2 * linux/mm/memory_hotplug.c
7 #include <linux/stddef.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memremap.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/bootmem.h>
37 #include <asm/tlbflush.h>
42 * online_page_callback contains pointer to current page onlining function.
43 * Initially it is generic_online_page(). If it is required it could be
44 * changed by calling set_online_page_callback() for callback registration
45 * and restore_online_page_callback() for generic callback restore.
48 static void generic_online_page(struct page
*page
);
50 static online_page_callback_t online_page_callback
= generic_online_page
;
51 static DEFINE_MUTEX(online_page_callback_lock
);
53 /* The same as the cpu_hotplug lock, but for memory hotplug. */
55 struct task_struct
*active_writer
;
56 struct mutex lock
; /* Synchronizes accesses to refcount, */
58 * Also blocks the new readers during
59 * an ongoing mem hotplug operation.
63 #ifdef CONFIG_DEBUG_LOCK_ALLOC
64 struct lockdep_map dep_map
;
67 .active_writer
= NULL
,
68 .lock
= __MUTEX_INITIALIZER(mem_hotplug
.lock
),
70 #ifdef CONFIG_DEBUG_LOCK_ALLOC
71 .dep_map
= {.name
= "mem_hotplug.lock" },
75 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
76 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
77 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
78 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
80 void get_online_mems(void)
83 if (mem_hotplug
.active_writer
== current
)
85 memhp_lock_acquire_read();
86 mutex_lock(&mem_hotplug
.lock
);
87 mem_hotplug
.refcount
++;
88 mutex_unlock(&mem_hotplug
.lock
);
92 void put_online_mems(void)
94 if (mem_hotplug
.active_writer
== current
)
96 mutex_lock(&mem_hotplug
.lock
);
98 if (WARN_ON(!mem_hotplug
.refcount
))
99 mem_hotplug
.refcount
++; /* try to fix things up */
101 if (!--mem_hotplug
.refcount
&& unlikely(mem_hotplug
.active_writer
))
102 wake_up_process(mem_hotplug
.active_writer
);
103 mutex_unlock(&mem_hotplug
.lock
);
104 memhp_lock_release();
108 void mem_hotplug_begin(void)
110 mem_hotplug
.active_writer
= current
;
112 memhp_lock_acquire();
114 mutex_lock(&mem_hotplug
.lock
);
115 if (likely(!mem_hotplug
.refcount
))
117 __set_current_state(TASK_UNINTERRUPTIBLE
);
118 mutex_unlock(&mem_hotplug
.lock
);
123 void mem_hotplug_done(void)
125 mem_hotplug
.active_writer
= NULL
;
126 mutex_unlock(&mem_hotplug
.lock
);
127 memhp_lock_release();
130 /* add this memory to iomem resource */
131 static struct resource
*register_memory_resource(u64 start
, u64 size
)
133 struct resource
*res
;
134 res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
);
136 return ERR_PTR(-ENOMEM
);
138 res
->name
= "System RAM";
140 res
->end
= start
+ size
- 1;
141 res
->flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
142 if (request_resource(&iomem_resource
, res
) < 0) {
143 pr_debug("System RAM resource %pR cannot be added\n", res
);
145 return ERR_PTR(-EEXIST
);
150 static void release_memory_resource(struct resource
*res
)
154 release_resource(res
);
159 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
160 void get_page_bootmem(unsigned long info
, struct page
*page
,
163 page
->lru
.next
= (struct list_head
*) type
;
164 SetPagePrivate(page
);
165 set_page_private(page
, info
);
166 atomic_inc(&page
->_count
);
169 void put_page_bootmem(struct page
*page
)
173 type
= (unsigned long) page
->lru
.next
;
174 BUG_ON(type
< MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE
||
175 type
> MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE
);
177 if (atomic_dec_return(&page
->_count
) == 1) {
178 ClearPagePrivate(page
);
179 set_page_private(page
, 0);
180 INIT_LIST_HEAD(&page
->lru
);
181 free_reserved_page(page
);
185 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
186 #ifndef CONFIG_SPARSEMEM_VMEMMAP
187 static void register_page_bootmem_info_section(unsigned long start_pfn
)
189 unsigned long *usemap
, mapsize
, section_nr
, i
;
190 struct mem_section
*ms
;
191 struct page
*page
, *memmap
;
193 section_nr
= pfn_to_section_nr(start_pfn
);
194 ms
= __nr_to_section(section_nr
);
196 /* Get section's memmap address */
197 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
200 * Get page for the memmap's phys address
201 * XXX: need more consideration for sparse_vmemmap...
203 page
= virt_to_page(memmap
);
204 mapsize
= sizeof(struct page
) * PAGES_PER_SECTION
;
205 mapsize
= PAGE_ALIGN(mapsize
) >> PAGE_SHIFT
;
207 /* remember memmap's page */
208 for (i
= 0; i
< mapsize
; i
++, page
++)
209 get_page_bootmem(section_nr
, page
, SECTION_INFO
);
211 usemap
= __nr_to_section(section_nr
)->pageblock_flags
;
212 page
= virt_to_page(usemap
);
214 mapsize
= PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT
;
216 for (i
= 0; i
< mapsize
; i
++, page
++)
217 get_page_bootmem(section_nr
, page
, MIX_SECTION_INFO
);
220 #else /* CONFIG_SPARSEMEM_VMEMMAP */
221 static void register_page_bootmem_info_section(unsigned long start_pfn
)
223 unsigned long *usemap
, mapsize
, section_nr
, i
;
224 struct mem_section
*ms
;
225 struct page
*page
, *memmap
;
227 if (!pfn_valid(start_pfn
))
230 section_nr
= pfn_to_section_nr(start_pfn
);
231 ms
= __nr_to_section(section_nr
);
233 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
235 register_page_bootmem_memmap(section_nr
, memmap
, PAGES_PER_SECTION
);
237 usemap
= __nr_to_section(section_nr
)->pageblock_flags
;
238 page
= virt_to_page(usemap
);
240 mapsize
= PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT
;
242 for (i
= 0; i
< mapsize
; i
++, page
++)
243 get_page_bootmem(section_nr
, page
, MIX_SECTION_INFO
);
245 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
247 void register_page_bootmem_info_node(struct pglist_data
*pgdat
)
249 unsigned long i
, pfn
, end_pfn
, nr_pages
;
250 int node
= pgdat
->node_id
;
254 nr_pages
= PAGE_ALIGN(sizeof(struct pglist_data
)) >> PAGE_SHIFT
;
255 page
= virt_to_page(pgdat
);
257 for (i
= 0; i
< nr_pages
; i
++, page
++)
258 get_page_bootmem(node
, page
, NODE_INFO
);
260 zone
= &pgdat
->node_zones
[0];
261 for (; zone
< pgdat
->node_zones
+ MAX_NR_ZONES
- 1; zone
++) {
262 if (zone_is_initialized(zone
)) {
263 nr_pages
= zone
->wait_table_hash_nr_entries
264 * sizeof(wait_queue_head_t
);
265 nr_pages
= PAGE_ALIGN(nr_pages
) >> PAGE_SHIFT
;
266 page
= virt_to_page(zone
->wait_table
);
268 for (i
= 0; i
< nr_pages
; i
++, page
++)
269 get_page_bootmem(node
, page
, NODE_INFO
);
273 pfn
= pgdat
->node_start_pfn
;
274 end_pfn
= pgdat_end_pfn(pgdat
);
276 /* register section info */
277 for (; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
279 * Some platforms can assign the same pfn to multiple nodes - on
280 * node0 as well as nodeN. To avoid registering a pfn against
281 * multiple nodes we check that this pfn does not already
282 * reside in some other nodes.
