6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags) (0)
58 #ifndef arch_rebalance_pgtables
59 #define arch_rebalance_pgtables(addr, len) (addr)
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
64 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
65 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
69 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
70 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
73 static bool ignore_rlimit_data
= true;
74 core_param(ignore_rlimit_data
, ignore_rlimit_data
, bool, 0644);
76 static void unmap_region(struct mm_struct
*mm
,
77 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
78 unsigned long start
, unsigned long end
);
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
95 pgprot_t protection_map
[16] = {
96 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
97 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
100 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
102 return __pgprot(pgprot_val(protection_map
[vm_flags
&
103 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
104 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
106 EXPORT_SYMBOL(vm_get_page_prot
);
108 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
110 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
113 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
114 void vma_set_page_prot(struct vm_area_struct
*vma
)
116 unsigned long vm_flags
= vma
->vm_flags
;
118 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
119 if (vma_wants_writenotify(vma
)) {
120 vm_flags
&= ~VM_SHARED
;
121 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
,
127 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
128 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
129 unsigned long sysctl_overcommit_kbytes __read_mostly
;
130 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
131 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
132 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
134 * Make sure vm_committed_as in one cacheline and not cacheline shared with
135 * other variables. It can be updated by several CPUs frequently.
137 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
140 * The global memory commitment made in the system can be a metric
141 * that can be used to drive ballooning decisions when Linux is hosted
142 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
143 * balancing memory across competing virtual machines that are hosted.
144 * Several metrics drive this policy engine including the guest reported
147 unsigned long vm_memory_committed(void)
149 return percpu_counter_read_positive(&vm_committed_as
);
151 EXPORT_SYMBOL_GPL(vm_memory_committed
);
154 * Check that a process has enough memory to allocate a new virtual
155 * mapping. 0 means there is enough memory for the allocation to
156 * succeed and -ENOMEM implies there is not.
158 * We currently support three overcommit policies, which are set via the
159 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
161 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
162 * Additional code 2002 Jul 20 by Robert Love.
164 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
166 * Note this is a helper function intended to be used by LSMs which
167 * wish to use this logic.
169 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
171 long free
, allowed
, reserve
;
173 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as
) <
174 -(s64
)vm_committed_as_batch
* num_online_cpus(),
175 "memory commitment underflow");
177 vm_acct_memory(pages
);
180 * Sometimes we want to use more memory than we have
182 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
185 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
186 free
= global_page_state(NR_FREE_PAGES
);
187 free
+= global_page_state(NR_FILE_PAGES
);
190 * shmem pages shouldn't be counted as free in this
191 * case, they can't be purged, only swapped out, and
192 * that won't affect the overall amount of available
193 * memory in the system.
195 free
-= global_page_state(NR_SHMEM
);
197 free
+= get_nr_swap_pages();
200 * Any slabs which are created with the
201 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
202 * which are reclaimable, under pressure. The dentry
203 * cache and most inode caches should fall into this
205 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
208 * Leave reserved pages. The pages are not for anonymous pages.
210 if (free
<= totalreserve_pages
)
213 free
-= totalreserve_pages
;
216 * Reserve some for root
219 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
227 allowed
= vm_commit_limit();
229 * Reserve some for root
232 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
235 * Don't let a single process grow so big a user can't recover
238 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
239 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
242 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
245 vm_unacct_memory(pages
);
251 * Requires inode->i_mapping->i_mmap_rwsem
253 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
254 struct file
*file
, struct address_space
*mapping
)
256 if (vma
->vm_flags
& VM_DENYWRITE
)
257 atomic_inc(&file_inode(file
)->i_writecount
);
258 if (vma
->vm_flags
& VM_SHARED
)
259 mapping_unmap_writable(mapping
);
261 flush_dcache_mmap_lock(mapping
);
262 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
263 flush_dcache_mmap_unlock(mapping
);
267 * Unlink a file-based vm structure from its interval tree, to hide
268 * vma from rmap and vmtruncate before freeing its page tables.
270 void unlink_file_vma(struct vm_area_struct
*vma
)
272 struct file
*file
= vma
->vm_file
;
275 struct address_space
*mapping
= file
->f_mapping
;
276 i_mmap_lock_write(mapping
);
277 __remove_shared_vm_struct(vma
, file
, mapping
);
278 i_mmap_unlock_write(mapping
);
283 * Close a vm structure and free it, returning the next.
285 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
287 struct vm_area_struct
*next
= vma
->vm_next
;
290 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
291 vma
->vm_ops
->close(vma
);
294 mpol_put(vma_policy(vma
));
295 kmem_cache_free(vm_area_cachep
, vma
);
299 static unsigned long do_brk(unsigned long addr
, unsigned long len
);
301 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
303 unsigned long retval
;
304 unsigned long newbrk
, oldbrk
;
305 struct mm_struct
*mm
= current
->mm
;
306 unsigned long min_brk
;
309 down_write(&mm
->mmap_sem
);
311 #ifdef CONFIG_COMPAT_BRK
313 * CONFIG_COMPAT_BRK can still be overridden by setting
314 * randomize_va_space to 2, which will still cause mm->start_brk
315 * to be arbitrarily shifted
317 if (current
->brk_randomized
)
318 min_brk
= mm
->start_brk
;
320 min_brk
= mm
->end_data
;
322 min_brk
= mm
->start_brk
;
328 * Check against rlimit here. If this check is done later after the test
329 * of oldbrk with newbrk then it can escape the test and let the data
330 * segment grow beyond its set limit the in case where the limit is
331 * not page aligned -Ram Gupta
333 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
334 mm
->end_data
, mm
->start_data
))
337 newbrk
= PAGE_ALIGN(brk
);
338 oldbrk
= PAGE_ALIGN(mm
->brk
);
339 if (oldbrk
== newbrk
)
342 /* Always allow shrinking brk. */
343 if (brk
<= mm
->brk
) {
344 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
349 /* Check against existing mmap mappings. */
350 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
353 /* Ok, looks good - let it rip. */
354 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
359 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
360 up_write(&mm
->mmap_sem
);
362 mm_populate(oldbrk
, newbrk
- oldbrk
);
367 up_write(&mm
->mmap_sem
);
371 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
373 unsigned long max
, subtree_gap
;
376 max
-= vma
->vm_prev
->vm_end
;
377 if (vma
->vm_rb
.rb_left
) {
378 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
379 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
380 if (subtree_gap
> max
)
383 if (vma
->vm_rb
.rb_right
) {
384 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
385 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
386 if (subtree_gap
> max
)
392 #ifdef CONFIG_DEBUG_VM_RB
393 static int browse_rb(struct mm_struct
*mm
)
395 struct rb_root
*root
= &mm
->mm_rb
;
396 int i
= 0, j
, bug
= 0;
397 struct rb_node
*nd
, *pn
= NULL
;
398 unsigned long prev
= 0, pend
= 0;
400 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
401 struct vm_area_struct
*vma
;
402 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
403 if (vma
->vm_start
< prev
) {
404 pr_emerg("vm_start %lx < prev %lx\n",
405 vma
->vm_start
, prev
);
408 if (vma
->vm_start
< pend
) {
409 pr_emerg("vm_start %lx < pend %lx\n",
410 vma
->vm_start
, pend
);
413 if (vma
->vm_start
> vma
->vm_end
) {
414 pr_emerg("vm_start %lx > vm_end %lx\n",
415 vma
->vm_start
, vma
->vm_end
);
418 spin_lock(&mm
->page_table_lock
);
419 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
420 pr_emerg("free gap %lx, correct %lx\n",
422 vma_compute_subtree_gap(vma
));
425 spin_unlock(&mm
->page_table_lock
);
428 prev
= vma
->vm_start
;
432 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
435 pr_emerg("backwards %d, forwards %d\n", j
, i
);
441 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
445 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
446 struct vm_area_struct
*vma
;
447 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
448 VM_BUG_ON_VMA(vma
!= ignore
&&
449 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
454 static void validate_mm(struct mm_struct
*mm
)
458 unsigned long highest_address
= 0;
459 struct vm_area_struct
*vma
= mm
->mmap
;
462 struct anon_vma
*anon_vma
= vma
->anon_vma
;
463 struct anon_vma_chain
*avc
;
466 anon_vma_lock_read(anon_vma
);
467 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
468 anon_vma_interval_tree_verify(avc
);
469 anon_vma_unlock_read(anon_vma
);
472 highest_address
= vma
->vm_end
;
476 if (i
!= mm
->map_count
) {
477 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
480 if (highest_address
!= mm
->highest_vm_end
) {
481 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
482 mm
->highest_vm_end
, highest_address
);
486 if (i
!= mm
->map_count
) {
488 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
491 VM_BUG_ON_MM(bug
, mm
);
494 #define validate_mm_rb(root, ignore) do { } while (0)
495 #define validate_mm(mm) do { } while (0)
498 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
499 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
502 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
503 * vma->vm_prev->vm_end values changed, without modifying the vma's position
506 static void vma_gap_update(struct vm_area_struct
*vma
)
509 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
510 * function that does exacltly what we want.
512 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
515 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
516 struct rb_root
*root
)
518 /* All rb_subtree_gap values must be consistent prior to insertion */
519 validate_mm_rb(root
, NULL
);
521 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
524 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
527 * All rb_subtree_gap values must be consistent prior to erase,
528 * with the possible exception of the vma being erased.
530 validate_mm_rb(root
, vma
);
533 * Note rb_erase_augmented is a fairly large inline function,
534 * so make sure we instantiate it only once with our desired
535 * augmented rbtree callbacks.
537 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
541 * vma has some anon_vma assigned, and is already inserted on that
542 * anon_vma's interval trees.
544 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
545 * vma must be removed from the anon_vma's interval trees using
546 * anon_vma_interval_tree_pre_update_vma().
