2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
45 * @dst: Buffer to take hex character representation of contents of
46 * src; must be at least of size (src_size * 2)
47 * @src: Buffer to be converted to a hex string respresentation
48 * @src_size: number of bytes to convert
50 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
54 for (x
= 0; x
< src_size
; x
++)
55 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
60 * @dst: Buffer to take the bytes from src hex; must be at least of
62 * @src: Buffer to be converted from a hex string respresentation to raw value
63 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
65 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
70 for (x
= 0; x
< dst_size
; x
++) {
72 tmp
[1] = src
[x
* 2 + 1];
73 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
78 * ecryptfs_calculate_md5 - calculates the md5 of @src
79 * @dst: Pointer to 16 bytes of allocated memory
80 * @crypt_stat: Pointer to crypt_stat struct for the current inode
81 * @src: Data to be md5'd
82 * @len: Length of @src
84 * Uses the allocated crypto context that crypt_stat references to
85 * generate the MD5 sum of the contents of src.
87 static int ecryptfs_calculate_md5(char *dst
,
88 struct ecryptfs_crypt_stat
*crypt_stat
,
91 struct scatterlist sg
;
92 struct hash_desc desc
= {
93 .tfm
= crypt_stat
->hash_tfm
,
94 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
98 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
99 sg_init_one(&sg
, (u8
*)src
, len
);
101 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
103 if (IS_ERR(desc
.tfm
)) {
104 rc
= PTR_ERR(desc
.tfm
);
105 ecryptfs_printk(KERN_ERR
, "Error attempting to "
106 "allocate crypto context; rc = [%d]\n",
110 crypt_stat
->hash_tfm
= desc
.tfm
;
112 rc
= crypto_hash_init(&desc
);
115 "%s: Error initializing crypto hash; rc = [%d]\n",
119 rc
= crypto_hash_update(&desc
, &sg
, len
);
122 "%s: Error updating crypto hash; rc = [%d]\n",
126 rc
= crypto_hash_final(&desc
, dst
);
129 "%s: Error finalizing crypto hash; rc = [%d]\n",
134 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
138 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
140 char *chaining_modifier
)
142 int cipher_name_len
= strlen(cipher_name
);
143 int chaining_modifier_len
= strlen(chaining_modifier
);
144 int algified_name_len
;
147 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
148 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
149 if (!(*algified_name
)) {
153 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
154 chaining_modifier
, cipher_name
);
162 * @iv: destination for the derived iv vale
163 * @crypt_stat: Pointer to crypt_stat struct for the current inode
164 * @offset: Offset of the extent whose IV we are to derive
166 * Generate the initialization vector from the given root IV and page
169 * Returns zero on success; non-zero on error.
171 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
175 char dst
[MD5_DIGEST_SIZE
];
176 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
178 if (unlikely(ecryptfs_verbosity
> 0)) {
179 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
180 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
182 /* TODO: It is probably secure to just cast the least
183 * significant bits of the root IV into an unsigned long and
184 * add the offset to that rather than go through all this
185 * hashing business. -Halcrow */
186 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
187 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
188 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
189 if (unlikely(ecryptfs_verbosity
> 0)) {
190 ecryptfs_printk(KERN_DEBUG
, "source:\n");
191 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
193 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
194 (crypt_stat
->iv_bytes
+ 16));
196 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
197 "MD5 while generating IV for a page\n");
200 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
201 if (unlikely(ecryptfs_verbosity
> 0)) {
202 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
203 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
210 * ecryptfs_init_crypt_stat
211 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
213 * Initialize the crypt_stat structure.
216 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
218 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
219 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
220 mutex_init(&crypt_stat
->keysig_list_mutex
);
221 mutex_init(&crypt_stat
->cs_mutex
);
222 mutex_init(&crypt_stat
->cs_tfm_mutex
);
223 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
224 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
228 * ecryptfs_destroy_crypt_stat
229 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
231 * Releases all memory associated with a crypt_stat struct.
233 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
235 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
238 crypto_free_ablkcipher(crypt_stat
->tfm
);
239 if (crypt_stat
->hash_tfm
)
240 crypto_free_hash(crypt_stat
->hash_tfm
);
241 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
242 &crypt_stat
->keysig_list
, crypt_stat_list
) {
243 list_del(&key_sig
->crypt_stat_list
);
244 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
246 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
249 void ecryptfs_destroy_mount_crypt_stat(
250 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
252 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
254 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
256 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
257 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
258 &mount_crypt_stat
->global_auth_tok_list
,
259 mount_crypt_stat_list
) {
260 list_del(&auth_tok
->mount_crypt_stat_list
);
261 if (auth_tok
->global_auth_tok_key
262 && !(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
263 key_put(auth_tok
->global_auth_tok_key
);
264 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
266 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
267 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
271 * virt_to_scatterlist
272 * @addr: Virtual address
273 * @size: Size of data; should be an even multiple of the block size
274 * @sg: Pointer to scatterlist array; set to NULL to obtain only
275 * the number of scatterlist structs required in array
276 * @sg_size: Max array size
278 * Fills in a scatterlist array with page references for a passed
281 * Returns the number of scatterlist structs in array used
283 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
289 int remainder_of_page
;
291 sg_init_table(sg
, sg_size
);
293 while (size
> 0 && i
< sg_size
) {
294 pg
= virt_to_page(addr
);
295 offset
= offset_in_page(addr
);
296 sg_set_page(&sg
[i
], pg
, 0, offset
);
297 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
298 if (size
>= remainder_of_page
) {
299 sg
[i
].length
= remainder_of_page
;
300 addr
