1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
12 #include "transaction.h"
13 #include "print-tree.h"
18 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
19 *root
, struct btrfs_path
*path
, int level
);
20 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
21 const struct btrfs_key
*ins_key
, struct btrfs_path
*path
,
22 int data_size
, int extend
);
23 static int push_node_left(struct btrfs_trans_handle
*trans
,
24 struct extent_buffer
*dst
,
25 struct extent_buffer
*src
, int empty
);
26 static int balance_node_right(struct btrfs_trans_handle
*trans
,
27 struct extent_buffer
*dst_buf
,
28 struct extent_buffer
*src_buf
);
29 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
32 struct btrfs_path
*btrfs_alloc_path(void)
34 return kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
38 * set all locked nodes in the path to blocking locks. This should
39 * be done before scheduling
41 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
44 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
45 if (!p
->nodes
[i
] || !p
->locks
[i
])
48 * If we currently have a spinning reader or writer lock this
49 * will bump the count of blocking holders and drop the
52 if (p
->locks
[i
] == BTRFS_READ_LOCK
) {
53 btrfs_set_lock_blocking_read(p
->nodes
[i
]);
54 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
55 } else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
) {
56 btrfs_set_lock_blocking_write(p
->nodes
[i
]);
57 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
62 /* this also releases the path */
63 void btrfs_free_path(struct btrfs_path
*p
)
67 btrfs_release_path(p
);
68 kmem_cache_free(btrfs_path_cachep
, p
);
72 * path release drops references on the extent buffers in the path
73 * and it drops any locks held by this path
75 * It is safe to call this on paths that no locks or extent buffers held.
77 noinline
void btrfs_release_path(struct btrfs_path
*p
)
81 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
86 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
89 free_extent_buffer(p
->nodes
[i
]);
95 * safely gets a reference on the root node of a tree. A lock
96 * is not taken, so a concurrent writer may put a different node
97 * at the root of the tree. See btrfs_lock_root_node for the
100 * The extent buffer returned by this has a reference taken, so
101 * it won't disappear. It may stop being the root of the tree
102 * at any time because there are no locks held.
104 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
106 struct extent_buffer
*eb
;
110 eb
= rcu_dereference(root
->node
);
113 * RCU really hurts here, we could free up the root node because
114 * it was COWed but we may not get the new root node yet so do
115 * the inc_not_zero dance and if it doesn't work then
116 * synchronize_rcu and try again.
118 if (atomic_inc_not_zero(&eb
->refs
)) {
128 /* loop around taking references on and locking the root node of the
129 * tree until you end up with a lock on the root. A locked buffer
130 * is returned, with a reference held.
132 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
134 struct extent_buffer
*eb
;
137 eb
= btrfs_root_node(root
);
139 if (eb
== root
->node
)
141 btrfs_tree_unlock(eb
);
142 free_extent_buffer(eb
);
147 /* loop around taking references on and locking the root node of the
148 * tree until you end up with a lock on the root. A locked buffer
149 * is returned, with a reference held.
151 struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
153 struct extent_buffer
*eb
;
156 eb
= btrfs_root_node(root
);
157 btrfs_tree_read_lock(eb
);
158 if (eb
== root
->node
)
160 btrfs_tree_read_unlock(eb
);
161 free_extent_buffer(eb
);
166 /* cowonly root (everything not a reference counted cow subvolume), just get
167 * put onto a simple dirty list. transaction.c walks this to make sure they
168 * get properly updated on disk.
170 static void add_root_to_dirty_list(struct btrfs_root
*root
)
172 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
174 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
175 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
178 spin_lock(&fs_info
->trans_lock
);
179 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
180 /* Want the extent tree to be the last on the list */
181 if (root
->root_key
.objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
182 list_move_tail(&root
->dirty_list
,
183 &fs_info
->dirty_cowonly_roots
);
185 list_move(&root
->dirty_list
,
186 &fs_info
->dirty_cowonly_roots
);
188 spin_unlock(&fs_info
->trans_lock
);
192 * used by snapshot creation to make a copy of a root for a tree with
193 * a given objectid. The buffer with the new root node is returned in
194 * cow_ret, and this func returns zero on success or a negative error code.
196 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
197 struct btrfs_root
*root
,
198 struct extent_buffer
*buf
,
199 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
201 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
202 struct extent_buffer
*cow
;
205 struct btrfs_disk_key disk_key
;
207 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
208 trans
->transid
!= fs_info
->running_transaction
->transid
);
209 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
210 trans
->transid
!= root
->last_trans
);
212 level
= btrfs_header_level(buf
);
214 btrfs_item_key(buf
, &disk_key
, 0);
216 btrfs_node_key(buf
, &disk_key
, 0);
218 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
219 &disk_key
, level
, buf
->start
, 0);
223 copy_extent_buffer_full(cow
, buf
);
224 btrfs_set_header_bytenr(cow
, cow
->start
);
225 btrfs_set_header_generation(cow
, trans
->transid
);
226 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
227 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
228 BTRFS_HEADER_FLAG_RELOC
);
229 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
230 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
232 btrfs_set_header_owner(cow
, new_root_objectid
);
234 write_extent_buffer_fsid(cow
, fs_info
->fs_devices
->metadata_uuid
);
236 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
237 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
238 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
240 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
245 btrfs_mark_buffer_dirty(cow
);
254 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
255 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
257 MOD_LOG_ROOT_REPLACE
,
260 struct tree_mod_root
{
265 struct tree_mod_elem
{
271 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
274 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
277 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
278 struct btrfs_disk_key key
;
281 /* this is used for op == MOD_LOG_MOVE_KEYS */
287 /* this is used for op == MOD_LOG_ROOT_REPLACE */
288 struct tree_mod_root old_root
;
292 * Pull a new tree mod seq number for our operation.
294 static inline u64
btrfs_inc_tree_mod_seq(struct btrfs_fs_info
*fs_info
)
296 return atomic64_inc_return(&fs_info
->tree_mod_seq
);
300 * This adds a new blocker to the tree mod log's blocker list if the @elem
301 * passed does not already have a sequence number set. So when a caller expects
302 * to record tree modifications, it should ensure to set elem->seq to zero
303 * before calling btrfs_get_tree_mod_seq.
304 * Returns a fresh, unused tree log modification sequence number, even if no new
307 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
308 struct seq_list
*elem
)
310 write_lock(&fs_info
->tree_mod_log_lock
);
311 spin_lock(&fs_info
->tree_mod_seq_lock
);
313 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
314 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
316 spin_unlock(&fs_info
->tree_mod_seq_lock
);
317 write_unlock(&fs_info
->tree_mod_log_lock
);
322 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
323 struct seq_list
*elem
)
325 struct rb_root
*tm_root
;
326 struct rb_node
*node
;
327 struct rb_node
*next
;
328 struct seq_list
*cur_elem
;
329 struct tree_mod_elem
*tm
;
330 u64 min_seq
= (u64
)-1;
331 u64 seq_putting
= elem
->seq
;
336 spin_lock(&fs_info
->tree_mod_seq_lock
);
337 list_del(&elem
->list
);
340 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
341 if (cur_elem
->seq
< min_seq
) {
342 if (seq_putting
> cur_elem
->seq
) {
344 * blocker with lower sequence number exists, we
345 * cannot remove anything from the log
347 spin_unlock(&fs_info
->tree_mod_seq_lock
);
350 min_seq
= cur_elem
->seq
;
353 spin_unlock(&fs_info
->tree_mod_seq_lock
);
356 * anything that's lower than the lowest existing (read: blocked)
357 * sequence number can be removed from the tree.
359 write_lock(&fs_info
->tree_mod_log_lock
);
360 tm_root
= &fs_info
->tree_mod_log
;
361 for (node
= rb_first(tm_root
); node
; node
= next
) {
362 next
= rb_next(node
);
363 tm
= rb_entry(node
, struct tree_mod_elem
, node
);
364 if (tm
->seq
> min_seq
)
366 rb_erase(node
, tm_root
);
369 write_unlock(&fs_info
->tree_mod_log_lock
);
373 * key order of the log:
374 * node/leaf start address -> sequence
376 * The 'start address' is the logical address of the *new* root node
377 * for root replace operations, or the logical address of the affected
378 * block for all other operations.
380 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
383 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
385 struct rb_root
*tm_root
;
386 struct rb_node
**new;
387 struct rb_node
*parent
= NULL
;
388 struct tree_mod_elem
*cur
;
390 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
392 tm_root
= &fs_info
->tree_mod_log
;
393 new = &tm_root
->rb_node
;
395 cur
= rb_entry(*new, struct tree_mod_elem
, node
);
397 if (cur
->logical
< tm
->logical
)
398 new = &((*new)->rb_left
);
399 else if (cur
->logical
> tm
->logical
)
400 new = &((*new)->rb_right
);
401 else if (cur
->seq
< tm
->seq
)
402 new = &((*new)->rb_left
);
403 else if (cur
->seq
> tm
->seq
)
404 new = &((*new)->rb_right
);
409 rb_link_node(&tm
->node
, parent
, new);
410 rb_insert_color(&tm
->node
, tm_root
);
415 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
416 * returns zero with the tree_mod_log_lock acquired. The caller must hold
417 * this until all tree mod log insertions are recorded in the rb tree and then
418 * write unlock fs_info::tree_mod_log_lock.