548 * After the update, the vma will be reinserted using
549 * anon_vma_interval_tree_post_update_vma().
551 * The entire update must be protected by exclusive mmap_sem and by
552 * the root anon_vma's mutex.
555 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
557 struct anon_vma_chain
*avc
;
559 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
560 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
564 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
566 struct anon_vma_chain
*avc
;
568 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
569 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
572 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
573 unsigned long end
, struct vm_area_struct
**pprev
,
574 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
576 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
578 __rb_link
= &mm
->mm_rb
.rb_node
;
579 rb_prev
= __rb_parent
= NULL
;
582 struct vm_area_struct
*vma_tmp
;
584 __rb_parent
= *__rb_link
;
585 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
587 if (vma_tmp
->vm_end
> addr
) {
588 /* Fail if an existing vma overlaps the area */
589 if (vma_tmp
->vm_start
< end
)
591 __rb_link
= &__rb_parent
->rb_left
;
593 rb_prev
= __rb_parent
;
594 __rb_link
= &__rb_parent
->rb_right
;
600 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
601 *rb_link
= __rb_link
;
602 *rb_parent
= __rb_parent
;
606 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
607 unsigned long addr
, unsigned long end
)
609 unsigned long nr_pages
= 0;
610 struct vm_area_struct
*vma
;
612 /* Find first overlaping mapping */
613 vma
= find_vma_intersection(mm
, addr
, end
);
617 nr_pages
= (min(end
, vma
->vm_end
) -
618 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
620 /* Iterate over the rest of the overlaps */
621 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
622 unsigned long overlap_len
;
624 if (vma
->vm_start
> end
)
627 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
628 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
634 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
635 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
637 /* Update tracking information for the gap following the new vma. */
639 vma_gap_update(vma
->vm_next
);
641 mm
->highest_vm_end
= vma
->vm_end
;
644 * vma->vm_prev wasn't known when we followed the rbtree to find the
645 * correct insertion point for that vma. As a result, we could not
646 * update the vma vm_rb parents rb_subtree_gap values on the way down.
647 * So, we first insert the vma with a zero rb_subtree_gap value
648 * (to be consistent with what we did on the way down), and then
649 * immediately update the gap to the correct value. Finally we
650 * rebalance the rbtree after all augmented values have been set.
652 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
653 vma
->rb_subtree_gap
= 0;
655 vma_rb_insert(vma
, &mm
->mm_rb
);
658 static void __vma_link_file(struct vm_area_struct
*vma
)
664 struct address_space
*mapping
= file
->f_mapping
;
666 if (vma
->vm_flags
& VM_DENYWRITE
)
667 atomic_dec(&file_inode(file
)->i_writecount
);
668 if (vma
->vm_flags
& VM_SHARED
)
669 atomic_inc(&mapping
->i_mmap_writable
);
671 flush_dcache_mmap_lock(mapping
);
672 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
673 flush_dcache_mmap_unlock(mapping
);
678 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
679 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
680 struct rb_node
*rb_parent
)
682 __vma_link_list(mm
, vma
, prev
, rb_parent
);
683 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
686 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
687 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
688 struct rb_node
*rb_parent
)
690 struct address_space
*mapping
= NULL
;
693 mapping
= vma
->vm_file
->f_mapping
;
694 i_mmap_lock_write(mapping
);
697 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
698 __vma_link_file(vma
);
701 i_mmap_unlock_write(mapping
);
708 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
709 * mm's list and rbtree. It has already been inserted into the interval tree.
711 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
713 struct vm_area_struct
*prev
;
714 struct rb_node
**rb_link
, *rb_parent
;
716 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
717 &prev
, &rb_link
, &rb_parent
))
719 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
724 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
725 struct vm_area_struct
*prev
)
727 struct vm_area_struct
*next
;
729 vma_rb_erase(vma
, &mm
->mm_rb
);
730 prev
->vm_next
= next
= vma
->vm_next
;
732 next
->vm_prev
= prev
;
735 vmacache_invalidate(mm
);
739 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
740 * is already present in an i_mmap tree without adjusting the tree.
741 * The following helper function should be used when such adjustments
742 * are necessary. The "insert" vma (if any) is to be inserted
743 * before we drop the necessary locks.
745 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
746 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
748 struct mm_struct
*mm
= vma
->vm_mm
;
749 struct vm_area_struct
*next
= vma
->vm_next
;
750 struct vm_area_struct
*importer
= NULL
;
751 struct address_space
*mapping
= NULL
;
752 struct rb_root
*root
= NULL
;
753 struct anon_vma
*anon_vma
= NULL
;
754 struct file
*file
= vma
->vm_file
;
755 bool start_changed
= false, end_changed
= false;
756 long adjust_next
= 0;
759 if (next
&& !insert
) {
760 struct vm_area_struct
*exporter
= NULL
;
762 if (end
>= next
->vm_end
) {
764 * vma expands, overlapping all the next, and
765 * perhaps the one after too (mprotect case 6).
767 again
: remove_next
= 1 + (end
> next
->vm_end
);
771 } else if (end
> next
->vm_start
) {
773 * vma expands, overlapping part of the next:
774 * mprotect case 5 shifting the boundary up.
776 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
779 } else if (end
< vma
->vm_end
) {
781 * vma shrinks, and !insert tells it's not
782 * split_vma inserting another: so it must be
783 * mprotect case 4 shifting the boundary down.
785 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
791 * Easily overlooked: when mprotect shifts the boundary,
792 * make sure the expanding vma has anon_vma set if the
793 * shrinking vma had, to cover any anon pages imported.
795 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
798 importer
->anon_vma
= exporter
->anon_vma
;
799 error
= anon_vma_clone(importer
, exporter
);
806 mapping
= file
->f_mapping
;
807 root
= &mapping
->i_mmap
;
808 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
811 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
813 i_mmap_lock_write(mapping
);
816 * Put into interval tree now, so instantiated pages
817 * are visible to arm/parisc __flush_dcache_page
818 * throughout; but we cannot insert into address
819 * space until vma start or end is updated.
821 __vma_link_file(insert
);
825 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
827 anon_vma
= vma
->anon_vma
;
828 if (!anon_vma
&& adjust_next
)
829 anon_vma
= next
->anon_vma
;
831 VM_BUG_ON_VMA(adjust_next
&& next
->anon_vma
&&
832 anon_vma
!= next
->anon_vma
, next
);
833 anon_vma_lock_write(anon_vma
);
834 anon_vma_interval_tree_pre_update_vma(vma
);
836 anon_vma_interval_tree_pre_update_vma(next
);
840 flush_dcache_mmap_lock(mapping
);
841 vma_interval_tree_remove(vma
, root
);
843 vma_interval_tree_remove(next
, root
);
846 if (start
!= vma
->vm_start
) {
847 vma
->vm_start
= start
;
848 start_changed
= true;
850 if (end
!= vma
->vm_end
) {
854 vma
->vm_pgoff
= pgoff
;
856 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
857 next
->vm_pgoff
+= adjust_next
;
862 vma_interval_tree_insert(next
, root
);
863 vma_interval_tree_insert(vma
, root
);
864 flush_dcache_mmap_unlock(mapping
);
869 * vma_merge has merged next into vma, and needs
870 * us to remove next before dropping the locks.
872 __vma_unlink(mm
, next
, vma
);
874 __remove_shared_vm_struct(next
, file
, mapping
);
877 * split_vma has split insert from vma, and needs
878 * us to insert it before dropping the locks
879 * (it may either follow vma or precede it).
881 __insert_vm_struct(mm
, insert
);
887 mm
->highest_vm_end
= end
;
888 else if (!adjust_next
)
889 vma_gap_update(next
);
894 anon_vma_interval_tree_post_update_vma(vma
);
896 anon_vma_interval_tree_post_update_vma(next
);
897 anon_vma_unlock_write(anon_vma
);
900 i_mmap_unlock_write(mapping
);
911 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
915 anon_vma_merge(vma
, next
);
917 mpol_put(vma_policy(next
));
918 kmem_cache_free(vm_area_cachep
, next
);
920 * In mprotect's case 6 (see comments on vma_merge),
921 * we must remove another next too. It would clutter
922 * up the code too much to do both in one go.
925 if (remove_next
== 2)
928 vma_gap_update(next
);
930 mm
->highest_vm_end
= end
;
941 * If the vma has a ->close operation then the driver probably needs to release
942 * per-vma resources, so we don't attempt to merge those.
944 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
945 struct file
*file
, unsigned long vm_flags
,
946 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
949 * VM_SOFTDIRTY should not prevent from VMA merging, if we
950 * match the flags but dirty bit -- the caller should mark
951 * merged VMA as dirty. If dirty bit won't be excluded from
952 * comparison, we increase pressue on the memory system forcing
953 * the kernel to generate new VMAs when old one could be
956 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
958 if (vma
->vm_file
!= file
)
960 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
962 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
967 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
968 struct anon_vma
*anon_vma2
,
969 struct vm_area_struct
*vma
)
972 * The list_is_singular() test is to avoid merging VMA cloned from
973 * parents. This can improve scalability caused by anon_vma lock.
975 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
976 list_is_singular(&vma
->anon_vma_chain
)))
978 return anon_vma1
== anon_vma2
;
982 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
983 * in front of (at a lower virtual address and file offset than) the vma.
985 * We cannot merge two vmas if they have differently assigned (non-NULL)
986 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
988 * We don't check here for the merged mmap wrapping around the end of pagecache
989 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
990 * wrap, nor mmaps which cover the final page at index -1UL.
993 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
994 struct anon_vma
*anon_vma
, struct file
*file
,
996 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
998 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
999 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1000 if (vma
->vm_pgoff
== vm_pgoff
)
1007 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1008 * beyond (at a higher virtual address and file offset than) the vma.
