drm/i915: Move load time shrinker registration later
[linux/fpc-iii.git] / mm / vmstat.c
blob084c6725b3734430483e7ea4fcf74e2ab67f7bfa
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
31 #include "internal.h"
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
37 static void sum_vm_events(unsigned long *ret)
39 int cpu;
40 int i;
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
57 void all_vm_events(unsigned long *ret)
59 get_online_cpus();
60 sum_vm_events(ret);
61 put_online_cpus();
63 EXPORT_SYMBOL_GPL(all_vm_events);
66 * Fold the foreign cpu events into our own.
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
71 void vm_events_fold_cpu(int cpu)
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
85 * Manage combined zone based / global counters
87 * vm_stat contains the global counters
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
92 #ifdef CONFIG_SMP
94 int calculate_pressure_threshold(struct zone *zone)
96 int threshold;
97 int watermark_distance;
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
105 * the min watermark
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111 * Maximum threshold is 125
113 threshold = min(125, threshold);
115 return threshold;
118 int calculate_normal_threshold(struct zone *zone)
120 int threshold;
121 int mem; /* memory in 128 MB units */
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
129 * Some sample thresholds:
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
133 * 8 1 1 0.9-1 GB 4
134 * 16 2 2 0.9-1 GB 4
135 * 20 2 2 1-2 GB 5
136 * 24 2 2 2-4 GB 6
137 * 28 2 2 4-8 GB 7
138 * 32 2 2 8-16 GB 8
139 * 4 2 2 <128M 1
140 * 30 4 3 2-4 GB 5
141 * 48 4 3 8-16 GB 8
142 * 32 8 4 1-2 GB 4
143 * 32 8 4 0.9-1GB 4
144 * 10 16 5 <128M 1
145 * 40 16 5 900M 4
146 * 70 64 7 2-4 GB 5
147 * 84 64 7 4-8 GB 6
148 * 108 512 9 4-8 GB 6
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158 * Maximum threshold is 125
160 threshold = min(125, threshold);
162 return threshold;
166 * Refresh the thresholds for each zone.
168 void refresh_zone_stat_thresholds(void)
170 struct zone *zone;
171 int cpu;
172 int threshold;
174 for_each_populated_zone(zone) {
175 unsigned long max_drift, tolerate_drift;
177 threshold = calculate_normal_threshold(zone);
179 for_each_online_cpu(cpu)
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 = threshold;
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
192 max_drift;
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
199 struct zone *zone;
200 int cpu;
201 int threshold;
202 int i;
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
207 continue;
209 threshold = (*calculate_pressure)(zone);
210 for_each_online_cpu(cpu)
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 = threshold;
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 long delta)
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
226 long x;
227 long t;
229 x = delta + __this_cpu_read(*p);
231 t = __this_cpu_read(pcp->stat_threshold);
233 if (unlikely(x > t || x < -t)) {
234 zone_page_state_add(x, zone, item);
235 x = 0;
237 __this_cpu_write(*p, x);
239 EXPORT_SYMBOL(__mod_zone_page_state);
242 * Optimized increment and decrement functions.
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
251 * The increment or decrement is known and therefore one boundary check can
252 * be omitted.
254 * NOTE: These functions are very performance sensitive. Change only
255 * with care.
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
266 struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 s8 __percpu *p = pcp->vm_stat_diff + item;
268 s8 v, t;
270 v = __this_cpu_inc_return(*p);
271 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(v > t)) {
273 s8 overstep = t >> 1;
275 zone_page_state_add(v + overstep, zone, item);
276 __this_cpu_write(*p, -overstep);
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
282 __inc_zone_state(page_zone(page), item);
284 EXPORT_SYMBOL(__inc_zone_page_state);
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
288 struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 s8 __percpu *p = pcp->vm_stat_diff + item;
290 s8 v, t;
292 v = __this_cpu_dec_return(*p);
293 t = __this_cpu_read(pcp->stat_threshold);
294 if (unlikely(v < - t)) {
295 s8 overstep = t >> 1;
297 zone_page_state_add(v - overstep, zone, item);
298 __this_cpu_write(*p, overstep);
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
304 __dec_zone_state(page_zone(page), item);
306 EXPORT_SYMBOL(__dec_zone_page_state);
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
313 * mod_state() modifies the zone counter state through atomic per cpu
314 * operations.
