (unlikely(abs_offset >= st->upper_offset))
2262 return 0;
2264 next_skb:
2265 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2267 if (abs_offset < block_limit) {
2268 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2269 return block_limit - abs_offset;
2272 if (st->frag_idx == 0 && !st->frag_data)
2273 st->stepped_offset += skb_headlen(st->cur_skb);
2275 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2276 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2277 block_limit = frag->size + st->stepped_offset;
2279 if (abs_offset < block_limit) {
2280 if (!st->frag_data)
2281 st->frag_data = kmap_skb_frag(frag);
2283 *data = (u8 *) st->frag_data + frag->page_offset +
2284 (abs_offset - st->stepped_offset);
2286 return block_limit - abs_offset;
2289 if (st->frag_data) {
2290 kunmap_skb_frag(st->frag_data);
2291 st->frag_data = NULL;
2294 st->frag_idx++;
2295 st->stepped_offset += frag->size;
2298 if (st->frag_data) {
2299 kunmap_skb_frag(st->frag_data);
2300 st->frag_data = NULL;
2303 if (st->root_skb == st->cur_skb &&
2304 skb_shinfo(st->root_skb)->frag_list) {
2305 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2306 st->frag_idx = 0;
2307 goto next_skb;
2308 } else if (st->cur_skb->next) {
2309 st->cur_skb = st->cur_skb->next;
2310 st->frag_idx = 0;
2311 goto next_skb;
2314 return 0;
2316 EXPORT_SYMBOL(skb_seq_read);
2319 * skb_abort_seq_read - Abort a sequential read of skb data
2320 * @st: state variable
2322 * Must be called if skb_seq_read() was not called until it
2323 * returned 0.
2325 void skb_abort_seq_read(struct skb_seq_state *st)
2327 if (st->frag_data)
2328 kunmap_skb_frag(st->frag_data);
2330 EXPORT_SYMBOL(skb_abort_seq_read);
2332 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2334 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2335 struct ts_config *conf,
2336 struct ts_state *state)
2338 return skb_seq_read(offset, text, TS_SKB_CB(state));
2341 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2343 skb_abort_seq_read(TS_SKB_CB(state));
2347 * skb_find_text - Find a text pattern in skb data
2348 * @skb: the buffer to look in
2349 * @from: search offset
2350 * @to: search limit
2351 * @config: textsearch configuration
2352 * @state: uninitialized textsearch state variable
2354 * Finds a pattern in the skb data according to the specified
2355 * textsearch configuration. Use textsearch_next() to retrieve
2356 * subsequent occurrences of the pattern. Returns the offset
2357 * to the first occurrence or UINT_MAX if no match was found.
2359 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2360 unsigned int to, struct ts_config *config,
2361 struct ts_state *state)
2363 unsigned int ret;
2365 config->get_next_block = skb_ts_get_next_block;
2366 config->finish = skb_ts_finish;
2368 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2370 ret = textsearch_find(config, state);
2371 return (ret <= to - from ? ret : UINT_MAX);
2373 EXPORT_SYMBOL(skb_find_text);
2376 * skb_append_datato_frags: - append the user data to a skb
2377 * @sk: sock structure
2378 * @skb: skb structure to be appened with user data.