+= remainder_of_page
;
301 size
-= remainder_of_page
;
314 struct extent_crypt_result
{
315 struct completion completion
;
319 static void extent_crypt_complete(struct crypto_async_request
*req
, int rc
)
321 struct extent_crypt_result
*ecr
= req
->data
;
323 if (rc
== -EINPROGRESS
)
327 complete(&ecr
->completion
);
332 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
333 * @dst_sg: Destination of the data after performing the crypto operation
334 * @src_sg: Data to be encrypted or decrypted
335 * @size: Length of data
337 * @op: ENCRYPT or DECRYPT to indicate the desired operation
339 * Returns the number of bytes encrypted or decrypted; negative value on error
341 static int crypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
342 struct scatterlist
*dst_sg
,
343 struct scatterlist
*src_sg
, int size
,
344 unsigned char *iv
, int op
)
346 struct ablkcipher_request
*req
= NULL
;
347 struct extent_crypt_result ecr
;
350 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
351 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
352 if (unlikely(ecryptfs_verbosity
> 0)) {
353 ecryptfs_printk(KERN_DEBUG
, "Key size [%zd]; key:\n",
354 crypt_stat
->key_size
);
355 ecryptfs_dump_hex(crypt_stat
->key
,
356 crypt_stat
->key_size
);
359 init_completion(&ecr
.completion
);
361 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
362 req
= ablkcipher_request_alloc(crypt_stat
->tfm
, GFP_NOFS
);
364 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
369 ablkcipher_request_set_callback(req
,
370 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
371 extent_crypt_complete
, &ecr
);
372 /* Consider doing this once, when the file is opened */
373 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
374 rc
= crypto_ablkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
375 crypt_stat
->key_size
);
377 ecryptfs_printk(KERN_ERR
,
378 "Error setting key; rc = [%d]\n",
380 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
384 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
386 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
387 ablkcipher_request_set_crypt(req
, src_sg
, dst_sg
, size
, iv
);
388 rc
= op
== ENCRYPT
? crypto_ablkcipher_encrypt(req
) :
389 crypto_ablkcipher_decrypt(req
);
390 if (rc
== -EINPROGRESS
|| rc
== -EBUSY
) {
391 struct extent_crypt_result
*ecr
= req
->base
.data
;
393 wait_for_completion(&ecr
->completion
);
395 reinit_completion(&ecr
->completion
);
398 ablkcipher_request_free(req
);
403 * lower_offset_for_page
405 * Convert an eCryptfs page index into a lower byte offset
407 static loff_t
lower_offset_for_page(struct ecryptfs_crypt_stat
*crypt_stat
,
410 return ecryptfs_lower_header_size(crypt_stat
) +
411 ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
);
416 * @crypt_stat: crypt_stat containing cryptographic context for the
417 * encryption operation
418 * @dst_page: The page to write the result into
419 * @src_page: The page to read from
420 * @extent_offset: Page extent offset for use in generating IV
421 * @op: ENCRYPT or DECRYPT to indicate the desired operation
423 * Encrypts or decrypts one extent of data.
425 * Return zero on success; non-zero otherwise
427 static int crypt_extent(struct ecryptfs_crypt_stat
*crypt_stat
,
428 struct page
*dst_page
,
429 struct page
*src_page
,
430 unsigned long extent_offset
, int op
)
432 pgoff_t page_index
= op
== ENCRYPT
? src_page
->index
: dst_page
->index
;
434 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
435 struct scatterlist src_sg
, dst_sg
;
436 size_t extent_size
= crypt_stat
->extent_size
;
439 extent_base
= (((loff_t
)page_index
) * (PAGE_CACHE_SIZE
/ extent_size
));
440 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
441 (extent_base
+ extent_offset
));
443 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
444 "extent [0x%.16llx]; rc = [%d]\n",
445 (unsigned long long)(extent_base
+ extent_offset
), rc
);
449 sg_init_table(&src_sg
, 1);
450 sg_init_table(&dst_sg
, 1);
452 sg_set_page(&src_sg
, src_page
, extent_size
,
453 extent_offset
* extent_size
);
454 sg_set_page(&dst_sg
, dst_page
, extent_size
,
455 extent_offset
* extent_size
);
457 rc
= crypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, extent_size
,
460 printk(KERN_ERR
"%s: Error attempting to crypt page with "
461 "page_index = [%ld], extent_offset = [%ld]; "
462 "rc = [%d]\n", __func__
, page_index
, extent_offset
, rc
);
471 * ecryptfs_encrypt_page
472 * @page: Page mapped from the eCryptfs inode for the file; contains
473 * decrypted content that needs to be encrypted (to a temporary
474 * page; not in place) and written out to the lower file
476 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
477 * that eCryptfs pages may straddle the lower pages -- for instance,
478 * if the file was created on a machine with an 8K page size
479 * (resulting in an 8K header), and then the file is copied onto a
480 * host with a 32K page size, then when reading page 0 of the eCryptfs
481 * file, 24K of page 0 of the lower file will be read and decrypted,
482 * and then 8K of page 1 of the lower file will be read and decrypted.
484 * Returns zero on success; negative on error
486 int ecryptfs_encrypt_page(struct page
*page
)
488 struct inode
*ecryptfs_inode
;
489 struct ecryptfs_crypt_stat
*crypt_stat
;
490 char *enc_extent_virt
;
491 struct page
*enc_extent_page
= NULL
;
492 loff_t extent_offset
;
496 ecryptfs_inode
= page
->mapping
->host
;
498 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
499 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
500 enc_extent_page
= alloc_page(GFP_USER
);
501 if (!enc_extent_page
) {
503 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
504 "encrypted extent\n");
508 for (extent_offset
= 0;
509 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
511 rc
= crypt_extent(crypt_stat
, enc_extent_page
, page
,
512 extent_offset
, ENCRYPT
);
514 printk(KERN_ERR
"%s: Error encrypting extent; "
515 "rc = [%d]\n", __func__
, rc
);
520 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
521 enc_extent_virt
= kmap(enc_extent_page
);
522 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
, lower_offset
,
524 kunmap(enc_extent_page
);
526 ecryptfs_printk(KERN_ERR
,
527 "Error attempting to write lower page; rc = [%d]\n",
533 if (enc_extent_page
) {
534 __free_page(enc_extent_page
);
540 * ecryptfs_decrypt_page
541 * @page: Page mapped from the eCryptfs inode for the file; data read
542 * and decrypted from the lower file will be written into this
545 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
546 * that eCryptfs pages may straddle the lower pages -- for instance,
547 * if the file was created on a machine with an 8K page size
548 * (resulting in an 8K header), and then the file is copied onto a
549 * host with a 32K page size, then when reading page 0 of the eCryptfs
550 * file, 24K of page 0 of the lower file will be read and decrypted,
551 * and then 8K of page 1 of the lower file will be read and decrypted.