316 * Overstep mode specifies how overstep should handled:
317 * 0 No overstepping
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322 long delta, int overstep_mode)
324 struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 s8 __percpu *p = pcp->vm_stat_diff + item;
326 long o, n, t, z;
328 do {
329 z = 0; /* overflow to zone counters */
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
341 t = this_cpu_read(pcp->stat_threshold);
343 o = this_cpu_read(*p);
344 n = delta + o;
346 if (n > t || n < -t) {
347 int os = overstep_mode * (t >> 1) ;
349 /* Overflow must be added to zone counters */
350 z = n + os;
351 n = -os;
353 } while (this_cpu_cmpxchg(*p, o, n) != o);
355 if (z)
356 zone_page_state_add(z, zone, item);
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 long delta)
362 mod_state(zone, item, delta, 0);
364 EXPORT_SYMBOL(mod_zone_page_state);
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
368 mod_state(zone, item, 1, 1);
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
373 mod_state(page_zone(page), item, 1, 1);
375 EXPORT_SYMBOL(inc_zone_page_state);
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
379 mod_state(page_zone(page), item, -1, -1);
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
384 * Use interrupt disable to serialize counter updates
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 long delta)
389 unsigned long flags;
391 local_irq_save(flags);
392 __mod_zone_page_state(zone, item, delta);
393 local_irq_restore(flags);
395 EXPORT_SYMBOL(mod_zone_page_state);
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
399 unsigned long flags;
401 local_irq_save(flags);
402 __inc_zone_state(zone, item);
403 local_irq_restore(flags);
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
408 unsigned long flags;
409 struct zone *zone;
411 zone = page_zone(page);
412 local_irq_save(flags);
413 __inc_zone_state(zone, item);
414 local_irq_restore(flags);
416 EXPORT_SYMBOL(inc_zone_page_state);
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
420 unsigned long flags;
422 local_irq_save(flags);
423 __dec_zone_page_state(page, item);
424 local_irq_restore(flags);
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
434 static int fold_diff(int *diff)
436 int i;
437 int changes = 0;
439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 if (diff[i]) {
441 atomic_long_add(diff[i], &vm_stat[i]);
442 changes++;
444 return changes;
448 * Update the zone counters for the current cpu.
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
454 * the processor.
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
461 * The function returns the number of global counters updated.
463 static int refresh_cpu_vm_stats(bool do_pagesets)
465 struct zone *zone;
466 int i;
467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 int changes = 0;
470 for_each_populated_zone(zone) {
471 struct per_cpu_pageset __percpu *p = zone->pageset;
473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 int v;
476 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 if (v) {
479 atomic_long_add(v, &zone->vm_stat[i]);
480 global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482 /* 3 seconds idle till flush */
483 __this_cpu_write(p->expire, 3);
484 #endif
487 #ifdef CONFIG_NUMA
488 if (do_pagesets) {
489 cond_resched();
491 * Deal with draining the remote pageset of this
492 * processor
494 * Check if there are pages remaining in this pageset
495 * if not then there is nothing to expire.
497 if (!__this_cpu_read(p->expire) ||
498 !__this_cpu_read(p->pcp.count))
499 continue;
502 * We never drain zones local to this processor.
504 if (zone_to_nid(zone) == numa_node_id()) {
505 __this_cpu_write(p->expire, 0);
506 continue;
509 if (__this_cpu_dec_return(p->expire))
510 continue;
512 if (__this_cpu_read(p->pcp.count)) {
513 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
514 changes++;
517 #endif
519 changes += fold_diff(global_diff);
520 return changes;
524 * Fold the data for an offline cpu into the global array.
525 * There cannot be any access by the offline cpu and therefore
526 * synchronization is simplified.
528 void cpu_vm_stats_fold(int cpu)
530 struct zone *zone;
531 int i;
532 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
534 for_each_populated_zone(zone) {
535 struct per_cpu_pageset *p;
537 p = per_cpu_ptr(zone->pageset, cpu);
539 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540 if (p->vm_stat_diff[i]) {
541 int v;
543 v = p->vm_stat_diff[i];
544 p->vm_stat_diff[i] = 0;
545 atomic_long_add(v, &zone->vm_stat[i]);
546 global_diff[i] += v;
550 fold_diff(global_diff);
554 * this is only called if !populated_zone(zone), which implies no other users of
555 * pset->vm_stat_diff[] exsist.
557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
559 int i;
561 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562 if (pset->vm_stat_diff[i]) {
563 int v = pset->vm_stat_diff[i];
564 pset->vm_stat_diff[i] = 0;
565 atomic_long_add(v, &zone->vm_stat[i]);
566 atomic_long_add(v, &vm_stat[i]);
569 #endif
571 #ifdef CONFIG_NUMA
573 * zonelist = the list of zones passed to the allocator
574 * z = the zone from which the allocation occurred.
576 * Must be called with interrupts disabled.
578 * When __GFP_OTHER_NODE is set assume the node of the preferred
579 * zone is the local node. This is useful for daemons who allocate
580 * memory on behalf of other processes.
582 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
584 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
585 __inc_zone_state(z, NUMA_HIT);
586 } else {
587 __inc_zone_state(z, NUMA_MISS);
588 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
590 if (z->node == ((flags & __GFP_OTHER_NODE) ?
591 preferred_zone->node : numa_node_id()))
592 __inc_zone_state(z, NUMA_LOCAL);
593 else
594 __inc_zone_state(z, NUMA_OTHER);
598 * Determine the per node value of a stat item.