1010 * We cannot merge two vmas if they have differently assigned (non-NULL)
1011 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1014 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1015 struct anon_vma
*anon_vma
, struct file
*file
,
1017 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1019 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1020 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1022 vm_pglen
= vma_pages(vma
);
1023 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
1030 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1031 * whether that can be merged with its predecessor or its successor.
1032 * Or both (it neatly fills a hole).
1034 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1035 * certain not to be mapped by the time vma_merge is called; but when
1036 * called for mprotect, it is certain to be already mapped (either at
1037 * an offset within prev, or at the start of next), and the flags of
1038 * this area are about to be changed to vm_flags - and the no-change
1039 * case has already been eliminated.
1041 * The following mprotect cases have to be considered, where AAAA is
1042 * the area passed down from mprotect_fixup, never extending beyond one
1043 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1045 * AAAA AAAA AAAA AAAA
1046 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1047 * cannot merge might become might become might become
1048 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1049 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1050 * mremap move: PPPPNNNNNNNN 8
1052 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1053 * might become case 1 below case 2 below case 3 below
1055 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1056 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1058 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1059 struct vm_area_struct
*prev
, unsigned long addr
,
1060 unsigned long end
, unsigned long vm_flags
,
1061 struct anon_vma
*anon_vma
, struct file
*file
,
1062 pgoff_t pgoff
, struct mempolicy
*policy
,
1063 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1065 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1066 struct vm_area_struct
*area
, *next
;
1070 * We later require that vma->vm_flags == vm_flags,
1071 * so this tests vma->vm_flags & VM_SPECIAL, too.
1073 if (vm_flags
& VM_SPECIAL
)
1077 next
= prev
->vm_next
;
1081 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
1082 next
= next
->vm_next
;
1085 * Can it merge with the predecessor?
1087 if (prev
&& prev
->vm_end
== addr
&&
1088 mpol_equal(vma_policy(prev
), policy
) &&
1089 can_vma_merge_after(prev
, vm_flags
,
1090 anon_vma
, file
, pgoff
,
1091 vm_userfaultfd_ctx
)) {
1093 * OK, it can. Can we now merge in the successor as well?
1095 if (next
&& end
== next
->vm_start
&&
1096 mpol_equal(policy
, vma_policy(next
)) &&
1097 can_vma_merge_before(next
, vm_flags
,
1100 vm_userfaultfd_ctx
) &&
1101 is_mergeable_anon_vma(prev
->anon_vma
,
1102 next
->anon_vma
, NULL
)) {
1104 err
= vma_adjust(prev
, prev
->vm_start
,
1105 next
->vm_end
, prev
->vm_pgoff
, NULL
);
1106 } else /* cases 2, 5, 7 */
1107 err
= vma_adjust(prev
, prev
->vm_start
,
1108 end
, prev
->vm_pgoff
, NULL
);
1111 khugepaged_enter_vma_merge(prev
, vm_flags
);
1116 * Can this new request be merged in front of next?
1118 if (next
&& end
== next
->vm_start
&&
1119 mpol_equal(policy
, vma_policy(next
)) &&
1120 can_vma_merge_before(next
, vm_flags
,
1121 anon_vma
, file
, pgoff
+pglen
,
1122 vm_userfaultfd_ctx
)) {
1123 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1124 err
= vma_adjust(prev
, prev
->vm_start
,
1125 addr
, prev
->vm_pgoff
, NULL
);
1126 else /* cases 3, 8 */
1127 err
= vma_adjust(area
, addr
, next
->vm_end
,
1128 next
->vm_pgoff
- pglen
, NULL
);
1131 khugepaged_enter_vma_merge(area
, vm_flags
);
1139 * Rough compatbility check to quickly see if it's even worth looking
1140 * at sharing an anon_vma.
1142 * They need to have the same vm_file, and the flags can only differ
1143 * in things that mprotect may change.
1145 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1146 * we can merge the two vma's. For example, we refuse to merge a vma if
1147 * there is a vm_ops->close() function, because that indicates that the
1148 * driver is doing some kind of reference counting. But that doesn't
1149 * really matter for the anon_vma sharing case.
1151 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1153 return a
->vm_end
== b
->vm_start
&&
1154 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1155 a
->vm_file
== b
->vm_file
&&
1156 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1157 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1161 * Do some basic sanity checking to see if we can re-use the anon_vma
1162 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1163 * the same as 'old', the other will be the new one that is trying
1164 * to share the anon_vma.
1166 * NOTE! This runs with mm_sem held for reading, so it is possible that
1167 * the anon_vma of 'old' is concurrently in the process of being set up
1168 * by another page fault trying to merge _that_. But that's ok: if it
1169 * is being set up, that automatically means that it will be a singleton
1170 * acceptable for merging, so we can do all of this optimistically. But
1171 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1173 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1174 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1175 * is to return an anon_vma that is "complex" due to having gone through
1178 * We also make sure that the two vma's are compatible (adjacent,
1179 * and with the same memory policies). That's all stable, even with just
1180 * a read lock on the mm_sem.
1182 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1184 if (anon_vma_compatible(a
, b
)) {
1185 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1187 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1194 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1195 * neighbouring vmas for a suitable anon_vma, before it goes off
1196 * to allocate a new anon_vma. It checks because a repetitive
1197 * sequence of mprotects and faults may otherwise lead to distinct
1198 * anon_vmas being allocated, preventing vma merge in subsequent
1201 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1203 struct anon_vma
*anon_vma
;
1204 struct vm_area_struct
*near
;
1206 near
= vma
->vm_next
;
1210 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1214 near
= vma
->vm_prev
;
1218 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1223 * There's no absolute need to look only at touching neighbours:
1224 * we could search further afield for "compatible" anon_vmas.
1225 * But it would probably just be a waste of time searching,
1226 * or lead to too many vmas hanging off the same anon_vma.
1227 * We're trying to allow mprotect remerging later on,
1228 * not trying to minimize memory used for anon_vmas.
1234 * If a hint addr is less than mmap_min_addr change hint to be as
1235 * low as possible but still greater than mmap_min_addr
1237 static inline unsigned long round_hint_to_min(unsigned long hint
)
1240 if (((void *)hint
!= NULL
) &&
1241 (hint
< mmap_min_addr
))
1242 return PAGE_ALIGN(mmap_min_addr
);
1246 static inline int mlock_future_check(struct mm_struct
*mm
,
1247 unsigned long flags
,
1250 unsigned long locked
, lock_limit
;
1252 /* mlock MCL_FUTURE? */
1253 if (flags
& VM_LOCKED
) {
1254 locked
= len
>> PAGE_SHIFT
;
1255 locked
+= mm
->locked_vm
;
1256 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1257 lock_limit
>>= PAGE_SHIFT
;
1258 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1265 * The caller must hold down_write(¤t->mm->mmap_sem).
1267 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1268 unsigned long len
, unsigned long prot
,
1269 unsigned long flags
, vm_flags_t vm_flags
,
1270 unsigned long pgoff
, unsigned long *populate
)
1272 struct mm_struct
*mm
= current
->mm
;
1280 * Does the application expect PROT_READ to imply PROT_EXEC?
1282 * (the exception is when the underlying filesystem is noexec
1283 * mounted, in which case we dont add PROT_EXEC.)
1285 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1286 if (!(file
&& path_noexec(&file
->f_path
)))
1289 if (!(flags
& MAP_FIXED
))
1290 addr
= round_hint_to_min(addr
);
1292 /* Careful about overflows.. */
1293 len
= PAGE_ALIGN(len
);
1297 /* offset overflow? */
1298 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1301 /* Too many mappings? */
1302 if (mm
->map_count
> sysctl_max_map_count
)
1305 /* Obtain the address to map to. we verify (or select) it and ensure
1306 * that it represents a valid section of the address space.
1308 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1309 if (offset_in_page(addr
))
1312 /* Do simple checking here so the lower-level routines won't have
1313 * to. we assume access permissions have been handled by the open
1314 * of the memory object, so we don't do any here.
1316 vm_flags
|= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1317 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1319 if (flags
& MAP_LOCKED
)
1320 if (!can_do_mlock())
1323 if (mlock_future_check(mm
, vm_flags
, len
))
1327 struct inode
*inode
= file_inode(file
);
1329 switch (flags
& MAP_TYPE
) {
1331 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1335 * Make sure we don't allow writing to an append-only
1338 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1342 * Make sure there are no mandatory locks on the file.
1344 if (locks_verify_locked(file
))
1347 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1348 if (!(file
->f_mode
& FMODE_WRITE
))
1349 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1353 if (!(file
->f_mode
& FMODE_READ
))
1355 if (path_noexec(&file
->f_path
)) {
1356 if (vm_flags
& VM_EXEC
)
1358 vm_flags
&= ~VM_MAYEXEC
;
1361 if (!file
->f_op
->mmap
)
1363 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1371 switch (flags
& MAP_TYPE
) {
1373 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1379 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1383 * Set pgoff according to addr for anon_vma.
1385 pgoff
= addr
>> PAGE_SHIFT
;
1393 * Set 'VM_NORESERVE' if we should not account for the
1394 * memory use of this mapping.
