2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
45 * fill ring buffer with silence
46 * runtime->silence_start: starting pointer to silence area
47 * runtime->silence_filled: size filled with silence
48 * runtime->silence_threshold: threshold from application
49 * runtime->silence_size: maximal size from application
51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
53 void snd_pcm_playback_silence(struct snd_pcm_substream
*substream
, snd_pcm_uframes_t new_hw_ptr
)
55 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
56 snd_pcm_uframes_t frames
, ofs
, transfer
;
58 if (runtime
->silence_size
< runtime
->boundary
) {
59 snd_pcm_sframes_t noise_dist
, n
;
60 if (runtime
->silence_start
!= runtime
->control
->appl_ptr
) {
61 n
= runtime
->control
->appl_ptr
- runtime
->silence_start
;
63 n
+= runtime
->boundary
;
64 if ((snd_pcm_uframes_t
)n
< runtime
->silence_filled
)
65 runtime
->silence_filled
-= n
;
67 runtime
->silence_filled
= 0;
68 runtime
->silence_start
= runtime
->control
->appl_ptr
;
70 if (runtime
->silence_filled
>= runtime
->buffer_size
)
72 noise_dist
= snd_pcm_playback_hw_avail(runtime
) + runtime
->silence_filled
;
73 if (noise_dist
>= (snd_pcm_sframes_t
) runtime
->silence_threshold
)
75 frames
= runtime
->silence_threshold
- noise_dist
;
76 if (frames
> runtime
->silence_size
)
77 frames
= runtime
->silence_size
;
79 if (new_hw_ptr
== ULONG_MAX
) { /* initialization */
80 snd_pcm_sframes_t avail
= snd_pcm_playback_hw_avail(runtime
);
81 if (avail
> runtime
->buffer_size
)
82 avail
= runtime
->buffer_size
;
83 runtime
->silence_filled
= avail
> 0 ? avail
: 0;
84 runtime
->silence_start
= (runtime
->status
->hw_ptr
+
85 runtime
->silence_filled
) %
88 ofs
= runtime
->status
->hw_ptr
;
89 frames
= new_hw_ptr
- ofs
;
90 if ((snd_pcm_sframes_t
)frames
< 0)
91 frames
+= runtime
->boundary
;
92 runtime
->silence_filled
-= frames
;
93 if ((snd_pcm_sframes_t
)runtime
->silence_filled
< 0) {
94 runtime
->silence_filled
= 0;
95 runtime
->silence_start
= new_hw_ptr
;
97 runtime
->silence_start
= ofs
;
100 frames
= runtime
->buffer_size
- runtime
->silence_filled
;
102 if (snd_BUG_ON(frames
> runtime
->buffer_size
))
106 ofs
= runtime
->silence_start
% runtime
->buffer_size
;
108 transfer
= ofs
+ frames
> runtime
->buffer_size
? runtime
->buffer_size
- ofs
: frames
;
109 if (runtime
->access
== SNDRV_PCM_ACCESS_RW_INTERLEAVED
||
110 runtime
->access
== SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
) {
111 if (substream
->ops
->silence
) {
113 err
= substream
->ops
->silence(substream
, -1, ofs
, transfer
);
116 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, ofs
);
117 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, transfer
* runtime
->channels
);
121 unsigned int channels
= runtime
->channels
;
122 if (substream
->ops
->silence
) {
123 for (c
= 0; c
< channels
; ++c
) {
125 err
= substream
->ops
->silence(substream
, c
, ofs
, transfer
);
129 size_t dma_csize
= runtime
->dma_bytes
/ channels
;
130 for (c
= 0; c
< channels
; ++c
) {
131 char *hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, ofs
);
132 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, transfer
);
136 runtime
->silence_filled
+= transfer
;
142 #ifdef CONFIG_SND_DEBUG
143 void snd_pcm_debug_name(struct snd_pcm_substream
*substream
,
144 char *name
, size_t len
)
146 snprintf(name
, len
, "pcmC%dD%d%c:%d",
147 substream
->pcm
->card
->number
,
148 substream
->pcm
->device
,
149 substream
->stream
? 'c' : 'p',
152 EXPORT_SYMBOL(snd_pcm_debug_name
);
155 #define XRUN_DEBUG_BASIC (1<<0)
156 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
161 #define xrun_debug(substream, mask) \
162 ((substream)->pstr->xrun_debug & (mask))
164 #define xrun_debug(substream, mask) 0
167 #define dump_stack_on_xrun(substream) do { \
168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
172 static void xrun(struct snd_pcm_substream
*substream
)
174 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
176 trace_xrun(substream
);
177 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
)
178 snd_pcm_gettime(runtime
, (struct timespec
*)&runtime
->status
->tstamp
);
179 snd_pcm_stop(substream
, SNDRV_PCM_STATE_XRUN
);
180 if (xrun_debug(substream
, XRUN_DEBUG_BASIC
)) {
182 snd_pcm_debug_name(substream
, name
, sizeof(name
));
183 pcm_warn(substream
->pcm
, "XRUN: %s\n", name
);
184 dump_stack_on_xrun(substream
);
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
191 trace_hw_ptr_error(substream, reason); \
192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194 (in_interrupt) ? 'Q' : 'P', ##args); \
195 dump_stack_on_xrun(substream); \
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
205 int snd_pcm_update_state(struct snd_pcm_substream
*substream
,
206 struct snd_pcm_runtime
*runtime
)
208 snd_pcm_uframes_t avail
;
210 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
211 avail
= snd_pcm_playback_avail(runtime
);
213 avail
= snd_pcm_capture_avail(runtime
);
214 if (avail
> runtime
->avail_max
)
215 runtime
->avail_max
= avail
;
216 if (runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
217 if (avail
>= runtime
->buffer_size
) {
218 snd_pcm_drain_done(substream
);
222 if (avail
>= runtime
->stop_threshold
) {
227 if (runtime
->twake
) {
228 if (avail
>= runtime
->twake
)
229 wake_up(&runtime
->tsleep
);
230 } else if (avail
>= runtime
->control
->avail_min
)
231 wake_up(&runtime
->sleep
);
235 static void update_audio_tstamp(struct snd_pcm_substream
*substream
,
236 struct timespec
*curr_tstamp
,
237 struct timespec
*audio_tstamp
)
239 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
240 u64 audio_frames
, audio_nsecs
;
241 struct timespec driver_tstamp
;
243 if (runtime
->tstamp_mode
!= SNDRV_PCM_TSTAMP_ENABLE
)
246 if (!(substream
->ops
->get_time_info
) ||
247 (runtime
->audio_tstamp_report
.actual_type
==
248 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
251 * provide audio timestamp derived from pointer position
252 * add delay only if requested
255 audio_frames
= runtime
->hw_ptr_wrap
+ runtime
->status
->hw_ptr
;
257 if (runtime
->audio_tstamp_config
.report_delay
) {
258 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
259 audio_frames
-= runtime
->delay
;
261 audio_frames
+= runtime
->delay
;
263 audio_nsecs
= div_u64(audio_frames
* 1000000000LL,
265 *audio_tstamp
= ns_to_timespec(audio_nsecs
);
267 runtime
->status
->audio_tstamp
= *audio_tstamp
;
268 runtime
->status
->tstamp
= *curr_tstamp
;
271 * re-take a driver timestamp to let apps detect if the reference tstamp
272 * read by low-level hardware was provided with a delay
274 snd_pcm_gettime(substream
->runtime
, (struct timespec
*)&driver_tstamp
);
275 runtime
->driver_tstamp
= driver_tstamp
;
278 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream
*substream
,
279 unsigned int in_interrupt
)
281 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
282 snd_pcm_uframes_t pos
;
283 snd_pcm_uframes_t old_hw_ptr
, new_hw_ptr
, hw_base
;
284 snd_pcm_sframes_t hdelta
, delta
;
285 unsigned long jdelta
;
286 unsigned long curr_jiffies
;
287 struct timespec curr_tstamp
;
288 struct timespec audio_tstamp
;
289 int crossed_boundary
= 0;
291 old_hw_ptr
= runtime
->status
->hw_ptr
;
294 * group pointer, time and jiffies reads to allow for more
295 * accurate correlations/corrections.