600 unsigned long node_page_state(int node, enum zone_stat_item item)
602 struct zone *zones = NODE_DATA(node)->node_zones;
604 return
605 #ifdef CONFIG_ZONE_DMA
606 zone_page_state(&zones[ZONE_DMA], item) +
607 #endif
608 #ifdef CONFIG_ZONE_DMA32
609 zone_page_state(&zones[ZONE_DMA32], item) +
610 #endif
611 #ifdef CONFIG_HIGHMEM
612 zone_page_state(&zones[ZONE_HIGHMEM], item) +
613 #endif
614 zone_page_state(&zones[ZONE_NORMAL], item) +
615 zone_page_state(&zones[ZONE_MOVABLE], item);
618 #endif
620 #ifdef CONFIG_COMPACTION
622 struct contig_page_info {
623 unsigned long free_pages;
624 unsigned long free_blocks_total;
625 unsigned long free_blocks_suitable;
629 * Calculate the number of free pages in a zone, how many contiguous
630 * pages are free and how many are large enough to satisfy an allocation of
631 * the target size. Note that this function makes no attempt to estimate
632 * how many suitable free blocks there *might* be if MOVABLE pages were
633 * migrated. Calculating that is possible, but expensive and can be
634 * figured out from userspace
636 static void fill_contig_page_info(struct zone *zone,
637 unsigned int suitable_order,
638 struct contig_page_info *info)
640 unsigned int order;
642 info->free_pages = 0;
643 info->free_blocks_total = 0;
644 info->free_blocks_suitable = 0;
646 for (order = 0; order < MAX_ORDER; order++) {
647 unsigned long blocks;
649 /* Count number of free blocks */
650 blocks = zone->free_area[order].nr_free;
651 info->free_blocks_total += blocks;
653 /* Count free base pages */
654 info->free_pages += blocks << order;
656 /* Count the suitable free blocks */
657 if (order >= suitable_order)
658 info->free_blocks_suitable += blocks <<
659 (order - suitable_order);
664 * A fragmentation index only makes sense if an allocation of a requested
665 * size would fail. If that is true, the fragmentation index indicates
666 * whether external fragmentation or a lack of memory was the problem.
667 * The value can be used to determine if page reclaim or compaction
668 * should be used
670 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
672 unsigned long requested = 1UL << order;
674 if (!info->free_blocks_total)
675 return 0;
677 /* Fragmentation index only makes sense when a request would fail */
678 if (info->free_blocks_suitable)
679 return -1000;
682 * Index is between 0 and 1 so return within 3 decimal places
684 * 0 => allocation would fail due to lack of memory
685 * 1 => allocation would fail due to fragmentation
687 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
690 /* Same as __fragmentation index but allocs contig_page_info on stack */
691 int fragmentation_index(struct zone *zone, unsigned int order)
693 struct contig_page_info info;
695 fill_contig_page_info(zone, order, &info);
696 return __fragmentation_index(order, &info);
698 #endif
700 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
701 #ifdef CONFIG_ZONE_DMA
702 #define TEXT_FOR_DMA(xx) xx "_dma",
703 #else
704 #define TEXT_FOR_DMA(xx)
705 #endif
707 #ifdef CONFIG_ZONE_DMA32
708 #define TEXT_FOR_DMA32(xx) xx "_dma32",
709 #else
710 #define TEXT_FOR_DMA32(xx)
711 #endif
713 #ifdef CONFIG_HIGHMEM
714 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
715 #else
716 #define TEXT_FOR_HIGHMEM(xx)
717 #endif
719 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
720 TEXT_FOR_HIGHMEM(xx) xx "_movable",
722 const char * const vmstat_text[] = {
723 /* enum zone_stat_item countes */
724 "nr_free_pages",
725 "nr_alloc_batch",
726 "nr_inactive_anon",
727 "nr_active_anon",
728 "nr_inactive_file",
729 "nr_active_file",
730 "nr_unevictable",
731 "nr_mlock",
732 "nr_anon_pages",
733 "nr_mapped",
734 "nr_file_pages",
735 "nr_dirty",
736 "nr_writeback",
737 "nr_slab_reclaimable",
738 "nr_slab_unreclaimable",
739 "nr_page_table_pages",
740 "nr_kernel_stack",
741 "nr_unstable",
742 "nr_bounce",
743 "nr_vmscan_write",
744 "nr_vmscan_immediate_reclaim",
745 "nr_writeback_temp",
746 "nr_isolated_anon",
747 "nr_isolated_file",
748 "nr_shmem",
749 "nr_dirtied",
750 "nr_written",
751 "nr_pages_scanned",
753 #ifdef CONFIG_NUMA
754 "numa_hit",
755 "numa_miss",
756 "numa_foreign",
757 "numa_interleave",
758 "numa_local",
759 "numa_other",
760 #endif
761 "workingset_refault",
762 "workingset_activate",
763 "workingset_nodereclaim",