420 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
421 struct extent_buffer
*eb
) {
423 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
425 if (eb
&& btrfs_header_level(eb
) == 0)
428 write_lock(&fs_info
->tree_mod_log_lock
);
429 if (list_empty(&(fs_info
)->tree_mod_seq_list
)) {
430 write_unlock(&fs_info
->tree_mod_log_lock
);
437 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
438 static inline int tree_mod_need_log(const struct btrfs_fs_info
*fs_info
,
439 struct extent_buffer
*eb
)
442 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
444 if (eb
&& btrfs_header_level(eb
) == 0)
450 static struct tree_mod_elem
*
451 alloc_tree_mod_elem(struct extent_buffer
*eb
, int slot
,
452 enum mod_log_op op
, gfp_t flags
)
454 struct tree_mod_elem
*tm
;
456 tm
= kzalloc(sizeof(*tm
), flags
);
460 tm
->logical
= eb
->start
;
461 if (op
!= MOD_LOG_KEY_ADD
) {
462 btrfs_node_key(eb
, &tm
->key
, slot
);
463 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
467 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
468 RB_CLEAR_NODE(&tm
->node
);
473 static noinline
int tree_mod_log_insert_key(struct extent_buffer
*eb
, int slot
,
474 enum mod_log_op op
, gfp_t flags
)
476 struct tree_mod_elem
*tm
;
479 if (!tree_mod_need_log(eb
->fs_info
, eb
))
482 tm
= alloc_tree_mod_elem(eb
, slot
, op
, flags
);
486 if (tree_mod_dont_log(eb
->fs_info
, eb
)) {
491 ret
= __tree_mod_log_insert(eb
->fs_info
, tm
);
492 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
499 static noinline
int tree_mod_log_insert_move(struct extent_buffer
*eb
,
500 int dst_slot
, int src_slot
, int nr_items
)
502 struct tree_mod_elem
*tm
= NULL
;
503 struct tree_mod_elem
**tm_list
= NULL
;
508 if (!tree_mod_need_log(eb
->fs_info
, eb
))
511 tm_list
= kcalloc(nr_items
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
515 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
521 tm
->logical
= eb
->start
;
523 tm
->move
.dst_slot
= dst_slot
;
524 tm
->move
.nr_items
= nr_items
;
525 tm
->op
= MOD_LOG_MOVE_KEYS
;
527 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
528 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
+ dst_slot
,
529 MOD_LOG_KEY_REMOVE_WHILE_MOVING
, GFP_NOFS
);
536 if (tree_mod_dont_log(eb
->fs_info
, eb
))
541 * When we override something during the move, we log these removals.
542 * This can only happen when we move towards the beginning of the
543 * buffer, i.e. dst_slot < src_slot.
545 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
546 ret
= __tree_mod_log_insert(eb
->fs_info
, tm_list
[i
]);
551 ret
= __tree_mod_log_insert(eb
->fs_info
, tm
);
554 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
559 for (i
= 0; i
< nr_items
; i
++) {
560 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
561 rb_erase(&tm_list
[i
]->node
, &eb
->fs_info
->tree_mod_log
);
565 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
573 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
574 struct tree_mod_elem
**tm_list
,
580 for (i
= nritems
- 1; i
>= 0; i
--) {
581 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
583 for (j
= nritems
- 1; j
> i
; j
--)
584 rb_erase(&tm_list
[j
]->node
,
585 &fs_info
->tree_mod_log
);
593 static noinline
int tree_mod_log_insert_root(struct extent_buffer
*old_root
,
594 struct extent_buffer
*new_root
, int log_removal
)
596 struct btrfs_fs_info
*fs_info
= old_root
->fs_info
;
597 struct tree_mod_elem
*tm
= NULL
;
598 struct tree_mod_elem
**tm_list
= NULL
;
603 if (!tree_mod_need_log(fs_info
, NULL
))
606 if (log_removal
&& btrfs_header_level(old_root
) > 0) {
607 nritems
= btrfs_header_nritems(old_root
);
608 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*),
614 for (i
= 0; i
< nritems
; i
++) {
615 tm_list
[i
] = alloc_tree_mod_elem(old_root
, i
,
616 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
624 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
630 tm
->logical
= new_root
->start
;
631 tm
->old_root
.logical
= old_root
->start
;
632 tm
->old_root
.level
= btrfs_header_level(old_root
);
633 tm
->generation
= btrfs_header_generation(old_root
);
634 tm
->op
= MOD_LOG_ROOT_REPLACE
;
636 if (tree_mod_dont_log(fs_info
, NULL
))
640 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
642 ret
= __tree_mod_log_insert(fs_info
, tm
);
644 write_unlock(&fs_info
->tree_mod_log_lock
);
653 for (i
= 0; i
< nritems
; i
++)
662 static struct tree_mod_elem
*
663 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
666 struct rb_root
*tm_root
;
667 struct rb_node
*node
;
668 struct tree_mod_elem
*cur
= NULL
;
669 struct tree_mod_elem
*found
= NULL
;
671 read_lock(&fs_info
->tree_mod_log_lock
);
672 tm_root
= &fs_info
->tree_mod_log
;
673 node
= tm_root
->rb_node
;
675 cur
= rb_entry(node
, struct tree_mod_elem
, node
);
676 if (cur
->logical
< start
) {
677 node
= node
->rb_left
;
678 } else if (cur
->logical
> start
) {
679 node
= node
->rb_right
;
680 } else if (cur
->seq
< min_seq
) {
681 node
= node
->rb_left
;
682 } else if (!smallest
) {
683 /* we want the node with the highest seq */
685 BUG_ON(found
->seq
> cur
->seq
);
687 node
= node
->rb_left
;
688 } else if (cur
->seq
> min_seq
) {
689 /* we want the node with the smallest seq */
691 BUG_ON(found
->seq
< cur
->seq
);
693 node
= node
->rb_right
;
699 read_unlock(&fs_info
->tree_mod_log_lock
);
705 * this returns the element from the log with the smallest time sequence
706 * value that's in the log (the oldest log item). any element with a time
707 * sequence lower than min_seq will be ignored.
709 static struct tree_mod_elem
*
710 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
713 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
717 * this returns the element from the log with the largest time sequence
718 * value that's in the log (the most recent log item). any element with
719 * a time sequence lower than min_seq will be ignored.
721 static struct tree_mod_elem
*
722 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
724 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
727 static noinline
int tree_mod_log_eb_copy(struct extent_buffer
*dst
,
728 struct extent_buffer
*src
, unsigned long dst_offset
,
729 unsigned long src_offset
, int nr_items
)
731 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
733 struct tree_mod_elem
**tm_list
= NULL
;
734 struct tree_mod_elem
**tm_list_add
, **tm_list_rem
;
738 if (!tree_mod_need_log(fs_info
, NULL
))
741 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0)
744 tm_list
= kcalloc(nr_items
* 2, sizeof(struct tree_mod_elem
*),
749 tm_list_add
= tm_list
;
750 tm_list_rem
= tm_list
+ nr_items
;
751 for (i
= 0; i
< nr_items
; i
++) {
752 tm_list_rem
[i
] = alloc_tree_mod_elem(src
, i
+ src_offset
,
753 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
754 if (!tm_list_rem
[i
]) {
759 tm_list_add
[i
] = alloc_tree_mod_elem(dst
, i
+ dst_offset
,
760 MOD_LOG_KEY_ADD
, GFP_NOFS
);
761 if (!tm_list_add
[i
]) {
767 if (tree_mod_dont_log(fs_info
, NULL
))
771 for (i
= 0; i
< nr_items
; i
++) {
772 ret
= __tree_mod_log_insert(fs_info
, tm_list_rem
[i
]);
775 ret
= __tree_mod_log_insert(fs_info
, tm_list_add
[i
]);
780 write_unlock(&fs_info
->tree_mod_log_lock
);
786 for (i
= 0; i
< nr_items
* 2; i
++) {
787 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
788 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
792 write_unlock(&fs_info
->tree_mod_log_lock
);
798 static noinline
int tree_mod_log_free_eb(struct extent_buffer
*eb
)
800 struct tree_mod_elem
**tm_list
= NULL
;
805 if (btrfs_header_level(eb
) == 0)
808 if (!tree_mod_need_log(eb
->fs_info
, NULL
))
811 nritems
= btrfs_header_nritems(eb
);
812 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
816 for (i
= 0; i
< nritems
; i
++) {
817 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
,
818 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
825 if (tree_mod_dont_log(eb
->fs_info
, eb
))
828 ret
= __tree_mod_log_free_eb(eb
->fs_info
, tm_list
, nritems
);
829 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
837 for (i
= 0; i
< nritems
; i
++)
845 * check if the tree block can be shared by multiple trees
847 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
848 struct extent_buffer
*buf
)
851 * Tree blocks not in reference counted trees and tree roots
852 * are never shared. If a block was allocated after the last
853 * snapshot and the block was not allocated by tree relocation,
854 * we know the block is not shared.
856 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
857 buf
!= root
->node
&& buf
!= root
->commit_root
&&
858 (btrfs_header_generation(buf
) <=
859 btrfs_root_last_snapshot(&root
->root_item
) ||
860 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
866 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
867 struct btrfs_root
*root
,
868 struct extent_buffer
*buf
,
869 struct extent_buffer
*cow
,
872 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
880 * Backrefs update rules:
882 * Always use full backrefs for extent pointers in tree block
883 * allocated by tree relocation.
885 * If a shared tree block is no longer referenced by its owner
886 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
887 * use full backrefs for extent pointers in tree block.
889 * If a tree block is been relocating
890 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
891 * use full backrefs for extent pointers in tree block.
892 * The reason for this is some operations (such as drop tree)
893 * are only allowed for blocks use full backrefs.
896 if (btrfs_block_can_be_shared(root
, buf
)) {
897 ret
= btrfs_lookup_extent_info(trans
, fs_info
, buf
->start
,
898 btrfs_header_level(buf
), 1,
904 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
909 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
910 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
911 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
916 owner
= btrfs_header_owner(buf
);
917 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
918 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
921 if ((owner
== root
->root_key
.objectid
||
922 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
923 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
924 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
928 if (root
->root_key
.objectid
==
929 BTRFS_TREE_RELOC_OBJECTID
) {
930 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
933 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
937 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
940 if (root
->root_key
.objectid
==
941 BTRFS_TREE_RELOC_OBJECTID
)
942 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
944 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
948 if (new_flags
!= 0) {
949 int level
= btrfs_header_level(buf
);
951 ret
= btrfs_set_disk_extent_flags(trans
, fs_info
,
954 new_flags
, level
, 0);
959 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
960 if (root
->root_key
.objectid
==
961 BTRFS_TREE_RELOC_OBJECTID
)
962 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
964 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
967 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
971 btrfs_clean_tree_block(buf
);
977 static struct extent_buffer
*alloc_tree_block_no_bg_flush(
978 struct btrfs_trans_handle
*trans
,
979 struct btrfs_root
*root
,
981 const struct btrfs_disk_key
*disk_key
,
986 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
987 struct extent_buffer
*ret
;
990 * If we are COWing a node/leaf from the extent, chunk, device or free
991 * space trees, make sure that we do not finish block group creation of
992 * pending block groups. We do this to avoid a deadlock.
993 * COWing can result in allocation of a new chunk, and flushing pending
994 * block groups (btrfs_create_pending_block_groups()) can be triggered
995 * when finishing allocation of a new chunk. Creation of a pending block
996 * group modifies the extent, chunk, device and free space trees,
997 * therefore we could deadlock with ourselves since we are holding a
998 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1000 * For similar reasons, we also need to delay flushing pending block
1001 * groups when splitting a leaf or node, from one of those trees, since
1002 * we are holding a write lock on it and its parent or when inserting a
1003 * new root node for one of those trees.