284 if (pfn_valid(pfn
) && (pfn_to_nid(pfn
) == node
))
285 register_page_bootmem_info_section(pfn
);
288 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
290 static void __meminit
grow_zone_span(struct zone
*zone
, unsigned long start_pfn
,
291 unsigned long end_pfn
)
293 unsigned long old_zone_end_pfn
;
295 zone_span_writelock(zone
);
297 old_zone_end_pfn
= zone_end_pfn(zone
);
298 if (zone_is_empty(zone
) || start_pfn
< zone
->zone_start_pfn
)
299 zone
->zone_start_pfn
= start_pfn
;
301 zone
->spanned_pages
= max(old_zone_end_pfn
, end_pfn
) -
302 zone
->zone_start_pfn
;
304 zone_span_writeunlock(zone
);
307 static void resize_zone(struct zone
*zone
, unsigned long start_pfn
,
308 unsigned long end_pfn
)
310 zone_span_writelock(zone
);
312 if (end_pfn
- start_pfn
) {
313 zone
->zone_start_pfn
= start_pfn
;
314 zone
->spanned_pages
= end_pfn
- start_pfn
;
317 * make it consist as free_area_init_core(),
318 * if spanned_pages = 0, then keep start_pfn = 0
320 zone
->zone_start_pfn
= 0;
321 zone
->spanned_pages
= 0;
324 zone_span_writeunlock(zone
);
327 static void fix_zone_id(struct zone
*zone
, unsigned long start_pfn
,
328 unsigned long end_pfn
)
330 enum zone_type zid
= zone_idx(zone
);
331 int nid
= zone
->zone_pgdat
->node_id
;
334 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
335 set_page_links(pfn_to_page(pfn
), zid
, nid
, pfn
);
338 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
339 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
340 static int __ref
ensure_zone_is_initialized(struct zone
*zone
,
341 unsigned long start_pfn
, unsigned long num_pages
)
343 if (!zone_is_initialized(zone
))
344 return init_currently_empty_zone(zone
, start_pfn
, num_pages
);
349 static int __meminit
move_pfn_range_left(struct zone
*z1
, struct zone
*z2
,
350 unsigned long start_pfn
, unsigned long end_pfn
)
354 unsigned long z1_start_pfn
;
356 ret
= ensure_zone_is_initialized(z1
, start_pfn
, end_pfn
- start_pfn
);
360 pgdat_resize_lock(z1
->zone_pgdat
, &flags
);
362 /* can't move pfns which are higher than @z2 */
363 if (end_pfn
> zone_end_pfn(z2
))
365 /* the move out part must be at the left most of @z2 */
366 if (start_pfn
> z2
->zone_start_pfn
)
368 /* must included/overlap */
369 if (end_pfn
<= z2
->zone_start_pfn
)
372 /* use start_pfn for z1's start_pfn if z1 is empty */
373 if (!zone_is_empty(z1
))
374 z1_start_pfn
= z1
->zone_start_pfn
;
376 z1_start_pfn
= start_pfn
;
378 resize_zone(z1
, z1_start_pfn
, end_pfn
);
379 resize_zone(z2
, end_pfn
, zone_end_pfn(z2
));
381 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
383 fix_zone_id(z1
, start_pfn
, end_pfn
);
387 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
391 static int __meminit
move_pfn_range_right(struct zone
*z1
, struct zone
*z2
,
392 unsigned long start_pfn
, unsigned long end_pfn
)
396 unsigned long z2_end_pfn
;
398 ret
= ensure_zone_is_initialized(z2
, start_pfn
, end_pfn
- start_pfn
);
402 pgdat_resize_lock(z1
->zone_pgdat
, &flags
);
404 /* can't move pfns which are lower than @z1 */
405 if (z1
->zone_start_pfn
> start_pfn
)
407 /* the move out part mast at the right most of @z1 */
408 if (zone_end_pfn(z1
) > end_pfn
)
410 /* must included/overlap */
411 if (start_pfn
>= zone_end_pfn(z1
))
414 /* use end_pfn for z2's end_pfn if z2 is empty */
415 if (!zone_is_empty(z2
))
416 z2_end_pfn
= zone_end_pfn(z2
);
418 z2_end_pfn
= end_pfn
;
420 resize_zone(z1
, z1
->zone_start_pfn
, start_pfn
);
421 resize_zone(z2
, start_pfn
, z2_end_pfn
);
423 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
425 fix_zone_id(z2
, start_pfn
, end_pfn
);
429 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
433 static void __meminit
grow_pgdat_span(struct pglist_data
*pgdat
, unsigned long start_pfn
,
434 unsigned long end_pfn
)
436 unsigned long old_pgdat_end_pfn
= pgdat_end_pfn(pgdat
);
438 if (!pgdat
->node_spanned_pages
|| start_pfn
< pgdat
->node_start_pfn
)
439 pgdat
->node_start_pfn
= start_pfn
;
441 pgdat
->node_spanned_pages
= max(old_pgdat_end_pfn
, end_pfn
) -
442 pgdat
->node_start_pfn
;
445 static int __meminit
__add_zone(struct zone
*zone
, unsigned long phys_start_pfn
)
447 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
448 int nr_pages
= PAGES_PER_SECTION
;
449 int nid
= pgdat
->node_id
;
451 unsigned long flags
, pfn
;
454 zone_type
= zone
- pgdat
->node_zones
;
455 ret
= ensure_zone_is_initialized(zone
, phys_start_pfn
, nr_pages
);
459 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
460 grow_zone_span(zone
, phys_start_pfn
, phys_start_pfn
+ nr_pages
);
461 grow_pgdat_span(zone
->zone_pgdat
, phys_start_pfn
,
462 phys_start_pfn
+ nr_pages
);
463 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
464 memmap_init_zone(nr_pages
, nid
, zone_type
,
465 phys_start_pfn
, MEMMAP_HOTPLUG
);
467 /* online_page_range is called later and expects pages reserved */
468 for (pfn
= phys_start_pfn
; pfn
< phys_start_pfn
+ nr_pages
; pfn
++) {
472 SetPageReserved(pfn_to_page(pfn
));
477 static int __meminit
__add_section(int nid
, struct zone
*zone
,
478 unsigned long phys_start_pfn
)
482 if (pfn_valid(phys_start_pfn
))
485 ret
= sparse_add_one_section(zone
, phys_start_pfn
);
490 ret
= __add_zone(zone
, phys_start_pfn
);
495 return register_new_memory(nid
, __pfn_to_section(phys_start_pfn
));
499 * Reasonably generic function for adding memory. It is
500 * expected that archs that support memory hotplug will
501 * call this function after deciding the zone to which to
504 int __ref
__add_pages(int nid
, struct zone
*zone
, unsigned long phys_start_pfn
,
505 unsigned long nr_pages
)
509 int start_sec
, end_sec
;
510 struct vmem_altmap
*altmap
;
512 /* during initialize mem_map, align hot-added range to section */
513 start_sec
= pfn_to_section_nr(phys_start_pfn
);
514 end_sec
= pfn_to_section_nr(phys_start_pfn
+ nr_pages
- 1);
516 altmap
= to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn
));
519 * Validate altmap is within bounds of the total request
521 if (altmap
->base_pfn
!= phys_start_pfn
522 || vmem_altmap_offset(altmap
) > nr_pages
) {
523 pr_warn_once("memory add fail, invalid altmap\n");
529 for (i
= start_sec
; i
<= end_sec
; i
++) {
530 err
= __add_section(nid
, zone
, section_nr_to_pfn(i
));
533 * EEXIST is finally dealt with by ioresource collision
534 * check. see add_memory() => register_memory_resource()
535 * Warning will be printed if there is collision.