296 * The values are stored at the end of this routine after
297 * corrections for hw_ptr position
299 pos
= substream
->ops
->pointer(substream
);
300 curr_jiffies
= jiffies
;
301 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
) {
302 if ((substream
->ops
->get_time_info
) &&
303 (runtime
->audio_tstamp_config
.type_requested
!= SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
304 substream
->ops
->get_time_info(substream
, &curr_tstamp
,
306 &runtime
->audio_tstamp_config
,
307 &runtime
->audio_tstamp_report
);
309 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
310 if (runtime
->audio_tstamp_report
.actual_type
== SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)
311 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
313 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
316 if (pos
== SNDRV_PCM_POS_XRUN
) {
320 if (pos
>= runtime
->buffer_size
) {
321 if (printk_ratelimit()) {
323 snd_pcm_debug_name(substream
, name
, sizeof(name
));
324 pcm_err(substream
->pcm
,
325 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
326 name
, pos
, runtime
->buffer_size
,
327 runtime
->period_size
);
331 pos
-= pos
% runtime
->min_align
;
332 trace_hwptr(substream
, pos
, in_interrupt
);
333 hw_base
= runtime
->hw_ptr_base
;
334 new_hw_ptr
= hw_base
+ pos
;
336 /* we know that one period was processed */
337 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
338 delta
= runtime
->hw_ptr_interrupt
+ runtime
->period_size
;
339 if (delta
> new_hw_ptr
) {
340 /* check for double acknowledged interrupts */
341 hdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
342 if (hdelta
> runtime
->hw_ptr_buffer_jiffies
/2) {
343 hw_base
+= runtime
->buffer_size
;
344 if (hw_base
>= runtime
->boundary
) {
348 new_hw_ptr
= hw_base
+ pos
;
353 /* new_hw_ptr might be lower than old_hw_ptr in case when */
354 /* pointer crosses the end of the ring buffer */
355 if (new_hw_ptr
< old_hw_ptr
) {
356 hw_base
+= runtime
->buffer_size
;
357 if (hw_base
>= runtime
->boundary
) {
361 new_hw_ptr
= hw_base
+ pos
;
364 delta
= new_hw_ptr
- old_hw_ptr
;
366 delta
+= runtime
->boundary
;
368 if (runtime
->no_period_wakeup
) {
369 snd_pcm_sframes_t xrun_threshold
;
371 * Without regular period interrupts, we have to check
372 * the elapsed time to detect xruns.
374 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
375 if (jdelta
< runtime
->hw_ptr_buffer_jiffies
/ 2)
377 hdelta
= jdelta
- delta
* HZ
/ runtime
->rate
;
378 xrun_threshold
= runtime
->hw_ptr_buffer_jiffies
/ 2 + 1;
379 while (hdelta
> xrun_threshold
) {
380 delta
+= runtime
->buffer_size
;
381 hw_base
+= runtime
->buffer_size
;
382 if (hw_base
>= runtime
->boundary
) {
386 new_hw_ptr
= hw_base
+ pos
;
387 hdelta
-= runtime
->hw_ptr_buffer_jiffies
;
392 /* something must be really wrong */
393 if (delta
>= runtime
->buffer_size
+ runtime
->period_size
) {
394 hw_ptr_error(substream
, in_interrupt
, "Unexpected hw_ptr",
395 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
396 substream
->stream
, (long)pos
,
397 (long)new_hw_ptr
, (long)old_hw_ptr
);
401 /* Do jiffies check only in xrun_debug mode */
402 if (!xrun_debug(substream
, XRUN_DEBUG_JIFFIESCHECK
))
403 goto no_jiffies_check
;
405 /* Skip the jiffies check for hardwares with BATCH flag.
406 * Such hardware usually just increases the position at each IRQ,
407 * thus it can't give any strange position.
409 if (runtime
->hw
.info
& SNDRV_PCM_INFO_BATCH
)
410 goto no_jiffies_check
;
412 if (hdelta
< runtime
->delay
)
413 goto no_jiffies_check
;
414 hdelta
-= runtime
->delay
;
415 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
416 if (((hdelta
* HZ
) / runtime
->rate
) > jdelta
+ HZ
/100) {
418 (((runtime
->period_size
* HZ
) / runtime
->rate
)
420 /* move new_hw_ptr according jiffies not pos variable */
421 new_hw_ptr
= old_hw_ptr
;
423 /* use loop to avoid checks for delta overflows */
424 /* the delta value is small or zero in most cases */
426 new_hw_ptr
+= runtime
->period_size
;
427 if (new_hw_ptr
>= runtime
->boundary
) {
428 new_hw_ptr
-= runtime
->boundary
;
433 /* align hw_base to buffer_size */
434 hw_ptr_error(substream
, in_interrupt
, "hw_ptr skipping",
435 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
436 (long)pos
, (long)hdelta
,
437 (long)runtime
->period_size
, jdelta
,
438 ((hdelta
* HZ
) / runtime
->rate
), hw_base
,
439 (unsigned long)old_hw_ptr
,
440 (unsigned long)new_hw_ptr
);
441 /* reset values to proper state */
443 hw_base
= new_hw_ptr
- (new_hw_ptr
% runtime
->buffer_size
);
446 if (delta
> runtime
->period_size
+ runtime
->period_size
/ 2) {
447 hw_ptr_error(substream
, in_interrupt
,
449 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
450 substream
->stream
, (long)delta
,
456 if (runtime
->status
->hw_ptr
== new_hw_ptr
) {
457 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
461 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
&&
462 runtime
->silence_size
> 0)
463 snd_pcm_playback_silence(substream
, new_hw_ptr
);
466 delta
= new_hw_ptr
- runtime
->hw_ptr_interrupt
;
468 delta
+= runtime
->boundary
;
469 delta
-= (snd_pcm_uframes_t
)delta
% runtime
->period_size
;
470 runtime
->hw_ptr_interrupt
+= delta
;
471 if (runtime
->hw_ptr_interrupt
>= runtime
->boundary
)
472 runtime
->hw_ptr_interrupt
-= runtime
->boundary
;
474 runtime
->hw_ptr_base
= hw_base
;
475 runtime
->status
->hw_ptr
= new_hw_ptr
;
476 runtime
->hw_ptr_jiffies
= curr_jiffies
;
477 if (crossed_boundary
) {
478 snd_BUG_ON(crossed_boundary
!= 1);
479 runtime
->hw_ptr_wrap
+= runtime
->boundary
;
482 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
484 return snd_pcm_update_state(substream
, runtime
);
487 /* CAUTION: call it with irq disabled */
488 int snd_pcm_update_hw_ptr(struct snd_pcm_substream
*substream
)
490 return snd_pcm_update_hw_ptr0(substream
, 0);
494 * snd_pcm_set_ops - set the PCM operators
495 * @pcm: the pcm instance
496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
497 * @ops: the operator table
499 * Sets the given PCM operators to the pcm instance.
501 void snd_pcm_set_ops(struct snd_pcm
*pcm
, int direction
,
502 const struct snd_pcm_ops
*ops
)
504 struct snd_pcm_str
*stream
= &pcm
->streams
[direction
];
505 struct snd_pcm_substream
*substream
;
507 for (substream
= stream
->substream
; substream
!= NULL
; substream
= substream
->next
)
508 substream
->ops
= ops
;
511 EXPORT_SYMBOL(snd_pcm_set_ops
);
514 * snd_pcm_sync - set the PCM sync id
515 * @substream: the pcm substream
517 * Sets the PCM sync identifier for the card.
519 void snd_pcm_set_sync(struct snd_pcm_substream
*substream
)
521 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
523 runtime
->sync
.id32
[0] = substream
->pcm
->card
->number
;
524 runtime
->sync
.id32
[1] = -1;
525 runtime
->sync
.id32
[2] = -1;
526 runtime
->sync
.id32
[3] = -1;
529 EXPORT_SYMBOL(snd_pcm_set_sync
);
532 * Standard ioctl routine
535 static inline unsigned int div32(unsigned int a
, unsigned int b
,
546 static inline unsigned int div_down(unsigned int a
, unsigned int b
)
553 static inline unsigned int div_up(unsigned int a
, unsigned int b
)
565 static inline unsigned int mul(unsigned int a
, unsigned int b
)
569 if (div_down(UINT_MAX
, a
) < b
)
574 static inline unsigned int muldiv32(unsigned int a
, unsigned int b
,
575 unsigned int c
, unsigned int *r
)
577 u_int64_t n
= (u_int64_t
) a
* b
;
583 n
= div_u64_rem(n
, c
, r
);
592 * snd_interval_refine - refine the interval value of configurator
593 * @i: the interval value to refine
594 * @v: the interval value to refer to
596 * Refines the interval value with the reference value.
597 * The interval is changed to the range satisfying both intervals.
598 * The interval status (min, max, integer, etc.) are evaluated.
600 * Return: Positive if the value is changed, zero if it's not changed, or a
601 * negative error code.