1396 if (flags
& MAP_NORESERVE
) {
1397 /* We honor MAP_NORESERVE if allowed to overcommit */
1398 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1399 vm_flags
|= VM_NORESERVE
;
1401 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1402 if (file
&& is_file_hugepages(file
))
1403 vm_flags
|= VM_NORESERVE
;
1406 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1407 if (!IS_ERR_VALUE(addr
) &&
1408 ((vm_flags
& VM_LOCKED
) ||
1409 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1414 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1415 unsigned long, prot
, unsigned long, flags
,
1416 unsigned long, fd
, unsigned long, pgoff
)
1418 struct file
*file
= NULL
;
1419 unsigned long retval
;
1421 if (!(flags
& MAP_ANONYMOUS
)) {
1422 audit_mmap_fd(fd
, flags
);
1426 if (is_file_hugepages(file
))
1427 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1429 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1431 } else if (flags
& MAP_HUGETLB
) {
1432 struct user_struct
*user
= NULL
;
1435 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1439 len
= ALIGN(len
, huge_page_size(hs
));
1441 * VM_NORESERVE is used because the reservations will be
1442 * taken when vm_ops->mmap() is called
1443 * A dummy user value is used because we are not locking
1444 * memory so no accounting is necessary
1446 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1448 &user
, HUGETLB_ANONHUGE_INODE
,
1449 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1451 return PTR_ERR(file
);
1454 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1456 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1463 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1464 struct mmap_arg_struct
{
1468 unsigned long flags
;
1470 unsigned long offset
;
1473 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1475 struct mmap_arg_struct a
;
1477 if (copy_from_user(&a
, arg
, sizeof(a
)))
1479 if (offset_in_page(a
.offset
))
1482 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1483 a
.offset
>> PAGE_SHIFT
);
1485 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1488 * Some shared mappigns will want the pages marked read-only
1489 * to track write events. If so, we'll downgrade vm_page_prot
1490 * to the private version (using protection_map[] without the
1493 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1495 vm_flags_t vm_flags
= vma
->vm_flags
;
1496 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1498 /* If it was private or non-writable, the write bit is already clear */
1499 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1502 /* The backer wishes to know when pages are first written to? */
1503 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1506 /* The open routine did something to the protections that pgprot_modify
1507 * won't preserve? */
1508 if (pgprot_val(vma
->vm_page_prot
) !=
1509 pgprot_val(vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
)))
1512 /* Do we need to track softdirty? */
1513 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1516 /* Specialty mapping? */
1517 if (vm_flags
& VM_PFNMAP
)
1520 /* Can the mapping track the dirty pages? */
1521 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1522 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1526 * We account for memory if it's a private writeable mapping,
1527 * not hugepages and VM_NORESERVE wasn't set.
1529 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1532 * hugetlb has its own accounting separate from the core VM
1533 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1535 if (file
&& is_file_hugepages(file
))
1538 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1541 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1542 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1544 struct mm_struct
*mm
= current
->mm
;
1545 struct vm_area_struct
*vma
, *prev
;
1547 struct rb_node
**rb_link
, *rb_parent
;
1548 unsigned long charged
= 0;
1550 /* Check against address space limit. */
1551 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1552 unsigned long nr_pages
;
1555 * MAP_FIXED may remove pages of mappings that intersects with
1556 * requested mapping. Account for the pages it would unmap.
1558 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1560 if (!may_expand_vm(mm
, vm_flags
,
1561 (len
>> PAGE_SHIFT
) - nr_pages
))
1565 /* Clear old maps */
1566 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1568 if (do_munmap(mm
, addr
, len
))
1573 * Private writable mapping: check memory availability
1575 if (accountable_mapping(file
, vm_flags
)) {
1576 charged
= len
>> PAGE_SHIFT
;
1577 if (security_vm_enough_memory_mm(mm
, charged
))
1579 vm_flags
|= VM_ACCOUNT
;
1583 * Can we just expand an old mapping?
1585 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1586 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1591 * Determine the object being mapped and call the appropriate
1592 * specific mapper. the address has already been validated, but
1593 * not unmapped, but the maps are removed from the list.
1595 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1602 vma
->vm_start
= addr
;
1603 vma
->vm_end
= addr
+ len
;
1604 vma
->vm_flags
= vm_flags
;
1605 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1606 vma
->vm_pgoff
= pgoff
;
1607 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1610 if (vm_flags
& VM_DENYWRITE
) {
1611 error
= deny_write_access(file
);
1615 if (vm_flags
& VM_SHARED
) {
1616 error
= mapping_map_writable(file
->f_mapping
);
1618 goto allow_write_and_free_vma
;
1621 /* ->mmap() can change vma->vm_file, but must guarantee that
1622 * vma_link() below can deny write-access if VM_DENYWRITE is set
1623 * and map writably if VM_SHARED is set. This usually means the
1624 * new file must not have been exposed to user-space, yet.
1626 vma
->vm_file
= get_file(file
);
1627 error
= file
->f_op
->mmap(file
, vma
);
1629 goto unmap_and_free_vma
;
1631 /* Can addr have changed??
1633 * Answer: Yes, several device drivers can do it in their
1634 * f_op->mmap method. -DaveM
1635 * Bug: If addr is changed, prev, rb_link, rb_parent should
1636 * be updated for vma_link()
1638 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1640 addr
= vma
->vm_start
;
1641 vm_flags
= vma
->vm_flags
;
1642 } else if (vm_flags
& VM_SHARED
) {
1643 error
= shmem_zero_setup(vma
);
1648 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1649 /* Once vma denies write, undo our temporary denial count */
1651 if (vm_flags
& VM_SHARED
)
1652 mapping_unmap_writable(file
->f_mapping
);
1653 if (vm_flags
& VM_DENYWRITE
)
1654 allow_write_access(file
);
1656 file
= vma
->vm_file
;
1658 perf_event_mmap(vma
);
1660 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1661 if (vm_flags
& VM_LOCKED
) {
1662 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1663 vma
== get_gate_vma(current
->mm
)))
1664 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1666 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1673 * New (or expanded) vma always get soft dirty status.
1674 * Otherwise user-space soft-dirty page tracker won't
1675 * be able to distinguish situation when vma area unmapped,
1676 * then new mapped in-place (which must be aimed as
1677 * a completely new data area).
1679 vma
->vm_flags
|= VM_SOFTDIRTY
;
1681 vma_set_page_prot(vma
);
1686 vma
->vm_file
= NULL
;
1689 /* Undo any partial mapping done by a device driver. */
1690 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1692 if (vm_flags
& VM_SHARED
)
1693 mapping_unmap_writable(file
->f_mapping
);
1694 allow_write_and_free_vma
:
1695 if (vm_flags
& VM_DENYWRITE
)
1696 allow_write_access(file
);
1698 kmem_cache_free(vm_area_cachep
, vma
);
1701 vm_unacct_memory(charged
);
1705 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1708 * We implement the search by looking for an rbtree node that
1709 * immediately follows a suitable gap. That is,
1710 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1711 * - gap_end = vma->vm_start >= info->low_limit + length;
1712 * - gap_end - gap_start >= length
1715 struct mm_struct
*mm
= current
->mm
;
1716 struct vm_area_struct
*vma
;
1717 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1719 /* Adjust search length to account for worst case alignment overhead */
1720 length
= info
->length
+ info
->align_mask
;
1721 if (length
< info
->length
)
1724 /* Adjust search limits by the desired length */
1725 if (info
->high_limit
< length
)
1727 high_limit
= info
->high_limit
- length
;
1729 if (info
->low_limit
> high_limit
)
1731 low_limit
= info
->low_limit
+ length
;
1733 /* Check if rbtree root looks promising */
1734 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1736 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1737 if (vma
->rb_subtree_gap
< length
)
1741 /* Visit left subtree if it looks promising */
1742 gap_end
= vma
->vm_start
;
1743 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1744 struct vm_area_struct
*left
=
1745 rb_entry(vma
->vm_rb
.rb_left
,
1746 struct vm_area_struct
, vm_rb
);
1747 if (left
->rb_subtree_gap
>= length
) {
1753 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1755 /* Check if current node has a suitable gap */
1756 if (gap_start
> high_limit
)
1758 if (gap_end
>= low_limit
&& gap_end
- gap_start
>= length
)
1761 /* Visit right subtree if it looks promising */
1762 if (vma
->vm_rb
.rb_right
) {
1763 struct vm_area_struct
*right
=
1764 rb_entry(vma
->vm_rb
.rb_right
,
1765 struct vm_area_struct
, vm_rb
);
1766 if (right
->rb_subtree_gap
>= length
) {
1772 /* Go back up the rbtree to find next candidate node */
1774 struct rb_node
*prev
= &vma
->vm_rb
;
1775 if (!rb_parent(prev
))
1777 vma
= rb_entry(rb_parent(prev
),
1778 struct vm_area_struct
, vm_rb
);
1779 if (prev
== vma
->vm_rb
.rb_left
) {
1780 gap_start
= vma
->vm_prev
->vm_end
;
1781 gap_end
= vma
->vm_start
;
1788 /* Check highest gap, which does not precede any rbtree node */
1789 gap_start
= mm
->highest_vm_end
;
1790 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1791 if (gap_start
> high_limit
)
1795 /* We found a suitable gap. Clip it with the original low_limit. */
1796 if (gap_start
< info
->low_limit
)
1797 gap_start
= info
->low_limit
;
1799 /* Adjust gap address to the desired alignment */
1800 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1802 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1803 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1807 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1809 struct mm_struct
*mm
= current
->mm
;
1810 struct vm_area_struct
*vma
;
1811 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1813 /* Adjust search length to account for worst case alignment overhead */
1814 length
= info
->length
+ info
->align_mask
;
1815 if (length
< info
->length
)
1819 * Adjust search limits by the desired length.
1820 * See implementation comment at top of unmapped_area().