1005 if (root
== fs_info
->extent_root
||
1006 root
== fs_info
->chunk_root
||
1007 root
== fs_info
->dev_root
||
1008 root
== fs_info
->free_space_root
)
1009 trans
->can_flush_pending_bgs
= false;
1011 ret
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
1012 root
->root_key
.objectid
, disk_key
, level
,
1014 trans
->can_flush_pending_bgs
= true;
1020 * does the dirty work in cow of a single block. The parent block (if
1021 * supplied) is updated to point to the new cow copy. The new buffer is marked
1022 * dirty and returned locked. If you modify the block it needs to be marked
1025 * search_start -- an allocation hint for the new block
1027 * empty_size -- a hint that you plan on doing more cow. This is the size in
1028 * bytes the allocator should try to find free next to the block it returns.
1029 * This is just a hint and may be ignored by the allocator.
1031 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1032 struct btrfs_root
*root
,
1033 struct extent_buffer
*buf
,
1034 struct extent_buffer
*parent
, int parent_slot
,
1035 struct extent_buffer
**cow_ret
,
1036 u64 search_start
, u64 empty_size
)
1038 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1039 struct btrfs_disk_key disk_key
;
1040 struct extent_buffer
*cow
;
1043 int unlock_orig
= 0;
1044 u64 parent_start
= 0;
1046 if (*cow_ret
== buf
)
1049 btrfs_assert_tree_locked(buf
);
1051 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1052 trans
->transid
!= fs_info
->running_transaction
->transid
);
1053 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1054 trans
->transid
!= root
->last_trans
);
1056 level
= btrfs_header_level(buf
);
1059 btrfs_item_key(buf
, &disk_key
, 0);
1061 btrfs_node_key(buf
, &disk_key
, 0);
1063 if ((root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) && parent
)
1064 parent_start
= parent
->start
;
1066 cow
= alloc_tree_block_no_bg_flush(trans
, root
, parent_start
, &disk_key
,
1067 level
, search_start
, empty_size
);
1069 return PTR_ERR(cow
);
1071 /* cow is set to blocking by btrfs_init_new_buffer */
1073 copy_extent_buffer_full(cow
, buf
);
1074 btrfs_set_header_bytenr(cow
, cow
->start
);
1075 btrfs_set_header_generation(cow
, trans
->transid
);
1076 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1077 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1078 BTRFS_HEADER_FLAG_RELOC
);
1079 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1080 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1082 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1084 write_extent_buffer_fsid(cow
, fs_info
->fs_devices
->metadata_uuid
);
1086 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1088 btrfs_abort_transaction(trans
, ret
);
1092 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
)) {
1093 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1095 btrfs_abort_transaction(trans
, ret
);
1100 if (buf
== root
->node
) {
1101 WARN_ON(parent
&& parent
!= buf
);
1102 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1103 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1104 parent_start
= buf
->start
;
1106 extent_buffer_get(cow
);
1107 ret
= tree_mod_log_insert_root(root
->node
, cow
, 1);
1109 rcu_assign_pointer(root
->node
, cow
);
1111 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1113 free_extent_buffer(buf
);
1114 add_root_to_dirty_list(root
);
1116 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1117 tree_mod_log_insert_key(parent
, parent_slot
,
1118 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1119 btrfs_set_node_blockptr(parent
, parent_slot
,
1121 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1123 btrfs_mark_buffer_dirty(parent
);
1125 ret
= tree_mod_log_free_eb(buf
);
1127 btrfs_abort_transaction(trans
, ret
);
1131 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1135 btrfs_tree_unlock(buf
);
1136 free_extent_buffer_stale(buf
);
1137 btrfs_mark_buffer_dirty(cow
);
1143 * returns the logical address of the oldest predecessor of the given root.
1144 * entries older than time_seq are ignored.
1146 static struct tree_mod_elem
*__tree_mod_log_oldest_root(
1147 struct extent_buffer
*eb_root
, u64 time_seq
)
1149 struct tree_mod_elem
*tm
;
1150 struct tree_mod_elem
*found
= NULL
;
1151 u64 root_logical
= eb_root
->start
;
1158 * the very last operation that's logged for a root is the
1159 * replacement operation (if it is replaced at all). this has
1160 * the logical address of the *new* root, making it the very
1161 * first operation that's logged for this root.
1164 tm
= tree_mod_log_search_oldest(eb_root
->fs_info
, root_logical
,
1169 * if there are no tree operation for the oldest root, we simply
1170 * return it. this should only happen if that (old) root is at
1177 * if there's an operation that's not a root replacement, we
1178 * found the oldest version of our root. normally, we'll find a
1179 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1181 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1185 root_logical
= tm
->old_root
.logical
;
1189 /* if there's no old root to return, return what we found instead */
1197 * tm is a pointer to the first operation to rewind within eb. then, all
1198 * previous operations will be rewound (until we reach something older than
1202 __tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1203 u64 time_seq
, struct tree_mod_elem
*first_tm
)
1206 struct rb_node
*next
;
1207 struct tree_mod_elem
*tm
= first_tm
;
1208 unsigned long o_dst
;
1209 unsigned long o_src
;
1210 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1212 n
= btrfs_header_nritems(eb
);
1213 read_lock(&fs_info
->tree_mod_log_lock
);
1214 while (tm
&& tm
->seq
>= time_seq
) {
1216 * all the operations are recorded with the operator used for
1217 * the modification. as we're going backwards, we do the
1218 * opposite of each operation here.
1221 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1222 BUG_ON(tm
->slot
< n
);
1224 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1225 case MOD_LOG_KEY_REMOVE
:
1226 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1227 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1228 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1232 case MOD_LOG_KEY_REPLACE
:
1233 BUG_ON(tm
->slot
>= n
);
1234 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1235 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1236 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1239 case MOD_LOG_KEY_ADD
:
1240 /* if a move operation is needed it's in the log */
1243 case MOD_LOG_MOVE_KEYS
:
1244 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1245 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1246 memmove_extent_buffer(eb
, o_dst
, o_src
,
1247 tm
->move
.nr_items
* p_size
);
1249 case MOD_LOG_ROOT_REPLACE
:
1251 * this operation is special. for roots, this must be
1252 * handled explicitly before rewinding.
1253 * for non-roots, this operation may exist if the node
1254 * was a root: root A -> child B; then A gets empty and
1255 * B is promoted to the new root. in the mod log, we'll
1256 * have a root-replace operation for B, a tree block
1257 * that is no root. we simply ignore that operation.
1261 next
= rb_next(&tm
->node
);
1264 tm
= rb_entry(next
, struct tree_mod_elem
, node
);
1265 if (tm
->logical
!= first_tm
->logical
)
1268 read_unlock(&fs_info
->tree_mod_log_lock
);
1269 btrfs_set_header_nritems(eb
, n
);
1273 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1274 * is returned. If rewind operations happen, a fresh buffer is returned. The
1275 * returned buffer is always read-locked. If the returned buffer is not the
1276 * input buffer, the lock on the input buffer is released and the input buffer
1277 * is freed (its refcount is decremented).
1279 static struct extent_buffer
*
1280 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
1281 struct extent_buffer
*eb
, u64 time_seq
)
1283 struct extent_buffer
*eb_rewin
;
1284 struct tree_mod_elem
*tm
;
1289 if (btrfs_header_level(eb
) == 0)
1292 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1296 btrfs_set_path_blocking(path
);
1297 btrfs_set_lock_blocking_read(eb
);
1299 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1300 BUG_ON(tm
->slot
!= 0);
1301 eb_rewin
= alloc_dummy_extent_buffer(fs_info
, eb
->start
);
1303 btrfs_tree_read_unlock_blocking(eb
);
1304 free_extent_buffer(eb
);
1307 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1308 btrfs_set_header_backref_rev(eb_rewin
,
1309 btrfs_header_backref_rev(eb
));
1310 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1311 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1313 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1315 btrfs_tree_read_unlock_blocking(eb
);
1316 free_extent_buffer(eb
);
1321 btrfs_tree_read_unlock_blocking(eb
);
1322 free_extent_buffer(eb
);
1324 btrfs_tree_read_lock(eb_rewin
);
1325 __tree_mod_log_rewind(fs_info
, eb_rewin
, time_seq
, tm
);
1326 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1327 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1333 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1334 * value. If there are no changes, the current root->root_node is returned. If
1335 * anything changed in between, there's a fresh buffer allocated on which the
1336 * rewind operations are done. In any case, the returned buffer is read locked.
1337 * Returns NULL on error (with no locks held).
1339 static inline struct extent_buffer
*
1340 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1342 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1343 struct tree_mod_elem
*tm
;
1344 struct extent_buffer
*eb
= NULL
;
1345 struct extent_buffer
*eb_root
;
1346 struct extent_buffer
*old
;
1347 struct tree_mod_root
*old_root
= NULL
;
1348 u64 old_generation
= 0;
1352 eb_root
= btrfs_read_lock_root_node(root
);
1353 tm
= __tree_mod_log_oldest_root(eb_root
, time_seq
);
1357 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1358 old_root
= &tm
->old_root
;
1359 old_generation
= tm
->generation
;
1360 logical
= old_root
->logical
;
1361 level
= old_root
->level
;
1363 logical
= eb_root
->start
;
1364 level
= btrfs_header_level(eb_root
);
1367 tm
= tree_mod_log_search(fs_info
, logical
, time_seq
);
1368 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1369 btrfs_tree_read_unlock(eb_root
);
1370 free_extent_buffer(eb_root
);
1371 old
= read_tree_block(fs_info
, logical
, 0, level
, NULL
);
1372 if (WARN_ON(IS_ERR(old
) || !extent_buffer_uptodate(old
))) {
1374 free_extent_buffer(old
);
1376 "failed to read tree block %llu from get_old_root",
1379 eb
= btrfs_clone_extent_buffer(old
);
1380 free_extent_buffer(old
);
1382 } else if (old_root
) {
1383 btrfs_tree_read_unlock(eb_root
);
1384 free_extent_buffer(eb_root
);
1385 eb
= alloc_dummy_extent_buffer(fs_info
, logical
);
1387 btrfs_set_lock_blocking_read(eb_root
);
1388 eb
= btrfs_clone_extent_buffer(eb_root
);
1389 btrfs_tree_read_unlock_blocking(eb_root
);
1390 free_extent_buffer(eb_root
);
1395 btrfs_tree_read_lock(eb
);
1397 btrfs_set_header_bytenr(eb
, eb
->start
);
1398 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1399 btrfs_set_header_owner(eb
, btrfs_header_owner(eb_root
));
1400 btrfs_set_header_level(eb
, old_root
->level
);
1401 btrfs_set_header_generation(eb
, old_generation
);
1404 __tree_mod_log_rewind(fs_info
, eb
, time_seq
, tm
);
1406 WARN_ON(btrfs_header_level(eb
) != 0);
1407 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1412 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1414 struct tree_mod_elem
*tm
;
1416 struct extent_buffer
*eb_root
= btrfs_root_node(root
);
1418 tm
= __tree_mod_log_oldest_root(eb_root
, time_seq
);
1419 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1420 level
= tm
->old_root
.level
;
1422 level
= btrfs_header_level(eb_root
);
1424 free_extent_buffer(eb_root
);
1429 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1430 struct btrfs_root
*root
,
1431 struct extent_buffer
*buf
)
1433 if (btrfs_is_testing(root
->fs_info
))
1436 /* Ensure we can see the FORCE_COW bit */
1437 smp_mb__before_atomic();
1440 * We do not need to cow a block if
1441 * 1) this block is not created or changed in this transaction;
1442 * 2) this block does not belong to TREE_RELOC tree;
1443 * 3) the root is not forced COW.