603 int snd_interval_refine(struct snd_interval
*i
, const struct snd_interval
*v
)
606 if (snd_BUG_ON(snd_interval_empty(i
)))
608 if (i
->min
< v
->min
) {
610 i
->openmin
= v
->openmin
;
612 } else if (i
->min
== v
->min
&& !i
->openmin
&& v
->openmin
) {
616 if (i
->max
> v
->max
) {
618 i
->openmax
= v
->openmax
;
620 } else if (i
->max
== v
->max
&& !i
->openmax
&& v
->openmax
) {
624 if (!i
->integer
&& v
->integer
) {
637 } else if (!i
->openmin
&& !i
->openmax
&& i
->min
== i
->max
)
639 if (snd_interval_checkempty(i
)) {
640 snd_interval_none(i
);
646 EXPORT_SYMBOL(snd_interval_refine
);
648 static int snd_interval_refine_first(struct snd_interval
*i
)
650 if (snd_BUG_ON(snd_interval_empty(i
)))
652 if (snd_interval_single(i
))
655 i
->openmax
= i
->openmin
;
661 static int snd_interval_refine_last(struct snd_interval
*i
)
663 if (snd_BUG_ON(snd_interval_empty(i
)))
665 if (snd_interval_single(i
))
668 i
->openmin
= i
->openmax
;
674 void snd_interval_mul(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
676 if (a
->empty
|| b
->empty
) {
677 snd_interval_none(c
);
681 c
->min
= mul(a
->min
, b
->min
);
682 c
->openmin
= (a
->openmin
|| b
->openmin
);
683 c
->max
= mul(a
->max
, b
->max
);
684 c
->openmax
= (a
->openmax
|| b
->openmax
);
685 c
->integer
= (a
->integer
&& b
->integer
);
689 * snd_interval_div - refine the interval value with division
696 * Returns non-zero if the value is changed, zero if not changed.
698 void snd_interval_div(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
701 if (a
->empty
|| b
->empty
) {
702 snd_interval_none(c
);
706 c
->min
= div32(a
->min
, b
->max
, &r
);
707 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
709 c
->max
= div32(a
->max
, b
->min
, &r
);
714 c
->openmax
= (a
->openmax
|| b
->openmin
);
723 * snd_interval_muldivk - refine the interval value
726 * @k: divisor (as integer)
731 * Returns non-zero if the value is changed, zero if not changed.
733 void snd_interval_muldivk(const struct snd_interval
*a
, const struct snd_interval
*b
,
734 unsigned int k
, struct snd_interval
*c
)
737 if (a
->empty
|| b
->empty
) {
738 snd_interval_none(c
);
742 c
->min
= muldiv32(a
->min
, b
->min
, k
, &r
);
743 c
->openmin
= (r
|| a
->openmin
|| b
->openmin
);
744 c
->max
= muldiv32(a
->max
, b
->max
, k
, &r
);
749 c
->openmax
= (a
->openmax
|| b
->openmax
);
754 * snd_interval_mulkdiv - refine the interval value
756 * @k: dividend 2 (as integer)
762 * Returns non-zero if the value is changed, zero if not changed.
764 void snd_interval_mulkdiv(const struct snd_interval
*a
, unsigned int k
,
765 const struct snd_interval
*b
, struct snd_interval
*c
)
768 if (a
->empty
|| b
->empty
) {
769 snd_interval_none(c
);
773 c
->min
= muldiv32(a
->min
, k
, b
->max
, &r
);
774 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
776 c
->max
= muldiv32(a
->max
, k
, b
->min
, &r
);
781 c
->openmax
= (a
->openmax
|| b
->openmin
);
793 * snd_interval_ratnum - refine the interval value
794 * @i: interval to refine
795 * @rats_count: number of ratnum_t
796 * @rats: ratnum_t array
797 * @nump: pointer to store the resultant numerator
798 * @denp: pointer to store the resultant denominator
800 * Return: Positive if the value is changed, zero if it's not changed, or a
801 * negative error code.
803 int snd_interval_ratnum(struct snd_interval
*i
,
804 unsigned int rats_count
, struct snd_ratnum
*rats
,
805 unsigned int *nump
, unsigned int *denp
)
807 unsigned int best_num
, best_den
;
810 struct snd_interval t
;
812 unsigned int result_num
, result_den
;
815 best_num
= best_den
= best_diff
= 0;
816 for (k
= 0; k
< rats_count
; ++k
) {
817 unsigned int num
= rats
[k
].num
;
819 unsigned int q
= i
->min
;
823 den
= div_up(num
, q
);
824 if (den
< rats
[k
].den_min
)
826 if (den
> rats
[k
].den_max
)
827 den
= rats
[k
].den_max
;
830 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
834 diff
= num
- q
* den
;
838 diff
* best_den
< best_diff
* den
) {
848 t
.min
= div_down(best_num
, best_den
);
849 t
.openmin
= !!(best_num
% best_den
);
851 result_num
= best_num
;
852 result_diff
= best_diff
;
853 result_den
= best_den
;
854 best_num
= best_den
= best_diff
= 0;
855 for (k
= 0; k
< rats_count
; ++k
) {
856 unsigned int num
= rats
[k
].num
;
858 unsigned int q
= i
->max
;
864 den
= div_down(num
, q
);
865 if (den
> rats
[k
].den_max
)
867 if (den
< rats
[k
].den_min
)
868 den
= rats
[k
].den_min
;
871 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
873 den
+= rats
[k
].den_step
- r
;
875 diff
= q
* den
- num
;
879 diff
* best_den
< best_diff
* den
) {
889 t
.max
= div_up(best_num
, best_den
);
890 t
.openmax
= !!(best_num
% best_den
);
892 err
= snd_interval_refine(i
, &t
);
896 if (snd_interval_single(i
)) {
897 if (best_diff
* result_den
< result_diff
* best_den
) {
898 result_num
= best_num
;
899 result_den
= best_den
;
909 EXPORT_SYMBOL(snd_interval_ratnum
);
912 * snd_interval_ratden - refine the interval value
913 * @i: interval to refine
914 * @rats_count: number of struct ratden
915 * @rats: struct ratden array
916 * @nump: pointer to store the resultant numerator
917 * @denp: pointer to store the resultant denominator
919 * Return: Positive if the value is changed, zero if it's not changed, or a
920 * negative error code.
922 static int snd_interval_ratden(struct snd_interval
*i
,
923 unsigned int rats_count
, struct snd_ratden
*rats
,
924 unsigned int *nump
, unsigned int *denp
)
926 unsigned int best_num
, best_diff
, best_den
;
928 struct snd_interval t
;
931 best_num
= best_den
= best_diff
= 0;
932 for (k
= 0; k
< rats_count
; ++k
) {
934 unsigned int den
= rats
[k
].den
;
935 unsigned int q
= i
->min
;
938 if (num
> rats
[k
].num_max
)
940 if (num
< rats
[k
].num_min
)
941 num
= rats
[k
].num_max
;
944 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
946 num
+= rats
[k
].num_step
- r
;
948 diff
= num
- q
* den
;
950 diff
* best_den
< best_diff
* den
) {
960 t
.min
= div_down(best_num
, best_den
);
961 t
.openmin
= !!(best_num
% best_den
);
963 best_num
= best_den
= best_diff
= 0;
964 for (k
= 0; k
< rats_count
; ++k
) {
966 unsigned int den
= rats
[k
].den
;
967 unsigned int q
= i
->max
;
970 if (num
< rats
[k
].num_min
)
972 if (num
> rats
[k
].num_max
)
973 num
= rats
[k
].num_max
;
976 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
980 diff
= q
* den
- num
;
982 diff
* best_den
< best_diff
* den
) {
992 t
.max
= div_up(best_num
, best_den
);
993 t
.openmax
= !!(best_num
% best_den
);
995 err
= snd_interval_refine(i
, &t
);
999 if (snd_interval_single(i
)) {
1009 * snd_interval_list - refine the interval value from the list
1010 * @i: the interval value to refine
1011 * @count: the number of elements in the list
1012 * @list: the value list
1013 * @mask: the bit-mask to evaluate
1015 * Refines the interval value from the list.
1016 * When mask is non-zero, only the elements corresponding to bit 1 are
1019 * Return: Positive if the value is changed, zero if it's not changed, or a
1020 * negative error code.
1022 int snd_interval_list(struct snd_interval
*i
, unsigned int count
,
1023 const unsigned int *list
, unsigned int mask
)
1026 struct snd_interval list_range
;
1032 snd_interval_any(&list_range
);
1033 list_range
.min
= UINT_MAX
;
1035 for (k
= 0; k
< count
; k
++) {
1036 if (mask
&& !(mask
& (1 << k
)))
1038 if (!snd_interval_test(i
, list
[k
]))
1040 list_range
.min
= min(list_range
.min
, list
[k
]);
1041 list_range
.max
= max(list_range
.max
, list
[k
]);
1043 return snd_interval_refine(i
, &list_range
);
1046 EXPORT_SYMBOL(snd_interval_list
);
1049 * snd_interval_ranges - refine the interval value from the list of ranges
1050 * @i: the interval value to refine
1051 * @count: the number of elements in the list of ranges
1052 * @ranges: the ranges list
1053 * @mask: the bit-mask to evaluate
1055 * Refines the interval value from the list of ranges.