537 if (err
&& (err
!= -EEXIST
))
541 vmemmap_populate_print_last();
545 EXPORT_SYMBOL_GPL(__add_pages
);
547 #ifdef CONFIG_MEMORY_HOTREMOVE
548 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
549 static int find_smallest_section_pfn(int nid
, struct zone
*zone
,
550 unsigned long start_pfn
,
551 unsigned long end_pfn
)
553 struct mem_section
*ms
;
555 for (; start_pfn
< end_pfn
; start_pfn
+= PAGES_PER_SECTION
) {
556 ms
= __pfn_to_section(start_pfn
);
558 if (unlikely(!valid_section(ms
)))
561 if (unlikely(pfn_to_nid(start_pfn
) != nid
))
564 if (zone
&& zone
!= page_zone(pfn_to_page(start_pfn
)))
573 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
574 static int find_biggest_section_pfn(int nid
, struct zone
*zone
,
575 unsigned long start_pfn
,
576 unsigned long end_pfn
)
578 struct mem_section
*ms
;
581 /* pfn is the end pfn of a memory section. */
583 for (; pfn
>= start_pfn
; pfn
-= PAGES_PER_SECTION
) {
584 ms
= __pfn_to_section(pfn
);
586 if (unlikely(!valid_section(ms
)))
589 if (unlikely(pfn_to_nid(pfn
) != nid
))
592 if (zone
&& zone
!= page_zone(pfn_to_page(pfn
)))
601 static void shrink_zone_span(struct zone
*zone
, unsigned long start_pfn
,
602 unsigned long end_pfn
)
604 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
605 unsigned long z
= zone_end_pfn(zone
); /* zone_end_pfn namespace clash */
606 unsigned long zone_end_pfn
= z
;
608 struct mem_section
*ms
;
609 int nid
= zone_to_nid(zone
);
611 zone_span_writelock(zone
);
612 if (zone_start_pfn
== start_pfn
) {
614 * If the section is smallest section in the zone, it need
615 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
616 * In this case, we find second smallest valid mem_section
617 * for shrinking zone.
619 pfn
= find_smallest_section_pfn(nid
, zone
, end_pfn
,
622 zone
->zone_start_pfn
= pfn
;
623 zone
->spanned_pages
= zone_end_pfn
- pfn
;
625 } else if (zone_end_pfn
== end_pfn
) {
627 * If the section is biggest section in the zone, it need
628 * shrink zone->spanned_pages.
629 * In this case, we find second biggest valid mem_section for
632 pfn
= find_biggest_section_pfn(nid
, zone
, zone_start_pfn
,
635 zone
->spanned_pages
= pfn
- zone_start_pfn
+ 1;
639 * The section is not biggest or smallest mem_section in the zone, it
640 * only creates a hole in the zone. So in this case, we need not
641 * change the zone. But perhaps, the zone has only hole data. Thus
642 * it check the zone has only hole or not.
644 pfn
= zone_start_pfn
;
645 for (; pfn
< zone_end_pfn
; pfn
+= PAGES_PER_SECTION
) {
646 ms
= __pfn_to_section(pfn
);
648 if (unlikely(!valid_section(ms
)))
651 if (page_zone(pfn_to_page(pfn
)) != zone
)
654 /* If the section is current section, it continues the loop */
655 if (start_pfn
== pfn
)
658 /* If we find valid section, we have nothing to do */
659 zone_span_writeunlock(zone
);
663 /* The zone has no valid section */
664 zone
->zone_start_pfn
= 0;
665 zone
->spanned_pages
= 0;
666 zone_span_writeunlock(zone
);
669 static void shrink_pgdat_span(struct pglist_data
*pgdat
,
670 unsigned long start_pfn
, unsigned long end_pfn
)
672 unsigned long pgdat_start_pfn
= pgdat
->node_start_pfn
;
673 unsigned long p
= pgdat_end_pfn(pgdat
); /* pgdat_end_pfn namespace clash */
674 unsigned long pgdat_end_pfn
= p
;
676 struct mem_section
*ms
;
677 int nid
= pgdat
->node_id
;
679 if (pgdat_start_pfn
== start_pfn
) {
681 * If the section is smallest section in the pgdat, it need
682 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
683 * In this case, we find second smallest valid mem_section
684 * for shrinking zone.
686 pfn
= find_smallest_section_pfn(nid
, NULL
, end_pfn
,
689 pgdat
->node_start_pfn
= pfn
;
690 pgdat
->node_spanned_pages
= pgdat_end_pfn
- pfn
;
692 } else if (pgdat_end_pfn
== end_pfn
) {
694 * If the section is biggest section in the pgdat, it need
695 * shrink pgdat->node_spanned_pages.
696 * In this case, we find second biggest valid mem_section for
699 pfn
= find_biggest_section_pfn(nid
, NULL
, pgdat_start_pfn
,
702 pgdat
->node_spanned_pages
= pfn
- pgdat_start_pfn
+ 1;
706 * If the section is not biggest or smallest mem_section in the pgdat,
707 * it only creates a hole in the pgdat. So in this case, we need not
709 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
710 * has only hole or not.
712 pfn
= pgdat_start_pfn
;
713 for (; pfn
< pgdat_end_pfn
; pfn
+= PAGES_PER_SECTION
) {
714 ms
= __pfn_to_section(pfn
);
716 if (unlikely(!valid_section(ms
)))
719 if (pfn_to_nid(pfn
) != nid
)
722 /* If the section is current section, it continues the loop */
723 if (start_pfn
== pfn
)
726 /* If we find valid section, we have nothing to do */
730 /* The pgdat has no valid section */
731 pgdat
->node_start_pfn
= 0;
732 pgdat
->node_spanned_pages
= 0;
735 static void __remove_zone(struct zone
*zone
, unsigned long start_pfn
)
737 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
738 int nr_pages
= PAGES_PER_SECTION
;
742 zone_type
= zone
- pgdat
->node_zones
;
744 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
745 shrink_zone_span(zone
, start_pfn
, start_pfn
+ nr_pages
);
746 shrink_pgdat_span(pgdat
, start_pfn
, start_pfn
+ nr_pages
);
747 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
750 static int __remove_section(struct zone
*zone
, struct mem_section
*ms
,
751 unsigned long map_offset
)
753 unsigned long start_pfn
;
757 if (!valid_section(ms
))
760 ret
= unregister_memory_section(ms
);
764 scn_nr
= __section_nr(ms
);
765 start_pfn
= section_nr_to_pfn(scn_nr
);
766 __remove_zone(zone
, start_pfn
);
768 sparse_remove_one_section(zone
, ms
, map_offset
);
773 * __remove_pages() - remove sections of pages from a zone
774 * @zone: zone from which pages need to be removed
775 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
776 * @nr_pages: number of pages to remove (must be multiple of section size)
778 * Generic helper function to remove section mappings and sysfs entries
779 * for the section of the memory we are removing. Caller needs to make
780 * sure that pages are marked reserved and zones are adjust properly by
781 * calling offline_pages().