764 "nr_anon_transparent_hugepages",
765 "nr_free_cma",
767 /* enum writeback_stat_item counters */
768 "nr_dirty_threshold",
769 "nr_dirty_background_threshold",
771 #ifdef CONFIG_VM_EVENT_COUNTERS
772 /* enum vm_event_item counters */
773 "pgpgin",
774 "pgpgout",
775 "pswpin",
776 "pswpout",
778 TEXTS_FOR_ZONES("pgalloc")
780 "pgfree",
781 "pgactivate",
782 "pgdeactivate",
784 "pgfault",
785 "pgmajfault",
786 "pglazyfreed",
788 TEXTS_FOR_ZONES("pgrefill")
789 TEXTS_FOR_ZONES("pgsteal_kswapd")
790 TEXTS_FOR_ZONES("pgsteal_direct")
791 TEXTS_FOR_ZONES("pgscan_kswapd")
792 TEXTS_FOR_ZONES("pgscan_direct")
793 "pgscan_direct_throttle",
795 #ifdef CONFIG_NUMA
796 "zone_reclaim_failed",
797 #endif
798 "pginodesteal",
799 "slabs_scanned",
800 "kswapd_inodesteal",
801 "kswapd_low_wmark_hit_quickly",
802 "kswapd_high_wmark_hit_quickly",
803 "pageoutrun",
804 "allocstall",
806 "pgrotated",
808 "drop_pagecache",
809 "drop_slab",
811 #ifdef CONFIG_NUMA_BALANCING
812 "numa_pte_updates",
813 "numa_huge_pte_updates",
814 "numa_hint_faults",
815 "numa_hint_faults_local",
816 "numa_pages_migrated",
817 #endif
818 #ifdef CONFIG_MIGRATION
819 "pgmigrate_success",
820 "pgmigrate_fail",
821 #endif
822 #ifdef CONFIG_COMPACTION
823 "compact_migrate_scanned",
824 "compact_free_scanned",
825 "compact_isolated",
826 "compact_stall",
827 "compact_fail",
828 "compact_success",
829 #endif
831 #ifdef CONFIG_HUGETLB_PAGE
832 "htlb_buddy_alloc_success",
833 "htlb_buddy_alloc_fail",
834 #endif
835 "unevictable_pgs_culled",
836 "unevictable_pgs_scanned",
837 "unevictable_pgs_rescued",
838 "unevictable_pgs_mlocked",
839 "unevictable_pgs_munlocked",
840 "unevictable_pgs_cleared",
841 "unevictable_pgs_stranded",
843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
844 "thp_fault_alloc",
845 "thp_fault_fallback",
846 "thp_collapse_alloc",
847 "thp_collapse_alloc_failed",
848 "thp_split_page",
849 "thp_split_page_failed",
850 "thp_split_pmd",
851 "thp_zero_page_alloc",
852 "thp_zero_page_alloc_failed",
853 #endif
854 #ifdef CONFIG_MEMORY_BALLOON
855 "balloon_inflate",
856 "balloon_deflate",
857 #ifdef CONFIG_BALLOON_COMPACTION
858 "balloon_migrate",
859 #endif
860 #endif /* CONFIG_MEMORY_BALLOON */
861 #ifdef CONFIG_DEBUG_TLBFLUSH
862 #ifdef CONFIG_SMP
863 "nr_tlb_remote_flush",
864 "nr_tlb_remote_flush_received",
865 #endif /* CONFIG_SMP */
866 "nr_tlb_local_flush_all",
867 "nr_tlb_local_flush_one",
868 #endif /* CONFIG_DEBUG_TLBFLUSH */
870 #ifdef CONFIG_DEBUG_VM_VMACACHE
871 "vmacache_find_calls",
872 "vmacache_find_hits",
873 "vmacache_full_flushes",
874 #endif
875 #endif /* CONFIG_VM_EVENTS_COUNTERS */
877 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
880 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
881 defined(CONFIG_PROC_FS)
882 static void *frag_start(struct seq_file *m, loff_t *pos)
884 pg_data_t *pgdat;
885 loff_t node = *pos;
887 for (pgdat = first_online_pgdat();
888 pgdat && node;
889 pgdat = next_online_pgdat(pgdat))
890 --node;
892 return pgdat;
895 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
897 pg_data_t *pgdat = (pg_data_t *)arg;
899 (*pos)++;
900 return next_online_pgdat(pgdat);
903 static void frag_stop(struct seq_file *m, void *arg)
907 /* Walk all the zones in a node and print using a callback */
908 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
909 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
911 struct zone *zone;
912 struct zone *node_zones = pgdat->node_zones;
913 unsigned long flags;
915 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
916 if (!populated_zone(zone))
917 continue;
919 spin_lock_irqsave(&zone->lock, flags);
920 print(m, pgdat, zone);
921 spin_unlock_irqrestore(&zone->lock, flags);
924 #endif
926 #ifdef CONFIG_PROC_FS
927 static char * const migratetype_names[MIGRATE_TYPES] = {
928 "Unmovable",
929 "Movable",
930 "Reclaimable",
931 "HighAtomic",
932 #ifdef CONFIG_CMA
933 "CMA",
934 #endif
935 #ifdef CONFIG_MEMORY_ISOLATION
936 "Isolate",
937 #endif
940 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
941 struct zone *zone)
943 int order;
945 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
946 for (order = 0; order < MAX_ORDER; ++order)
947 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
948 seq_putc(m, '\n');
952 * This walks the free areas for each zone.