1822 gap_end
= info
->high_limit
;
1823 if (gap_end
< length
)
1825 high_limit
= gap_end
- length
;
1827 if (info
->low_limit
> high_limit
)
1829 low_limit
= info
->low_limit
+ length
;
1831 /* Check highest gap, which does not precede any rbtree node */
1832 gap_start
= mm
->highest_vm_end
;
1833 if (gap_start
<= high_limit
)
1836 /* Check if rbtree root looks promising */
1837 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1839 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1840 if (vma
->rb_subtree_gap
< length
)
1844 /* Visit right subtree if it looks promising */
1845 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1846 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1847 struct vm_area_struct
*right
=
1848 rb_entry(vma
->vm_rb
.rb_right
,
1849 struct vm_area_struct
, vm_rb
);
1850 if (right
->rb_subtree_gap
>= length
) {
1857 /* Check if current node has a suitable gap */
1858 gap_end
= vma
->vm_start
;
1859 if (gap_end
< low_limit
)
1861 if (gap_start
<= high_limit
&& gap_end
- gap_start
>= length
)
1864 /* Visit left subtree if it looks promising */
1865 if (vma
->vm_rb
.rb_left
) {
1866 struct vm_area_struct
*left
=
1867 rb_entry(vma
->vm_rb
.rb_left
,
1868 struct vm_area_struct
, vm_rb
);
1869 if (left
->rb_subtree_gap
>= length
) {
1875 /* Go back up the rbtree to find next candidate node */
1877 struct rb_node
*prev
= &vma
->vm_rb
;
1878 if (!rb_parent(prev
))
1880 vma
= rb_entry(rb_parent(prev
),
1881 struct vm_area_struct
, vm_rb
);
1882 if (prev
== vma
->vm_rb
.rb_right
) {
1883 gap_start
= vma
->vm_prev
?
1884 vma
->vm_prev
->vm_end
: 0;
1891 /* We found a suitable gap. Clip it with the original high_limit. */
1892 if (gap_end
> info
->high_limit
)
1893 gap_end
= info
->high_limit
;
1896 /* Compute highest gap address at the desired alignment */
1897 gap_end
-= info
->length
;
1898 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1900 VM_BUG_ON(gap_end
< info
->low_limit
);
1901 VM_BUG_ON(gap_end
< gap_start
);
1905 /* Get an address range which is currently unmapped.
1906 * For shmat() with addr=0.
1908 * Ugly calling convention alert:
1909 * Return value with the low bits set means error value,
1911 * if (ret & ~PAGE_MASK)
1914 * This function "knows" that -ENOMEM has the bits set.
1916 #ifndef HAVE_ARCH_UNMAPPED_AREA
1918 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1919 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1921 struct mm_struct
*mm
= current
->mm
;
1922 struct vm_area_struct
*vma
;
1923 struct vm_unmapped_area_info info
;
1925 if (len
> TASK_SIZE
- mmap_min_addr
)
1928 if (flags
& MAP_FIXED
)
1932 addr
= PAGE_ALIGN(addr
);
1933 vma
= find_vma(mm
, addr
);
1934 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1935 (!vma
|| addr
+ len
<= vma
->vm_start
))
1941 info
.low_limit
= mm
->mmap_base
;
1942 info
.high_limit
= TASK_SIZE
;
1943 info
.align_mask
= 0;
1944 return vm_unmapped_area(&info
);
1949 * This mmap-allocator allocates new areas top-down from below the
1950 * stack's low limit (the base):
1952 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1954 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1955 const unsigned long len
, const unsigned long pgoff
,
1956 const unsigned long flags
)
1958 struct vm_area_struct
*vma
;
1959 struct mm_struct
*mm
= current
->mm
;
1960 unsigned long addr
= addr0
;
1961 struct vm_unmapped_area_info info
;
1963 /* requested length too big for entire address space */
1964 if (len
> TASK_SIZE
- mmap_min_addr
)
1967 if (flags
& MAP_FIXED
)
1970 /* requesting a specific address */
1972 addr
= PAGE_ALIGN(addr
);
1973 vma
= find_vma(mm
, addr
);
1974 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1975 (!vma
|| addr
+ len
<= vma
->vm_start
))
1979 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
1981 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
1982 info
.high_limit
= mm
->mmap_base
;
1983 info
.align_mask
= 0;
1984 addr
= vm_unmapped_area(&info
);
1987 * A failed mmap() very likely causes application failure,
1988 * so fall back to the bottom-up function here. This scenario
1989 * can happen with large stack limits and large mmap()
1992 if (offset_in_page(addr
)) {
1993 VM_BUG_ON(addr
!= -ENOMEM
);
1995 info
.low_limit
= TASK_UNMAPPED_BASE
;
1996 info
.high_limit
= TASK_SIZE
;
1997 addr
= vm_unmapped_area(&info
);
2005 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
2006 unsigned long pgoff
, unsigned long flags
)
2008 unsigned long (*get_area
)(struct file
*, unsigned long,
2009 unsigned long, unsigned long, unsigned long);
2011 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
2015 /* Careful about overflows.. */
2016 if (len
> TASK_SIZE
)
2019 get_area
= current
->mm
->get_unmapped_area
;
2020 if (file
&& file
->f_op
->get_unmapped_area
)
2021 get_area
= file
->f_op
->get_unmapped_area
;
2022 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2023 if (IS_ERR_VALUE(addr
))
2026 if (addr
> TASK_SIZE
- len
)
2028 if (offset_in_page(addr
))
2031 addr
= arch_rebalance_pgtables(addr
, len
);
2032 error
= security_mmap_addr(addr
);
2033 return error
? error
: addr
;
2036 EXPORT_SYMBOL(get_unmapped_area
);
2038 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2039 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2041 struct rb_node
*rb_node
;
2042 struct vm_area_struct
*vma
;
2044 /* Check the cache first. */
2045 vma
= vmacache_find(mm
, addr
);
2049 rb_node
= mm
->mm_rb
.rb_node
;
2052 struct vm_area_struct
*tmp
;
2054 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2056 if (tmp
->vm_end
> addr
) {
2058 if (tmp
->vm_start
<= addr
)
2060 rb_node
= rb_node
->rb_left
;
2062 rb_node
= rb_node
->rb_right
;
2066 vmacache_update(addr
, vma
);
2070 EXPORT_SYMBOL(find_vma
);
2073 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2075 struct vm_area_struct
*
2076 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2077 struct vm_area_struct
**pprev
)
2079 struct vm_area_struct
*vma
;
2081 vma
= find_vma(mm
, addr
);
2083 *pprev
= vma
->vm_prev
;
2085 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
2088 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2089 rb_node
= rb_node
->rb_right
;
2096 * Verify that the stack growth is acceptable and
2097 * update accounting. This is shared with both the
2098 * grow-up and grow-down cases.
2100 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
2102 struct mm_struct
*mm
= vma
->vm_mm
;
2103 struct rlimit
*rlim
= current
->signal
->rlim
;
2104 unsigned long new_start
, actual_size
;
2106 /* address space limit tests */
2107 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
2110 /* Stack limit test */
2112 if (size
&& (vma
->vm_flags
& (VM_GROWSUP
| VM_GROWSDOWN
)))
2113 actual_size
-= PAGE_SIZE
;
2114 if (actual_size
> READ_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
2117 /* mlock limit tests */
2118 if (vma
->vm_flags
& VM_LOCKED
) {
2119 unsigned long locked
;
2120 unsigned long limit
;
2121 locked
= mm
->locked_vm
+ grow
;
2122 limit
= READ_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2123 limit
>>= PAGE_SHIFT
;
2124 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2128 /* Check to ensure the stack will not grow into a hugetlb-only region */
2129 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2131 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2135 * Overcommit.. This must be the final test, as it will
2136 * update security statistics.
2138 if (security_vm_enough_memory_mm(mm
, grow
))
2144 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2146 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2147 * vma is the last one with address > vma->vm_end. Have to extend vma.
2149 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2151 struct mm_struct
*mm
= vma
->vm_mm
;
2154 if (!(vma
->vm_flags
& VM_GROWSUP
))
2157 /* Guard against wrapping around to address 0. */
2158 if (address
< PAGE_ALIGN(address
+4))
2159 address
= PAGE_ALIGN(address
+4);
2163 /* We must make sure the anon_vma is allocated. */
2164 if (unlikely(anon_vma_prepare(vma
)))
2168 * vma->vm_start/vm_end cannot change under us because the caller
2169 * is required to hold the mmap_sem in read mode. We need the
2170 * anon_vma lock to serialize against concurrent expand_stacks.
2172 anon_vma_lock_write(vma
->anon_vma
);
2174 /* Somebody else might have raced and expanded it already */
2175 if (address
> vma
->vm_end
) {
2176 unsigned long size
, grow
;
2178 size
= address
- vma
->vm_start
;
2179 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2182 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2183 error
= acct_stack_growth(vma
, size
, grow
);
2186 * vma_gap_update() doesn't support concurrent
2187 * updates, but we only hold a shared mmap_sem
2188 * lock here, so we need to protect against
2189 * concurrent vma expansions.
2190 * anon_vma_lock_write() doesn't help here, as
2191 * we don't guarantee that all growable vmas
2192 * in a mm share the same root anon vma.
2193 * So, we reuse mm->page_table_lock to guard
2194 * against concurrent vma expansions.
2196 spin_lock(&mm
->page_table_lock
);
2197 if (vma
->vm_flags
& VM_LOCKED
)
2198 mm
->locked_vm
+= grow
;
2199 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2200 anon_vma_interval_tree_pre_update_vma(vma
);
2201 vma
->vm_end
= address
;
2202 anon_vma_interval_tree_post_update_vma(vma
);
2204 vma_gap_update(vma
->vm_next
);
2206 mm
->highest_vm_end
= address
;
2207 spin_unlock(&mm
->page_table_lock
);
2209 perf_event_mmap(vma
);
2213 anon_vma_unlock_write(vma
->anon_vma
);
2214 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2218 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2221 * vma is the first one with address < vma->vm_start. Have to extend vma.