1056 * When mask is non-zero, only the elements corresponding to bit 1 are
1059 * Return: Positive if the value is changed, zero if it's not changed, or a
1060 * negative error code.
1062 int snd_interval_ranges(struct snd_interval
*i
, unsigned int count
,
1063 const struct snd_interval
*ranges
, unsigned int mask
)
1066 struct snd_interval range_union
;
1067 struct snd_interval range
;
1070 snd_interval_none(i
);
1073 snd_interval_any(&range_union
);
1074 range_union
.min
= UINT_MAX
;
1075 range_union
.max
= 0;
1076 for (k
= 0; k
< count
; k
++) {
1077 if (mask
&& !(mask
& (1 << k
)))
1079 snd_interval_copy(&range
, &ranges
[k
]);
1080 if (snd_interval_refine(&range
, i
) < 0)
1082 if (snd_interval_empty(&range
))
1085 if (range
.min
< range_union
.min
) {
1086 range_union
.min
= range
.min
;
1087 range_union
.openmin
= 1;
1089 if (range
.min
== range_union
.min
&& !range
.openmin
)
1090 range_union
.openmin
= 0;
1091 if (range
.max
> range_union
.max
) {
1092 range_union
.max
= range
.max
;
1093 range_union
.openmax
= 1;
1095 if (range
.max
== range_union
.max
&& !range
.openmax
)
1096 range_union
.openmax
= 0;
1098 return snd_interval_refine(i
, &range_union
);
1100 EXPORT_SYMBOL(snd_interval_ranges
);
1102 static int snd_interval_step(struct snd_interval
*i
, unsigned int step
)
1107 if (n
!= 0 || i
->openmin
) {
1113 if (n
!= 0 || i
->openmax
) {
1118 if (snd_interval_checkempty(i
)) {
1125 /* Info constraints helpers */
1128 * snd_pcm_hw_rule_add - add the hw-constraint rule
1129 * @runtime: the pcm runtime instance
1130 * @cond: condition bits
1131 * @var: the variable to evaluate
1132 * @func: the evaluation function
1133 * @private: the private data pointer passed to function
1134 * @dep: the dependent variables
1136 * Return: Zero if successful, or a negative error code on failure.
1138 int snd_pcm_hw_rule_add(struct snd_pcm_runtime
*runtime
, unsigned int cond
,
1140 snd_pcm_hw_rule_func_t func
, void *private,
1143 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1144 struct snd_pcm_hw_rule
*c
;
1147 va_start(args
, dep
);
1148 if (constrs
->rules_num
>= constrs
->rules_all
) {
1149 struct snd_pcm_hw_rule
*new;
1150 unsigned int new_rules
= constrs
->rules_all
+ 16;
1151 new = kcalloc(new_rules
, sizeof(*c
), GFP_KERNEL
);
1156 if (constrs
->rules
) {
1157 memcpy(new, constrs
->rules
,
1158 constrs
->rules_num
* sizeof(*c
));
1159 kfree(constrs
->rules
);
1161 constrs
->rules
= new;
1162 constrs
->rules_all
= new_rules
;
1164 c
= &constrs
->rules
[constrs
->rules_num
];
1168 c
->private = private;
1171 if (snd_BUG_ON(k
>= ARRAY_SIZE(c
->deps
))) {
1178 dep
= va_arg(args
, int);
1180 constrs
->rules_num
++;
1185 EXPORT_SYMBOL(snd_pcm_hw_rule_add
);
1188 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1189 * @runtime: PCM runtime instance
1190 * @var: hw_params variable to apply the mask
1191 * @mask: the bitmap mask
1193 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1195 * Return: Zero if successful, or a negative error code on failure.
1197 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1200 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1201 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1202 *maskp
->bits
&= mask
;
1203 memset(maskp
->bits
+ 1, 0, (SNDRV_MASK_MAX
-32) / 8); /* clear rest */
1204 if (*maskp
->bits
== 0)
1210 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1211 * @runtime: PCM runtime instance
1212 * @var: hw_params variable to apply the mask
1213 * @mask: the 64bit bitmap mask
1215 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1217 * Return: Zero if successful, or a negative error code on failure.
1219 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1222 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1223 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1224 maskp
->bits
[0] &= (u_int32_t
)mask
;
1225 maskp
->bits
[1] &= (u_int32_t
)(mask
>> 32);
1226 memset(maskp
->bits
+ 2, 0, (SNDRV_MASK_MAX
-64) / 8); /* clear rest */
1227 if (! maskp
->bits
[0] && ! maskp
->bits
[1])
1231 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64
);
1234 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1235 * @runtime: PCM runtime instance
1236 * @var: hw_params variable to apply the integer constraint
1238 * Apply the constraint of integer to an interval parameter.
1240 * Return: Positive if the value is changed, zero if it's not changed, or a
1241 * negative error code.
1243 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
)
1245 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1246 return snd_interval_setinteger(constrs_interval(constrs
, var
));
1249 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer
);
1252 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1253 * @runtime: PCM runtime instance
1254 * @var: hw_params variable to apply the range
1255 * @min: the minimal value
1256 * @max: the maximal value
1258 * Apply the min/max range constraint to an interval parameter.
1260 * Return: Positive if the value is changed, zero if it's not changed, or a
1261 * negative error code.
1263 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1264 unsigned int min
, unsigned int max
)
1266 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1267 struct snd_interval t
;
1270 t
.openmin
= t
.openmax
= 0;
1272 return snd_interval_refine(constrs_interval(constrs
, var
), &t
);
1275 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax
);
1277 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params
*params
,
1278 struct snd_pcm_hw_rule
*rule
)
1280 struct snd_pcm_hw_constraint_list
*list
= rule
->private;
1281 return snd_interval_list(hw_param_interval(params
, rule
->var
), list
->count
, list
->list
, list
->mask
);
1286 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1287 * @runtime: PCM runtime instance
1288 * @cond: condition bits
1289 * @var: hw_params variable to apply the list constraint
1292 * Apply the list of constraints to an interval parameter.
1294 * Return: Zero if successful, or a negative error code on failure.
1296 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime
*runtime
,
1298 snd_pcm_hw_param_t var
,
1299 const struct snd_pcm_hw_constraint_list
*l
)
1301 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1302 snd_pcm_hw_rule_list
, (void *)l
,
1306 EXPORT_SYMBOL(snd_pcm_hw_constraint_list
);
1308 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params
*params
,
1309 struct snd_pcm_hw_rule
*rule
)
1311 struct snd_pcm_hw_constraint_ranges
*r
= rule
->private;
1312 return snd_interval_ranges(hw_param_interval(params
, rule
->var
),
1313 r
->count
, r
->ranges
, r
->mask
);
1318 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1319 * @runtime: PCM runtime instance
1320 * @cond: condition bits
1321 * @var: hw_params variable to apply the list of range constraints
1324 * Apply the list of range constraints to an interval parameter.
1326 * Return: Zero if successful, or a negative error code on failure.
1328 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime
*runtime
,
1330 snd_pcm_hw_param_t var
,
1331 const struct snd_pcm_hw_constraint_ranges
*r
)
1333 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1334 snd_pcm_hw_rule_ranges
, (void *)r
,
1337 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges
);
1339 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params
*params
,
1340 struct snd_pcm_hw_rule
*rule
)
1342 struct snd_pcm_hw_constraint_ratnums
*r
= rule
->private;
1343 unsigned int num
= 0, den
= 0;
1345 err
= snd_interval_ratnum(hw_param_interval(params
, rule
->var
),
1346 r
->nrats
, r
->rats
, &num
, &den
);
1347 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1348 params
->rate_num
= num
;
1349 params
->rate_den
= den
;
1355 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1356 * @runtime: PCM runtime instance
1357 * @cond: condition bits
1358 * @var: hw_params variable to apply the ratnums constraint
1359 * @r: struct snd_ratnums constriants
1361 * Return: Zero if successful, or a negative error code on failure.