783 int __remove_pages(struct zone
*zone
, unsigned long phys_start_pfn
,
784 unsigned long nr_pages
)
787 unsigned long map_offset
= 0;
788 int sections_to_remove
, ret
= 0;
790 /* In the ZONE_DEVICE case device driver owns the memory region */
791 if (is_dev_zone(zone
)) {
792 struct page
*page
= pfn_to_page(phys_start_pfn
);
793 struct vmem_altmap
*altmap
;
795 altmap
= to_vmem_altmap((unsigned long) page
);
797 map_offset
= vmem_altmap_offset(altmap
);
799 resource_size_t start
, size
;
801 start
= phys_start_pfn
<< PAGE_SHIFT
;
802 size
= nr_pages
* PAGE_SIZE
;
804 ret
= release_mem_region_adjustable(&iomem_resource
, start
,
807 resource_size_t endres
= start
+ size
- 1;
809 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
810 &start
, &endres
, ret
);
815 * We can only remove entire sections
817 BUG_ON(phys_start_pfn
& ~PAGE_SECTION_MASK
);
818 BUG_ON(nr_pages
% PAGES_PER_SECTION
);
820 sections_to_remove
= nr_pages
/ PAGES_PER_SECTION
;
821 for (i
= 0; i
< sections_to_remove
; i
++) {
822 unsigned long pfn
= phys_start_pfn
+ i
*PAGES_PER_SECTION
;
824 ret
= __remove_section(zone
, __pfn_to_section(pfn
), map_offset
);
831 EXPORT_SYMBOL_GPL(__remove_pages
);
832 #endif /* CONFIG_MEMORY_HOTREMOVE */
834 int set_online_page_callback(online_page_callback_t callback
)
839 mutex_lock(&online_page_callback_lock
);
841 if (online_page_callback
== generic_online_page
) {
842 online_page_callback
= callback
;
846 mutex_unlock(&online_page_callback_lock
);
851 EXPORT_SYMBOL_GPL(set_online_page_callback
);
853 int restore_online_page_callback(online_page_callback_t callback
)
858 mutex_lock(&online_page_callback_lock
);
860 if (online_page_callback
== callback
) {
861 online_page_callback
= generic_online_page
;
865 mutex_unlock(&online_page_callback_lock
);
870 EXPORT_SYMBOL_GPL(restore_online_page_callback
);
872 void __online_page_set_limits(struct page
*page
)
875 EXPORT_SYMBOL_GPL(__online_page_set_limits
);
877 void __online_page_increment_counters(struct page
*page
)
879 adjust_managed_page_count(page
, 1);
881 EXPORT_SYMBOL_GPL(__online_page_increment_counters
);
883 void __online_page_free(struct page
*page
)
885 __free_reserved_page(page
);
887 EXPORT_SYMBOL_GPL(__online_page_free
);
889 static void generic_online_page(struct page
*page
)
891 __online_page_set_limits(page
);
892 __online_page_increment_counters(page
);
893 __online_page_free(page
);
896 static int online_pages_range(unsigned long start_pfn
, unsigned long nr_pages
,
900 unsigned long onlined_pages
= *(unsigned long *)arg
;
902 if (PageReserved(pfn_to_page(start_pfn
)))
903 for (i
= 0; i
< nr_pages
; i
++) {
904 page
= pfn_to_page(start_pfn
+ i
);
905 (*online_page_callback
)(page
);
908 *(unsigned long *)arg
= onlined_pages
;
912 #ifdef CONFIG_MOVABLE_NODE
914 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
917 static bool can_online_high_movable(struct zone
*zone
)
921 #else /* CONFIG_MOVABLE_NODE */
922 /* ensure every online node has NORMAL memory */
923 static bool can_online_high_movable(struct zone
*zone
)
925 return node_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
927 #endif /* CONFIG_MOVABLE_NODE */
929 /* check which state of node_states will be changed when online memory */
930 static void node_states_check_changes_online(unsigned long nr_pages
,
931 struct zone
*zone
, struct memory_notify
*arg
)
933 int nid
= zone_to_nid(zone
);
934 enum zone_type zone_last
= ZONE_NORMAL
;
937 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
938 * contains nodes which have zones of 0...ZONE_NORMAL,
939 * set zone_last to ZONE_NORMAL.
941 * If we don't have HIGHMEM nor movable node,
942 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
943 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
945 if (N_MEMORY
== N_NORMAL_MEMORY
)
946 zone_last
= ZONE_MOVABLE
;
949 * if the memory to be online is in a zone of 0...zone_last, and
950 * the zones of 0...zone_last don't have memory before online, we will
951 * need to set the node to node_states[N_NORMAL_MEMORY] after
952 * the memory is online.
954 if (zone_idx(zone
) <= zone_last
&& !node_state(nid
, N_NORMAL_MEMORY
))
955 arg
->status_change_nid_normal
= nid
;
957 arg
->status_change_nid_normal
= -1;
959 #ifdef CONFIG_HIGHMEM
961 * If we have movable node, node_states[N_HIGH_MEMORY]
962 * contains nodes which have zones of 0...ZONE_HIGHMEM,
963 * set zone_last to ZONE_HIGHMEM.
965 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
966 * contains nodes which have zones of 0...ZONE_MOVABLE,
967 * set zone_last to ZONE_MOVABLE.
969 zone_last
= ZONE_HIGHMEM
;
970 if (N_MEMORY
== N_HIGH_MEMORY
)
971 zone_last
= ZONE_MOVABLE
;
973 if (zone_idx(zone
) <= zone_last
&& !node_state(nid
, N_HIGH_MEMORY
))
974 arg
->status_change_nid_high
= nid
;
976 arg
->status_change_nid_high
= -1;
978 arg
->status_change_nid_high
= arg
->status_change_nid_normal
;
982 * if the node don't have memory befor online, we will need to
983 * set the node to node_states[N_MEMORY] after the memory
986 if (!node_state(nid
, N_MEMORY
))
987 arg
->status_change_nid
= nid
;
989 arg
->status_change_nid
= -1;
992 static void node_states_set_node(int node
, struct memory_notify
*arg
)
994 if (arg
->status_change_nid_normal
>= 0)
995 node_set_state(node
, N_NORMAL_MEMORY
);
997 if (arg
->status_change_nid_high
>= 0)
998 node_set_state(node
, N_HIGH_MEMORY
);
1000 node_set_state(node
, N_MEMORY
);
1004 /* Must be protected by mem_hotplug_begin() */
1005 int __ref
online_pages(unsigned long pfn
, unsigned long nr_pages
, int online_type
)
1007 unsigned long flags
;
1008 unsigned long onlined_pages
= 0;
1010 int need_zonelists_rebuild
= 0;
1013 struct memory_notify arg
;
1016 * This doesn't need a lock to do pfn_to_page().
1017 * The section can't be removed here because of the
1018 * memory_block->state_mutex.
1020 zone
= page_zone(pfn_to_page(pfn
));
1022 if ((zone_idx(zone
) > ZONE_NORMAL
||
1023 online_type
== MMOP_ONLINE_MOVABLE
) &&
1024 !can_online_high_movable(zone
))
1027 if (online_type
== MMOP_ONLINE_KERNEL
&&
1028 zone_idx(zone
) == ZONE_MOVABLE
) {
1029 if (move_pfn_range_left(zone
- 1, zone
, pfn
, pfn
+ nr_pages
))
1032 if (online_type
== MMOP_ONLINE_MOVABLE
&&
1033 zone_idx(zone
) == ZONE_MOVABLE
- 1) {
1034 if (move_pfn_range_right(zone
, zone
+ 1, pfn
, pfn
+ nr_pages
))
1038 /* Previous code may changed the zone of the pfn range */
1039 zone
= page_zone(pfn_to_page(pfn
));
1041 arg
.start_pfn
= pfn
;
1042 arg
.nr_pages
= nr_pages
;
1043 node_states_check_changes_online(nr_pages
, zone
, &arg
);
1045 nid
= pfn_to_nid(pfn
);
1047 ret
= memory_notify(MEM_GOING_ONLINE
, &arg
);
1048 ret
= notifier_to_errno(ret
);
1050 memory_notify(MEM_CANCEL_ONLINE
, &arg
);
1054 * If this zone is not populated, then it is not in zonelist.