2223 int expand_downwards(struct vm_area_struct
*vma
,
2224 unsigned long address
)
2226 struct mm_struct
*mm
= vma
->vm_mm
;
2229 address
&= PAGE_MASK
;
2230 error
= security_mmap_addr(address
);
2234 /* We must make sure the anon_vma is allocated. */
2235 if (unlikely(anon_vma_prepare(vma
)))
2239 * vma->vm_start/vm_end cannot change under us because the caller
2240 * is required to hold the mmap_sem in read mode. We need the
2241 * anon_vma lock to serialize against concurrent expand_stacks.
2243 anon_vma_lock_write(vma
->anon_vma
);
2245 /* Somebody else might have raced and expanded it already */
2246 if (address
< vma
->vm_start
) {
2247 unsigned long size
, grow
;
2249 size
= vma
->vm_end
- address
;
2250 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2253 if (grow
<= vma
->vm_pgoff
) {
2254 error
= acct_stack_growth(vma
, size
, grow
);
2257 * vma_gap_update() doesn't support concurrent
2258 * updates, but we only hold a shared mmap_sem
2259 * lock here, so we need to protect against
2260 * concurrent vma expansions.
2261 * anon_vma_lock_write() doesn't help here, as
2262 * we don't guarantee that all growable vmas
2263 * in a mm share the same root anon vma.
2264 * So, we reuse mm->page_table_lock to guard
2265 * against concurrent vma expansions.
2267 spin_lock(&mm
->page_table_lock
);
2268 if (vma
->vm_flags
& VM_LOCKED
)
2269 mm
->locked_vm
+= grow
;
2270 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2271 anon_vma_interval_tree_pre_update_vma(vma
);
2272 vma
->vm_start
= address
;
2273 vma
->vm_pgoff
-= grow
;
2274 anon_vma_interval_tree_post_update_vma(vma
);
2275 vma_gap_update(vma
);
2276 spin_unlock(&mm
->page_table_lock
);
2278 perf_event_mmap(vma
);
2282 anon_vma_unlock_write(vma
->anon_vma
);
2283 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2289 * Note how expand_stack() refuses to expand the stack all the way to
2290 * abut the next virtual mapping, *unless* that mapping itself is also
2291 * a stack mapping. We want to leave room for a guard page, after all
2292 * (the guard page itself is not added here, that is done by the
2293 * actual page faulting logic)
2295 * This matches the behavior of the guard page logic (see mm/memory.c:
2296 * check_stack_guard_page()), which only allows the guard page to be
2297 * removed under these circumstances.
2299 #ifdef CONFIG_STACK_GROWSUP
2300 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2302 struct vm_area_struct
*next
;
2304 address
&= PAGE_MASK
;
2305 next
= vma
->vm_next
;
2306 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
) {
2307 if (!(next
->vm_flags
& VM_GROWSUP
))
2310 return expand_upwards(vma
, address
);
2313 struct vm_area_struct
*
2314 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2316 struct vm_area_struct
*vma
, *prev
;
2319 vma
= find_vma_prev(mm
, addr
, &prev
);
2320 if (vma
&& (vma
->vm_start
<= addr
))
2322 if (!prev
|| expand_stack(prev
, addr
))
2324 if (prev
->vm_flags
& VM_LOCKED
)
2325 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2329 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2331 struct vm_area_struct
*prev
;
2333 address
&= PAGE_MASK
;
2334 prev
= vma
->vm_prev
;
2335 if (prev
&& prev
->vm_end
== address
) {
2336 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2339 return expand_downwards(vma
, address
);
2342 struct vm_area_struct
*
2343 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2345 struct vm_area_struct
*vma
;
2346 unsigned long start
;
2349 vma
= find_vma(mm
, addr
);
2352 if (vma
->vm_start
<= addr
)
2354 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2356 start
= vma
->vm_start
;
2357 if (expand_stack(vma
, addr
))
2359 if (vma
->vm_flags
& VM_LOCKED
)
2360 populate_vma_page_range(vma
, addr
, start
, NULL
);
2365 EXPORT_SYMBOL_GPL(find_extend_vma
);
2368 * Ok - we have the memory areas we should free on the vma list,
2369 * so release them, and do the vma updates.
2371 * Called with the mm semaphore held.
2373 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2375 unsigned long nr_accounted
= 0;
2377 /* Update high watermark before we lower total_vm */
2378 update_hiwater_vm(mm
);
2380 long nrpages
= vma_pages(vma
);
2382 if (vma
->vm_flags
& VM_ACCOUNT
)
2383 nr_accounted
+= nrpages
;
2384 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2385 vma
= remove_vma(vma
);
2387 vm_unacct_memory(nr_accounted
);
2392 * Get rid of page table information in the indicated region.
2394 * Called with the mm semaphore held.
2396 static void unmap_region(struct mm_struct
*mm
,
2397 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2398 unsigned long start
, unsigned long end
)
2400 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2401 struct mmu_gather tlb
;
2404 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2405 update_hiwater_rss(mm
);
2406 unmap_vmas(&tlb
, vma
, start
, end
);
2407 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2408 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2409 tlb_finish_mmu(&tlb
, start
, end
);
2413 * Create a list of vma's touched by the unmap, removing them from the mm's
2414 * vma list as we go..
2417 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2418 struct vm_area_struct
*prev
, unsigned long end
)
2420 struct vm_area_struct
**insertion_point
;
2421 struct vm_area_struct
*tail_vma
= NULL
;
2423 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2424 vma
->vm_prev
= NULL
;
2426 vma_rb_erase(vma
, &mm
->mm_rb
);
2430 } while (vma
&& vma
->vm_start
< end
);
2431 *insertion_point
= vma
;
2433 vma
->vm_prev
= prev
;
2434 vma_gap_update(vma
);
2436 mm
->highest_vm_end
= prev
? prev
->vm_end
: 0;
2437 tail_vma
->vm_next
= NULL
;
2439 /* Kill the cache */
2440 vmacache_invalidate(mm
);
2444 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2445 * munmap path where it doesn't make sense to fail.
2447 static int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2448 unsigned long addr
, int new_below
)
2450 struct vm_area_struct
*new;
2453 if (is_vm_hugetlb_page(vma
) && (addr
&
2454 ~(huge_page_mask(hstate_vma(vma
)))))
2457 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2461 /* most fields are the same, copy all, and then fixup */
2464 INIT_LIST_HEAD(&new->anon_vma_chain
);
2469 new->vm_start
= addr
;
2470 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2473 err
= vma_dup_policy(vma
, new);
2477 err
= anon_vma_clone(new, vma
);
2482 get_file(new->vm_file
);
2484 if (new->vm_ops
&& new->vm_ops
->open
)
2485 new->vm_ops
->open(new);
2488 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2489 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2491 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2497 /* Clean everything up if vma_adjust failed. */
2498 if (new->vm_ops
&& new->vm_ops
->close
)
2499 new->vm_ops
->close(new);
2502 unlink_anon_vmas(new);
2504 mpol_put(vma_policy(new));
2506 kmem_cache_free(vm_area_cachep
, new);
2511 * Split a vma into two pieces at address 'addr', a new vma is allocated
2512 * either for the first part or the tail.
2514 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2515 unsigned long addr
, int new_below
)
2517 if (mm
->map_count
>= sysctl_max_map_count
)
2520 return __split_vma(mm
, vma
, addr
, new_below
);
2523 /* Munmap is split into 2 main parts -- this part which finds
2524 * what needs doing, and the areas themselves, which do the
2525 * work. This now handles partial unmappings.
2526 * Jeremy Fitzhardinge <jeremy@goop.org>
2528 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2531 struct vm_area_struct
*vma
, *prev
, *last
;
2533 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2536 len
= PAGE_ALIGN(len
);
2540 /* Find the first overlapping VMA */
2541 vma
= find_vma(mm
, start
);
2544 prev
= vma
->vm_prev
;
2545 /* we have start < vma->vm_end */
2547 /* if it doesn't overlap, we have nothing.. */
2549 if (vma
->vm_start
>= end
)
2553 * If we need to split any vma, do it now to save pain later.
2555 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2556 * unmapped vm_area_struct will remain in use: so lower split_vma
2557 * places tmp vma above, and higher split_vma places tmp vma below.
2559 if (start
> vma
->vm_start
) {
2563 * Make sure that map_count on return from munmap() will
2564 * not exceed its limit; but let map_count go just above
2565 * its limit temporarily, to help free resources as expected.
2567 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2570 error
= __split_vma(mm
, vma
, start
, 0);
2576 /* Does it split the last one? */
2577 last
= find_vma(mm
, end
);
2578 if (last
&& end
> last
->vm_start
) {
2579 int error
= __split_vma(mm
, last
, end
, 1);
2583 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2586 * unlock any mlock()ed ranges before detaching vmas
2588 if (mm
->locked_vm
) {
2589 struct vm_area_struct
*tmp
= vma
;
2590 while (tmp
&& tmp
->vm_start
< end
) {
2591 if (tmp
->vm_flags
& VM_LOCKED
) {
2592 mm
->locked_vm
-= vma_pages(tmp
);
2593 munlock_vma_pages_all(tmp
);
2600 * Remove the vma's, and unmap the actual pages
2602 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2603 unmap_region(mm
, vma
, prev
, start
, end
);
2605 arch_unmap(mm
, vma
, start
, end
);
2607 /* Fix up all other VM information */
2608 remove_vma_list(mm
, vma
);
2613 int vm_munmap(unsigned long start
, size_t len
)
2616 struct mm_struct
*mm
= current
->mm
;
2618 down_write(&mm
->mmap_sem
);
2619 ret
= do_munmap(mm
, start
, len
);
2620 up_write(&mm
->mmap_sem
);
2623 EXPORT_SYMBOL(vm_munmap
);
2625 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2627 profile_munmap(addr
);
2628 return vm_munmap(addr
, len
);
2633 * Emulation of deprecated remap_file_pages() syscall.