2379 * @getfrag: call back function to be used for getting the user data
2380 * @from: pointer to user message iov
2381 * @length: length of the iov message
2383 * Description: This procedure append the user data in the fragment part
2384 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2386 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2387 int (*getfrag)(void *from, char *to, int offset,
2388 int len, int odd, struct sk_buff *skb),
2389 void *from, int length)
2391 int frg_cnt = 0;
2392 skb_frag_t *frag = NULL;
2393 struct page *page = NULL;
2394 int copy, left;
2395 int offset = 0;
2396 int ret;
2398 do {
2399 /* Return error if we don't have space for new frag */
2400 frg_cnt = skb_shinfo(skb)->nr_frags;
2401 if (frg_cnt >= MAX_SKB_FRAGS)
2402 return -EFAULT;
2404 /* allocate a new page for next frag */
2405 page = alloc_pages(sk->sk_allocation, 0);
2407 /* If alloc_page fails just return failure and caller will
2408 * free previous allocated pages by doing kfree_skb()
2410 if (page == NULL)
2411 return -ENOMEM;
2413 /* initialize the next frag */
2414 sk->sk_sndmsg_page = page;
2415 sk->sk_sndmsg_off = 0;
2416 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2417 skb->truesize += PAGE_SIZE;
2418 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2420 /* get the new initialized frag */
2421 frg_cnt = skb_shinfo(skb)->nr_frags;
2422 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2424 /* copy the user data to page */
2425 left = PAGE_SIZE - frag->page_offset;
2426 copy = (length > left)? left : length;
2428 ret = getfrag(from, (page_address(frag->page) +
2429 frag->page_offset + frag->size),
2430 offset, copy, 0, skb);
2431 if (ret < 0)
2432 return -EFAULT;
2434 /* copy was successful so update the size parameters */
2435 sk->sk_sndmsg_off += copy;
2436 frag->size += copy;
2437 skb->len += copy;
2438 skb->data_len += copy;
2439 offset += copy;
2440 length -= copy;
2442 } while (length > 0);
2444 return 0;
2446 EXPORT_SYMBOL(skb_append_datato_frags);
2449 * skb_pull_rcsum - pull skb and update receive checksum
2450 * @skb: buffer to update
2451 * @len: length of data pulled
2453 * This function performs an skb_pull on the packet and updates
2454 * the CHECKSUM_COMPLETE checksum. It should be used on
2455 * receive path processing instead of skb_pull unless you know
2456 * that the checksum difference is zero (e.g., a valid IP header)
2457 * or you are setting ip_summed to CHECKSUM_NONE.
2459 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2461 BUG_ON(len > skb->len);
2462 skb->len -= len;
2463 BUG_ON(skb->len < skb->data_len);
2464 skb_postpull_rcsum(skb, skb->data, len);
2465 return skb->data += len;
2468 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2471 * skb_segment - Perform protocol segmentation on skb.
2472 * @skb: buffer to segment
2473 * @features: features for the output path (see dev->features)
2475 * This function performs segmentation on the given skb. It returns
2476 * a pointer to the first in a list of new skbs for the segments.
2477 * In case of error it returns ERR_PTR(err).
2479 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2481 struct sk_buff *segs = NULL;
2482 struct sk_buff *tail = NULL;
2483 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2484 unsigned int mss = skb_shinfo(skb)->gso_size;
2485 unsigned int doffset = skb->data - skb_mac_header(skb);
2486 unsigned int offset = doffset;
2487 unsigned int headroom;
2488 unsigned int len;
2489 int sg = features & NETIF_F_SG;
2490 int nfrags = skb_shinfo(skb)->nr_frags;
2491 int err = -ENOMEM;
2492 int i = 0;
2493 int pos;
2495 __skb_push(skb, doffset);
2496 headroom = skb_headroom(skb);
2497 pos = skb_headlen(skb);
2499 do {
2500 struct sk_buff *nskb;
2501 skb_frag_t *frag;
2502 int hsize;
2503 int size;
2505 len = skb->len - offset;
2506 if (len > mss)
2507 len = mss;
2509 hsize = skb_headlen(skb) - offset;
2510 if (hsize < 0)
2511 hsize = 0;
2512 if (hsize > len || !sg)
2513 hsize = len;
2515 if (!hsize && i >= nfrags) {
2516 BUG_ON(fskb->len != len);
2518 pos += len;
2519 nskb = skb_clone(fskb, GFP_ATOMIC);
2520 fskb = fskb->next;
2522 if (unlikely(!nskb))
2523 goto err;
2525 hsize = skb_end_pointer(nskb) - nskb->head;
2526 if (skb_cow_head(nskb, doffset + headroom)) {
2527 kfree_skb(nskb);