1363 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime
*runtime
,
1365 snd_pcm_hw_param_t var
,
1366 struct snd_pcm_hw_constraint_ratnums
*r
)
1368 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1369 snd_pcm_hw_rule_ratnums
, r
,
1373 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums
);
1375 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params
*params
,
1376 struct snd_pcm_hw_rule
*rule
)
1378 struct snd_pcm_hw_constraint_ratdens
*r
= rule
->private;
1379 unsigned int num
= 0, den
= 0;
1380 int err
= snd_interval_ratden(hw_param_interval(params
, rule
->var
),
1381 r
->nrats
, r
->rats
, &num
, &den
);
1382 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1383 params
->rate_num
= num
;
1384 params
->rate_den
= den
;
1390 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1391 * @runtime: PCM runtime instance
1392 * @cond: condition bits
1393 * @var: hw_params variable to apply the ratdens constraint
1394 * @r: struct snd_ratdens constriants
1396 * Return: Zero if successful, or a negative error code on failure.
1398 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime
*runtime
,
1400 snd_pcm_hw_param_t var
,
1401 struct snd_pcm_hw_constraint_ratdens
*r
)
1403 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1404 snd_pcm_hw_rule_ratdens
, r
,
1408 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens
);
1410 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params
*params
,
1411 struct snd_pcm_hw_rule
*rule
)
1413 unsigned int l
= (unsigned long) rule
->private;
1414 int width
= l
& 0xffff;
1415 unsigned int msbits
= l
>> 16;
1416 struct snd_interval
*i
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_SAMPLE_BITS
);
1418 if (!snd_interval_single(i
))
1421 if ((snd_interval_value(i
) == width
) ||
1422 (width
== 0 && snd_interval_value(i
) > msbits
))
1423 params
->msbits
= min_not_zero(params
->msbits
, msbits
);
1429 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1430 * @runtime: PCM runtime instance
1431 * @cond: condition bits
1432 * @width: sample bits width
1433 * @msbits: msbits width
1435 * This constraint will set the number of most significant bits (msbits) if a
1436 * sample format with the specified width has been select. If width is set to 0
1437 * the msbits will be set for any sample format with a width larger than the
1440 * Return: Zero if successful, or a negative error code on failure.
1442 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime
*runtime
,
1445 unsigned int msbits
)
1447 unsigned long l
= (msbits
<< 16) | width
;
1448 return snd_pcm_hw_rule_add(runtime
, cond
, -1,
1449 snd_pcm_hw_rule_msbits
,
1451 SNDRV_PCM_HW_PARAM_SAMPLE_BITS
, -1);
1454 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits
);
1456 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params
*params
,
1457 struct snd_pcm_hw_rule
*rule
)
1459 unsigned long step
= (unsigned long) rule
->private;
1460 return snd_interval_step(hw_param_interval(params
, rule
->var
), step
);
1464 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1465 * @runtime: PCM runtime instance
1466 * @cond: condition bits
1467 * @var: hw_params variable to apply the step constraint
1470 * Return: Zero if successful, or a negative error code on failure.
1472 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime
*runtime
,
1474 snd_pcm_hw_param_t var
,
1477 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1478 snd_pcm_hw_rule_step
, (void *) step
,
1482 EXPORT_SYMBOL(snd_pcm_hw_constraint_step
);
1484 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params
*params
, struct snd_pcm_hw_rule
*rule
)
1486 static unsigned int pow2_sizes
[] = {
1487 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1488 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1489 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1490 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1492 return snd_interval_list(hw_param_interval(params
, rule
->var
),
1493 ARRAY_SIZE(pow2_sizes
), pow2_sizes
, 0);
1497 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1498 * @runtime: PCM runtime instance
1499 * @cond: condition bits
1500 * @var: hw_params variable to apply the power-of-2 constraint
1502 * Return: Zero if successful, or a negative error code on failure.
1504 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime
*runtime
,
1506 snd_pcm_hw_param_t var
)
1508 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1509 snd_pcm_hw_rule_pow2
, NULL
,
1513 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2
);
1515 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params
*params
,
1516 struct snd_pcm_hw_rule
*rule
)
1518 unsigned int base_rate
= (unsigned int)(uintptr_t)rule
->private;
1519 struct snd_interval
*rate
;
1521 rate
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_RATE
);
1522 return snd_interval_list(rate
, 1, &base_rate
, 0);
1526 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1527 * @runtime: PCM runtime instance
1528 * @base_rate: the rate at which the hardware does not resample
1530 * Return: Zero if successful, or a negative error code on failure.
1532 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime
*runtime
,
1533 unsigned int base_rate
)
1535 return snd_pcm_hw_rule_add(runtime
, SNDRV_PCM_HW_PARAMS_NORESAMPLE
,
1536 SNDRV_PCM_HW_PARAM_RATE
,
1537 snd_pcm_hw_rule_noresample_func
,
1538 (void *)(uintptr_t)base_rate
,
1539 SNDRV_PCM_HW_PARAM_RATE
, -1);
1541 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample
);
1543 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params
*params
,
1544 snd_pcm_hw_param_t var
)
1546 if (hw_is_mask(var
)) {
1547 snd_mask_any(hw_param_mask(params
, var
));
1548 params
->cmask
|= 1 << var
;
1549 params
->rmask
|= 1 << var
;
1552 if (hw_is_interval(var
)) {
1553 snd_interval_any(hw_param_interval(params
, var
));
1554 params
->cmask
|= 1 << var
;
1555 params
->rmask
|= 1 << var
;
1561 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params
*params
)
1564 memset(params
, 0, sizeof(*params
));
1565 for (k
= SNDRV_PCM_HW_PARAM_FIRST_MASK
; k
<= SNDRV_PCM_HW_PARAM_LAST_MASK
; k
++)
1566 _snd_pcm_hw_param_any(params
, k
);
1567 for (k
= SNDRV_PCM_HW_PARAM_FIRST_INTERVAL
; k
<= SNDRV_PCM_HW_PARAM_LAST_INTERVAL
; k
++)
1568 _snd_pcm_hw_param_any(params
, k
);
1572 EXPORT_SYMBOL(_snd_pcm_hw_params_any
);
1575 * snd_pcm_hw_param_value - return @params field @var value
1576 * @params: the hw_params instance
1577 * @var: parameter to retrieve
1578 * @dir: pointer to the direction (-1,0,1) or %NULL
1580 * Return: The value for field @var if it's fixed in configuration space
1581 * defined by @params. -%EINVAL otherwise.
1583 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params
*params
,
1584 snd_pcm_hw_param_t var
, int *dir
)
1586 if (hw_is_mask(var
)) {
1587 const struct snd_mask
*mask
= hw_param_mask_c(params
, var
);
1588 if (!snd_mask_single(mask
))
1592 return snd_mask_value(mask
);
1594 if (hw_is_interval(var
)) {
1595 const struct snd_interval
*i
= hw_param_interval_c(params
, var
);
1596 if (!snd_interval_single(i
))
1600 return snd_interval_value(i
);
1605 EXPORT_SYMBOL(snd_pcm_hw_param_value
);
1607 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params
*params
,
1608 snd_pcm_hw_param_t var
)
1610 if (hw_is_mask(var
)) {
1611 snd_mask_none(hw_param_mask(params
, var
));
1612 params
->cmask
|= 1 << var
;
1613 params
->rmask
|= 1 << var
;
1614 } else if (hw_is_interval(var
)) {
1615 snd_interval_none(hw_param_interval(params
, var
));
1616 params
->cmask
|= 1 << var
;
1617 params
->rmask
|= 1 << var
;
1623 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty
);
1625 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params
*params
,
1626 snd_pcm_hw_param_t var
)
1629 if (hw_is_mask(var
))
1630 changed
= snd_mask_refine_first(hw_param_mask(params
, var
));
1631 else if (hw_is_interval(var
))
1632 changed
= snd_interval_refine_first(hw_param_interval(params
, var
));
1636 params
->cmask
|= 1 << var
;
1637 params
->rmask
|= 1 << var
;
1644 * snd_pcm_hw_param_first - refine config space and return minimum value
1645 * @pcm: PCM instance
1646 * @params: the hw_params instance
1647 * @var: parameter to retrieve
1648 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 * Inside configuration space defined by @params remove from @var all
1651 * values > minimum. Reduce configuration space accordingly.
1653 * Return: The minimum, or a negative error code on failure.
1655 int snd_pcm_hw_param_first(struct snd_pcm_substream
*pcm
,
1656 struct snd_pcm_hw_params
*params
,
1657 snd_pcm_hw_param_t var
, int *dir
)
1659 int changed
= _snd_pcm_hw_param_first(params
, var
);
1662 if (params
->rmask
) {
1663 int err
= snd_pcm_hw_refine(pcm
, params
);
1664 if (snd_BUG_ON(err
< 0))
1667 return snd_pcm_hw_param_value(params
, var
, dir
);
1670 EXPORT_SYMBOL(snd_pcm_hw_param_first
);
1672 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params
*params
,
1673 snd_pcm_hw_param_t var
)
1676 if (hw_is_mask(var
))
1677 changed
= snd_mask_refine_last(hw_param_mask(params
, var
));
1678 else if (hw_is_interval(var
))
1679 changed
= snd_interval_refine_last(hw_param_interval(params
, var
));
1683 params
->cmask
|= 1 << var
;
1684 params
->rmask
|= 1 << var
;
1691 * snd_pcm_hw_param_last - refine config space and return maximum value
1692 * @pcm: PCM instance
1693 * @params: the hw_params instance
1694 * @var: parameter to retrieve
1695 * @dir: pointer to the direction (-1,0,1) or %NULL
1697 * Inside configuration space defined by @params remove from @var all
1698 * values < maximum. Reduce configuration space accordingly.