1445 * What is forced COW:
1446 * when we create snapshot during committing the transaction,
1447 * after we've finished copying src root, we must COW the shared
1448 * block to ensure the metadata consistency.
1450 if (btrfs_header_generation(buf
) == trans
->transid
&&
1451 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1452 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1453 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1454 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
1460 * cows a single block, see __btrfs_cow_block for the real work.
1461 * This version of it has extra checks so that a block isn't COWed more than
1462 * once per transaction, as long as it hasn't been written yet
1464 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1465 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1466 struct extent_buffer
*parent
, int parent_slot
,
1467 struct extent_buffer
**cow_ret
)
1469 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1473 if (test_bit(BTRFS_ROOT_DELETING
, &root
->state
))
1475 "COW'ing blocks on a fs root that's being dropped");
1477 if (trans
->transaction
!= fs_info
->running_transaction
)
1478 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1480 fs_info
->running_transaction
->transid
);
1482 if (trans
->transid
!= fs_info
->generation
)
1483 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1484 trans
->transid
, fs_info
->generation
);
1486 if (!should_cow_block(trans
, root
, buf
)) {
1487 trans
->dirty
= true;
1492 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
1495 btrfs_set_lock_blocking_write(parent
);
1496 btrfs_set_lock_blocking_write(buf
);
1499 * Before CoWing this block for later modification, check if it's
1500 * the subtree root and do the delayed subtree trace if needed.
1502 * Also We don't care about the error, as it's handled internally.
1504 btrfs_qgroup_trace_subtree_after_cow(trans
, root
, buf
);
1505 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1506 parent_slot
, cow_ret
, search_start
, 0);
1508 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1514 * helper function for defrag to decide if two blocks pointed to by a
1515 * node are actually close by
1517 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1519 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1521 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1527 * compare two keys in a memcmp fashion
1529 static int comp_keys(const struct btrfs_disk_key
*disk
,
1530 const struct btrfs_key
*k2
)
1532 struct btrfs_key k1
;
1534 btrfs_disk_key_to_cpu(&k1
, disk
);
1536 return btrfs_comp_cpu_keys(&k1
, k2
);
1540 * same as comp_keys only with two btrfs_key's
1542 int btrfs_comp_cpu_keys(const struct btrfs_key
*k1
, const struct btrfs_key
*k2
)
1544 if (k1
->objectid
> k2
->objectid
)
1546 if (k1
->objectid
< k2
->objectid
)
1548 if (k1
->type
> k2
->type
)
1550 if (k1
->type
< k2
->type
)
1552 if (k1
->offset
> k2
->offset
)
1554 if (k1
->offset
< k2
->offset
)
1560 * this is used by the defrag code to go through all the
1561 * leaves pointed to by a node and reallocate them so that
1562 * disk order is close to key order
1564 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1565 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1566 int start_slot
, u64
*last_ret
,
1567 struct btrfs_key
*progress
)
1569 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1570 struct extent_buffer
*cur
;
1573 u64 search_start
= *last_ret
;
1583 int progress_passed
= 0;
1584 struct btrfs_disk_key disk_key
;
1586 parent_level
= btrfs_header_level(parent
);
1588 WARN_ON(trans
->transaction
!= fs_info
->running_transaction
);
1589 WARN_ON(trans
->transid
!= fs_info
->generation
);
1591 parent_nritems
= btrfs_header_nritems(parent
);
1592 blocksize
= fs_info
->nodesize
;
1593 end_slot
= parent_nritems
- 1;
1595 if (parent_nritems
<= 1)
1598 btrfs_set_lock_blocking_write(parent
);
1600 for (i
= start_slot
; i
<= end_slot
; i
++) {
1601 struct btrfs_key first_key
;
1604 btrfs_node_key(parent
, &disk_key
, i
);
1605 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1608 progress_passed
= 1;
1609 blocknr
= btrfs_node_blockptr(parent
, i
);
1610 gen
= btrfs_node_ptr_generation(parent
, i
);
1611 btrfs_node_key_to_cpu(parent
, &first_key
, i
);
1612 if (last_block
== 0)
1613 last_block
= blocknr
;
1616 other
= btrfs_node_blockptr(parent
, i
- 1);
1617 close
= close_blocks(blocknr
, other
, blocksize
);
1619 if (!close
&& i
< end_slot
) {
1620 other
= btrfs_node_blockptr(parent
, i
+ 1);
1621 close
= close_blocks(blocknr
, other
, blocksize
);
1624 last_block
= blocknr
;
1628 cur
= find_extent_buffer(fs_info
, blocknr
);
1630 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1633 if (!cur
|| !uptodate
) {
1635 cur
= read_tree_block(fs_info
, blocknr
, gen
,
1639 return PTR_ERR(cur
);
1640 } else if (!extent_buffer_uptodate(cur
)) {
1641 free_extent_buffer(cur
);
1644 } else if (!uptodate
) {
1645 err
= btrfs_read_buffer(cur
, gen
,
1646 parent_level
- 1,&first_key
);
1648 free_extent_buffer(cur
);
1653 if (search_start
== 0)
1654 search_start
= last_block
;
1656 btrfs_tree_lock(cur
);
1657 btrfs_set_lock_blocking_write(cur
);
1658 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1661 (end_slot
- i
) * blocksize
));
1663 btrfs_tree_unlock(cur
);
1664 free_extent_buffer(cur
);
1667 search_start
= cur
->start
;
1668 last_block
= cur
->start
;
1669 *last_ret
= search_start
;
1670 btrfs_tree_unlock(cur
);
1671 free_extent_buffer(cur
);
1677 * search for key in the extent_buffer. The items start at offset p,
1678 * and they are item_size apart. There are 'max' items in p.
1680 * the slot in the array is returned via slot, and it points to
1681 * the place where you would insert key if it is not found in
1684 * slot may point to max if the key is bigger than all of the keys
1686 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1687 unsigned long p
, int item_size
,
1688 const struct btrfs_key
*key
,
1695 struct btrfs_disk_key
*tmp
= NULL
;
1696 struct btrfs_disk_key unaligned
;
1697 unsigned long offset
;
1699 unsigned long map_start
= 0;
1700 unsigned long map_len
= 0;
1704 btrfs_err(eb
->fs_info
,
1705 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1706 __func__
, low
, high
, eb
->start
,
1707 btrfs_header_owner(eb
), btrfs_header_level(eb
));
1711 while (low
< high
) {
1712 mid
= (low
+ high
) / 2;
1713 offset
= p
+ mid
* item_size
;
1715 if (!kaddr
|| offset
< map_start
||
1716 (offset
+ sizeof(struct btrfs_disk_key
)) >
1717 map_start
+ map_len
) {
1719 err
= map_private_extent_buffer(eb
, offset
,
1720 sizeof(struct btrfs_disk_key
),
1721 &kaddr
, &map_start
, &map_len
);
1724 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1726 } else if (err
== 1) {
1727 read_extent_buffer(eb
, &unaligned
,
1728 offset
, sizeof(unaligned
));
1735 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1738 ret
= comp_keys(tmp
, key
);
1754 * simple bin_search frontend that does the right thing for
1757 int btrfs_bin_search(struct extent_buffer
*eb
, const struct btrfs_key
*key
,
1758 int level
, int *slot
)
1761 return generic_bin_search(eb
,
1762 offsetof(struct btrfs_leaf
, items
),
1763 sizeof(struct btrfs_item
),
1764 key
, btrfs_header_nritems(eb
),
1767 return generic_bin_search(eb
,
1768 offsetof(struct btrfs_node
, ptrs
),
1769 sizeof(struct btrfs_key_ptr
),
1770 key
, btrfs_header_nritems(eb
),
1774 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1776 spin_lock(&root
->accounting_lock
);
1777 btrfs_set_root_used(&root
->root_item
,
1778 btrfs_root_used(&root
->root_item
) + size
);
1779 spin_unlock(&root
->accounting_lock
);
1782 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1784 spin_lock(&root
->accounting_lock
);
1785 btrfs_set_root_used(&root
->root_item
,
1786 btrfs_root_used(&root
->root_item
) - size
);
1787 spin_unlock(&root
->accounting_lock
);
1790 /* given a node and slot number, this reads the blocks it points to. The
1791 * extent buffer is returned with a reference taken (but unlocked).
1793 static noinline
struct extent_buffer
*read_node_slot(
1794 struct extent_buffer
*parent
, int slot
)
1796 int level
= btrfs_header_level(parent
);
1797 struct extent_buffer
*eb
;
1798 struct btrfs_key first_key
;
1800 if (slot
< 0 || slot
>= btrfs_header_nritems(parent
))
1801 return ERR_PTR(-ENOENT
);
1805 btrfs_node_key_to_cpu(parent
, &first_key
, slot
);
1806 eb
= read_tree_block(parent
->fs_info
, btrfs_node_blockptr(parent
, slot
),
1807 btrfs_node_ptr_generation(parent
, slot
),
1808 level
- 1, &first_key
);
1809 if (!IS_ERR(eb
) && !extent_buffer_uptodate(eb
)) {
1810 free_extent_buffer(eb
);
1818 * node level balancing, used to make sure nodes are in proper order for
1819 * item deletion. We balance from the top down, so we have to make sure
1820 * that a deletion won't leave an node completely empty later on.