2528 goto err;
2531 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2532 hsize;
2533 skb_release_head_state(nskb);
2534 __skb_push(nskb, doffset);
2535 } else {
2536 nskb = alloc_skb(hsize + doffset + headroom,
2537 GFP_ATOMIC);
2539 if (unlikely(!nskb))
2540 goto err;
2542 skb_reserve(nskb, headroom);
2543 __skb_put(nskb, doffset);
2546 if (segs)
2547 tail->next = nskb;
2548 else
2549 segs = nskb;
2550 tail = nskb;
2552 __copy_skb_header(nskb, skb);
2553 nskb->mac_len = skb->mac_len;
2555 skb_reset_mac_header(nskb);
2556 skb_set_network_header(nskb, skb->mac_len);
2557 nskb->transport_header = (nskb->network_header +
2558 skb_network_header_len(skb));
2559 skb_copy_from_linear_data(skb, nskb->data, doffset);
2561 if (pos >= offset + len)
2562 continue;
2564 if (!sg) {
2565 nskb->ip_summed = CHECKSUM_NONE;
2566 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2567 skb_put(nskb, len),
2568 len, 0);
2569 continue;
2572 frag = skb_shinfo(nskb)->frags;
2574 skb_copy_from_linear_data_offset(skb, offset,
2575 skb_put(nskb, hsize), hsize);
2577 while (pos < offset + len && i < nfrags) {
2578 *frag = skb_shinfo(skb)->frags[i];
2579 get_page(frag->page);
2580 size = frag->size;
2582 if (pos < offset) {
2583 frag->page_offset += offset - pos;
2584 frag->size -= offset - pos;
2587 skb_shinfo(nskb)->nr_frags++;
2589 if (pos + size <= offset + len) {
2590 i++;
2591 pos += size;
2592 } else {
2593 frag->size -= pos + size - (offset + len);
2594 goto skip_fraglist;
2597 frag++;
2600 if (pos < offset + len) {
2601 struct sk_buff *fskb2 = fskb;
2603 BUG_ON(pos + fskb->len != offset + len);
2605 pos += fskb->len;
2606 fskb = fskb->next;
2608 if (fskb2->next) {
2609 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2610 if (!fskb2)
2611 goto err;
2612 } else
2613 skb_get(fskb2);
2615 BUG_ON(skb_shinfo(nskb)->frag_list);
2616 skb_shinfo(nskb)->frag_list = fskb2;
2619 skip_fraglist:
2620 nskb->data_len = len - hsize;
2621 nskb->len += nskb->data_len;
2622 nskb->truesize += nskb->data_len;
2623 } while ((offset += len) < skb->len);
2625 return segs;
2627 err:
2628 while ((skb = segs)) {
2629 segs = skb->next;
2630 kfree_skb(skb);
2632 return ERR_PTR(err);
2634 EXPORT_SYMBOL_GPL(skb_segment);
2636 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2638 struct sk_buff *p = *head;
2639 struct sk_buff *nskb;
2640 unsigned int headroom;
2641 unsigned int len = skb_gro_len(skb);
2643 if (p->len + len >= 65536)
2644 return -E2BIG;
2646 if (skb_shinfo(p)->frag_list)
2647 goto merge;
2648 else if (skb_headlen(skb) <= skb_gro_offset(skb)) {
2649 if (skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags >
2650 MAX_SKB_FRAGS)
2651 return -E2BIG;
2653 skb_shinfo(skb)->frags[0].page_offset +=
2654 skb_gro_offset(skb) - skb_headlen(skb);
2655 skb_shinfo(skb)->frags[0].size -=
2656 skb_gro_offset(skb) - skb_headlen(skb);
2658 memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags,
2659 skb_shinfo(skb)->frags,
2660 skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
2662 skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags;
2663 skb_shinfo(skb)->nr_frags = 0;
2665 skb->truesize -= skb->data_len;
2666 skb->len -= skb->data_len;
2667 skb->data_len = 0;
2669 NAPI_GRO_CB(skb)->free = 1;
2670 goto done;
2673 headroom = skb_headroom(p);
2674 nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
2675 if (unlikely(!nskb))
2676 return -ENOMEM;
2678 __copy_skb_header(nskb, p);
2679 nskb->mac_len = p->mac_len;
2681 skb_reserve(nskb, headroom);
2682 __skb_put(nskb, skb_gro_offset(p));
2684 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2685 skb_set_network_header(nskb, skb_network_offset(p));
2686 skb_set_transport_header(nskb, skb_transport_offset(p));
2688 __skb_pull(p, skb_gro_offset(p));
2689 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2690 p->data - skb_mac_header(p));
2692 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2693 skb_shinfo(nskb)->frag_list = p;
2694 skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size;
2695 skb_header_release(p);
2696 nskb->prev = p;
2698 nskb->data_len += p->len;
2699 nskb->truesize += p->len;
2700 nskb->len += p->len;
2702 *head = nskb;
2703 nskb->next = p->next;
2704 p->next = NULL;
2706 p = nskb;
2708 merge:
2709 if (skb_gro_offset(skb) > skb_headlen(skb)) {