1055 * This means the page allocator ignores this zone.
1056 * So, zonelist must be updated after online.
1058 mutex_lock(&zonelists_mutex
);
1059 if (!populated_zone(zone
)) {
1060 need_zonelists_rebuild
= 1;
1061 build_all_zonelists(NULL
, zone
);
1064 ret
= walk_system_ram_range(pfn
, nr_pages
, &onlined_pages
,
1065 online_pages_range
);
1067 if (need_zonelists_rebuild
)
1068 zone_pcp_reset(zone
);
1069 mutex_unlock(&zonelists_mutex
);
1070 printk(KERN_DEBUG
"online_pages [mem %#010llx-%#010llx] failed\n",
1071 (unsigned long long) pfn
<< PAGE_SHIFT
,
1072 (((unsigned long long) pfn
+ nr_pages
)
1073 << PAGE_SHIFT
) - 1);
1074 memory_notify(MEM_CANCEL_ONLINE
, &arg
);
1078 zone
->present_pages
+= onlined_pages
;
1080 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
1081 zone
->zone_pgdat
->node_present_pages
+= onlined_pages
;
1082 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
1084 if (onlined_pages
) {
1085 node_states_set_node(zone_to_nid(zone
), &arg
);
1086 if (need_zonelists_rebuild
)
1087 build_all_zonelists(NULL
, NULL
);
1089 zone_pcp_update(zone
);
1092 mutex_unlock(&zonelists_mutex
);
1094 init_per_zone_wmark_min();
1097 kswapd_run(zone_to_nid(zone
));
1099 vm_total_pages
= nr_free_pagecache_pages();
1101 writeback_set_ratelimit();
1104 memory_notify(MEM_ONLINE
, &arg
);
1107 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1109 static void reset_node_present_pages(pg_data_t
*pgdat
)
1113 for (z
= pgdat
->node_zones
; z
< pgdat
->node_zones
+ MAX_NR_ZONES
; z
++)
1114 z
->present_pages
= 0;
1116 pgdat
->node_present_pages
= 0;
1119 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1120 static pg_data_t __ref
*hotadd_new_pgdat(int nid
, u64 start
)
1122 struct pglist_data
*pgdat
;
1123 unsigned long zones_size
[MAX_NR_ZONES
] = {0};
1124 unsigned long zholes_size
[MAX_NR_ZONES
] = {0};
1125 unsigned long start_pfn
= PFN_DOWN(start
);
1127 pgdat
= NODE_DATA(nid
);
1129 pgdat
= arch_alloc_nodedata(nid
);
1133 arch_refresh_nodedata(nid
, pgdat
);
1135 /* Reset the nr_zones and classzone_idx to 0 before reuse */
1136 pgdat
->nr_zones
= 0;
1137 pgdat
->classzone_idx
= 0;
1140 /* we can use NODE_DATA(nid) from here */
1142 /* init node's zones as empty zones, we don't have any present pages.*/
1143 free_area_init_node(nid
, zones_size
, start_pfn
, zholes_size
);
1146 * The node we allocated has no zone fallback lists. For avoiding
1147 * to access not-initialized zonelist, build here.
1149 mutex_lock(&zonelists_mutex
);
1150 build_all_zonelists(pgdat
, NULL
);
1151 mutex_unlock(&zonelists_mutex
);
1154 * zone->managed_pages is set to an approximate value in
1155 * free_area_init_core(), which will cause
1156 * /sys/device/system/node/nodeX/meminfo has wrong data.
1157 * So reset it to 0 before any memory is onlined.
1159 reset_node_managed_pages(pgdat
);
1162 * When memory is hot-added, all the memory is in offline state. So
1163 * clear all zones' present_pages because they will be updated in
1164 * online_pages() and offline_pages().
1166 reset_node_present_pages(pgdat
);
1171 static void rollback_node_hotadd(int nid
, pg_data_t
*pgdat
)
1173 arch_refresh_nodedata(nid
, NULL
);
1174 arch_free_nodedata(pgdat
);
1180 * try_online_node - online a node if offlined
1182 * called by cpu_up() to online a node without onlined memory.
1184 int try_online_node(int nid
)
1189 if (node_online(nid
))
1192 mem_hotplug_begin();
1193 pgdat
= hotadd_new_pgdat(nid
, 0);
1195 pr_err("Cannot online node %d due to NULL pgdat\n", nid
);
1199 node_set_online(nid
);
1200 ret
= register_one_node(nid
);
1203 if (pgdat
->node_zonelists
->_zonerefs
->zone
== NULL
) {
1204 mutex_lock(&zonelists_mutex
);
1205 build_all_zonelists(NULL
, NULL
);
1206 mutex_unlock(&zonelists_mutex
);
1214 static int check_hotplug_memory_range(u64 start
, u64 size
)
1216 u64 start_pfn
= PFN_DOWN(start
);
1217 u64 nr_pages
= size
>> PAGE_SHIFT
;
1219 /* Memory range must be aligned with section */
1220 if ((start_pfn
& ~PAGE_SECTION_MASK
) ||
1221 (nr_pages
% PAGES_PER_SECTION
) || (!nr_pages
)) {
1222 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1223 (unsigned long long)start
,
1224 (unsigned long long)size
);
1232 * If movable zone has already been setup, newly added memory should be check.
1233 * If its address is higher than movable zone, it should be added as movable.
1234 * Without this check, movable zone may overlap with other zone.
1236 static int should_add_memory_movable(int nid
, u64 start
, u64 size
)
1238 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
1239 pg_data_t
*pgdat
= NODE_DATA(nid
);
1240 struct zone
*movable_zone
= pgdat
->node_zones
+ ZONE_MOVABLE
;
1242 if (zone_is_empty(movable_zone
))
1245 if (movable_zone
->zone_start_pfn
<= start_pfn
)
1251 int zone_for_memory(int nid
, u64 start
, u64 size
, int zone_default
,
1254 #ifdef CONFIG_ZONE_DEVICE
1258 if (should_add_memory_movable(nid
, start
, size
))
1259 return ZONE_MOVABLE
;
1261 return zone_default
;
1264 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1265 int __ref
add_memory_resource(int nid
, struct resource
*res
)
1268 pg_data_t
*pgdat
= NULL
;
1274 size
= resource_size(res
);
1276 ret
= check_hotplug_memory_range(start
, size
);
1280 { /* Stupid hack to suppress address-never-null warning */
1281 void *p
= NODE_DATA(nid
);
1285 mem_hotplug_begin();
1288 * Add new range to memblock so that when hotadd_new_pgdat() is called
1289 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1290 * this new range and calculate total pages correctly. The range will
1291 * be removed at hot-remove time.
1293 memblock_add_node(start
, size
, nid
);
1295 new_node
= !node_online(nid
);
1297 pgdat
= hotadd_new_pgdat(nid
, start
);
1303 /* call arch's memory hotadd */
1304 ret
= arch_add_memory(nid
, start
, size
, false);
1309 /* we online node here. we can't roll back from here. */
1310 node_set_online(nid
);
1313 ret
= register_one_node(nid
);
1315 * If sysfs file of new node can't create, cpu on the node
1316 * can't be hot-added. There is no rollback way now.