1700 * Return: The maximum, or a negative error code on failure.
1702 int snd_pcm_hw_param_last(struct snd_pcm_substream
*pcm
,
1703 struct snd_pcm_hw_params
*params
,
1704 snd_pcm_hw_param_t var
, int *dir
)
1706 int changed
= _snd_pcm_hw_param_last(params
, var
);
1709 if (params
->rmask
) {
1710 int err
= snd_pcm_hw_refine(pcm
, params
);
1711 if (snd_BUG_ON(err
< 0))
1714 return snd_pcm_hw_param_value(params
, var
, dir
);
1717 EXPORT_SYMBOL(snd_pcm_hw_param_last
);
1720 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1721 * @pcm: PCM instance
1722 * @params: the hw_params instance
1724 * Choose one configuration from configuration space defined by @params.
1725 * The configuration chosen is that obtained fixing in this order:
1726 * first access, first format, first subformat, min channels,
1727 * min rate, min period time, max buffer size, min tick time
1729 * Return: Zero if successful, or a negative error code on failure.
1731 int snd_pcm_hw_params_choose(struct snd_pcm_substream
*pcm
,
1732 struct snd_pcm_hw_params
*params
)
1734 static int vars
[] = {
1735 SNDRV_PCM_HW_PARAM_ACCESS
,
1736 SNDRV_PCM_HW_PARAM_FORMAT
,
1737 SNDRV_PCM_HW_PARAM_SUBFORMAT
,
1738 SNDRV_PCM_HW_PARAM_CHANNELS
,
1739 SNDRV_PCM_HW_PARAM_RATE
,
1740 SNDRV_PCM_HW_PARAM_PERIOD_TIME
,
1741 SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
1742 SNDRV_PCM_HW_PARAM_TICK_TIME
,
1747 for (v
= vars
; *v
!= -1; v
++) {
1748 if (*v
!= SNDRV_PCM_HW_PARAM_BUFFER_SIZE
)
1749 err
= snd_pcm_hw_param_first(pcm
, params
, *v
, NULL
);
1751 err
= snd_pcm_hw_param_last(pcm
, params
, *v
, NULL
);
1752 if (snd_BUG_ON(err
< 0))
1758 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream
*substream
,
1761 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1762 unsigned long flags
;
1763 snd_pcm_stream_lock_irqsave(substream
, flags
);
1764 if (snd_pcm_running(substream
) &&
1765 snd_pcm_update_hw_ptr(substream
) >= 0)
1766 runtime
->status
->hw_ptr
%= runtime
->buffer_size
;
1768 runtime
->status
->hw_ptr
= 0;
1769 runtime
->hw_ptr_wrap
= 0;
1771 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1775 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream
*substream
,
1778 struct snd_pcm_channel_info
*info
= arg
;
1779 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1781 if (!(runtime
->info
& SNDRV_PCM_INFO_MMAP
)) {
1785 width
= snd_pcm_format_physical_width(runtime
->format
);
1789 switch (runtime
->access
) {
1790 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
:
1791 case SNDRV_PCM_ACCESS_RW_INTERLEAVED
:
1792 info
->first
= info
->channel
* width
;
1793 info
->step
= runtime
->channels
* width
;
1795 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED
:
1796 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
:
1798 size_t size
= runtime
->dma_bytes
/ runtime
->channels
;
1799 info
->first
= info
->channel
* size
* 8;
1810 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream
*substream
,
1813 struct snd_pcm_hw_params
*params
= arg
;
1814 snd_pcm_format_t format
;
1818 params
->fifo_size
= substream
->runtime
->hw
.fifo_size
;
1819 if (!(substream
->runtime
->hw
.info
& SNDRV_PCM_INFO_FIFO_IN_FRAMES
)) {
1820 format
= params_format(params
);
1821 channels
= params_channels(params
);
1822 frame_size
= snd_pcm_format_size(format
, channels
);
1824 params
->fifo_size
/= (unsigned)frame_size
;
1830 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1831 * @substream: the pcm substream instance
1832 * @cmd: ioctl command
1833 * @arg: ioctl argument
1835 * Processes the generic ioctl commands for PCM.
1836 * Can be passed as the ioctl callback for PCM ops.
1838 * Return: Zero if successful, or a negative error code on failure.
1840 int snd_pcm_lib_ioctl(struct snd_pcm_substream
*substream
,
1841 unsigned int cmd
, void *arg
)
1844 case SNDRV_PCM_IOCTL1_INFO
:
1846 case SNDRV_PCM_IOCTL1_RESET
:
1847 return snd_pcm_lib_ioctl_reset(substream
, arg
);
1848 case SNDRV_PCM_IOCTL1_CHANNEL_INFO
:
1849 return snd_pcm_lib_ioctl_channel_info(substream
, arg
);
1850 case SNDRV_PCM_IOCTL1_FIFO_SIZE
:
1851 return snd_pcm_lib_ioctl_fifo_size(substream
, arg
);
1856 EXPORT_SYMBOL(snd_pcm_lib_ioctl
);
1859 * snd_pcm_period_elapsed - update the pcm status for the next period
1860 * @substream: the pcm substream instance
1862 * This function is called from the interrupt handler when the
1863 * PCM has processed the period size. It will update the current
1864 * pointer, wake up sleepers, etc.
1866 * Even if more than one periods have elapsed since the last call, you
1867 * have to call this only once.
1869 void snd_pcm_period_elapsed(struct snd_pcm_substream
*substream
)
1871 struct snd_pcm_runtime
*runtime
;
1872 unsigned long flags
;
1874 if (PCM_RUNTIME_CHECK(substream
))
1876 runtime
= substream
->runtime
;
1878 if (runtime
->transfer_ack_begin
)
1879 runtime
->transfer_ack_begin(substream
);
1881 snd_pcm_stream_lock_irqsave(substream
, flags
);
1882 if (!snd_pcm_running(substream
) ||
1883 snd_pcm_update_hw_ptr0(substream
, 1) < 0)
1886 if (substream
->timer_running
)
1887 snd_timer_interrupt(substream
->timer
, 1);
1889 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1890 if (runtime
->transfer_ack_end
)
1891 runtime
->transfer_ack_end(substream
);
1892 kill_fasync(&runtime
->fasync
, SIGIO
, POLL_IN
);
1895 EXPORT_SYMBOL(snd_pcm_period_elapsed
);
1898 * Wait until avail_min data becomes available
1899 * Returns a negative error code if any error occurs during operation.
1900 * The available space is stored on availp. When err = 0 and avail = 0
1901 * on the capture stream, it indicates the stream is in DRAINING state.
1903 static int wait_for_avail(struct snd_pcm_substream
*substream
,
1904 snd_pcm_uframes_t
*availp
)
1906 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1907 int is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
1910 snd_pcm_uframes_t avail
= 0;
1911 long wait_time
, tout
;
1913 init_waitqueue_entry(&wait
, current
);
1914 set_current_state(TASK_INTERRUPTIBLE
);
1915 add_wait_queue(&runtime
->tsleep
, &wait
);
1917 if (runtime
->no_period_wakeup
)
1918 wait_time
= MAX_SCHEDULE_TIMEOUT
;
1921 if (runtime
->rate
) {
1922 long t
= runtime
->period_size
* 2 / runtime
->rate
;
1923 wait_time
= max(t
, wait_time
);
1925 wait_time
= msecs_to_jiffies(wait_time
* 1000);
1929 if (signal_pending(current
)) {
1935 * We need to check if space became available already
1936 * (and thus the wakeup happened already) first to close
1937 * the race of space already having become available.
1938 * This check must happen after been added to the waitqueue
1939 * and having current state be INTERRUPTIBLE.