2710 skb_shinfo(skb)->frags[0].page_offset +=
2711 skb_gro_offset(skb) - skb_headlen(skb);
2712 skb_shinfo(skb)->frags[0].size -=
2713 skb_gro_offset(skb) - skb_headlen(skb);
2714 skb_gro_reset_offset(skb);
2715 skb_gro_pull(skb, skb_headlen(skb));
2718 __skb_pull(skb, skb_gro_offset(skb));
2720 p->prev->next = skb;
2721 p->prev = skb;
2722 skb_header_release(skb);
2724 done:
2725 NAPI_GRO_CB(p)->count++;
2726 p->data_len += len;
2727 p->truesize += len;
2728 p->len += len;
2730 NAPI_GRO_CB(skb)->same_flow = 1;
2731 return 0;
2733 EXPORT_SYMBOL_GPL(skb_gro_receive);
2735 void __init skb_init(void)
2737 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2738 sizeof(struct sk_buff),
2740 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2741 NULL);
2742 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2743 (2*sizeof(struct sk_buff)) +
2744 sizeof(atomic_t),
2746 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2747 NULL);
2751 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2752 * @skb: Socket buffer containing the buffers to be mapped
2753 * @sg: The scatter-gather list to map into
2754 * @offset: The offset into the buffer's contents to start mapping
2755 * @len: Length of buffer space to be mapped
2757 * Fill the specified scatter-gather list with mappings/pointers into a
2758 * region of the buffer space attached to a socket buffer.
2760 static int
2761 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2763 int start = skb_headlen(skb);
2764 int i, copy = start - offset;
2765 int elt = 0;
2767 if (copy > 0) {
2768 if (copy > len)
2769 copy = len;
2770 sg_set_buf(sg, skb->data + offset, copy);
2771 elt++;
2772 if ((len -= copy) == 0)
2773 return elt;
2774 offset += copy;
2777 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2778 int end;
2780 WARN_ON(start > offset + len);
2782 end = start + skb_shinfo(skb)->frags[i].size;
2783 if ((copy = end - offset) > 0) {
2784 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2786 if (copy > len)
2787 copy = len;
2788 sg_set_page(&sg[elt], frag->page, copy,
2789 frag->page_offset+offset-start);
2790 elt++;
2791 if (!(len -= copy))
2792 return elt;
2793 offset += copy;
2795 start = end;
2798 if (skb_shinfo(skb)->frag_list) {
2799 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2801 for (; list; list = list->next) {
2802 int end;
2804 WARN_ON(start > offset + len);
2806 end = start + list->len;
2807 if ((copy = end - offset) > 0) {
2808 if (copy > len)
2809 copy = len;
2810 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2811 copy);
2812 if ((len -= copy) == 0)
2813 return elt;
2814 offset += copy;
2816 start = end;
2819 BUG_ON(len);
2820 return elt;
2823 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2825 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2827 sg_mark_end(&sg[nsg - 1]);
2829 return nsg;
2831 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2834 * skb_cow_data - Check that a socket buffer's data buffers are writable
2835 * @skb: The socket buffer to check.
2836 * @tailbits: Amount of trailing space to be added
2837 * @trailer: Returned pointer to the skb where the @tailbits space begins
2839 * Make sure that the data buffers attached to a socket buffer are
2840 * writable. If they are not, private copies are made of the data buffers
2841 * and the socket buffer is set to use these instead.
2843 * If @tailbits is given, make sure that there is space to write @tailbits
2844 * bytes of data beyond current end of socket buffer. @trailer will be
2845 * set to point to the skb in which this space begins.
2847 * The number of scatterlist elements required to completely map the
2848 * COW'd and extended socket buffer will be returned.
2850 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2852 int copyflag;
2853 int elt;
2854 struct sk_buff *skb1, **skb_p;
2856 /* If skb is cloned or its head is paged, reallocate
2857 * head pulling out all the pages (pages are considered not writable
2858 * at the moment even if they are anonymous).
2860 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2861 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2862 return -ENOMEM;
2864 /* Easy case. Most of packets will go this way. */
2865 if (!skb_shinfo(skb)->frag_list) {
2866 /* A little of trouble, not enough of space for trailer.