954 static int frag_show(struct seq_file *m, void *arg)
956 pg_data_t *pgdat = (pg_data_t *)arg;
957 walk_zones_in_node(m, pgdat, frag_show_print);
958 return 0;
961 static void pagetypeinfo_showfree_print(struct seq_file *m,
962 pg_data_t *pgdat, struct zone *zone)
964 int order, mtype;
966 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
967 seq_printf(m, "Node %4d, zone %8s, type %12s ",
968 pgdat->node_id,
969 zone->name,
970 migratetype_names[mtype]);
971 for (order = 0; order < MAX_ORDER; ++order) {
972 unsigned long freecount = 0;
973 struct free_area *area;
974 struct list_head *curr;
976 area = &(zone->free_area[order]);
978 list_for_each(curr, &area->free_list[mtype])
979 freecount++;
980 seq_printf(m, "%6lu ", freecount);
982 seq_putc(m, '\n');
986 /* Print out the free pages at each order for each migatetype */
987 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
989 int order;
990 pg_data_t *pgdat = (pg_data_t *)arg;
992 /* Print header */
993 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
994 for (order = 0; order < MAX_ORDER; ++order)
995 seq_printf(m, "%6d ", order);
996 seq_putc(m, '\n');
998 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
1000 return 0;
1003 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1004 pg_data_t *pgdat, struct zone *zone)
1006 int mtype;
1007 unsigned long pfn;
1008 unsigned long start_pfn = zone->zone_start_pfn;
1009 unsigned long end_pfn = zone_end_pfn(zone);
1010 unsigned long count[MIGRATE_TYPES] = { 0, };
1012 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1013 struct page *page;
1015 if (!pfn_valid(pfn))
1016 continue;
1018 page = pfn_to_page(pfn);
1020 /* Watch for unexpected holes punched in the memmap */
1021 if (!memmap_valid_within(pfn, page, zone))
1022 continue;
1024 mtype = get_pageblock_migratetype(page);
1026 if (mtype < MIGRATE_TYPES)
1027 count[mtype]++;
1030 /* Print counts */
1031 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1032 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1033 seq_printf(m, "%12lu ", count[mtype]);
1034 seq_putc(m, '\n');
1037 /* Print out the free pages at each order for each migratetype */
1038 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1040 int mtype;
1041 pg_data_t *pgdat = (pg_data_t *)arg;
1043 seq_printf(m, "\n%-23s", "Number of blocks type ");
1044 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1045 seq_printf(m, "%12s ", migratetype_names[mtype]);
1046 seq_putc(m, '\n');
1047 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1049 return 0;
1052 #ifdef CONFIG_PAGE_OWNER
1053 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1054 pg_data_t *pgdat,
1055 struct zone *zone)
1057 struct page *page;
1058 struct page_ext *page_ext;
1059 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1060 unsigned long end_pfn = pfn + zone->spanned_pages;
1061 unsigned long count[MIGRATE_TYPES] = { 0, };
1062 int pageblock_mt, page_mt;
1063 int i;
1065 /* Scan block by block. First and last block may be incomplete */
1066 pfn = zone->zone_start_pfn;
1069 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1070 * a zone boundary, it will be double counted between zones. This does
1071 * not matter as the mixed block count will still be correct
1073 for (; pfn < end_pfn; ) {
1074 if (!pfn_valid(pfn)) {
1075 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1076 continue;
1079 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1080 block_end_pfn = min(block_end_pfn, end_pfn);
1082 page = pfn_to_page(pfn);
1083 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1085 for (; pfn < block_end_pfn; pfn++) {
1086 if (!pfn_valid_within(pfn))
1087 continue;
1089 page = pfn_to_page(pfn);
1090 if (PageBuddy(page)) {
1091 pfn += (1UL << page_order(page)) - 1;
1092 continue;
1095 if (PageReserved(page))
1096 continue;
1098 page_ext = lookup_page_ext(page);
1100 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1101 continue;
1103 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1104 if (pageblock_mt != page_mt) {
1105 if (is_migrate_cma(pageblock_mt))
1106 count[MIGRATE_MOVABLE]++;
1107 else
1108 count[pageblock_mt]++;
1110 pfn = block_end_pfn;
1111 break;
1113 pfn += (1UL << page_ext->order) - 1;
1117 /* Print counts */
1118 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1119 for (i = 0; i < MIGRATE_TYPES; i++)
1120 seq_printf(m, "%12lu ", count[i]);
1121 seq_putc(m, '\n');
1123 #endif /* CONFIG_PAGE_OWNER */
1126 * Print out the number of pageblocks for each migratetype that contain pages
1127 * of other types. This gives an indication of how well fallbacks are being
1128 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1129 * to determine what is going on
1131 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1133 #ifdef CONFIG_PAGE_OWNER
1134 int mtype;
1136 if (!page_owner_inited)
1137 return;
1139 drain_all_pages(NULL);
1141 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1142 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1143 seq_printf(m, "%12s ", migratetype_names[mtype]);
1144 seq_putc(m, '\n');
1146 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1147 #endif /* CONFIG_PAGE_OWNER */
1151 * This prints out statistics in relation to grouping pages by mobility.
1152 * It is expensive to collect so do not constantly read the file.