2635 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2636 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2639 struct mm_struct
*mm
= current
->mm
;
2640 struct vm_area_struct
*vma
;
2641 unsigned long populate
= 0;
2642 unsigned long ret
= -EINVAL
;
2645 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2646 "See Documentation/vm/remap_file_pages.txt.\n",
2647 current
->comm
, current
->pid
);
2651 start
= start
& PAGE_MASK
;
2652 size
= size
& PAGE_MASK
;
2654 if (start
+ size
<= start
)
2657 /* Does pgoff wrap? */
2658 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2661 down_write(&mm
->mmap_sem
);
2662 vma
= find_vma(mm
, start
);
2664 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2667 if (start
< vma
->vm_start
)
2670 if (start
+ size
> vma
->vm_end
) {
2671 struct vm_area_struct
*next
;
2673 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2674 /* hole between vmas ? */
2675 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2678 if (next
->vm_file
!= vma
->vm_file
)
2681 if (next
->vm_flags
!= vma
->vm_flags
)
2684 if (start
+ size
<= next
->vm_end
)
2692 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2693 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2694 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2696 flags
&= MAP_NONBLOCK
;
2697 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2698 if (vma
->vm_flags
& VM_LOCKED
) {
2699 struct vm_area_struct
*tmp
;
2700 flags
|= MAP_LOCKED
;
2702 /* drop PG_Mlocked flag for over-mapped range */
2703 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2704 tmp
= tmp
->vm_next
) {
2705 munlock_vma_pages_range(tmp
,
2706 max(tmp
->vm_start
, start
),
2707 min(tmp
->vm_end
, start
+ size
));
2711 file
= get_file(vma
->vm_file
);
2712 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2713 prot
, flags
, pgoff
, &populate
);
2716 up_write(&mm
->mmap_sem
);
2718 mm_populate(ret
, populate
);
2719 if (!IS_ERR_VALUE(ret
))
2724 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2726 #ifdef CONFIG_DEBUG_VM
2727 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2729 up_read(&mm
->mmap_sem
);
2735 * this is really a simplified "do_mmap". it only handles
2736 * anonymous maps. eventually we may be able to do some
2737 * brk-specific accounting here.
2739 static unsigned long do_brk(unsigned long addr
, unsigned long len
)
2741 struct mm_struct
*mm
= current
->mm
;
2742 struct vm_area_struct
*vma
, *prev
;
2743 unsigned long flags
;
2744 struct rb_node
**rb_link
, *rb_parent
;
2745 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2748 len
= PAGE_ALIGN(len
);
2752 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2754 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2755 if (offset_in_page(error
))
2758 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2763 * mm->mmap_sem is required to protect against another thread
2764 * changing the mappings in case we sleep.
2766 verify_mm_writelocked(mm
);
2769 * Clear old maps. this also does some error checking for us
2771 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
2773 if (do_munmap(mm
, addr
, len
))
2777 /* Check against address space limits *after* clearing old maps... */
2778 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
2781 if (mm
->map_count
> sysctl_max_map_count
)
2784 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2787 /* Can we just expand an old private anonymous mapping? */
2788 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2789 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
2794 * create a vma struct for an anonymous mapping
2796 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2798 vm_unacct_memory(len
>> PAGE_SHIFT
);
2802 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2804 vma
->vm_start
= addr
;
2805 vma
->vm_end
= addr
+ len
;
2806 vma
->vm_pgoff
= pgoff
;
2807 vma
->vm_flags
= flags
;
2808 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2809 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2811 perf_event_mmap(vma
);
2812 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2813 mm
->data_vm
+= len
>> PAGE_SHIFT
;
2814 if (flags
& VM_LOCKED
)
2815 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2816 vma
->vm_flags
|= VM_SOFTDIRTY
;
2820 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
2822 struct mm_struct
*mm
= current
->mm
;
2826 down_write(&mm
->mmap_sem
);
2827 ret
= do_brk(addr
, len
);
2828 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2829 up_write(&mm
->mmap_sem
);
2831 mm_populate(addr
, len
);
2834 EXPORT_SYMBOL(vm_brk
);
2836 /* Release all mmaps. */
2837 void exit_mmap(struct mm_struct
*mm
)
2839 struct mmu_gather tlb
;
2840 struct vm_area_struct
*vma
;
2841 unsigned long nr_accounted
= 0;
2843 /* mm's last user has gone, and its about to be pulled down */
2844 mmu_notifier_release(mm
);
2846 if (mm
->locked_vm
) {
2849 if (vma
->vm_flags
& VM_LOCKED
)
2850 munlock_vma_pages_all(vma
);
2858 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2863 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2864 /* update_hiwater_rss(mm) here? but nobody should be looking */
2865 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2866 unmap_vmas(&tlb
, vma
, 0, -1);
2868 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2869 tlb_finish_mmu(&tlb
, 0, -1);
2872 * Walk the list again, actually closing and freeing it,
2873 * with preemption enabled, without holding any MM locks.
2876 if (vma
->vm_flags
& VM_ACCOUNT
)
2877 nr_accounted
+= vma_pages(vma
);
2878 vma
= remove_vma(vma
);
2880 vm_unacct_memory(nr_accounted
);
2883 /* Insert vm structure into process list sorted by address
2884 * and into the inode's i_mmap tree. If vm_file is non-NULL
2885 * then i_mmap_rwsem is taken here.
2887 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2889 struct vm_area_struct
*prev
;
2890 struct rb_node
**rb_link
, *rb_parent
;
2892 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2893 &prev
, &rb_link
, &rb_parent
))
2895 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2896 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2900 * The vm_pgoff of a purely anonymous vma should be irrelevant
2901 * until its first write fault, when page's anon_vma and index
2902 * are set. But now set the vm_pgoff it will almost certainly
2903 * end up with (unless mremap moves it elsewhere before that
2904 * first wfault), so /proc/pid/maps tells a consistent story.
2906 * By setting it to reflect the virtual start address of the
2907 * vma, merges and splits can happen in a seamless way, just
2908 * using the existing file pgoff checks and manipulations.
2909 * Similarly in do_mmap_pgoff and in do_brk.
2911 if (vma_is_anonymous(vma
)) {
2912 BUG_ON(vma
->anon_vma
);
2913 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2916 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2921 * Copy the vma structure to a new location in the same mm,
2922 * prior to moving page table entries, to effect an mremap move.
2924 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2925 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
2926 bool *need_rmap_locks
)
2928 struct vm_area_struct
*vma
= *vmap
;
2929 unsigned long vma_start
= vma
->vm_start
;
2930 struct mm_struct
*mm
= vma
->vm_mm
;
2931 struct vm_area_struct
*new_vma
, *prev
;
2932 struct rb_node
**rb_link
, *rb_parent
;
2933 bool faulted_in_anon_vma
= true;
2936 * If anonymous vma has not yet been faulted, update new pgoff
2937 * to match new location, to increase its chance of merging.
2939 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
2940 pgoff
= addr
>> PAGE_SHIFT
;
2941 faulted_in_anon_vma
= false;
2944 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
2945 return NULL
; /* should never get here */
2946 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2947 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
2948 vma
->vm_userfaultfd_ctx
);
2951 * Source vma may have been merged into new_vma
2953 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2954 vma_start
< new_vma
->vm_end
)) {
2956 * The only way we can get a vma_merge with
2957 * self during an mremap is if the vma hasn't
2958 * been faulted in yet and we were allowed to
2959 * reset the dst vma->vm_pgoff to the
2960 * destination address of the mremap to allow
2961 * the merge to happen. mremap must change the
2962 * vm_pgoff linearity between src and dst vmas
2963 * (in turn preventing a vma_merge) to be
2964 * safe. It is only safe to keep the vm_pgoff
2965 * linear if there are no pages mapped yet.
2967 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
2968 *vmap
= vma
= new_vma
;
2970 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
2972 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2976 new_vma
->vm_start
= addr
;
2977 new_vma
->vm_end
= addr
+ len
;
2978 new_vma
->vm_pgoff
= pgoff
;
2979 if (vma_dup_policy(vma
, new_vma
))
2981 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2982 if (anon_vma_clone(new_vma
, vma
))
2983 goto out_free_mempol
;
2984 if (new_vma
->vm_file
)
2985 get_file(new_vma
->vm_file
);
2986 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2987 new_vma
->vm_ops
->open(new_vma
);
2988 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2989 *need_rmap_locks
= false;
2994 mpol_put(vma_policy(new_vma
));
2996 kmem_cache_free(vm_area_cachep
, new_vma
);
3002 * Return true if the calling process may expand its vm space by the passed
3005 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
3007 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
3010 if (is_data_mapping(flags
) &&
3011 mm
->data_vm
+ npages
> rlimit(RLIMIT_DATA
) >> PAGE_SHIFT
) {
3012 if (ignore_rlimit_data
)
3013 pr_warn_once("%s (%d): VmData %lu exceed data ulimit "
3014 "%lu. Will be forbidden soon.\n",
3015 current
->comm
, current
->pid
,
3016 (mm
->data_vm
+ npages
) << PAGE_SHIFT
,
3017 rlimit(RLIMIT_DATA
));
3025 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
3027 mm
->total_vm
+= npages
;
3029 if (is_exec_mapping(flags
))
3030 mm
->exec_vm
+= npages
;
3031 else if (is_stack_mapping(flags
))
3032 mm
->stack_vm
+= npages
;
3033 else if (is_data_mapping(flags
))
3034 mm
->data_vm
+= npages
;
3037 static int special_mapping_fault(struct vm_area_struct
*vma
,
3038 struct vm_fault
*vmf
);
3041 * Having a close hook prevents vma merging regardless of flags.