1822 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1823 struct btrfs_root
*root
,
1824 struct btrfs_path
*path
, int level
)
1826 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1827 struct extent_buffer
*right
= NULL
;
1828 struct extent_buffer
*mid
;
1829 struct extent_buffer
*left
= NULL
;
1830 struct extent_buffer
*parent
= NULL
;
1834 int orig_slot
= path
->slots
[level
];
1839 mid
= path
->nodes
[level
];
1841 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1842 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1843 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1845 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1847 if (level
< BTRFS_MAX_LEVEL
- 1) {
1848 parent
= path
->nodes
[level
+ 1];
1849 pslot
= path
->slots
[level
+ 1];
1853 * deal with the case where there is only one pointer in the root
1854 * by promoting the node below to a root
1857 struct extent_buffer
*child
;
1859 if (btrfs_header_nritems(mid
) != 1)
1862 /* promote the child to a root */
1863 child
= read_node_slot(mid
, 0);
1864 if (IS_ERR(child
)) {
1865 ret
= PTR_ERR(child
);
1866 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1870 btrfs_tree_lock(child
);
1871 btrfs_set_lock_blocking_write(child
);
1872 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1874 btrfs_tree_unlock(child
);
1875 free_extent_buffer(child
);
1879 ret
= tree_mod_log_insert_root(root
->node
, child
, 1);
1881 rcu_assign_pointer(root
->node
, child
);
1883 add_root_to_dirty_list(root
);
1884 btrfs_tree_unlock(child
);
1886 path
->locks
[level
] = 0;
1887 path
->nodes
[level
] = NULL
;
1888 btrfs_clean_tree_block(mid
);
1889 btrfs_tree_unlock(mid
);
1890 /* once for the path */
1891 free_extent_buffer(mid
);
1893 root_sub_used(root
, mid
->len
);
1894 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1895 /* once for the root ptr */
1896 free_extent_buffer_stale(mid
);
1899 if (btrfs_header_nritems(mid
) >
1900 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 4)
1903 left
= read_node_slot(parent
, pslot
- 1);
1908 btrfs_tree_lock(left
);
1909 btrfs_set_lock_blocking_write(left
);
1910 wret
= btrfs_cow_block(trans
, root
, left
,
1911 parent
, pslot
- 1, &left
);
1918 right
= read_node_slot(parent
, pslot
+ 1);
1923 btrfs_tree_lock(right
);
1924 btrfs_set_lock_blocking_write(right
);
1925 wret
= btrfs_cow_block(trans
, root
, right
,
1926 parent
, pslot
+ 1, &right
);
1933 /* first, try to make some room in the middle buffer */
1935 orig_slot
+= btrfs_header_nritems(left
);
1936 wret
= push_node_left(trans
, left
, mid
, 1);
1942 * then try to empty the right most buffer into the middle
1945 wret
= push_node_left(trans
, mid
, right
, 1);
1946 if (wret
< 0 && wret
!= -ENOSPC
)
1948 if (btrfs_header_nritems(right
) == 0) {
1949 btrfs_clean_tree_block(right
);
1950 btrfs_tree_unlock(right
);
1951 del_ptr(root
, path
, level
+ 1, pslot
+ 1);
1952 root_sub_used(root
, right
->len
);
1953 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1954 free_extent_buffer_stale(right
);
1957 struct btrfs_disk_key right_key
;
1958 btrfs_node_key(right
, &right_key
, 0);
1959 ret
= tree_mod_log_insert_key(parent
, pslot
+ 1,
1960 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1962 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1963 btrfs_mark_buffer_dirty(parent
);
1966 if (btrfs_header_nritems(mid
) == 1) {
1968 * we're not allowed to leave a node with one item in the
1969 * tree during a delete. A deletion from lower in the tree
1970 * could try to delete the only pointer in this node.
1971 * So, pull some keys from the left.
1972 * There has to be a left pointer at this point because
1973 * otherwise we would have pulled some pointers from the
1978 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1981 wret
= balance_node_right(trans
, mid
, left
);
1987 wret
= push_node_left(trans
, left
, mid
, 1);
1993 if (btrfs_header_nritems(mid
) == 0) {
1994 btrfs_clean_tree_block(mid
);
1995 btrfs_tree_unlock(mid
);
1996 del_ptr(root
, path
, level
+ 1, pslot
);
1997 root_sub_used(root
, mid
->len
);
1998 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1999 free_extent_buffer_stale(mid
);
2002 /* update the parent key to reflect our changes */
2003 struct btrfs_disk_key mid_key
;
2004 btrfs_node_key(mid
, &mid_key
, 0);
2005 ret
= tree_mod_log_insert_key(parent
, pslot
,
2006 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2008 btrfs_set_node_key(parent
, &mid_key
, pslot
);
2009 btrfs_mark_buffer_dirty(parent
);
2012 /* update the path */
2014 if (btrfs_header_nritems(left
) > orig_slot
) {
2015 extent_buffer_get(left
);
2016 /* left was locked after cow */
2017 path
->nodes
[level
] = left
;
2018 path
->slots
[level
+ 1] -= 1;
2019 path
->slots
[level
] = orig_slot
;
2021 btrfs_tree_unlock(mid
);
2022 free_extent_buffer(mid
);
2025 orig_slot
-= btrfs_header_nritems(left
);
2026 path
->slots
[level
] = orig_slot
;
2029 /* double check we haven't messed things up */
2031 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
2035 btrfs_tree_unlock(right
);
2036 free_extent_buffer(right
);
2039 if (path
->nodes
[level
] != left
)
2040 btrfs_tree_unlock(left
);
2041 free_extent_buffer(left
);
2046 /* Node balancing for insertion. Here we only split or push nodes around
2047 * when they are completely full. This is also done top down, so we
2048 * have to be pessimistic.
2050 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
2051 struct btrfs_root
*root
,
2052 struct btrfs_path
*path
, int level
)
2054 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2055 struct extent_buffer
*right
= NULL
;
2056 struct extent_buffer
*mid
;
2057 struct extent_buffer
*left
= NULL
;
2058 struct extent_buffer
*parent
= NULL
;
2062 int orig_slot
= path
->slots
[level
];
2067 mid
= path
->nodes
[level
];
2068 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
2070 if (level
< BTRFS_MAX_LEVEL
- 1) {
2071 parent
= path
->nodes
[level
+ 1];
2072 pslot
= path
->slots
[level
+ 1];
2078 left
= read_node_slot(parent
, pslot
- 1);
2082 /* first, try to make some room in the middle buffer */
2086 btrfs_tree_lock(left
);
2087 btrfs_set_lock_blocking_write(left
);
2089 left_nr
= btrfs_header_nritems(left
);
2090 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2093 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
2098 wret
= push_node_left(trans
, left
, mid
, 0);
2104 struct btrfs_disk_key disk_key
;
2105 orig_slot
+= left_nr
;
2106 btrfs_node_key(mid
, &disk_key
, 0);
2107 ret
= tree_mod_log_insert_key(parent
, pslot
,
2108 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2110 btrfs_set_node_key(parent
, &disk_key
, pslot
);
2111 btrfs_mark_buffer_dirty(parent
);
2112 if (btrfs_header_nritems(left
) > orig_slot
) {
2113 path
->nodes
[level
] = left
;
2114 path
->slots
[level
+ 1] -= 1;
2115 path
->slots
[level
] = orig_slot
;
2116 btrfs_tree_unlock(mid
);
2117 free_extent_buffer(mid
);
2120 btrfs_header_nritems(left
);
2121 path
->slots
[level
] = orig_slot
;
2122 btrfs_tree_unlock(left
);
2123 free_extent_buffer(left
);
2127 btrfs_tree_unlock(left
);
2128 free_extent_buffer(left
);
2130 right
= read_node_slot(parent
, pslot
+ 1);
2135 * then try to empty the right most buffer into the middle
2140 btrfs_tree_lock(right
);
2141 btrfs_set_lock_blocking_write(right
);
2143 right_nr
= btrfs_header_nritems(right
);
2144 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2147 ret
= btrfs_cow_block(trans
, root
, right
,
2153 wret
= balance_node_right(trans
, right
, mid
);
2159 struct btrfs_disk_key disk_key
;
2161 btrfs_node_key(right
, &disk_key
, 0);
2162 ret
= tree_mod_log_insert_key(parent
, pslot
+ 1,
2163 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2165 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2166 btrfs_mark_buffer_dirty(parent
);
2168 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2169 path
->nodes
[level
] = right
;
2170 path
->slots
[level
+ 1] += 1;
2171 path
->slots
[level
] = orig_slot
-
2172 btrfs_header_nritems(mid
);
2173 btrfs_tree_unlock(mid
);
2174 free_extent_buffer(mid
);
2176 btrfs_tree_unlock(right
);
2177 free_extent_buffer(right
);
2181 btrfs_tree_unlock(right
);
2182 free_extent_buffer(right
);
2188 * readahead one full node of leaves, finding things that are close
2189 * to the block in 'slot', and triggering ra on them.
2191 static void reada_for_search(struct btrfs_fs_info
*fs_info
,
2192 struct btrfs_path
*path
,
2193 int level
, int slot
, u64 objectid
)
2195 struct extent_buffer
*node
;
2196 struct btrfs_disk_key disk_key
;
2201 struct extent_buffer
*eb
;
2209 if (!path
->nodes
[level
])
2212 node
= path
->nodes
[level
];
2214 search
= btrfs_node_blockptr(node
, slot
);
2215 blocksize
= fs_info
->nodesize
;
2216 eb
= find_extent_buffer(fs_info
, search
);
2218 free_extent_buffer(eb
);
2224 nritems
= btrfs_header_nritems(node
);
2228 if (path
->reada
== READA_BACK
) {
2232 } else if (path
->reada
== READA_FORWARD
) {
2237 if (path
->reada
== READA_BACK
&& objectid
) {
2238 btrfs_node_key(node
, &disk_key
, nr
);
2239 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2242 search
= btrfs_node_blockptr(node
, nr
);
2243 if ((search
<= target
&& target
- search
<= 65536) ||
2244 (search
> target
&& search
- target
<= 65536)) {
2245 readahead_tree_block(fs_info
, search
);
2249 if ((nread
> 65536 || nscan
> 32))
2254 static noinline
void reada_for_balance(struct btrfs_fs_info
*fs_info
,
2255 struct btrfs_path
*path
, int level
)
2259 struct extent_buffer
*parent
;
2260 struct extent_buffer
*eb
;
2265 parent
= path
->nodes
[level
+ 1];
2269 nritems
= btrfs_header_nritems(parent
);
2270 slot
= path
->slots
[level
+ 1];
2273 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2274 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2275 eb
= find_extent_buffer(fs_info
, block1
);
2277 * if we get -eagain from btrfs_buffer_uptodate, we
2278 * don't want to return eagain here. That will loop
2281 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2283 free_extent_buffer(eb
);
2285 if (slot
+ 1 < nritems
) {
2286 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2287 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2288 eb
= find_extent_buffer(fs_info
, block2
);
2289 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2291 free_extent_buffer(eb
);
2295 readahead_tree_block(fs_info
, block1
);
2297 readahead_tree_block(fs_info
, block2
);
2302 * when we walk down the tree, it is usually safe to unlock the higher layers
2303 * in the tree. The exceptions are when our path goes through slot 0, because
2304 * operations on the tree might require changing key pointers higher up in the
2307 * callers might also have set path->keep_locks, which tells this code to keep
2308 * the lock if the path points to the last slot in the block. This is part of
2309 * walking through the tree, and selecting the next slot in the higher block.