553 * Returns zero on success; negative on error
555 int ecryptfs_decrypt_page(struct page
*page
)
557 struct inode
*ecryptfs_inode
;
558 struct ecryptfs_crypt_stat
*crypt_stat
;
560 unsigned long extent_offset
;
564 ecryptfs_inode
= page
->mapping
->host
;
566 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
567 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
569 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
570 page_virt
= kmap(page
);
571 rc
= ecryptfs_read_lower(page_virt
, lower_offset
, PAGE_CACHE_SIZE
,
575 ecryptfs_printk(KERN_ERR
,
576 "Error attempting to read lower page; rc = [%d]\n",
581 for (extent_offset
= 0;
582 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
584 rc
= crypt_extent(crypt_stat
, page
, page
,
585 extent_offset
, DECRYPT
);
587 printk(KERN_ERR
"%s: Error encrypting extent; "
588 "rc = [%d]\n", __func__
, rc
);
596 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
599 * ecryptfs_init_crypt_ctx
600 * @crypt_stat: Uninitialized crypt stats structure
602 * Initialize the crypto context.
604 * TODO: Performance: Keep a cache of initialized cipher contexts;
605 * only init if needed
607 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
612 ecryptfs_printk(KERN_DEBUG
,
613 "Initializing cipher [%s]; strlen = [%d]; "
614 "key_size_bits = [%zd]\n",
615 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
616 crypt_stat
->key_size
<< 3);
617 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
618 if (crypt_stat
->tfm
) {
622 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
623 crypt_stat
->cipher
, "cbc");
626 crypt_stat
->tfm
= crypto_alloc_ablkcipher(full_alg_name
, 0, 0);
627 if (IS_ERR(crypt_stat
->tfm
)) {
628 rc
= PTR_ERR(crypt_stat
->tfm
);
629 crypt_stat
->tfm
= NULL
;
630 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
631 "Error initializing cipher [%s]\n",
635 crypto_ablkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
638 kfree(full_alg_name
);
640 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
644 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
648 crypt_stat
->extent_mask
= 0xFFFFFFFF;
649 crypt_stat
->extent_shift
= 0;
650 if (crypt_stat
->extent_size
== 0)
652 extent_size_tmp
= crypt_stat
->extent_size
;
653 while ((extent_size_tmp
& 0x01) == 0) {
654 extent_size_tmp
>>= 1;
655 crypt_stat
->extent_mask
<<= 1;
656 crypt_stat
->extent_shift
++;
660 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
662 /* Default values; may be overwritten as we are parsing the
664 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
665 set_extent_mask_and_shift(crypt_stat
);
666 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
667 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
668 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
670 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
671 crypt_stat
->metadata_size
=
672 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
674 crypt_stat
->metadata_size
= PAGE_CACHE_SIZE
;
679 * ecryptfs_compute_root_iv
682 * On error, sets the root IV to all 0's.
684 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
687 char dst
[MD5_DIGEST_SIZE
];
689 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
690 BUG_ON(crypt_stat
->iv_bytes
<= 0);
691 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
693 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
694 "cannot generate root IV\n");
697 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
698 crypt_stat
->key_size
);
700 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
701 "MD5 while generating root IV\n");
704 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
707 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
708 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
713 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
715 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
716 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
717 ecryptfs_compute_root_iv(crypt_stat
);
718 if (unlikely(ecryptfs_verbosity
> 0)) {
719 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
720 ecryptfs_dump_hex(crypt_stat
->key
,
721 crypt_stat
->key_size
);
726 * ecryptfs_copy_mount_wide_flags_to_inode_flags
727 * @crypt_stat: The inode's cryptographic context
728 * @mount_crypt_stat: The mount point's cryptographic context
730 * This function propagates the mount-wide flags to individual inode
733 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
734 struct ecryptfs_crypt_stat
*crypt_stat
,
735 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
737 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
738 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
739 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
740 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
741 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
742 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
743 if (mount_crypt_stat
->flags
744 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
745 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
746 else if (mount_crypt_stat
->flags
747 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
748 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
752 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
753 struct ecryptfs_crypt_stat
*crypt_stat
,
754 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
756 struct ecryptfs_global_auth_tok
*global_auth_tok
;
759 mutex_lock(&crypt_stat
->keysig_list_mutex
);
760 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
762 list_for_each_entry(global_auth_tok
,
763 &mount_crypt_stat
->global_auth_tok_list
,
764 mount_crypt_stat_list
) {
765 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
767 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
769 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
775 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
776 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
781 * ecryptfs_set_default_crypt_stat_vals
782 * @crypt_stat: The inode's cryptographic context
783 * @mount_crypt_stat: The mount point's cryptographic context
785 * Default values in the event that policy does not override them.
787 static void ecryptfs_set_default_crypt_stat_vals(
788 struct ecryptfs_crypt_stat
*crypt_stat
,
789 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
791 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
793 ecryptfs_set_default_sizes(crypt_stat
);
794 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
795 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
796 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
797 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
798 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
802 * ecryptfs_new_file_context
803 * @ecryptfs_inode: The eCryptfs inode
805 * If the crypto context for the file has not yet been established,
806 * this is where we do that. Establishing a new crypto context
807 * involves the following decisions:
808 * - What cipher to use?
809 * - What set of authentication tokens to use?
810 * Here we just worry about getting enough information into the
811 * authentication tokens so that we know that they are available.
812 * We associate the available authentication tokens with the new file
813 * via the set of signatures in the crypt_stat struct. Later, when
814 * the headers are actually written out, we may again defer to
815 * userspace to perform the encryption of the session key; for the
816 * foreseeable future, this will be the case with public key packets.