1154 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1156 pg_data_t *pgdat = (pg_data_t *)arg;
1158 /* check memoryless node */
1159 if (!node_state(pgdat->node_id, N_MEMORY))
1160 return 0;
1162 seq_printf(m, "Page block order: %d\n", pageblock_order);
1163 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1164 seq_putc(m, '\n');
1165 pagetypeinfo_showfree(m, pgdat);
1166 pagetypeinfo_showblockcount(m, pgdat);
1167 pagetypeinfo_showmixedcount(m, pgdat);
1169 return 0;
1172 static const struct seq_operations fragmentation_op = {
1173 .start = frag_start,
1174 .next = frag_next,
1175 .stop = frag_stop,
1176 .show = frag_show,
1179 static int fragmentation_open(struct inode *inode, struct file *file)
1181 return seq_open(file, &fragmentation_op);
1184 static const struct file_operations fragmentation_file_operations = {
1185 .open = fragmentation_open,
1186 .read = seq_read,
1187 .llseek = seq_lseek,
1188 .release = seq_release,
1191 static const struct seq_operations pagetypeinfo_op = {
1192 .start = frag_start,
1193 .next = frag_next,
1194 .stop = frag_stop,
1195 .show = pagetypeinfo_show,
1198 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1200 return seq_open(file, &pagetypeinfo_op);
1203 static const struct file_operations pagetypeinfo_file_ops = {
1204 .open = pagetypeinfo_open,
1205 .read = seq_read,
1206 .llseek = seq_lseek,
1207 .release = seq_release,
1210 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1211 struct zone *zone)
1213 int i;
1214 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1215 seq_printf(m,
1216 "\n pages free %lu"
1217 "\n min %lu"
1218 "\n low %lu"
1219 "\n high %lu"
1220 "\n scanned %lu"
1221 "\n spanned %lu"
1222 "\n present %lu"
1223 "\n managed %lu",
1224 zone_page_state(zone, NR_FREE_PAGES),
1225 min_wmark_pages(zone),
1226 low_wmark_pages(zone),
1227 high_wmark_pages(zone),
1228 zone_page_state(zone, NR_PAGES_SCANNED),
1229 zone->spanned_pages,
1230 zone->present_pages,
1231 zone->managed_pages);
1233 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1234 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1235 zone_page_state(zone, i));
1237 seq_printf(m,
1238 "\n protection: (%ld",
1239 zone->lowmem_reserve[0]);
1240 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1241 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1242 seq_printf(m,
1244 "\n pagesets");
1245 for_each_online_cpu(i) {
1246 struct per_cpu_pageset *pageset;
1248 pageset = per_cpu_ptr(zone->pageset, i);
1249 seq_printf(m,
1250 "\n cpu: %i"
1251 "\n count: %i"
1252 "\n high: %i"
1253 "\n batch: %i",
1255 pageset->pcp.count,
1256 pageset->pcp.high,
1257 pageset->pcp.batch);
1258 #ifdef CONFIG_SMP
1259 seq_printf(m, "\n vm stats threshold: %d",
1260 pageset->stat_threshold);
1261 #endif
1263 seq_printf(m,
1264 "\n all_unreclaimable: %u"
1265 "\n start_pfn: %lu"
1266 "\n inactive_ratio: %u",
1267 !zone_reclaimable(zone),
1268 zone->zone_start_pfn,
1269 zone->inactive_ratio);
1270 seq_putc(m, '\n');
1274 * Output information about zones in @pgdat.
1276 static int zoneinfo_show(struct seq_file *m, void *arg)
1278 pg_data_t *pgdat = (pg_data_t *)arg;
1279 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1280 return 0;
1283 static const struct seq_operations zoneinfo_op = {
1284 .start = frag_start, /* iterate over all zones. The same as in
1285 * fragmentation. */
1286 .next = frag_next,
1287 .stop = frag_stop,
1288 .show = zoneinfo_show,
1291 static int zoneinfo_open(struct inode *inode, struct file *file)
1293 return seq_open(file, &zoneinfo_op);
1296 static const struct file_operations proc_zoneinfo_file_operations = {
1297 .open = zoneinfo_open,
1298 .read = seq_read,
1299 .llseek = seq_lseek,
1300 .release = seq_release,
1303 enum writeback_stat_item {
1304 NR_DIRTY_THRESHOLD,
1305 NR_DIRTY_BG_THRESHOLD,
1306 NR_VM_WRITEBACK_STAT_ITEMS,
1309 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1311 unsigned long *v;
1312 int i, stat_items_size;
1314 if (*pos >= ARRAY_SIZE(vmstat_text))
1315 return NULL;
1316 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1317 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1319 #ifdef CONFIG_VM_EVENT_COUNTERS
1320 stat_items_size += sizeof(struct vm_event_state);
1321 #endif
1323 v = kmalloc(stat_items_size, GFP_KERNEL);
1324 m->private = v;
1325 if (!v)
1326 return ERR_PTR(-ENOMEM);
1327 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1328 v[i] = global_page_state(i);
1329 v += NR_VM_ZONE_STAT_ITEMS;
1331 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1332 v + NR_DIRTY_THRESHOLD);
1333 v += NR_VM_WRITEBACK_STAT_ITEMS;
1335 #ifdef CONFIG_VM_EVENT_COUNTERS
1336 all_vm_events(v);
1337 v[PGPGIN] /= 2; /* sectors -> kbytes */
1338 v[PGPGOUT] /= 2;
1339 #endif
1340 return (unsigned long *)m->private + *pos;
1343 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1345 (*pos)++;
1346 if (*pos >= ARRAY_SIZE(vmstat_text))
1347 return NULL;
1348 return (unsigned long *)m->private + *pos;
1351 static int vmstat_show(struct seq_file *m, void *arg)
1353 unsigned long *l = arg;
1354 unsigned long off = l - (unsigned long *)m->private;
1356 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1357 return 0;
1360 static void vmstat_stop(struct seq_file *m, void *arg)
1362 kfree(m->private);
1363 m->private = NULL;
1366 static const struct seq_operations vmstat_op = {
1367 .start = vmstat_start,
1368 .next = vmstat_next,
1369 .stop = vmstat_stop,
1370 .show = vmstat_show,
1373 static int vmstat_open(struct inode *inode, struct file *file)
1375 return seq_open(file, &vmstat_op);
1378 static const struct file_operations proc_vmstat_file_operations = {
1379 .open = vmstat_open,
1380 .read = seq_read,
1381 .llseek = seq_lseek,
1382 .release = seq_release,
1384 #endif /* CONFIG_PROC_FS */
1386 #ifdef CONFIG_SMP
1387 static struct workqueue_struct *vmstat_wq;
1388 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1389 int sysctl_stat_interval __read_mostly = HZ;
1390 static cpumask_var_t cpu_stat_off;
1392 static void vmstat_update(struct work_struct *w)
1394 if (refresh_cpu_vm_stats(true)) {
1396 * Counters were updated so we expect more updates
1397 * to occur in the future. Keep on running the
1398 * update worker thread.