2311 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2312 * if lowest_unlock is 1, level 0 won't be unlocked
2314 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2315 int lowest_unlock
, int min_write_lock_level
,
2316 int *write_lock_level
)
2319 int skip_level
= level
;
2321 struct extent_buffer
*t
;
2323 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2324 if (!path
->nodes
[i
])
2326 if (!path
->locks
[i
])
2328 if (!no_skips
&& path
->slots
[i
] == 0) {
2332 if (!no_skips
&& path
->keep_locks
) {
2335 nritems
= btrfs_header_nritems(t
);
2336 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2341 if (skip_level
< i
&& i
>= lowest_unlock
)
2345 if (i
>= lowest_unlock
&& i
> skip_level
) {
2346 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2348 if (write_lock_level
&&
2349 i
> min_write_lock_level
&&
2350 i
<= *write_lock_level
) {
2351 *write_lock_level
= i
- 1;
2358 * This releases any locks held in the path starting at level and
2359 * going all the way up to the root.
2361 * btrfs_search_slot will keep the lock held on higher nodes in a few
2362 * corner cases, such as COW of the block at slot zero in the node. This
2363 * ignores those rules, and it should only be called when there are no
2364 * more updates to be done higher up in the tree.
2366 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2370 if (path
->keep_locks
)
2373 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2374 if (!path
->nodes
[i
])
2376 if (!path
->locks
[i
])
2378 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2384 * helper function for btrfs_search_slot. The goal is to find a block
2385 * in cache without setting the path to blocking. If we find the block
2386 * we return zero and the path is unchanged.
2388 * If we can't find the block, we set the path blocking and do some
2389 * reada. -EAGAIN is returned and the search must be repeated.
2392 read_block_for_search(struct btrfs_root
*root
, struct btrfs_path
*p
,
2393 struct extent_buffer
**eb_ret
, int level
, int slot
,
2394 const struct btrfs_key
*key
)
2396 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2399 struct extent_buffer
*b
= *eb_ret
;
2400 struct extent_buffer
*tmp
;
2401 struct btrfs_key first_key
;
2405 blocknr
= btrfs_node_blockptr(b
, slot
);
2406 gen
= btrfs_node_ptr_generation(b
, slot
);
2407 parent_level
= btrfs_header_level(b
);
2408 btrfs_node_key_to_cpu(b
, &first_key
, slot
);
2410 tmp
= find_extent_buffer(fs_info
, blocknr
);
2412 /* first we do an atomic uptodate check */
2413 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2415 * Do extra check for first_key, eb can be stale due to
2416 * being cached, read from scrub, or have multiple
2417 * parents (shared tree blocks).
2419 if (btrfs_verify_level_key(tmp
,
2420 parent_level
- 1, &first_key
, gen
)) {
2421 free_extent_buffer(tmp
);
2428 /* the pages were up to date, but we failed
2429 * the generation number check. Do a full
2430 * read for the generation number that is correct.
2431 * We must do this without dropping locks so
2432 * we can trust our generation number
2434 btrfs_set_path_blocking(p
);
2436 /* now we're allowed to do a blocking uptodate check */
2437 ret
= btrfs_read_buffer(tmp
, gen
, parent_level
- 1, &first_key
);
2442 free_extent_buffer(tmp
);
2443 btrfs_release_path(p
);
2448 * reduce lock contention at high levels
2449 * of the btree by dropping locks before
2450 * we read. Don't release the lock on the current
2451 * level because we need to walk this node to figure
2452 * out which blocks to read.
2454 btrfs_unlock_up_safe(p
, level
+ 1);
2455 btrfs_set_path_blocking(p
);
2457 if (p
->reada
!= READA_NONE
)
2458 reada_for_search(fs_info
, p
, level
, slot
, key
->objectid
);
2461 tmp
= read_tree_block(fs_info
, blocknr
, gen
, parent_level
- 1,
2465 * If the read above didn't mark this buffer up to date,
2466 * it will never end up being up to date. Set ret to EIO now
2467 * and give up so that our caller doesn't loop forever
2470 if (!extent_buffer_uptodate(tmp
))
2472 free_extent_buffer(tmp
);
2477 btrfs_release_path(p
);
2482 * helper function for btrfs_search_slot. This does all of the checks
2483 * for node-level blocks and does any balancing required based on
2486 * If no extra work was required, zero is returned. If we had to
2487 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2491 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2492 struct btrfs_root
*root
, struct btrfs_path
*p
,
2493 struct extent_buffer
*b
, int level
, int ins_len
,
2494 int *write_lock_level
)
2496 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2499 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2500 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3) {
2503 if (*write_lock_level
< level
+ 1) {
2504 *write_lock_level
= level
+ 1;
2505 btrfs_release_path(p
);
2509 btrfs_set_path_blocking(p
);
2510 reada_for_balance(fs_info
, p
, level
);
2511 sret
= split_node(trans
, root
, p
, level
);
2518 b
= p
->nodes
[level
];
2519 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2520 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 2) {
2523 if (*write_lock_level
< level
+ 1) {
2524 *write_lock_level
= level
+ 1;
2525 btrfs_release_path(p
);
2529 btrfs_set_path_blocking(p
);
2530 reada_for_balance(fs_info
, p
, level
);
2531 sret
= balance_level(trans
, root
, p
, level
);
2537 b
= p
->nodes
[level
];
2539 btrfs_release_path(p
);
2542 BUG_ON(btrfs_header_nritems(b
) == 1);
2552 static int key_search(struct extent_buffer
*b
, const struct btrfs_key
*key
,
2553 int level
, int *prev_cmp
, int *slot
)
2555 if (*prev_cmp
!= 0) {
2556 *prev_cmp
= btrfs_bin_search(b
, key
, level
, slot
);
2565 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
2566 u64 iobjectid
, u64 ioff
, u8 key_type
,
2567 struct btrfs_key
*found_key
)
2570 struct btrfs_key key
;
2571 struct extent_buffer
*eb
;
2576 key
.type
= key_type
;
2577 key
.objectid
= iobjectid
;
2580 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
2584 eb
= path
->nodes
[0];
2585 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
2586 ret
= btrfs_next_leaf(fs_root
, path
);
2589 eb
= path
->nodes
[0];
2592 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
2593 if (found_key
->type
!= key
.type
||
2594 found_key
->objectid
!= key
.objectid
)
2600 static struct extent_buffer
*btrfs_search_slot_get_root(struct btrfs_root
*root
,
2601 struct btrfs_path
*p
,
2602 int write_lock_level
)
2604 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2605 struct extent_buffer
*b
;
2609 /* We try very hard to do read locks on the root */
2610 root_lock
= BTRFS_READ_LOCK
;
2612 if (p
->search_commit_root
) {
2614 * The commit roots are read only so we always do read locks,
2615 * and we always must hold the commit_root_sem when doing
2616 * searches on them, the only exception is send where we don't
2617 * want to block transaction commits for a long time, so
2618 * we need to clone the commit root in order to avoid races
2619 * with transaction commits that create a snapshot of one of
2620 * the roots used by a send operation.
2622 if (p
->need_commit_sem
) {
2623 down_read(&fs_info
->commit_root_sem
);
2624 b
= btrfs_clone_extent_buffer(root
->commit_root
);
2625 up_read(&fs_info
->commit_root_sem
);
2627 return ERR_PTR(-ENOMEM
);
2630 b
= root
->commit_root
;
2631 extent_buffer_get(b
);
2633 level
= btrfs_header_level(b
);
2635 * Ensure that all callers have set skip_locking when
2636 * p->search_commit_root = 1.
2638 ASSERT(p
->skip_locking
== 1);
2643 if (p
->skip_locking
) {
2644 b
= btrfs_root_node(root
);
2645 level
= btrfs_header_level(b
);
2650 * If the level is set to maximum, we can skip trying to get the read
2653 if (write_lock_level
< BTRFS_MAX_LEVEL
) {
2655 * We don't know the level of the root node until we actually
2656 * have it read locked
2658 b
= btrfs_read_lock_root_node(root
);
2659 level
= btrfs_header_level(b
);
2660 if (level
> write_lock_level
)
2663 /* Whoops, must trade for write lock */
2664 btrfs_tree_read_unlock(b
);
2665 free_extent_buffer(b
);
2668 b
= btrfs_lock_root_node(root
);
2669 root_lock
= BTRFS_WRITE_LOCK
;
2671 /* The level might have changed, check again */
2672 level
= btrfs_header_level(b
);
2675 p
->nodes
[level
] = b
;
2676 if (!p
->skip_locking
)
2677 p
->locks
[level
] = root_lock
;
2679 * Callers are responsible for dropping b's references.
2686 * btrfs_search_slot - look for a key in a tree and perform necessary
2687 * modifications to preserve tree invariants.
2689 * @trans: Handle of transaction, used when modifying the tree
2690 * @p: Holds all btree nodes along the search path
2691 * @root: The root node of the tree
2692 * @key: The key we are looking for
2693 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2694 * deletions it's -1. 0 for plain searches
2695 * @cow: boolean should CoW operations be performed. Must always be 1
2696 * when modifying the tree.