818 * Returns zero on success; non-zero otherwise
820 int ecryptfs_new_file_context(struct inode
*ecryptfs_inode
)
822 struct ecryptfs_crypt_stat
*crypt_stat
=
823 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
824 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
825 &ecryptfs_superblock_to_private(
826 ecryptfs_inode
->i_sb
)->mount_crypt_stat
;
830 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
831 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
832 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
834 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
837 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
838 "to the inode key sigs; rc = [%d]\n", rc
);
842 strlen(mount_crypt_stat
->global_default_cipher_name
);
843 memcpy(crypt_stat
->cipher
,
844 mount_crypt_stat
->global_default_cipher_name
,
846 crypt_stat
->cipher
[cipher_name_len
] = '\0';
847 crypt_stat
->key_size
=
848 mount_crypt_stat
->global_default_cipher_key_size
;
849 ecryptfs_generate_new_key(crypt_stat
);
850 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
852 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
853 "context for cipher [%s]: rc = [%d]\n",
854 crypt_stat
->cipher
, rc
);
860 * ecryptfs_validate_marker - check for the ecryptfs marker
861 * @data: The data block in which to check
863 * Returns zero if marker found; -EINVAL if not found
865 static int ecryptfs_validate_marker(char *data
)
869 m_1
= get_unaligned_be32(data
);
870 m_2
= get_unaligned_be32(data
+ 4);
871 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
873 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
874 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
875 MAGIC_ECRYPTFS_MARKER
);
876 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
877 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
881 struct ecryptfs_flag_map_elem
{
886 /* Add support for additional flags by adding elements here. */
887 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
888 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
889 {0x00000002, ECRYPTFS_ENCRYPTED
},
890 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
891 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
895 * ecryptfs_process_flags
896 * @crypt_stat: The cryptographic context
897 * @page_virt: Source data to be parsed
898 * @bytes_read: Updated with the number of bytes read
900 * Returns zero on success; non-zero if the flag set is invalid
902 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
903 char *page_virt
, int *bytes_read
)
909 flags
= get_unaligned_be32(page_virt
);
910 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
911 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
912 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
913 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
915 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
916 /* Version is in top 8 bits of the 32-bit flag vector */
917 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
923 * write_ecryptfs_marker
924 * @page_virt: The pointer to in a page to begin writing the marker
925 * @written: Number of bytes written
927 * Marker = 0x3c81b7f5
929 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
933 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
934 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
935 put_unaligned_be32(m_1
, page_virt
);
936 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
937 put_unaligned_be32(m_2
, page_virt
);
938 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
941 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
942 struct ecryptfs_crypt_stat
*crypt_stat
,
948 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
949 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
950 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
951 flags
|= ecryptfs_flag_map
[i
].file_flag
;
952 /* Version is in top 8 bits of the 32-bit flag vector */
953 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
954 put_unaligned_be32(flags
, page_virt
);
958 struct ecryptfs_cipher_code_str_map_elem
{
963 /* Add support for additional ciphers by adding elements here. The
964 * cipher_code is whatever OpenPGP applicatoins use to identify the
965 * ciphers. List in order of probability. */
966 static struct ecryptfs_cipher_code_str_map_elem
967 ecryptfs_cipher_code_str_map
[] = {
968 {"aes",RFC2440_CIPHER_AES_128
},
969 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
970 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
971 {"cast5", RFC2440_CIPHER_CAST_5
},
972 {"twofish", RFC2440_CIPHER_TWOFISH
},
973 {"cast6", RFC2440_CIPHER_CAST_6
},
974 {"aes", RFC2440_CIPHER_AES_192
},
975 {"aes", RFC2440_CIPHER_AES_256
}
979 * ecryptfs_code_for_cipher_string
980 * @cipher_name: The string alias for the cipher
981 * @key_bytes: Length of key in bytes; used for AES code selection
983 * Returns zero on no match, or the cipher code on match
985 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
989 struct ecryptfs_cipher_code_str_map_elem
*map
=
990 ecryptfs_cipher_code_str_map
;
992 if (strcmp(cipher_name
, "aes") == 0) {
995 code
= RFC2440_CIPHER_AES_128
;
998 code
= RFC2440_CIPHER_AES_192
;
1001 code
= RFC2440_CIPHER_AES_256
;
1004 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1005 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
1006 code
= map
[i
].cipher_code
;
1014 * ecryptfs_cipher_code_to_string
1015 * @str: Destination to write out the cipher name
1016 * @cipher_code: The code to convert to cipher name string
1018 * Returns zero on success
1020 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1026 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1027 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1028 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1029 if (str
[0] == '\0') {
1030 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1031 "[%d]\n", cipher_code
);
1037 int ecryptfs_read_and_validate_header_region(struct inode
*inode
)
1039 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1040 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1043 rc
= ecryptfs_read_lower(file_size
, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES
,
1045 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1046 return rc
>= 0 ? -EINVAL
: rc
;
1047 rc
= ecryptfs_validate_marker(marker
);
1049 ecryptfs_i_size_init(file_size
, inode
);
1054 ecryptfs_write_header_metadata(char *virt
,
1055 struct ecryptfs_crypt_stat
*crypt_stat
,
1058 u32 header_extent_size
;
1059 u16 num_header_extents_at_front
;
1061 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1062 num_header_extents_at_front
=
1063 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1064 put_unaligned_be32(header_extent_size
, virt
);
1066 put_unaligned_be16(num_header_extents_at_front
, virt
);
1070 struct kmem_cache
*ecryptfs_header_cache
;
1073 * ecryptfs_write_headers_virt
1074 * @page_virt: The virtual address to write the headers to
1075 * @max: The size of memory allocated at page_virt
1076 * @size: Set to the number of bytes written by this function
1077 * @crypt_stat: The cryptographic context
1078 * @ecryptfs_dentry: The eCryptfs dentry
1083 * Octets 0-7: Unencrypted file size (big-endian)
1084 * Octets 8-15: eCryptfs special marker
1085 * Octets 16-19: Flags