1399 * If we were marked on cpu_stat_off clear the flag
1400 * so that vmstat_shepherd doesn't schedule us again.
1402 if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1403 cpu_stat_off)) {
1404 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1405 this_cpu_ptr(&vmstat_work),
1406 round_jiffies_relative(sysctl_stat_interval));
1408 } else {
1410 * We did not update any counters so the app may be in
1411 * a mode where it does not cause counter updates.
1412 * We may be uselessly running vmstat_update.
1413 * Defer the checking for differentials to the
1414 * shepherd thread on a different processor.
1416 cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1421 * Switch off vmstat processing and then fold all the remaining differentials
1422 * until the diffs stay at zero. The function is used by NOHZ and can only be
1423 * invoked when tick processing is not active.
1426 * Check if the diffs for a certain cpu indicate that
1427 * an update is needed.
1429 static bool need_update(int cpu)
1431 struct zone *zone;
1433 for_each_populated_zone(zone) {
1434 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1436 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1438 * The fast way of checking if there are any vmstat diffs.
1439 * This works because the diffs are byte sized items.
1441 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1442 return true;
1445 return false;
1448 void quiet_vmstat(void)
1450 if (system_state != SYSTEM_RUNNING)
1451 return;
1454 * If we are already in hands of the shepherd then there
1455 * is nothing for us to do here.
1457 if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1458 return;
1460 if (!need_update(smp_processor_id()))
1461 return;
1464 * Just refresh counters and do not care about the pending delayed
1465 * vmstat_update. It doesn't fire that often to matter and canceling
1466 * it would be too expensive from this path.
1467 * vmstat_shepherd will take care about that for us.
1469 refresh_cpu_vm_stats(false);
1474 * Shepherd worker thread that checks the
1475 * differentials of processors that have their worker
1476 * threads for vm statistics updates disabled because of
1477 * inactivity.
1479 static void vmstat_shepherd(struct work_struct *w);
1481 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1483 static void vmstat_shepherd(struct work_struct *w)
1485 int cpu;
1487 get_online_cpus();
1488 /* Check processors whose vmstat worker threads have been disabled */
1489 for_each_cpu(cpu, cpu_stat_off) {
1490 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1492 if (need_update(cpu)) {
1493 if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1494 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1495 } else {
1497 * Cancel the work if quiet_vmstat has put this
1498 * cpu on cpu_stat_off because the work item might
1499 * be still scheduled
1501 cancel_delayed_work(dw);
1504 put_online_cpus();
1506 schedule_delayed_work(&shepherd,
1507 round_jiffies_relative(sysctl_stat_interval));
1510 static void __init start_shepherd_timer(void)
1512 int cpu;
1514 for_each_possible_cpu(cpu)
1515 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1516 vmstat_update);
1518 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1519 BUG();
1520 cpumask_copy(cpu_stat_off, cpu_online_mask);
1522 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1523 schedule_delayed_work(&shepherd,
1524 round_jiffies_relative(sysctl_stat_interval));
1527 static void vmstat_cpu_dead(int node)
1529 int cpu;
1531 get_online_cpus();
1532 for_each_online_cpu(cpu)
1533 if (cpu_to_node(cpu) == node)
1534 goto end;
1536 node_clear_state(node, N_CPU);
1537 end:
1538 put_online_cpus();
1542 * Use the cpu notifier to insure that the thresholds are recalculated
1543 * when necessary.