1317 * So, check by BUG_ON() to catch it reluctantly..
1322 /* create new memmap entry */
1323 firmware_map_add_hotplug(start
, start
+ size
, "System RAM");
1328 /* rollback pgdat allocation and others */
1330 rollback_node_hotadd(nid
, pgdat
);
1331 memblock_remove(start
, size
);
1337 EXPORT_SYMBOL_GPL(add_memory_resource
);
1339 int __ref
add_memory(int nid
, u64 start
, u64 size
)
1341 struct resource
*res
;
1344 res
= register_memory_resource(start
, size
);
1346 return PTR_ERR(res
);
1348 ret
= add_memory_resource(nid
, res
);
1350 release_memory_resource(res
);
1353 EXPORT_SYMBOL_GPL(add_memory
);
1355 #ifdef CONFIG_MEMORY_HOTREMOVE
1357 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1358 * set and the size of the free page is given by page_order(). Using this,
1359 * the function determines if the pageblock contains only free pages.
1360 * Due to buddy contraints, a free page at least the size of a pageblock will
1361 * be located at the start of the pageblock
1363 static inline int pageblock_free(struct page
*page
)
1365 return PageBuddy(page
) && page_order(page
) >= pageblock_order
;
1368 /* Return the start of the next active pageblock after a given page */
1369 static struct page
*next_active_pageblock(struct page
*page
)
1371 /* Ensure the starting page is pageblock-aligned */
1372 BUG_ON(page_to_pfn(page
) & (pageblock_nr_pages
- 1));
1374 /* If the entire pageblock is free, move to the end of free page */
1375 if (pageblock_free(page
)) {
1377 /* be careful. we don't have locks, page_order can be changed.*/
1378 order
= page_order(page
);
1379 if ((order
< MAX_ORDER
) && (order
>= pageblock_order
))
1380 return page
+ (1 << order
);
1383 return page
+ pageblock_nr_pages
;
1386 /* Checks if this range of memory is likely to be hot-removable. */
1387 int is_mem_section_removable(unsigned long start_pfn
, unsigned long nr_pages
)
1389 struct page
*page
= pfn_to_page(start_pfn
);
1390 struct page
*end_page
= page
+ nr_pages
;
1392 /* Check the starting page of each pageblock within the range */
1393 for (; page
< end_page
; page
= next_active_pageblock(page
)) {
1394 if (!is_pageblock_removable_nolock(page
))
1399 /* All pageblocks in the memory block are likely to be hot-removable */
1404 * Confirm all pages in a range [start, end) is belongs to the same zone.
1406 int test_pages_in_a_zone(unsigned long start_pfn
, unsigned long end_pfn
)
1408 unsigned long pfn
, sec_end_pfn
;
1409 struct zone
*zone
= NULL
;
1412 for (pfn
= start_pfn
, sec_end_pfn
= SECTION_ALIGN_UP(start_pfn
);
1414 pfn
= sec_end_pfn
+ 1, sec_end_pfn
+= PAGES_PER_SECTION
) {
1415 /* Make sure the memory section is present first */
1416 if (!present_section_nr(pfn_to_section_nr(pfn
)))
1418 for (; pfn
< sec_end_pfn
&& pfn
< end_pfn
;
1419 pfn
+= MAX_ORDER_NR_PAGES
) {
1421 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1422 while ((i
< MAX_ORDER_NR_PAGES
) &&
1423 !pfn_valid_within(pfn
+ i
))
1425 if (i
== MAX_ORDER_NR_PAGES
)
1427 page
= pfn_to_page(pfn
+ i
);
1428 if (zone
&& page_zone(page
) != zone
)
1430 zone
= page_zone(page
);
1437 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1438 * and hugepages). We scan pfn because it's much easier than scanning over
1439 * linked list. This function returns the pfn of the first found movable
1440 * page if it's found, otherwise 0.
1442 static unsigned long scan_movable_pages(unsigned long start
, unsigned long end
)
1446 for (pfn
= start
; pfn
< end
; pfn
++) {
1447 if (pfn_valid(pfn
)) {
1448 page
= pfn_to_page(pfn
);
1451 if (PageHuge(page
)) {
1452 if (page_huge_active(page
))
1455 pfn
= round_up(pfn
+ 1,
1456 1 << compound_order(page
)) - 1;
1463 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1465 do_migrate_range(unsigned long start_pfn
, unsigned long end_pfn
)
1469 int move_pages
= NR_OFFLINE_AT_ONCE_PAGES
;
1470 int not_managed
= 0;
1474 for (pfn
= start_pfn
; pfn
< end_pfn
&& move_pages
> 0; pfn
++) {
1475 if (!pfn_valid(pfn
))
1477 page
= pfn_to_page(pfn
);
1479 if (PageHuge(page
)) {
1480 struct page
*head
= compound_head(page
);
1481 pfn
= page_to_pfn(head
) + (1<<compound_order(head
)) - 1;
1482 if (compound_order(head
) > PFN_SECTION_SHIFT
) {
1486 if (isolate_huge_page(page
, &source
))
1487 move_pages
-= 1 << compound_order(head
);
1491 if (!get_page_unless_zero(page
))
1494 * We can skip free pages. And we can only deal with pages on
1497 ret
= isolate_lru_page(page
);
1498 if (!ret
) { /* Success */
1500 list_add_tail(&page
->lru
, &source
);
1502 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1503 page_is_file_cache(page
));
1506 #ifdef CONFIG_DEBUG_VM
1507 printk(KERN_ALERT
"removing pfn %lx from LRU failed\n",
1509 dump_page(page
, "failed to remove from LRU");
1512 /* Because we don't have big zone->lock. we should
1513 check this again here. */
1514 if (page_count(page
)) {
1521 if (!list_empty(&source
)) {
1523 putback_movable_pages(&source
);
1528 * alloc_migrate_target should be improooooved!!
1529 * migrate_pages returns # of failed pages.
1531 ret
= migrate_pages(&source
, alloc_migrate_target
, NULL
, 0,
1532 MIGRATE_SYNC
, MR_MEMORY_HOTPLUG
);
1534 putback_movable_pages(&source
);
1541 * remove from free_area[] and mark all as Reserved.
1544 offline_isolated_pages_cb(unsigned long start
, unsigned long nr_pages
,
1547 __offline_isolated_pages(start
, start
+ nr_pages
);
1552 offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1554 walk_system_ram_range(start_pfn
, end_pfn
- start_pfn
, NULL
,
1555 offline_isolated_pages_cb
);
1559 * Check all pages in range, recoreded as memory resource, are isolated.
1562 check_pages_isolated_cb(unsigned long start_pfn
, unsigned long nr_pages
,
1566 long offlined
= *(long *)data
;
1567 ret
= test_pages_isolated(start_pfn
, start_pfn
+ nr_pages
, true);
1568 offlined
= nr_pages
;
1570 *(long *)data
+= offlined
;
1575 check_pages_isolated(unsigned long start_pfn
, unsigned long end_pfn
)
1580 ret
= walk_system_ram_range(start_pfn
, end_pfn
- start_pfn
, &offlined
,
1581 check_pages_isolated_cb
);
1583 offlined
= (long)ret
;
1587 #ifdef CONFIG_MOVABLE_NODE
1589 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1592 static bool can_offline_normal(struct zone
*zone
, unsigned long nr_pages
)
1596 #else /* CONFIG_MOVABLE_NODE */
1597 /* ensure the node has NORMAL memory if it is still online */
1598 static bool can_offline_normal(struct zone
*zone
, unsigned long nr_pages
)
1600 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1601 unsigned long present_pages
= 0;
1604 for (zt
= 0; zt
<= ZONE_NORMAL
; zt
++)
1605 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1607 if (present_pages
> nr_pages
)
1611 for (; zt
<= ZONE_MOVABLE
; zt
++)
1612 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1615 * we can't offline the last normal memory until all
1616 * higher memory is offlined.