1086 * Octet 16: File format version number (between 0 and 255)
1087 * Octets 17-18: Reserved
1088 * Octet 19: Bit 1 (lsb): Reserved
1090 * Bits 3-8: Reserved
1091 * Octets 20-23: Header extent size (big-endian)
1092 * Octets 24-25: Number of header extents at front of file
1094 * Octet 26: Begin RFC 2440 authentication token packet set
1096 * Lower data (CBC encrypted)
1098 * Lower data (CBC encrypted)
1101 * Returns zero on success
1103 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1105 struct ecryptfs_crypt_stat
*crypt_stat
,
1106 struct dentry
*ecryptfs_dentry
)
1112 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1113 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1115 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1118 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1121 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1122 ecryptfs_dentry
, &written
,
1125 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1126 "set; rc = [%d]\n", rc
);
1135 ecryptfs_write_metadata_to_contents(struct inode
*ecryptfs_inode
,
1136 char *virt
, size_t virt_len
)
1140 rc
= ecryptfs_write_lower(ecryptfs_inode
, virt
,
1143 printk(KERN_ERR
"%s: Error attempting to write header "
1144 "information to lower file; rc = [%d]\n", __func__
, rc
);
1151 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1152 char *page_virt
, size_t size
)
1156 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1161 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1166 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1168 return (unsigned long) page_address(page
);
1173 * ecryptfs_write_metadata
1174 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1175 * @ecryptfs_inode: The newly created eCryptfs inode
1177 * Write the file headers out. This will likely involve a userspace
1178 * callout, in which the session key is encrypted with one or more
1179 * public keys and/or the passphrase necessary to do the encryption is
1180 * retrieved via a prompt. Exactly what happens at this point should
1181 * be policy-dependent.
1183 * Returns zero on success; non-zero on error
1185 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
,
1186 struct inode
*ecryptfs_inode
)
1188 struct ecryptfs_crypt_stat
*crypt_stat
=
1189 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1196 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1197 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1198 printk(KERN_ERR
"Key is invalid; bailing out\n");
1203 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1208 virt_len
= crypt_stat
->metadata_size
;
1209 order
= get_order(virt_len
);
1210 /* Released in this function */
1211 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1213 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1217 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1218 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1221 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1225 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1226 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, virt
,
1229 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_inode
, virt
,
1232 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1233 "rc = [%d]\n", __func__
, rc
);
1237 free_pages((unsigned long)virt
, order
);
1242 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1243 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1244 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1245 char *virt
, int *bytes_read
,
1246 int validate_header_size
)
1249 u32 header_extent_size
;
1250 u16 num_header_extents_at_front
;
1252 header_extent_size
= get_unaligned_be32(virt
);
1253 virt
+= sizeof(__be32
);
1254 num_header_extents_at_front
= get_unaligned_be16(virt
);
1255 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1256 * (size_t)header_extent_size
));
1257 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1258 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1259 && (crypt_stat
->metadata_size
1260 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1262 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1263 crypt_stat
->metadata_size
);
1269 * set_default_header_data
1270 * @crypt_stat: The cryptographic context
1272 * For version 0 file format; this function is only for backwards
1273 * compatibility for files created with the prior versions of
1276 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1278 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1281 void ecryptfs_i_size_init(const char *page_virt
, struct inode
*inode
)
1283 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
;
1284 struct ecryptfs_crypt_stat
*crypt_stat
;
1287 crypt_stat
= &ecryptfs_inode_to_private(inode
)->crypt_stat
;
1289 &ecryptfs_superblock_to_private(inode
->i_sb
)->mount_crypt_stat
;
1290 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
) {
1291 file_size
= i_size_read(ecryptfs_inode_to_lower(inode
));
1292 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1293 file_size
+= crypt_stat
->metadata_size
;
1295 file_size
= get_unaligned_be64(page_virt
);
1296 i_size_write(inode
, (loff_t
)file_size
);
1297 crypt_stat
->flags
|= ECRYPTFS_I_SIZE_INITIALIZED
;
1301 * ecryptfs_read_headers_virt
1302 * @page_virt: The virtual address into which to read the headers
1303 * @crypt_stat: The cryptographic context
1304 * @ecryptfs_dentry: The eCryptfs dentry
1305 * @validate_header_size: Whether to validate the header size while reading
1307 * Read/parse the header data. The header format is detailed in the
1308 * comment block for the ecryptfs_write_headers_virt() function.
1310 * Returns zero on success
1312 static int ecryptfs_read_headers_virt(char *page_virt
,
1313 struct ecryptfs_crypt_stat
*crypt_stat
,
1314 struct dentry
*ecryptfs_dentry
,
1315 int validate_header_size
)
1321 ecryptfs_set_default_sizes(crypt_stat
);
1322 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1323 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1324 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1325 rc
= ecryptfs_validate_marker(page_virt
+ offset
);
1328 if (!(crypt_stat
->flags
& ECRYPTFS_I_SIZE_INITIALIZED
))
1329 ecryptfs_i_size_init(page_virt
, ecryptfs_dentry
->d_inode
);
1330 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1331 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1334 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1337 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1338 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1339 "file version [%d] is supported by this "
1340 "version of eCryptfs\n",
1341 crypt_stat
->file_version
,
1342 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1346 offset
+= bytes_read
;
1347 if (crypt_stat
->file_version
>= 1) {
1348 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1349 &bytes_read
, validate_header_size
);
1351 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1352 "metadata; rc = [%d]\n", rc
);
1354 offset
+= bytes_read
;
1356 set_default_header_data(crypt_stat
);
1357 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1364 * ecryptfs_read_xattr_region
1365 * @page_virt: The vitual address into which to read the xattr data
1366 * @ecryptfs_inode: The eCryptfs inode
1368 * Attempts to read the crypto metadata from the extended attribute
1369 * region of the lower file.