2698 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2699 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2701 * If @key is found, 0 is returned and you can find the item in the leaf level
2702 * of the path (level 0)
2704 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2705 * points to the slot where it should be inserted
2707 * If an error is encountered while searching the tree a negative error number
2710 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2711 const struct btrfs_key
*key
, struct btrfs_path
*p
,
2712 int ins_len
, int cow
)
2714 struct extent_buffer
*b
;
2719 int lowest_unlock
= 1;
2720 /* everything at write_lock_level or lower must be write locked */
2721 int write_lock_level
= 0;
2722 u8 lowest_level
= 0;
2723 int min_write_lock_level
;
2726 lowest_level
= p
->lowest_level
;
2727 WARN_ON(lowest_level
&& ins_len
> 0);
2728 WARN_ON(p
->nodes
[0] != NULL
);
2729 BUG_ON(!cow
&& ins_len
);
2734 /* when we are removing items, we might have to go up to level
2735 * two as we update tree pointers Make sure we keep write
2736 * for those levels as well
2738 write_lock_level
= 2;
2739 } else if (ins_len
> 0) {
2741 * for inserting items, make sure we have a write lock on
2742 * level 1 so we can update keys
2744 write_lock_level
= 1;
2748 write_lock_level
= -1;
2750 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2751 write_lock_level
= BTRFS_MAX_LEVEL
;
2753 min_write_lock_level
= write_lock_level
;
2757 b
= btrfs_search_slot_get_root(root
, p
, write_lock_level
);
2764 level
= btrfs_header_level(b
);
2767 * setup the path here so we can release it under lock
2768 * contention with the cow code
2771 bool last_level
= (level
== (BTRFS_MAX_LEVEL
- 1));
2774 * if we don't really need to cow this block
2775 * then we don't want to set the path blocking,
2776 * so we test it here
2778 if (!should_cow_block(trans
, root
, b
)) {
2779 trans
->dirty
= true;
2784 * must have write locks on this node and the
2787 if (level
> write_lock_level
||
2788 (level
+ 1 > write_lock_level
&&
2789 level
+ 1 < BTRFS_MAX_LEVEL
&&
2790 p
->nodes
[level
+ 1])) {
2791 write_lock_level
= level
+ 1;
2792 btrfs_release_path(p
);
2796 btrfs_set_path_blocking(p
);
2798 err
= btrfs_cow_block(trans
, root
, b
, NULL
, 0,
2801 err
= btrfs_cow_block(trans
, root
, b
,
2802 p
->nodes
[level
+ 1],
2803 p
->slots
[level
+ 1], &b
);
2810 p
->nodes
[level
] = b
;
2812 * Leave path with blocking locks to avoid massive
2813 * lock context switch, this is made on purpose.
2817 * we have a lock on b and as long as we aren't changing
2818 * the tree, there is no way to for the items in b to change.
2819 * It is safe to drop the lock on our parent before we
2820 * go through the expensive btree search on b.
2822 * If we're inserting or deleting (ins_len != 0), then we might
2823 * be changing slot zero, which may require changing the parent.
2824 * So, we can't drop the lock until after we know which slot
2825 * we're operating on.
2827 if (!ins_len
&& !p
->keep_locks
) {
2830 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2831 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2836 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2842 if (ret
&& slot
> 0) {
2846 p
->slots
[level
] = slot
;
2847 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2848 ins_len
, &write_lock_level
);
2855 b
= p
->nodes
[level
];
2856 slot
= p
->slots
[level
];
2859 * slot 0 is special, if we change the key
2860 * we have to update the parent pointer
2861 * which means we must have a write lock
2864 if (slot
== 0 && ins_len
&&
2865 write_lock_level
< level
+ 1) {
2866 write_lock_level
= level
+ 1;
2867 btrfs_release_path(p
);
2871 unlock_up(p
, level
, lowest_unlock
,
2872 min_write_lock_level
, &write_lock_level
);
2874 if (level
== lowest_level
) {
2880 err
= read_block_for_search(root
, p
, &b
, level
,
2889 if (!p
->skip_locking
) {
2890 level
= btrfs_header_level(b
);
2891 if (level
<= write_lock_level
) {
2892 err
= btrfs_try_tree_write_lock(b
);
2894 btrfs_set_path_blocking(p
);
2897 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2899 err
= btrfs_tree_read_lock_atomic(b
);
2901 btrfs_set_path_blocking(p
);
2902 btrfs_tree_read_lock(b
);
2904 p
->locks
[level
] = BTRFS_READ_LOCK
;
2906 p
->nodes
[level
] = b
;
2909 p
->slots
[level
] = slot
;
2911 btrfs_leaf_free_space(b
) < ins_len
) {
2912 if (write_lock_level
< 1) {
2913 write_lock_level
= 1;
2914 btrfs_release_path(p
);
2918 btrfs_set_path_blocking(p
);
2919 err
= split_leaf(trans
, root
, key
,
2920 p
, ins_len
, ret
== 0);
2928 if (!p
->search_for_split
)
2929 unlock_up(p
, level
, lowest_unlock
,
2930 min_write_lock_level
, NULL
);
2937 * we don't really know what they plan on doing with the path
2938 * from here on, so for now just mark it as blocking
2940 if (!p
->leave_spinning
)
2941 btrfs_set_path_blocking(p
);
2942 if (ret
< 0 && !p
->skip_release_on_error
)
2943 btrfs_release_path(p
);
2948 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2949 * current state of the tree together with the operations recorded in the tree
2950 * modification log to search for the key in a previous version of this tree, as
2951 * denoted by the time_seq parameter.
2953 * Naturally, there is no support for insert, delete or cow operations.
2955 * The resulting path and return value will be set up as if we called
2956 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2958 int btrfs_search_old_slot(struct btrfs_root
*root
, const struct btrfs_key
*key
,
2959 struct btrfs_path
*p
, u64 time_seq
)
2961 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2962 struct extent_buffer
*b
;
2967 int lowest_unlock
= 1;
2968 u8 lowest_level
= 0;
2971 lowest_level
= p
->lowest_level
;
2972 WARN_ON(p
->nodes
[0] != NULL
);
2974 if (p
->search_commit_root
) {
2976 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2980 b
= get_old_root(root
, time_seq
);
2985 level
= btrfs_header_level(b
);
2986 p
->locks
[level
] = BTRFS_READ_LOCK
;
2989 level
= btrfs_header_level(b
);
2990 p
->nodes
[level
] = b
;
2993 * we have a lock on b and as long as we aren't changing
2994 * the tree, there is no way to for the items in b to change.
2995 * It is safe to drop the lock on our parent before we
2996 * go through the expensive btree search on b.
2998 btrfs_unlock_up_safe(p
, level
+ 1);
3001 * Since we can unwind ebs we want to do a real search every
3005 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
3011 if (ret
&& slot
> 0) {
3015 p
->slots
[level
] = slot
;
3016 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3018 if (level
== lowest_level
) {
3024 err
= read_block_for_search(root
, p
, &b
, level
,
3033 level
= btrfs_header_level(b
);
3034 err
= btrfs_tree_read_lock_atomic(b
);
3036 btrfs_set_path_blocking(p
);
3037 btrfs_tree_read_lock(b
);
3039 b
= tree_mod_log_rewind(fs_info
, p
, b
, time_seq
);
3044 p
->locks
[level
] = BTRFS_READ_LOCK
;
3045 p
->nodes
[level
] = b
;
3047 p
->slots
[level
] = slot
;
3048 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3054 if (!p
->leave_spinning
)
3055 btrfs_set_path_blocking(p
);
3057 btrfs_release_path(p
);
3063 * helper to use instead of search slot if no exact match is needed but
3064 * instead the next or previous item should be returned.
3065 * When find_higher is true, the next higher item is returned, the next lower
3067 * When return_any and find_higher are both true, and no higher item is found,
3068 * return the next lower instead.
3069 * When return_any is true and find_higher is false, and no lower item is found,
3070 * return the next higher instead.
3071 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3074 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
3075 const struct btrfs_key
*key
,
3076 struct btrfs_path
*p
, int find_higher
,
3080 struct extent_buffer
*leaf
;
3083 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
3087 * a return value of 1 means the path is at the position where the
3088 * item should be inserted. Normally this is the next bigger item,
3089 * but in case the previous item is the last in a leaf, path points
3090 * to the first free slot in the previous leaf, i.e. at an invalid
3096 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3097 ret
= btrfs_next_leaf(root
, p
);
3103 * no higher item found, return the next
3108 btrfs_release_path(p
);
3112 if (p
->slots
[0] == 0) {
3113 ret
= btrfs_prev_leaf(root
, p
);
3118 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
3125 * no lower item found, return the next
3130 btrfs_release_path(p
);
3140 * adjust the pointers going up the tree, starting at level
3141 * making sure the right key of each node is points to 'key'.
3142 * This is used after shifting pointers to the left, so it stops
3143 * fixing up pointers when a given leaf/node is not in slot 0 of the
3147 static void fixup_low_keys(struct btrfs_path
*path
,
3148 struct btrfs_disk_key
*key
, int level
)
3151 struct extent_buffer
*t
;
3154 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
3155 int tslot
= path
->slots
[i
];
3157 if (!path
->nodes
[i
])
3160 ret
= tree_mod_log_insert_key(t
, tslot
, MOD_LOG_KEY_REPLACE
,
3163 btrfs_set_node_key(t
, key
, tslot
);
3164 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
3173 * This function isn't completely safe. It's the caller's responsibility
3174 * that the new key won't break the order
3176 void btrfs_set_item_key_safe(struct btrfs_fs_info
*fs_info
,
3177 struct btrfs_path
*path
,
3178 const struct btrfs_key
*new_key
)
3180 struct btrfs_disk_key disk_key
;
3181 struct extent_buffer
*eb
;
3184 eb
= path
->nodes
[0];
3185 slot
= path
->slots
[0];
3187 btrfs_item_key(eb
, &disk_key
, slot
- 1);
3188 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
3190 if (slot
< btrfs_header_nritems(eb
) - 1) {
3191 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
3192 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
3195 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3196 btrfs_set_item_key(eb
, &disk_key
, slot
);
3197 btrfs_mark_buffer_dirty(eb
);
3199 fixup_low_keys(path
, &disk_key
, 1);
3203 * try to push data from one node into the next node left in the
3206 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3207 * error, and > 0 if there was no room in the left hand block.
3209 static int push_node_left(struct btrfs_trans_handle
*trans
,
3210 struct extent_buffer
*dst
,
3211 struct extent_buffer
*src
, int empty
)
3213 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3219 src_nritems
= btrfs_header_nritems(src
);
3220 dst_nritems
= btrfs_header_nritems(dst
);
3221 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3222 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3223 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3225 if (!empty
&& src_nritems
<= 8)
3228 if (push_items
<= 0)
3232 push_items
= min(src_nritems
, push_items
);
3233 if (push_items
< src_nritems
) {
3234 /* leave at least 8 pointers in the node if
3235 * we aren't going to empty it
3237 if (src_nritems
- push_items
< 8) {
3238 if (push_items
<= 8)
3244 push_items
= min(src_nritems
- 8, push_items
);
3246 ret
= tree_mod_log_eb_copy(dst
, src
, dst_nritems
, 0, push_items
);
3248 btrfs_abort_transaction(trans
, ret
);
3251 copy_extent_buffer(dst
, src
,
3252 btrfs_node_key_ptr_offset(dst_nritems
),
3253 btrfs_node_key_ptr_offset(0),
3254 push_items
* sizeof(struct btrfs_key_ptr
));
3256 if (push_items
< src_nritems
) {
3258 * Don't call tree_mod_log_insert_move here, key removal was
3259 * already fully logged by tree_mod_log_eb_copy above.