1545 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1546 unsigned long action,
1547 void *hcpu)
1549 long cpu = (long)hcpu;
1551 switch (action) {
1552 case CPU_ONLINE:
1553 case CPU_ONLINE_FROZEN:
1554 refresh_zone_stat_thresholds();
1555 node_set_state(cpu_to_node(cpu), N_CPU);
1556 cpumask_set_cpu(cpu, cpu_stat_off);
1557 break;
1558 case CPU_DOWN_PREPARE:
1559 case CPU_DOWN_PREPARE_FROZEN:
1560 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1561 cpumask_clear_cpu(cpu, cpu_stat_off);
1562 break;
1563 case CPU_DOWN_FAILED:
1564 case CPU_DOWN_FAILED_FROZEN:
1565 cpumask_set_cpu(cpu, cpu_stat_off);
1566 break;
1567 case CPU_DEAD:
1568 case CPU_DEAD_FROZEN:
1569 refresh_zone_stat_thresholds();
1570 vmstat_cpu_dead(cpu_to_node(cpu));
1571 break;
1572 default:
1573 break;
1575 return NOTIFY_OK;
1578 static struct notifier_block vmstat_notifier =
1579 { &vmstat_cpuup_callback, NULL, 0 };
1580 #endif
1582 static int __init setup_vmstat(void)
1584 #ifdef CONFIG_SMP
1585 cpu_notifier_register_begin();
1586 __register_cpu_notifier(&vmstat_notifier);
1588 start_shepherd_timer();
1589 cpu_notifier_register_done();
1590 #endif
1591 #ifdef CONFIG_PROC_FS
1592 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1593 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1594 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1595 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1596 #endif
1597 return 0;
1599 module_init(setup_vmstat)
1601 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1604 * Return an index indicating how much of the available free memory is
1605 * unusable for an allocation of the requested size.
1607 static int unusable_free_index(unsigned int order,
1608 struct contig_page_info *info)
1610 /* No free memory is interpreted as all free memory is unusable */
1611 if (info->free_pages == 0)
1612 return 1000;
1615 * Index should be a value between 0 and 1. Return a value to 3
1616 * decimal places.
1618 * 0 => no fragmentation
1619 * 1 => high fragmentation
1621 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1625 static void unusable_show_print(struct seq_file *m,
1626 pg_data_t *pgdat, struct zone *zone)
1628 unsigned int order;
1629 int index;
1630 struct contig_page_info info;
1632 seq_printf(m, "Node %d, zone %8s ",
1633 pgdat->node_id,
1634 zone->name);
1635 for (order = 0; order < MAX_ORDER; ++order) {
1636 fill_contig_page_info(zone, order, &info);
1637 index = unusable_free_index(order, &info);
1638 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1641 seq_putc(m, '\n');
1645 * Display unusable free space index
1647 * The unusable free space index measures how much of the available free
1648 * memory cannot be used to satisfy an allocation of a given size and is a
1649 * value between 0 and 1. The higher the value, the more of free memory is
1650 * unusable and by implication, the worse the external fragmentation is. This
1651 * can be expressed as a percentage by multiplying by 100.
1653 static int unusable_show(struct seq_file *m, void *arg)
1655 pg_data_t *pgdat = (pg_data_t *)arg;
1657 /* check memoryless node */
1658 if (!node_state(pgdat->node_id, N_MEMORY))
1659 return 0;
1661 walk_zones_in_node(m, pgdat, unusable_show_print);
1663 return 0;
1666 static const struct seq_operations unusable_op = {
1667 .start = frag_start,
1668 .next = frag_next,
1669 .stop = frag_stop,
1670 .show = unusable_show,
1673 static int unusable_open(struct inode *inode, struct file *file)
1675 return seq_open(file, &unusable_op);
1678 static const struct file_operations unusable_file_ops = {
1679 .open = unusable_open,
1680 .read = seq_read,
1681 .llseek = seq_lseek,
1682 .release = seq_release,
1685 static void extfrag_show_print(struct seq_file *m,
1686 pg_data_t *pgdat, struct zone *zone)
1688 unsigned int order;
1689 int index;
1691 /* Alloc on stack as interrupts are disabled for zone walk */
1692 struct contig_page_info info;
1694 seq_printf(m, "Node %d, zone %8s ",
1695 pgdat->node_id,
1696 zone->name);
1697 for (order = 0; order < MAX_ORDER; ++order) {
1698 fill_contig_page_info(zone, order, &info);
1699 index = __fragmentation_index(order, &info);
1700 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1703 seq_putc(m, '\n');
1707 * Display fragmentation index for orders that allocations would fail for
1709 static int extfrag_show(struct seq_file *m, void *arg)
1711 pg_data_t *pgdat = (pg_data_t *)arg;
1713 walk_zones_in_node(m, pgdat, extfrag_show_print);
1715 return 0;
1718 static const struct seq_operations extfrag_op = {
1719 .start = frag_start,
1720 .next = frag_next,
1721 .stop = frag_stop,
1722 .show = extfrag_show,
1725 static int extfrag_open(struct inode *inode, struct file *file)
1727 return seq_open(file, &extfrag_op);
1730 static const struct file_operations extfrag_file_ops = {
1731 .open = extfrag_open,
1732 .read = seq_read,
1733 .llseek = seq_lseek,
1734 .release = seq_release,
1737 static int __init extfrag_debug_init(void)
1739 struct dentry *extfrag_debug_root;
1741 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1742 if (!extfrag_debug_root)
1743 return -ENOMEM;
1745 if (!debugfs_create_file("unusable_index", 0444,
1746 extfrag_debug_root, NULL, &unusable_file_ops))
1747 goto fail;
1749 if (!debugfs_create_file("extfrag_index", 0444,
1750 extfrag_debug_root, NULL, &extfrag_file_ops))
1751 goto fail;
1753 return 0;
1754 fail:
1755 debugfs_remove_recursive(extfrag_debug_root);
1756 return -ENOMEM;
1759 module_init(extfrag_debug_init);
1760 #endif