1371 * Returns zero on success; non-zero on error
1373 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1375 struct dentry
*lower_dentry
=
1376 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_dentry
;
1380 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1381 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1383 if (unlikely(ecryptfs_verbosity
> 0))
1384 printk(KERN_INFO
"Error attempting to read the [%s] "
1385 "xattr from the lower file; return value = "
1386 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1394 int ecryptfs_read_and_validate_xattr_region(struct dentry
*dentry
,
1395 struct inode
*inode
)
1397 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1398 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1401 rc
= ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry
),
1402 ECRYPTFS_XATTR_NAME
, file_size
,
1403 ECRYPTFS_SIZE_AND_MARKER_BYTES
);
1404 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1405 return rc
>= 0 ? -EINVAL
: rc
;
1406 rc
= ecryptfs_validate_marker(marker
);
1408 ecryptfs_i_size_init(file_size
, inode
);
1413 * ecryptfs_read_metadata
1415 * Common entry point for reading file metadata. From here, we could
1416 * retrieve the header information from the header region of the file,
1417 * the xattr region of the file, or some other repostory that is
1418 * stored separately from the file itself. The current implementation
1419 * supports retrieving the metadata information from the file contents
1420 * and from the xattr region.
1422 * Returns zero if valid headers found and parsed; non-zero otherwise
1424 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1428 struct inode
*ecryptfs_inode
= ecryptfs_dentry
->d_inode
;
1429 struct ecryptfs_crypt_stat
*crypt_stat
=
1430 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1431 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1432 &ecryptfs_superblock_to_private(
1433 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1435 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1437 /* Read the first page from the underlying file */
1438 page_virt
= kmem_cache_alloc(ecryptfs_header_cache
, GFP_USER
);
1441 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1445 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1448 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1450 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1452 /* metadata is not in the file header, so try xattrs */
1453 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1454 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1456 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1457 "file header region or xattr region, inode %lu\n",
1458 ecryptfs_inode
->i_ino
);
1462 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1464 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1466 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1467 "file xattr region either, inode %lu\n",
1468 ecryptfs_inode
->i_ino
);
1471 if (crypt_stat
->mount_crypt_stat
->flags
1472 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1473 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1475 printk(KERN_WARNING
"Attempt to access file with "
1476 "crypto metadata only in the extended attribute "
1477 "region, but eCryptfs was mounted without "
1478 "xattr support enabled. eCryptfs will not treat "
1479 "this like an encrypted file, inode %lu\n",
1480 ecryptfs_inode
->i_ino
);
1486 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1487 kmem_cache_free(ecryptfs_header_cache
, page_virt
);
1493 * ecryptfs_encrypt_filename - encrypt filename
1495 * CBC-encrypts the filename. We do not want to encrypt the same
1496 * filename with the same key and IV, which may happen with hard
1497 * links, so we prepend random bits to each filename.
1499 * Returns zero on success; non-zero otherwise
1502 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1503 struct ecryptfs_crypt_stat
*crypt_stat
,
1504 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1508 filename
->encrypted_filename
= NULL
;
1509 filename
->encrypted_filename_size
= 0;
1510 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1511 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1512 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
1514 size_t remaining_bytes
;
1516 rc
= ecryptfs_write_tag_70_packet(
1518 &filename
->encrypted_filename_size
,
1519 mount_crypt_stat
, NULL
,
1520 filename
->filename_size
);
1522 printk(KERN_ERR
"%s: Error attempting to get packet "
1523 "size for tag 72; rc = [%d]\n", __func__
,
1525 filename
->encrypted_filename_size
= 0;
1528 filename
->encrypted_filename
=
1529 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1530 if (!filename
->encrypted_filename
) {
1531 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1532 "to kmalloc [%zd] bytes\n", __func__
,
1533 filename
->encrypted_filename_size
);
1537 remaining_bytes
= filename
->encrypted_filename_size
;
1538 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1543 filename
->filename_size
);
1545 printk(KERN_ERR
"%s: Error attempting to generate "
1546 "tag 70 packet; rc = [%d]\n", __func__
,
1548 kfree(filename
->encrypted_filename
);
1549 filename
->encrypted_filename
= NULL
;
1550 filename
->encrypted_filename_size
= 0;
1553 filename
->encrypted_filename_size
= packet_size
;
1555 printk(KERN_ERR
"%s: No support for requested filename "
1556 "encryption method in this release\n", __func__
);
1564 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1565 const char *name
, size_t name_size
)
1569 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1570 if (!(*copied_name
)) {
1574 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1575 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1576 * in printing out the
1579 (*copied_name_size
) = name_size
;
1585 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1586 * @key_tfm: Crypto context for key material, set by this function
1587 * @cipher_name: Name of the cipher
1588 * @key_size: Size of the key in bytes
1590 * Returns zero on success. Any crypto_tfm structs allocated here
1591 * should be released by other functions, such as on a superblock put
1592 * event, regardless of whether this function succeeds for fails.