2867 * This should not happen, when stack is tuned to generate
2868 * good frames. OK, on miss we reallocate and reserve even more
2869 * space, 128 bytes is fair. */
2871 if (skb_tailroom(skb) < tailbits &&
2872 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2873 return -ENOMEM;
2875 /* Voila! */
2876 *trailer = skb;
2877 return 1;
2880 /* Misery. We are in troubles, going to mincer fragments... */
2882 elt = 1;
2883 skb_p = &skb_shinfo(skb)->frag_list;
2884 copyflag = 0;
2886 while ((skb1 = *skb_p) != NULL) {
2887 int ntail = 0;
2889 /* The fragment is partially pulled by someone,
2890 * this can happen on input. Copy it and everything
2891 * after it. */
2893 if (skb_shared(skb1))
2894 copyflag = 1;
2896 /* If the skb is the last, worry about trailer. */
2898 if (skb1->next == NULL && tailbits) {
2899 if (skb_shinfo(skb1)->nr_frags ||
2900 skb_shinfo(skb1)->frag_list ||
2901 skb_tailroom(skb1) < tailbits)
2902 ntail = tailbits + 128;
2905 if (copyflag ||
2906 skb_cloned(skb1) ||
2907 ntail ||
2908 skb_shinfo(skb1)->nr_frags ||
2909 skb_shinfo(skb1)->frag_list) {
2910 struct sk_buff *skb2;
2912 /* Fuck, we are miserable poor guys... */
2913 if (ntail == 0)
2914 skb2 = skb_copy(skb1, GFP_ATOMIC);
2915 else
2916 skb2 = skb_copy_expand(skb1,
2917 skb_headroom(skb1),
2918 ntail,
2919 GFP_ATOMIC);
2920 if (unlikely(skb2 == NULL))
2921 return -ENOMEM;
2923 if (skb1->sk)
2924 skb_set_owner_w(skb2, skb1->sk);
2926 /* Looking around. Are we still alive?
2927 * OK, link new skb, drop old one */
2929 skb2->next = skb1->next;
2930 *skb_p = skb2;
2931 kfree_skb(skb1);
2932 skb1 = skb2;
2934 elt++;
2935 *trailer = skb1;
2936 skb_p = &skb1->next;
2939 return elt;
2941 EXPORT_SYMBOL_GPL(skb_cow_data);
2943 void skb_tstamp_tx(struct sk_buff *orig_skb,
2944 struct skb_shared_hwtstamps *hwtstamps)
2946 struct sock *sk = orig_skb->sk;
2947 struct sock_exterr_skb *serr;
2948 struct sk_buff *skb;
2949 int err;
2951 if (!sk)
2952 return;
2954 skb = skb_clone(orig_skb, GFP_ATOMIC);
2955 if (!skb)
2956 return;
2958 if (hwtstamps) {
2959 *skb_hwtstamps(skb) =
2960 *hwtstamps;
2961 } else {
2963 * no hardware time stamps available,
2964 * so keep the skb_shared_tx and only
2965 * store software time stamp
2967 skb->tstamp = ktime_get_real();
2970 serr = SKB_EXT_ERR(skb);
2971 memset(serr, 0, sizeof(*serr));
2972 serr->ee.ee_errno = ENOMSG;
2973 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
2974 err = sock_queue_err_skb(sk, skb);
2975 if (err)
2976 kfree_skb(skb);
2978 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
2982 * skb_partial_csum_set - set up and verify partial csum values for packet
2983 * @skb: the skb to set
2984 * @start: the number of bytes after skb->data to start checksumming.
2985 * @off: the offset from start to place the checksum.
2987 * For untrusted partially-checksummed packets, we need to make sure the values
2988 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2990 * This function checks and sets those values and skb->ip_summed: if this
2991 * returns false you should drop the packet.
2993 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2995 if (unlikely(start > skb->len - 2) ||
2996 unlikely((int)start + off > skb->len - 2)) {
2997 if (net_ratelimit())
2998 printk(KERN_WARNING
2999 "bad partial csum: csum=%u/%u len=%u\n",
3000 start, off, skb->len);
3001 return false;
3003 skb->ip_summed = CHECKSUM_PARTIAL;
3004 skb->csum_start = skb_headroom(skb) + start;
3005 skb->csum_offset = off;
3006 return true;
3008 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3010 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3012 if (net_ratelimit())
3013 pr_warning("%s: received packets cannot be forwarded"
3014 " while LRO is enabled\n", skb->dev->name);
3016 EXPORT_SYMBOL(__skb_warn_lro_forwarding);