1618 return present_pages
== 0;
1620 #endif /* CONFIG_MOVABLE_NODE */
1622 static int __init
cmdline_parse_movable_node(char *p
)
1624 #ifdef CONFIG_MOVABLE_NODE
1626 * Memory used by the kernel cannot be hot-removed because Linux
1627 * cannot migrate the kernel pages. When memory hotplug is
1628 * enabled, we should prevent memblock from allocating memory
1631 * ACPI SRAT records all hotpluggable memory ranges. But before
1632 * SRAT is parsed, we don't know about it.
1634 * The kernel image is loaded into memory at very early time. We
1635 * cannot prevent this anyway. So on NUMA system, we set any
1636 * node the kernel resides in as un-hotpluggable.
1638 * Since on modern servers, one node could have double-digit
1639 * gigabytes memory, we can assume the memory around the kernel
1640 * image is also un-hotpluggable. So before SRAT is parsed, just
1641 * allocate memory near the kernel image to try the best to keep
1642 * the kernel away from hotpluggable memory.
1644 memblock_set_bottom_up(true);
1645 movable_node_enabled
= true;
1647 pr_warn("movable_node option not supported\n");
1651 early_param("movable_node", cmdline_parse_movable_node
);
1653 /* check which state of node_states will be changed when offline memory */
1654 static void node_states_check_changes_offline(unsigned long nr_pages
,
1655 struct zone
*zone
, struct memory_notify
*arg
)
1657 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1658 unsigned long present_pages
= 0;
1659 enum zone_type zt
, zone_last
= ZONE_NORMAL
;
1662 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1663 * contains nodes which have zones of 0...ZONE_NORMAL,
1664 * set zone_last to ZONE_NORMAL.
1666 * If we don't have HIGHMEM nor movable node,
1667 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1668 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1670 if (N_MEMORY
== N_NORMAL_MEMORY
)
1671 zone_last
= ZONE_MOVABLE
;
1674 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1675 * If the memory to be offline is in a zone of 0...zone_last,
1676 * and it is the last present memory, 0...zone_last will
1677 * become empty after offline , thus we can determind we will
1678 * need to clear the node from node_states[N_NORMAL_MEMORY].
1680 for (zt
= 0; zt
<= zone_last
; zt
++)
1681 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1682 if (zone_idx(zone
) <= zone_last
&& nr_pages
>= present_pages
)
1683 arg
->status_change_nid_normal
= zone_to_nid(zone
);
1685 arg
->status_change_nid_normal
= -1;
1687 #ifdef CONFIG_HIGHMEM
1689 * If we have movable node, node_states[N_HIGH_MEMORY]
1690 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1691 * set zone_last to ZONE_HIGHMEM.
1693 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1694 * contains nodes which have zones of 0...ZONE_MOVABLE,
1695 * set zone_last to ZONE_MOVABLE.
1697 zone_last
= ZONE_HIGHMEM
;
1698 if (N_MEMORY
== N_HIGH_MEMORY
)
1699 zone_last
= ZONE_MOVABLE
;
1701 for (; zt
<= zone_last
; zt
++)
1702 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1703 if (zone_idx(zone
) <= zone_last
&& nr_pages
>= present_pages
)
1704 arg
->status_change_nid_high
= zone_to_nid(zone
);
1706 arg
->status_change_nid_high
= -1;
1708 arg
->status_change_nid_high
= arg
->status_change_nid_normal
;
1712 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1714 zone_last
= ZONE_MOVABLE
;
1717 * check whether node_states[N_HIGH_MEMORY] will be changed
1718 * If we try to offline the last present @nr_pages from the node,
1719 * we can determind we will need to clear the node from
1720 * node_states[N_HIGH_MEMORY].
1722 for (; zt
<= zone_last
; zt
++)
1723 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1724 if (nr_pages
>= present_pages
)
1725 arg
->status_change_nid
= zone_to_nid(zone
);
1727 arg
->status_change_nid
= -1;
1730 static void node_states_clear_node(int node
, struct memory_notify
*arg
)
1732 if (arg
->status_change_nid_normal
>= 0)
1733 node_clear_state(node
, N_NORMAL_MEMORY
);
1735 if ((N_MEMORY
!= N_NORMAL_MEMORY
) &&
1736 (arg
->status_change_nid_high
>= 0))
1737 node_clear_state(node
, N_HIGH_MEMORY
);
1739 if ((N_MEMORY
!= N_HIGH_MEMORY
) &&
1740 (arg
->status_change_nid
>= 0))
1741 node_clear_state(node
, N_MEMORY
);
1744 static int __ref
__offline_pages(unsigned long start_pfn
,
1745 unsigned long end_pfn
, unsigned long timeout
)
1747 unsigned long pfn
, nr_pages
, expire
;
1748 long offlined_pages
;
1749 int ret
, drain
, retry_max
, node
;
1750 unsigned long flags
;
1752 struct memory_notify arg
;
1754 /* at least, alignment against pageblock is necessary */
1755 if (!IS_ALIGNED(start_pfn
, pageblock_nr_pages
))
1757 if (!IS_ALIGNED(end_pfn
, pageblock_nr_pages
))
1759 /* This makes hotplug much easier...and readable.
1760 we assume this for now. .*/
1761 if (!test_pages_in_a_zone(start_pfn
, end_pfn
))
1764 zone
= page_zone(pfn_to_page(start_pfn
));
1765 node
= zone_to_nid(zone
);
1766 nr_pages
= end_pfn
- start_pfn
;
1768 if (zone_idx(zone
) <= ZONE_NORMAL
&& !can_offline_normal(zone
, nr_pages
))
1771 /* set above range as isolated */
1772 ret
= start_isolate_page_range(start_pfn
, end_pfn
,
1773 MIGRATE_MOVABLE
, true);
1777 arg
.start_pfn
= start_pfn
;
1778 arg
.nr_pages
= nr_pages
;
1779 node_states_check_changes_offline(nr_pages
, zone
, &arg
);
1781 ret
= memory_notify(MEM_GOING_OFFLINE
, &arg
);
1782 ret
= notifier_to_errno(ret
);
1784 goto failed_removal
;
1787 expire
= jiffies
+ timeout
;
1791 /* start memory hot removal */
1793 if (time_after(jiffies
, expire
))
1794 goto failed_removal
;
1796 if (signal_pending(current
))
1797 goto failed_removal
;
1800 lru_add_drain_all();
1802 drain_all_pages(zone
);
1805 pfn
= scan_movable_pages(start_pfn
, end_pfn
);
1806 if (pfn
) { /* We have movable pages */
1807 ret
= do_migrate_range(pfn
, end_pfn
);
1813 if (--retry_max
== 0)
1814 goto failed_removal
;
1820 /* drain all zone's lru pagevec, this is asynchronous... */
1821 lru_add_drain_all();
1823 /* drain pcp pages, this is synchronous. */
1824 drain_all_pages(zone
);
1826 * dissolve free hugepages in the memory block before doing offlining
1827 * actually in order to make hugetlbfs's object counting consistent.