1595 ecryptfs_process_key_cipher(struct crypto_blkcipher
**key_tfm
,
1596 char *cipher_name
, size_t *key_size
)
1598 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1599 char *full_alg_name
= NULL
;
1603 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1605 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1606 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1609 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1613 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1614 if (IS_ERR(*key_tfm
)) {
1615 rc
= PTR_ERR(*key_tfm
);
1616 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1617 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1620 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1621 if (*key_size
== 0) {
1622 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1624 *key_size
= alg
->max_keysize
;
1626 get_random_bytes(dummy_key
, *key_size
);
1627 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1629 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1630 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1636 kfree(full_alg_name
);
1640 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1641 static struct list_head key_tfm_list
;
1642 struct mutex key_tfm_list_mutex
;
1644 int __init
ecryptfs_init_crypto(void)
1646 mutex_init(&key_tfm_list_mutex
);
1647 INIT_LIST_HEAD(&key_tfm_list
);
1652 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1654 * Called only at module unload time
1656 int ecryptfs_destroy_crypto(void)
1658 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1660 mutex_lock(&key_tfm_list_mutex
);
1661 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1663 list_del(&key_tfm
->key_tfm_list
);
1664 if (key_tfm
->key_tfm
)
1665 crypto_free_blkcipher(key_tfm
->key_tfm
);
1666 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1668 mutex_unlock(&key_tfm_list_mutex
);
1673 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1676 struct ecryptfs_key_tfm
*tmp_tfm
;
1679 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1681 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1682 if (key_tfm
!= NULL
)
1683 (*key_tfm
) = tmp_tfm
;
1686 printk(KERN_ERR
"Error attempting to allocate from "
1687 "ecryptfs_key_tfm_cache\n");
1690 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1691 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1692 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1693 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1694 tmp_tfm
->key_size
= key_size
;
1695 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1696 tmp_tfm
->cipher_name
,
1697 &tmp_tfm
->key_size
);
1699 printk(KERN_ERR
"Error attempting to initialize key TFM "
1700 "cipher with name = [%s]; rc = [%d]\n",
1701 tmp_tfm
->cipher_name
, rc
);
1702 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1703 if (key_tfm
!= NULL
)
1707 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1713 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1714 * @cipher_name: the name of the cipher to search for
1715 * @key_tfm: set to corresponding tfm if found
1717 * Searches for cached key_tfm matching @cipher_name
1718 * Must be called with &key_tfm_list_mutex held
1719 * Returns 1 if found, with @key_tfm set
1720 * Returns 0 if not found, with @key_tfm set to NULL
1722 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1724 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1726 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1728 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1729 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1731 (*key_tfm
) = tmp_key_tfm
;
1741 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1743 * @tfm: set to cached tfm found, or new tfm created
1744 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1745 * @cipher_name: the name of the cipher to search for and/or add
1747 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1748 * Searches for cached item first, and creates new if not found.
1749 * Returns 0 on success, non-zero if adding new cipher failed
1751 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher
**tfm
,
1752 struct mutex
**tfm_mutex
,
1755 struct ecryptfs_key_tfm
*key_tfm
;
1759 (*tfm_mutex
) = NULL
;
1761 mutex_lock(&key_tfm_list_mutex
);
1762 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1763 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1765 printk(KERN_ERR
"Error adding new key_tfm to list; "
1770 (*tfm
) = key_tfm
->key_tfm
;
1771 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1773 mutex_unlock(&key_tfm_list_mutex
);
1777 /* 64 characters forming a 6-bit target field */
1778 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1781 "klmnopqrstuvwxyz");
1783 /* We could either offset on every reverse map or just pad some 0x00's
1784 * at the front here */
1785 static const unsigned char filename_rev_map
[256] = {
1786 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1787 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1788 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1789 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1790 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1791 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1792 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1793 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1794 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1795 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1796 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1797 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1798 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1799 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1800 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1801 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1805 * ecryptfs_encode_for_filename
1806 * @dst: Destination location for encoded filename
1807 * @dst_size: Size of the encoded filename in bytes
1808 * @src: Source location for the filename to encode
1809 * @src_size: Size of the source in bytes
1811 static void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1812 unsigned char *src
, size_t src_size
)
1815 size_t block_num
= 0;
1816 size_t dst_offset
= 0;
1817 unsigned char last_block
[3];
1819 if (src_size
== 0) {
1823 num_blocks
= (src_size
/ 3);
1824 if ((src_size
% 3) == 0) {
1825 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1828 last_block
[2] = 0x00;
1829 switch (src_size
% 3) {
1831 last_block
[0] = src
[src_size
- 1];
1832 last_block
[1] = 0x00;
1835 last_block
[0] = src
[src_size
- 2];
1836 last_block
[1] = src
[src_size
- 1];
1839 (*dst_size
) = (num_blocks
* 4);
1842 while (block_num
< num_blocks
) {
1843 unsigned char *src_block
;
1844 unsigned char dst_block
[4];
1846 if (block_num
== (num_blocks
- 1))
1847 src_block
= last_block
;
1849 src_block
= &src
[block_num
* 3];
1850 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
1851 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
1852 | ((src_block
[1] >> 4) & 0x0F));
1853 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
1854 | ((src_block
[2] >> 6) & 0x03));
1855 dst_block
[3] = (src_block
[2] & 0x3F);
1856 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
1857 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
1858 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
1859 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
1866 static size_t ecryptfs_max_decoded_size(size_t encoded_size
)
1868 /* Not exact; conservatively long. Every block of 4
1869 * encoded characters decodes into a block of 3
1870 * decoded characters. This segment of code provides
1871 * the caller with the maximum amount of allocated
1872 * space that @dst will need to point to in a
1873 * subsequent call. */
1874 return ((encoded_size
+ 1) * 3) / 4;
1878 * ecryptfs_decode_from_filename
1879 * @dst: If NULL, this function only sets @dst_size and returns. If
1880 * non-NULL, this function decodes the encoded octets in @src
1881 * into the memory that @dst points to.
1882 * @dst_size: Set to the size of the decoded string.
1883 * @src: The encoded set of octets to decode.
1884 * @src_size: The size of the encoded set of octets to decode.
1887 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
1888 const unsigned char *src
, size_t src_size
)
1890 u8 current_bit_offset
= 0;
1891 size_t src_byte_offset
= 0;
1892 size_t dst_byte_offset
= 0;
1895 (*dst_size
) = ecryptfs_max_decoded_size(src_size
);
1898 while (src_byte_offset
< src_size
) {
1899 unsigned char src_byte
=
1900 filename_rev_map
[(int)src
[src_byte_offset
]];
1902 switch (current_bit_offset
) {
1904 dst
[dst_byte_offset
] = (src_byte
<< 2);
1905 current_bit_offset
= 6;
1908 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
1909 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
1911 current_bit_offset
= 4;
1914 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
1915 dst
[dst_byte_offset
] = (src_byte
<< 6);
1916 current_bit_offset
= 2;
1919 dst
[dst_byte_offset
++] |= (src_byte
);
1920 dst
[dst_byte_offset
] = 0;
1921 current_bit_offset
= 0;
1926 (*dst_size
) = dst_byte_offset
;
1932 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1933 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1934 * @name: The plaintext name
1935 * @length: The length of the plaintext
1936 * @encoded_name: The encypted name
1938 * Encrypts and encodes a filename into something that constitutes a
1939 * valid filename for a filesystem, with printable characters.