1942 avail
= snd_pcm_playback_avail(runtime
);
1944 avail
= snd_pcm_capture_avail(runtime
);
1945 if (avail
>= runtime
->twake
)
1947 snd_pcm_stream_unlock_irq(substream
);
1949 tout
= schedule_timeout(wait_time
);
1951 snd_pcm_stream_lock_irq(substream
);
1952 set_current_state(TASK_INTERRUPTIBLE
);
1953 switch (runtime
->status
->state
) {
1954 case SNDRV_PCM_STATE_SUSPENDED
:
1957 case SNDRV_PCM_STATE_XRUN
:
1960 case SNDRV_PCM_STATE_DRAINING
:
1964 avail
= 0; /* indicate draining */
1966 case SNDRV_PCM_STATE_OPEN
:
1967 case SNDRV_PCM_STATE_SETUP
:
1968 case SNDRV_PCM_STATE_DISCONNECTED
:
1971 case SNDRV_PCM_STATE_PAUSED
:
1975 pcm_dbg(substream
->pcm
,
1976 "%s write error (DMA or IRQ trouble?)\n",
1977 is_playback
? "playback" : "capture");
1983 set_current_state(TASK_RUNNING
);
1984 remove_wait_queue(&runtime
->tsleep
, &wait
);
1989 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream
*substream
,
1991 unsigned long data
, unsigned int off
,
1992 snd_pcm_uframes_t frames
)
1994 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1996 char __user
*buf
= (char __user
*) data
+ frames_to_bytes(runtime
, off
);
1997 if (substream
->ops
->copy
) {
1998 if ((err
= substream
->ops
->copy(substream
, -1, hwoff
, buf
, frames
)) < 0)
2001 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, hwoff
);
2002 if (copy_from_user(hwbuf
, buf
, frames_to_bytes(runtime
, frames
)))
2008 typedef int (*transfer_f
)(struct snd_pcm_substream
*substream
, unsigned int hwoff
,
2009 unsigned long data
, unsigned int off
,
2010 snd_pcm_uframes_t size
);
2012 static snd_pcm_sframes_t
snd_pcm_lib_write1(struct snd_pcm_substream
*substream
,
2014 snd_pcm_uframes_t size
,
2016 transfer_f transfer
)
2018 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2019 snd_pcm_uframes_t xfer
= 0;
2020 snd_pcm_uframes_t offset
= 0;
2021 snd_pcm_uframes_t avail
;
2027 snd_pcm_stream_lock_irq(substream
);
2028 switch (runtime
->status
->state
) {
2029 case SNDRV_PCM_STATE_PREPARED
:
2030 case SNDRV_PCM_STATE_RUNNING
:
2031 case SNDRV_PCM_STATE_PAUSED
:
2033 case SNDRV_PCM_STATE_XRUN
:
2036 case SNDRV_PCM_STATE_SUSPENDED
:
2044 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2045 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2046 snd_pcm_update_hw_ptr(substream
);
2047 avail
= snd_pcm_playback_avail(runtime
);
2049 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2050 snd_pcm_uframes_t cont
;
2056 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2057 runtime
->control
->avail_min
? : 1);
2058 err
= wait_for_avail(substream
, &avail
);
2062 frames
= size
> avail
? avail
: size
;
2063 cont
= runtime
->buffer_size
- runtime
->control
->appl_ptr
% runtime
->buffer_size
;
2066 if (snd_BUG_ON(!frames
)) {
2068 snd_pcm_stream_unlock_irq(substream
);
2071 appl_ptr
= runtime
->control
->appl_ptr
;
2072 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2073 snd_pcm_stream_unlock_irq(substream
);
2074 err
= transfer(substream
, appl_ofs
, data
, offset
, frames
);
2075 snd_pcm_stream_lock_irq(substream
);
2078 switch (runtime
->status
->state
) {
2079 case SNDRV_PCM_STATE_XRUN
:
2082 case SNDRV_PCM_STATE_SUSPENDED
:
2089 if (appl_ptr
>= runtime
->boundary
)
2090 appl_ptr
-= runtime
->boundary
;
2091 runtime
->control
->appl_ptr
= appl_ptr
;
2092 if (substream
->ops
->ack
)
2093 substream
->ops
->ack(substream
);
2099 if (runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2100 snd_pcm_playback_hw_avail(runtime
) >= (snd_pcm_sframes_t
)runtime
->start_threshold
) {
2101 err
= snd_pcm_start(substream
);
2108 if (xfer
> 0 && err
>= 0)
2109 snd_pcm_update_state(substream
, runtime
);
2110 snd_pcm_stream_unlock_irq(substream
);
2111 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2114 /* sanity-check for read/write methods */
2115 static int pcm_sanity_check(struct snd_pcm_substream
*substream
)
2117 struct snd_pcm_runtime
*runtime
;
2118 if (PCM_RUNTIME_CHECK(substream
))
2120 runtime
= substream
->runtime
;
2121 if (snd_BUG_ON(!substream
->ops
->copy
&& !runtime
->dma_area
))
2123 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2128 snd_pcm_sframes_t
snd_pcm_lib_write(struct snd_pcm_substream
*substream
, const void __user
*buf
, snd_pcm_uframes_t size
)
2130 struct snd_pcm_runtime
*runtime
;
2134 err
= pcm_sanity_check(substream
);
2137 runtime
= substream
->runtime
;
2138 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2140 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
&&
2141 runtime
->channels
> 1)
2143 return snd_pcm_lib_write1(substream
, (unsigned long)buf
, size
, nonblock
,
2144 snd_pcm_lib_write_transfer
);
2147 EXPORT_SYMBOL(snd_pcm_lib_write
);
2149 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream
*substream
,
2151 unsigned long data
, unsigned int off
,
2152 snd_pcm_uframes_t frames
)
2154 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2156 void __user
**bufs
= (void __user
**)data
;
2157 int channels
= runtime
->channels
;
2159 if (substream
->ops
->copy
) {
2160 if (snd_BUG_ON(!substream
->ops
->silence
))
2162 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2163 if (*bufs
== NULL
) {
2164 if ((err
= substream
->ops
->silence(substream
, c
, hwoff
, frames
)) < 0)
2167 char __user
*buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2168 if ((err
= substream
->ops
->copy(substream
, c
, hwoff
, buf
, frames
)) < 0)
2173 /* default transfer behaviour */
2174 size_t dma_csize
= runtime
->dma_bytes
/ channels
;
2175 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2176 char *hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, hwoff
);
2177 if (*bufs
== NULL
) {
2178 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, frames
);
2180 char __user
*buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2181 if (copy_from_user(hwbuf
, buf
, samples_to_bytes(runtime
, frames
)))
2189 snd_pcm_sframes_t
snd_pcm_lib_writev(struct snd_pcm_substream
*substream
,
2191 snd_pcm_uframes_t frames
)
2193 struct snd_pcm_runtime
*runtime
;
2197 err
= pcm_sanity_check(substream
);
2200 runtime
= substream
->runtime
;
2201 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2203 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2205 return snd_pcm_lib_write1(substream
, (unsigned long)bufs
, frames
,
2206 nonblock
, snd_pcm_lib_writev_transfer
);
2209 EXPORT_SYMBOL(snd_pcm_lib_writev
);
2211 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream
*substream
,
2213 unsigned long data
, unsigned int off
,
2214 snd_pcm_uframes_t frames
)
2216 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2218 char __user
*buf
= (char __user
*) data
+ frames_to_bytes(runtime
, off
);
2219 if (substream
->ops
->copy
) {
2220 if ((err
= substream
->ops
->copy(substream
, -1, hwoff
, buf
, frames
)) < 0)
2223 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, hwoff
);
2224 if (copy_to_user(buf
, hwbuf
, frames_to_bytes(runtime
, frames
)))
2230 static snd_pcm_sframes_t
snd_pcm_lib_read1(struct snd_pcm_substream
*substream
,
2232 snd_pcm_uframes_t size
,
2234 transfer_f transfer
)
2236 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2237 snd_pcm_uframes_t xfer
= 0;
2238 snd_pcm_uframes_t offset
= 0;
2239 snd_pcm_uframes_t avail
;
2245 snd_pcm_stream_lock_irq(substream
);
2246 switch (runtime
->status
->state
) {
2247 case SNDRV_PCM_STATE_PREPARED
:
2248 if (size
>= runtime
->start_threshold
) {
2249 err
= snd_pcm_start(substream
);
2254 case SNDRV_PCM_STATE_DRAINING
:
2255 case SNDRV_PCM_STATE_RUNNING
:
2256 case SNDRV_PCM_STATE_PAUSED
:
2258 case SNDRV_PCM_STATE_XRUN
:
2261 case SNDRV_PCM_STATE_SUSPENDED
:
2269 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2270 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2271 snd_pcm_update_hw_ptr(substream
);
2272 avail
= snd_pcm_capture_avail(runtime
);
2274 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2275 snd_pcm_uframes_t cont
;
2277 if (runtime
->status
->state
==
2278 SNDRV_PCM_STATE_DRAINING
) {
2279 snd_pcm_stop(substream
, SNDRV_PCM_STATE_SETUP
);
2286 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2287 runtime
->control
->avail_min
? : 1);
2288 err
= wait_for_avail(substream
, &avail
);
2292 continue; /* draining */
2294 frames
= size
> avail
? avail
: size
;
2295 cont
= runtime
->buffer_size
- runtime
->control
->appl_ptr
% runtime
->buffer_size
;
2298 if (snd_BUG_ON(!frames
)) {
2300 snd_pcm_stream_unlock_irq(substream
);
2303 appl_ptr
= runtime
->control
->appl_ptr
;
2304 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2305 snd_pcm_stream_unlock_irq(substream
);
2306 err
= transfer(substream
, appl_ofs
, data
, offset