1829 dissolve_free_huge_pages(start_pfn
, end_pfn
);
1831 offlined_pages
= check_pages_isolated(start_pfn
, end_pfn
);
1832 if (offlined_pages
< 0) {
1834 goto failed_removal
;
1836 printk(KERN_INFO
"Offlined Pages %ld\n", offlined_pages
);
1837 /* Ok, all of our target is isolated.
1838 We cannot do rollback at this point. */
1839 offline_isolated_pages(start_pfn
, end_pfn
);
1840 /* reset pagetype flags and makes migrate type to be MOVABLE */
1841 undo_isolate_page_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1842 /* removal success */
1843 adjust_managed_page_count(pfn_to_page(start_pfn
), -offlined_pages
);
1844 zone
->present_pages
-= offlined_pages
;
1846 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
1847 zone
->zone_pgdat
->node_present_pages
-= offlined_pages
;
1848 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
1850 init_per_zone_wmark_min();
1852 if (!populated_zone(zone
)) {
1853 zone_pcp_reset(zone
);
1854 mutex_lock(&zonelists_mutex
);
1855 build_all_zonelists(NULL
, NULL
);
1856 mutex_unlock(&zonelists_mutex
);
1858 zone_pcp_update(zone
);
1860 node_states_clear_node(node
, &arg
);
1861 if (arg
.status_change_nid
>= 0)
1864 vm_total_pages
= nr_free_pagecache_pages();
1865 writeback_set_ratelimit();
1867 memory_notify(MEM_OFFLINE
, &arg
);
1871 printk(KERN_INFO
"memory offlining [mem %#010llx-%#010llx] failed\n",
1872 (unsigned long long) start_pfn
<< PAGE_SHIFT
,
1873 ((unsigned long long) end_pfn
<< PAGE_SHIFT
) - 1);
1874 memory_notify(MEM_CANCEL_OFFLINE
, &arg
);
1875 /* pushback to free area */
1876 undo_isolate_page_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1880 /* Must be protected by mem_hotplug_begin() */
1881 int offline_pages(unsigned long start_pfn
, unsigned long nr_pages
)
1883 return __offline_pages(start_pfn
, start_pfn
+ nr_pages
, 120 * HZ
);
1885 #endif /* CONFIG_MEMORY_HOTREMOVE */
1888 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1889 * @start_pfn: start pfn of the memory range
1890 * @end_pfn: end pfn of the memory range
1891 * @arg: argument passed to func
1892 * @func: callback for each memory section walked
1894 * This function walks through all present mem sections in range
1895 * [start_pfn, end_pfn) and call func on each mem section.
1897 * Returns the return value of func.
1899 int walk_memory_range(unsigned long start_pfn
, unsigned long end_pfn
,
1900 void *arg
, int (*func
)(struct memory_block
*, void *))
1902 struct memory_block
*mem
= NULL
;
1903 struct mem_section
*section
;
1904 unsigned long pfn
, section_nr
;
1907 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
1908 section_nr
= pfn_to_section_nr(pfn
);
1909 if (!present_section_nr(section_nr
))
1912 section
= __nr_to_section(section_nr
);
1913 /* same memblock? */
1915 if ((section_nr
>= mem
->start_section_nr
) &&
1916 (section_nr
<= mem
->end_section_nr
))
1919 mem
= find_memory_block_hinted(section
, mem
);
1923 ret
= func(mem
, arg
);
1925 kobject_put(&mem
->dev
.kobj
);
1931 kobject_put(&mem
->dev
.kobj
);
1936 #ifdef CONFIG_MEMORY_HOTREMOVE
1937 static int check_memblock_offlined_cb(struct memory_block
*mem
, void *arg
)
1939 int ret
= !is_memblock_offlined(mem
);
1941 if (unlikely(ret
)) {
1942 phys_addr_t beginpa
, endpa
;
1944 beginpa
= PFN_PHYS(section_nr_to_pfn(mem
->start_section_nr
));
1945 endpa
= PFN_PHYS(section_nr_to_pfn(mem
->end_section_nr
+ 1))-1;
1946 pr_warn("removing memory fails, because memory "
1947 "[%pa-%pa] is onlined\n",
1954 static int check_cpu_on_node(pg_data_t
*pgdat
)
1958 for_each_present_cpu(cpu
) {
1959 if (cpu_to_node(cpu
) == pgdat
->node_id
)
1961 * the cpu on this node isn't removed, and we can't
1962 * offline this node.
1970 static void unmap_cpu_on_node(pg_data_t
*pgdat
)
1972 #ifdef CONFIG_ACPI_NUMA
1975 for_each_possible_cpu(cpu
)
1976 if (cpu_to_node(cpu
) == pgdat
->node_id
)
1977 numa_clear_node(cpu
);
1981 static int check_and_unmap_cpu_on_node(pg_data_t
*pgdat
)
1985 ret
= check_cpu_on_node(pgdat
);
1990 * the node will be offlined when we come here, so we can clear
1991 * the cpu_to_node() now.
1994 unmap_cpu_on_node(pgdat
);
2001 * Offline a node if all memory sections and cpus of the node are removed.
2003 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2004 * and online/offline operations before this call.
2006 void try_offline_node(int nid
)
2008 pg_data_t
*pgdat
= NODE_DATA(nid
);
2009 unsigned long start_pfn
= pgdat
->node_start_pfn
;
2010 unsigned long end_pfn
= start_pfn
+ pgdat
->node_spanned_pages
;
2014 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
2015 unsigned long section_nr
= pfn_to_section_nr(pfn
);
2017 if (!present_section_nr(section_nr
))
2020 if (pfn_to_nid(pfn
) != nid
)
2024 * some memory sections of this node are not removed, and we
2025 * can't offline node now.
2030 if (check_and_unmap_cpu_on_node(pgdat
))
2034 * all memory/cpu of this node are removed, we can offline this
2037 node_set_offline(nid
);
2038 unregister_one_node(nid
);
2040 /* free waittable in each zone */
2041 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2042 struct zone
*zone
= pgdat
->node_zones
+ i
;
2045 * wait_table may be allocated from boot memory,
2046 * here only free if it's allocated by vmalloc.
2048 if (is_vmalloc_addr(zone
->wait_table
)) {
2049 vfree(zone
->wait_table
);
2050 zone
->wait_table
= NULL
;
2054 EXPORT_SYMBOL(try_offline_node
);
2059 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2060 * and online/offline operations before this call, as required by
2061 * try_offline_node().
2063 void __ref
remove_memory(int nid
, u64 start
, u64 size
)
2067 BUG_ON(check_hotplug_memory_range(start
, size
));
2069 mem_hotplug_begin();
2072 * All memory blocks must be offlined before removing memory. Check
2073 * whether all memory blocks in question are offline and trigger a BUG()
2074 * if this is not the case.
2076 ret
= walk_memory_range(PFN_DOWN(start
), PFN_UP(start
+ size
- 1), NULL
,
2077 check_memblock_offlined_cb
);
2081 /* remove memmap entry */
2082 firmware_map_remove(start
, start
+ size
, "System RAM");
2083 memblock_free(start
, size
);
2084 memblock_remove(start
, size
);
2086 arch_remove_memory(start
, size
);
2088 try_offline_node(nid
);
2092 EXPORT_SYMBOL_GPL(remove_memory
);
2093 #endif /* CONFIG_MEMORY_HOTREMOVE */