1941 * We assume that we have a properly initialized crypto context,
1942 * pointed to by crypt_stat->tfm.
1944 * Returns zero on success; non-zero on otherwise
1946 int ecryptfs_encrypt_and_encode_filename(
1947 char **encoded_name
,
1948 size_t *encoded_name_size
,
1949 struct ecryptfs_crypt_stat
*crypt_stat
,
1950 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
1951 const char *name
, size_t name_size
)
1953 size_t encoded_name_no_prefix_size
;
1956 (*encoded_name
) = NULL
;
1957 (*encoded_name_size
) = 0;
1958 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCRYPT_FILENAMES
))
1959 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1960 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
))) {
1961 struct ecryptfs_filename
*filename
;
1963 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
1965 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1966 "to kzalloc [%zd] bytes\n", __func__
,
1971 filename
->filename
= (char *)name
;
1972 filename
->filename_size
= name_size
;
1973 rc
= ecryptfs_encrypt_filename(filename
, crypt_stat
,
1976 printk(KERN_ERR
"%s: Error attempting to encrypt "
1977 "filename; rc = [%d]\n", __func__
, rc
);
1981 ecryptfs_encode_for_filename(
1982 NULL
, &encoded_name_no_prefix_size
,
1983 filename
->encrypted_filename
,
1984 filename
->encrypted_filename_size
);
1985 if ((crypt_stat
&& (crypt_stat
->flags
1986 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1987 || (mount_crypt_stat
1988 && (mount_crypt_stat
->flags
1989 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)))
1990 (*encoded_name_size
) =
1991 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1992 + encoded_name_no_prefix_size
);
1994 (*encoded_name_size
) =
1995 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1996 + encoded_name_no_prefix_size
);
1997 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
1998 if (!(*encoded_name
)) {
1999 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2000 "to kzalloc [%zd] bytes\n", __func__
,
2001 (*encoded_name_size
));
2003 kfree(filename
->encrypted_filename
);
2007 if ((crypt_stat
&& (crypt_stat
->flags
2008 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2009 || (mount_crypt_stat
2010 && (mount_crypt_stat
->flags
2011 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
2012 memcpy((*encoded_name
),
2013 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2014 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
2015 ecryptfs_encode_for_filename(
2017 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
2018 &encoded_name_no_prefix_size
,
2019 filename
->encrypted_filename
,
2020 filename
->encrypted_filename_size
);
2021 (*encoded_name_size
) =
2022 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2023 + encoded_name_no_prefix_size
);
2024 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2029 printk(KERN_ERR
"%s: Error attempting to encode "
2030 "encrypted filename; rc = [%d]\n", __func__
,
2032 kfree((*encoded_name
));
2033 (*encoded_name
) = NULL
;
2034 (*encoded_name_size
) = 0;
2036 kfree(filename
->encrypted_filename
);
2039 rc
= ecryptfs_copy_filename(encoded_name
,
2048 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2049 * @plaintext_name: The plaintext name
2050 * @plaintext_name_size: The plaintext name size
2051 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2052 * @name: The filename in cipher text
2053 * @name_size: The cipher text name size
2055 * Decrypts and decodes the filename.
2057 * Returns zero on error; non-zero otherwise
2059 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2060 size_t *plaintext_name_size
,
2061 struct super_block
*sb
,
2062 const char *name
, size_t name_size
)
2064 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2065 &ecryptfs_superblock_to_private(sb
)->mount_crypt_stat
;
2067 size_t decoded_name_size
;
2071 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2072 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2073 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2074 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2075 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2076 const char *orig_name
= name
;
2077 size_t orig_name_size
= name_size
;
2079 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2080 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2081 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2083 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2084 if (!decoded_name
) {
2085 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2086 "to kmalloc [%zd] bytes\n", __func__
,
2091 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2093 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2094 plaintext_name_size
,
2100 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2101 "from filename; copying through filename "
2102 "as-is\n", __func__
);
2103 rc
= ecryptfs_copy_filename(plaintext_name
,
2104 plaintext_name_size
,
2105 orig_name
, orig_name_size
);
2109 rc
= ecryptfs_copy_filename(plaintext_name
,
2110 plaintext_name_size
,
2115 kfree(decoded_name
);
2120 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2122 int ecryptfs_set_f_namelen(long *namelen
, long lower_namelen
,
2123 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
2125 struct blkcipher_desc desc
;
2126 struct mutex
*tfm_mutex
;
2127 size_t cipher_blocksize
;
2130 if (!(mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
2131 (*namelen
) = lower_namelen
;
2135 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc
.tfm
, &tfm_mutex
,
2136 mount_crypt_stat
->global_default_fn_cipher_name
);
2142 mutex_lock(tfm_mutex
);
2143 cipher_blocksize
= crypto_blkcipher_blocksize(desc
.tfm
);
2144 mutex_unlock(tfm_mutex
);
2146 /* Return an exact amount for the common cases */
2147 if (lower_namelen
== NAME_MAX
2148 && (cipher_blocksize
== 8 || cipher_blocksize
== 16)) {
2149 (*namelen
) = ENC_NAME_MAX_BLOCKLEN_8_OR_16
;
2153 /* Return a safe estimate for the uncommon cases */
2154 (*namelen
) = lower_namelen
;
2155 (*namelen
) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2156 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2157 (*namelen
) = ecryptfs_max_decoded_size(*namelen
) - 3;
2158 (*namelen
) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE
;
2159 (*namelen
) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
;
2160 /* Worst case is that the filename is padded nearly a full block size */
2161 (*namelen
) -= cipher_blocksize
- 1;