, frames
);
2307 snd_pcm_stream_lock_irq(substream
);
2310 switch (runtime
->status
->state
) {
2311 case SNDRV_PCM_STATE_XRUN
:
2314 case SNDRV_PCM_STATE_SUSPENDED
:
2321 if (appl_ptr
>= runtime
->boundary
)
2322 appl_ptr
-= runtime
->boundary
;
2323 runtime
->control
->appl_ptr
= appl_ptr
;
2324 if (substream
->ops
->ack
)
2325 substream
->ops
->ack(substream
);
2334 if (xfer
> 0 && err
>= 0)
2335 snd_pcm_update_state(substream
, runtime
);
2336 snd_pcm_stream_unlock_irq(substream
);
2337 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2340 snd_pcm_sframes_t
snd_pcm_lib_read(struct snd_pcm_substream
*substream
, void __user
*buf
, snd_pcm_uframes_t size
)
2342 struct snd_pcm_runtime
*runtime
;
2346 err
= pcm_sanity_check(substream
);
2349 runtime
= substream
->runtime
;
2350 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2351 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
)
2353 return snd_pcm_lib_read1(substream
, (unsigned long)buf
, size
, nonblock
, snd_pcm_lib_read_transfer
);
2356 EXPORT_SYMBOL(snd_pcm_lib_read
);
2358 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream
*substream
,
2360 unsigned long data
, unsigned int off
,
2361 snd_pcm_uframes_t frames
)
2363 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2365 void __user
**bufs
= (void __user
**)data
;
2366 int channels
= runtime
->channels
;
2368 if (substream
->ops
->copy
) {
2369 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2373 buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2374 if ((err
= substream
->ops
->copy(substream
, c
, hwoff
, buf
, frames
)) < 0)
2378 snd_pcm_uframes_t dma_csize
= runtime
->dma_bytes
/ channels
;
2379 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2385 hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, hwoff
);
2386 buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2387 if (copy_to_user(buf
, hwbuf
, samples_to_bytes(runtime
, frames
)))
2394 snd_pcm_sframes_t
snd_pcm_lib_readv(struct snd_pcm_substream
*substream
,
2396 snd_pcm_uframes_t frames
)
2398 struct snd_pcm_runtime
*runtime
;
2402 err
= pcm_sanity_check(substream
);
2405 runtime
= substream
->runtime
;
2406 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2409 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2410 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2412 return snd_pcm_lib_read1(substream
, (unsigned long)bufs
, frames
, nonblock
, snd_pcm_lib_readv_transfer
);
2415 EXPORT_SYMBOL(snd_pcm_lib_readv
);
2418 * standard channel mapping helpers
2421 /* default channel maps for multi-channel playbacks, up to 8 channels */
2422 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps
[] = {
2424 .map
= { SNDRV_CHMAP_MONO
} },
2426 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2428 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2429 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2431 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2432 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2433 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
} },
2435 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2436 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2437 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2438 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2441 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps
);
2443 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2444 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps
[] = {
2446 .map
= { SNDRV_CHMAP_MONO
} },
2448 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2450 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2451 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2453 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2454 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2455 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2457 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2458 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2459 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2460 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2463 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps
);
2465 static bool valid_chmap_channels(const struct snd_pcm_chmap
*info
, int ch
)
2467 if (ch
> info
->max_channels
)
2469 return !info
->channel_mask
|| (info
->channel_mask
& (1U << ch
));
2472 static int pcm_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
2473 struct snd_ctl_elem_info
*uinfo
)
2475 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2477 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
2479 uinfo
->count
= info
->max_channels
;
2480 uinfo
->value
.integer
.min
= 0;
2481 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
2485 /* get callback for channel map ctl element
2486 * stores the channel position firstly matching with the current channels
2488 static int pcm_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
2489 struct snd_ctl_elem_value
*ucontrol
)
2491 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2492 unsigned int idx
= snd_ctl_get_ioffidx(kcontrol
, &ucontrol
->id
);
2493 struct snd_pcm_substream
*substream
;
2494 const struct snd_pcm_chmap_elem
*map
;
2496 if (snd_BUG_ON(!info
->chmap
))
2498 substream
= snd_pcm_chmap_substream(info
, idx
);
2501 memset(ucontrol
->value
.integer
.value
, 0,
2502 sizeof(ucontrol
->value
.integer
.value
));
2503 if (!substream
->runtime
)
2504 return 0; /* no channels set */
2505 for (map
= info
->chmap
; map
->channels
; map
++) {
2507 if (map
->channels
== substream
->runtime
->channels
&&
2508 valid_chmap_channels(info
, map
->channels
)) {
2509 for (i
= 0; i
< map
->channels
; i
++)
2510 ucontrol
->value
.integer
.value
[i
] = map
->map
[i
];
2517 /* tlv callback for channel map ctl element
2518 * expands the pre-defined channel maps in a form of TLV
2520 static int pcm_chmap_ctl_tlv(struct snd_kcontrol
*kcontrol
, int op_flag
,
2521 unsigned int size
, unsigned int __user
*tlv
)
2523 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2524 const struct snd_pcm_chmap_elem
*map
;
2525 unsigned int __user
*dst
;
2528 if (snd_BUG_ON(!info
->chmap
))
2532 if (put_user(SNDRV_CTL_TLVT_CONTAINER
, tlv
))
2536 for (map
= info
->chmap
; map
->channels
; map
++) {
2537 int chs_bytes
= map
->channels
* 4;
2538 if (!valid_chmap_channels(info
, map
->channels
))
2542 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED
, dst
) ||
2543 put_user(chs_bytes
, dst
+ 1))
2548 if (size
< chs_bytes
)
2552 for (c
= 0; c
< map
->channels
; c
++) {
2553 if (put_user(map
->map
[c
], dst
))
2558 if (put_user(count
, tlv
+ 1))
2563 static void pcm_chmap_ctl_private_free(struct snd_kcontrol
*kcontrol
)
2565 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2566 info
->pcm
->streams
[info
->stream
].chmap_kctl
= NULL
;
2571 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2572 * @pcm: the assigned PCM instance
2573 * @stream: stream direction
2574 * @chmap: channel map elements (for query)
2575 * @max_channels: the max number of channels for the stream
2576 * @private_value: the value passed to each kcontrol's private_value field
2577 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2579 * Create channel-mapping control elements assigned to the given PCM stream(s).
2580 * Return: Zero if successful, or a negative error value.
2582 int snd_pcm_add_chmap_ctls(struct snd_pcm
*pcm
, int stream
,
2583 const struct snd_pcm_chmap_elem
*chmap
,
2585 unsigned long private_value
,
2586 struct snd_pcm_chmap
**info_ret
)
2588 struct snd_pcm_chmap
*info
;
2589 struct snd_kcontrol_new knew
= {
2590 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
2591 .access
= SNDRV_CTL_ELEM_ACCESS_READ
|
2592 SNDRV_CTL_ELEM_ACCESS_TLV_READ
|
2593 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK
,
2594 .info
= pcm_chmap_ctl_info
,
2595 .get
= pcm_chmap_ctl_get
,
2596 .tlv
.c
= pcm_chmap_ctl_tlv
,
2600 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2604 info
->stream
= stream
;
2605 info
->chmap
= chmap
;
2606 info
->max_channels
= max_channels
;
2607 if (stream
== SNDRV_PCM_STREAM_PLAYBACK
)
2608 knew
.name
= "Playback Channel Map";
2610 knew
.name
= "Capture Channel Map";
2611 knew
.device
= pcm
->device
;
2612 knew
.count
= pcm
->streams
[stream
].substream_count
;
2613 knew
.private_value
= private_value
;
2614 info
->kctl
= snd_ctl_new1(&knew
, info
);
2619 info
->kctl
->private_free
= pcm_chmap_ctl_private_free
;
2620 err
= snd_ctl_add(pcm
->card
, info
->kctl
);
2623 pcm
->streams
[stream
].chmap_kctl
= info
->kctl
;
2628 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls
);