3043 static void special_mapping_close(struct vm_area_struct
*vma
)
3047 static const char *special_mapping_name(struct vm_area_struct
*vma
)
3049 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
3052 static const struct vm_operations_struct special_mapping_vmops
= {
3053 .close
= special_mapping_close
,
3054 .fault
= special_mapping_fault
,
3055 .name
= special_mapping_name
,
3058 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
3059 .close
= special_mapping_close
,
3060 .fault
= special_mapping_fault
,
3063 static int special_mapping_fault(struct vm_area_struct
*vma
,
3064 struct vm_fault
*vmf
)
3067 struct page
**pages
;
3069 if (vma
->vm_ops
== &legacy_special_mapping_vmops
)
3070 pages
= vma
->vm_private_data
;
3072 pages
= ((struct vm_special_mapping
*)vma
->vm_private_data
)->
3075 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
3079 struct page
*page
= *pages
;
3085 return VM_FAULT_SIGBUS
;
3088 static struct vm_area_struct
*__install_special_mapping(
3089 struct mm_struct
*mm
,
3090 unsigned long addr
, unsigned long len
,
3091 unsigned long vm_flags
, void *priv
,
3092 const struct vm_operations_struct
*ops
)
3095 struct vm_area_struct
*vma
;
3097 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
3098 if (unlikely(vma
== NULL
))
3099 return ERR_PTR(-ENOMEM
);
3101 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
3103 vma
->vm_start
= addr
;
3104 vma
->vm_end
= addr
+ len
;
3106 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3107 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3110 vma
->vm_private_data
= priv
;
3112 ret
= insert_vm_struct(mm
, vma
);
3116 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
3118 perf_event_mmap(vma
);
3123 kmem_cache_free(vm_area_cachep
, vma
);
3124 return ERR_PTR(ret
);
3128 * Called with mm->mmap_sem held for writing.
3129 * Insert a new vma covering the given region, with the given flags.
3130 * Its pages are supplied by the given array of struct page *.
3131 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3132 * The region past the last page supplied will always produce SIGBUS.
3133 * The array pointer and the pages it points to are assumed to stay alive
3134 * for as long as this mapping might exist.
3136 struct vm_area_struct
*_install_special_mapping(
3137 struct mm_struct
*mm
,
3138 unsigned long addr
, unsigned long len
,
3139 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3141 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3142 &special_mapping_vmops
);
3145 int install_special_mapping(struct mm_struct
*mm
,
3146 unsigned long addr
, unsigned long len
,
3147 unsigned long vm_flags
, struct page
**pages
)
3149 struct vm_area_struct
*vma
= __install_special_mapping(
3150 mm
, addr
, len
, vm_flags
, (void *)pages
,
3151 &legacy_special_mapping_vmops
);
3153 return PTR_ERR_OR_ZERO(vma
);
3156 static DEFINE_MUTEX(mm_all_locks_mutex
);
3158 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3160 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3162 * The LSB of head.next can't change from under us
3163 * because we hold the mm_all_locks_mutex.
3165 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3167 * We can safely modify head.next after taking the
3168 * anon_vma->root->rwsem. If some other vma in this mm shares
3169 * the same anon_vma we won't take it again.
3171 * No need of atomic instructions here, head.next
3172 * can't change from under us thanks to the
3173 * anon_vma->root->rwsem.
3175 if (__test_and_set_bit(0, (unsigned long *)
3176 &anon_vma
->root
->rb_root
.rb_node
))
3181 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3183 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3185 * AS_MM_ALL_LOCKS can't change from under us because
3186 * we hold the mm_all_locks_mutex.
3188 * Operations on ->flags have to be atomic because
3189 * even if AS_MM_ALL_LOCKS is stable thanks to the
3190 * mm_all_locks_mutex, there may be other cpus
3191 * changing other bitflags in parallel to us.
3193 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3195 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3200 * This operation locks against the VM for all pte/vma/mm related
3201 * operations that could ever happen on a certain mm. This includes
3202 * vmtruncate, try_to_unmap, and all page faults.
3204 * The caller must take the mmap_sem in write mode before calling
3205 * mm_take_all_locks(). The caller isn't allowed to release the
3206 * mmap_sem until mm_drop_all_locks() returns.
3208 * mmap_sem in write mode is required in order to block all operations
3209 * that could modify pagetables and free pages without need of
3210 * altering the vma layout. It's also needed in write mode to avoid new
3211 * anon_vmas to be associated with existing vmas.
3213 * A single task can't take more than one mm_take_all_locks() in a row
3214 * or it would deadlock.
3216 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3217 * mapping->flags avoid to take the same lock twice, if more than one
3218 * vma in this mm is backed by the same anon_vma or address_space.
3220 * We take locks in following order, accordingly to comment at beginning
3222 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3224 * - all i_mmap_rwsem locks;
3225 * - all anon_vma->rwseml
3227 * We can take all locks within these types randomly because the VM code
3228 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3229 * mm_all_locks_mutex.
3231 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3232 * that may have to take thousand of locks.
3234 * mm_take_all_locks() can fail if it's interrupted by signals.
3236 int mm_take_all_locks(struct mm_struct
*mm
)
3238 struct vm_area_struct
*vma
;
3239 struct anon_vma_chain
*avc
;
3241 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3243 mutex_lock(&mm_all_locks_mutex
);
3245 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3246 if (signal_pending(current
))
3248 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3249 is_vm_hugetlb_page(vma
))
3250 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3253 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3254 if (signal_pending(current
))
3256 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3257 !is_vm_hugetlb_page(vma
))
3258 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3261 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3262 if (signal_pending(current
))
3265 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3266 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3272 mm_drop_all_locks(mm
);
3276 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3278 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3280 * The LSB of head.next can't change to 0 from under
3281 * us because we hold the mm_all_locks_mutex.
3283 * We must however clear the bitflag before unlocking
3284 * the vma so the users using the anon_vma->rb_root will
3285 * never see our bitflag.
3287 * No need of atomic instructions here, head.next
3288 * can't change from under us until we release the
3289 * anon_vma->root->rwsem.
3291 if (!__test_and_clear_bit(0, (unsigned long *)
3292 &anon_vma
->root
->rb_root
.rb_node
))
3294 anon_vma_unlock_write(anon_vma
);
3298 static void vm_unlock_mapping(struct address_space
*mapping
)
3300 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3302 * AS_MM_ALL_LOCKS can't change to 0 from under us
3303 * because we hold the mm_all_locks_mutex.
3305 i_mmap_unlock_write(mapping
);
3306 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3313 * The mmap_sem cannot be released by the caller until
3314 * mm_drop_all_locks() returns.
3316 void mm_drop_all_locks(struct mm_struct
*mm
)
3318 struct vm_area_struct
*vma
;
3319 struct anon_vma_chain
*avc
;
3321 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3322 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3324 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3326 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3327 vm_unlock_anon_vma(avc
->anon_vma
);
3328 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3329 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3332 mutex_unlock(&mm_all_locks_mutex
);
3336 * initialise the VMA slab
3338 void __init
mmap_init(void)
3342 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3347 * Initialise sysctl_user_reserve_kbytes.
3349 * This is intended to prevent a user from starting a single memory hogging
3350 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3353 * The default value is min(3% of free memory, 128MB)
3354 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3356 static int init_user_reserve(void)
3358 unsigned long free_kbytes
;
3360 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3362 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3365 subsys_initcall(init_user_reserve
);
3368 * Initialise sysctl_admin_reserve_kbytes.
3370 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3371 * to log in and kill a memory hogging process.
3373 * Systems with more than 256MB will reserve 8MB, enough to recover
3374 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3375 * only reserve 3% of free pages by default.
3377 static int init_admin_reserve(void)
3379 unsigned long free_kbytes
;
3381 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3383 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3386 subsys_initcall(init_admin_reserve
);
3389 * Reinititalise user and admin reserves if memory is added or removed.
3391 * The default user reserve max is 128MB, and the default max for the
3392 * admin reserve is 8MB. These are usually, but not always, enough to
3393 * enable recovery from a memory hogging process using login/sshd, a shell,
3394 * and tools like top. It may make sense to increase or even disable the
3395 * reserve depending on the existence of swap or variations in the recovery
3396 * tools. So, the admin may have changed them.
3398 * If memory is added and the reserves have been eliminated or increased above
3399 * the default max, then we'll trust the admin.
3401 * If memory is removed and there isn't enough free memory, then we
3402 * need to reset the reserves.
3404 * Otherwise keep the reserve set by the admin.
3406 static int reserve_mem_notifier(struct notifier_block
*nb
,
3407 unsigned long action
, void *data
)
3409 unsigned long tmp
, free_kbytes
;
3413 /* Default max is 128MB. Leave alone if modified by operator. */
3414 tmp
= sysctl_user_reserve_kbytes
;
3415 if (0 < tmp
&& tmp
< (1UL << 17))
3416 init_user_reserve();
3418 /* Default max is 8MB. Leave alone if modified by operator. */
3419 tmp
= sysctl_admin_reserve_kbytes
;
3420 if (0 < tmp
&& tmp
< (1UL << 13))
3421 init_admin_reserve();
3425 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3427 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3428 init_user_reserve();
3429 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3430 sysctl_user_reserve_kbytes
);
3433 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3434 init_admin_reserve();
3435 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3436 sysctl_admin_reserve_kbytes
);
3445 static struct notifier_block reserve_mem_nb
= {
3446 .notifier_call
= reserve_mem_notifier
,
3449 static int __meminit
init_reserve_notifier(void)
3451 if (register_hotmemory_notifier(&reserve_mem_nb
))
3452 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3456 subsys_initcall(init_reserve_notifier
);