3261 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3262 btrfs_node_key_ptr_offset(push_items
),
3263 (src_nritems
- push_items
) *
3264 sizeof(struct btrfs_key_ptr
));
3266 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3267 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3268 btrfs_mark_buffer_dirty(src
);
3269 btrfs_mark_buffer_dirty(dst
);
3275 * try to push data from one node into the next node right in the
3278 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3279 * error, and > 0 if there was no room in the right hand block.
3281 * this will only push up to 1/2 the contents of the left node over
3283 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3284 struct extent_buffer
*dst
,
3285 struct extent_buffer
*src
)
3287 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3294 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3295 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3297 src_nritems
= btrfs_header_nritems(src
);
3298 dst_nritems
= btrfs_header_nritems(dst
);
3299 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3300 if (push_items
<= 0)
3303 if (src_nritems
< 4)
3306 max_push
= src_nritems
/ 2 + 1;
3307 /* don't try to empty the node */
3308 if (max_push
>= src_nritems
)
3311 if (max_push
< push_items
)
3312 push_items
= max_push
;
3314 ret
= tree_mod_log_insert_move(dst
, push_items
, 0, dst_nritems
);
3316 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3317 btrfs_node_key_ptr_offset(0),
3319 sizeof(struct btrfs_key_ptr
));
3321 ret
= tree_mod_log_eb_copy(dst
, src
, 0, src_nritems
- push_items
,
3324 btrfs_abort_transaction(trans
, ret
);
3327 copy_extent_buffer(dst
, src
,
3328 btrfs_node_key_ptr_offset(0),
3329 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3330 push_items
* sizeof(struct btrfs_key_ptr
));
3332 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3333 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3335 btrfs_mark_buffer_dirty(src
);
3336 btrfs_mark_buffer_dirty(dst
);
3342 * helper function to insert a new root level in the tree.
3343 * A new node is allocated, and a single item is inserted to
3344 * point to the existing root
3346 * returns zero on success or < 0 on failure.
3348 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3349 struct btrfs_root
*root
,
3350 struct btrfs_path
*path
, int level
)
3352 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3354 struct extent_buffer
*lower
;
3355 struct extent_buffer
*c
;
3356 struct extent_buffer
*old
;
3357 struct btrfs_disk_key lower_key
;
3360 BUG_ON(path
->nodes
[level
]);
3361 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3363 lower
= path
->nodes
[level
-1];
3365 btrfs_item_key(lower
, &lower_key
, 0);
3367 btrfs_node_key(lower
, &lower_key
, 0);
3369 c
= alloc_tree_block_no_bg_flush(trans
, root
, 0, &lower_key
, level
,
3370 root
->node
->start
, 0);
3374 root_add_used(root
, fs_info
->nodesize
);
3376 btrfs_set_header_nritems(c
, 1);
3377 btrfs_set_node_key(c
, &lower_key
, 0);
3378 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3379 lower_gen
= btrfs_header_generation(lower
);
3380 WARN_ON(lower_gen
!= trans
->transid
);
3382 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3384 btrfs_mark_buffer_dirty(c
);
3387 ret
= tree_mod_log_insert_root(root
->node
, c
, 0);
3389 rcu_assign_pointer(root
->node
, c
);
3391 /* the super has an extra ref to root->node */
3392 free_extent_buffer(old
);
3394 add_root_to_dirty_list(root
);
3395 extent_buffer_get(c
);
3396 path
->nodes
[level
] = c
;
3397 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
3398 path
->slots
[level
] = 0;
3403 * worker function to insert a single pointer in a node.
3404 * the node should have enough room for the pointer already
3406 * slot and level indicate where you want the key to go, and
3407 * blocknr is the block the key points to.
3409 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3410 struct btrfs_path
*path
,
3411 struct btrfs_disk_key
*key
, u64 bytenr
,
3412 int slot
, int level
)
3414 struct extent_buffer
*lower
;
3418 BUG_ON(!path
->nodes
[level
]);
3419 btrfs_assert_tree_locked(path
->nodes
[level
]);
3420 lower
= path
->nodes
[level
];
3421 nritems
= btrfs_header_nritems(lower
);
3422 BUG_ON(slot
> nritems
);
3423 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(trans
->fs_info
));
3424 if (slot
!= nritems
) {
3426 ret
= tree_mod_log_insert_move(lower
, slot
+ 1, slot
,
3430 memmove_extent_buffer(lower
,
3431 btrfs_node_key_ptr_offset(slot
+ 1),
3432 btrfs_node_key_ptr_offset(slot
),
3433 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3436 ret
= tree_mod_log_insert_key(lower
, slot
, MOD_LOG_KEY_ADD
,
3440 btrfs_set_node_key(lower
, key
, slot
);
3441 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3442 WARN_ON(trans
->transid
== 0);
3443 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3444 btrfs_set_header_nritems(lower
, nritems
+ 1);
3445 btrfs_mark_buffer_dirty(lower
);
3449 * split the node at the specified level in path in two.
3450 * The path is corrected to point to the appropriate node after the split
3452 * Before splitting this tries to make some room in the node by pushing
3453 * left and right, if either one works, it returns right away.
3455 * returns 0 on success and < 0 on failure
3457 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3458 struct btrfs_root
*root
,
3459 struct btrfs_path
*path
, int level
)
3461 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3462 struct extent_buffer
*c
;
3463 struct extent_buffer
*split
;
3464 struct btrfs_disk_key disk_key
;
3469 c
= path
->nodes
[level
];
3470 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3471 if (c
== root
->node
) {
3473 * trying to split the root, lets make a new one
3475 * tree mod log: We don't log_removal old root in
3476 * insert_new_root, because that root buffer will be kept as a
3477 * normal node. We are going to log removal of half of the
3478 * elements below with tree_mod_log_eb_copy. We're holding a
3479 * tree lock on the buffer, which is why we cannot race with
3480 * other tree_mod_log users.
3482 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3486 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3487 c
= path
->nodes
[level
];
3488 if (!ret
&& btrfs_header_nritems(c
) <
3489 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3)
3495 c_nritems
= btrfs_header_nritems(c
);
3496 mid
= (c_nritems
+ 1) / 2;
3497 btrfs_node_key(c
, &disk_key
, mid
);
3499 split
= alloc_tree_block_no_bg_flush(trans
, root
, 0, &disk_key
, level
,
3502 return PTR_ERR(split
);
3504 root_add_used(root
, fs_info
->nodesize
);
3505 ASSERT(btrfs_header_level(c
) == level
);
3507 ret
= tree_mod_log_eb_copy(split
, c
, 0, mid
, c_nritems
- mid
);
3509 btrfs_abort_transaction(trans
, ret
);
3512 copy_extent_buffer(split
, c
,
3513 btrfs_node_key_ptr_offset(0),
3514 btrfs_node_key_ptr_offset(mid
),
3515 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3516 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3517 btrfs_set_header_nritems(c
, mid
);
3520 btrfs_mark_buffer_dirty(c
);
3521 btrfs_mark_buffer_dirty(split
);
3523 insert_ptr(trans
, path
, &disk_key
, split
->start
,
3524 path
->slots
[level
+ 1] + 1, level
+ 1);
3526 if (path
->slots
[level
] >= mid
) {
3527 path
->slots
[level
] -= mid
;
3528 btrfs_tree_unlock(c
);
3529 free_extent_buffer(c
);
3530 path
->nodes
[level
] = split
;
3531 path
->slots
[level
+ 1] += 1;
3533 btrfs_tree_unlock(split
);
3534 free_extent_buffer(split
);
3540 * how many bytes are required to store the items in a leaf. start
3541 * and nr indicate which items in the leaf to check. This totals up the
3542 * space used both by the item structs and the item data
3544 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3546 struct btrfs_item
*start_item
;
3547 struct btrfs_item
*end_item
;
3548 struct btrfs_map_token token
;
3550 int nritems
= btrfs_header_nritems(l
);
3551 int end
= min(nritems
, start
+ nr
) - 1;
3555 btrfs_init_map_token(&token
);
3556 start_item
= btrfs_item_nr(start
);
3557 end_item
= btrfs_item_nr(end
);
3558 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3559 btrfs_token_item_size(l
, start_item
, &token
);
3560 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3561 data_len
+= sizeof(struct btrfs_item
) * nr
;
3562 WARN_ON(data_len
< 0);
3567 * The space between the end of the leaf items and
3568 * the start of the leaf data. IOW, how much room
3569 * the leaf has left for both items and data
3571 noinline
int btrfs_leaf_free_space(struct extent_buffer
*leaf
)
3573 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
3574 int nritems
= btrfs_header_nritems(leaf
);
3577 ret
= BTRFS_LEAF_DATA_SIZE(fs_info
) - leaf_space_used(leaf
, 0, nritems
);
3580 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3582 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info
),
3583 leaf_space_used(leaf
, 0, nritems
), nritems
);
3589 * min slot controls the lowest index we're willing to push to the
3590 * right. We'll push up to and including min_slot, but no lower
3592 static noinline
int __push_leaf_right(struct btrfs_path
*path
,
3593 int data_size
, int empty
,
3594 struct extent_buffer
*right
,
3595 int free_space
, u32 left_nritems
,
3598 struct btrfs_fs_info
*fs_info
= right
->fs_info
;
3599 struct extent_buffer
*left
= path
->nodes
[0];
3600 struct extent_buffer
*upper
= path
->nodes
[1];
3601 struct btrfs_map_token token
;
3602 struct btrfs_disk_key disk_key
;
3607 struct btrfs_item
*item
;
3613 btrfs_init_map_token(&token
);
3618 nr
= max_t(u32
, 1, min_slot
);
3620 if (path
->slots
[0] >= left_nritems
)
3621 push_space
+= data_size
;
3623 slot
= path
->slots
[1];
3624 i
= left_nritems
- 1;
3626 item
= btrfs_item_nr(i
);
3628 if (!empty
&& push_items
> 0) {
3629 if (path
->slots
[0] > i
)
3631 if (path
->slots
[0] == i
) {
3632 int space
= btrfs_leaf_free_space(left
);
3634 if (space
+ push_space
* 2 > free_space
)
3639 if (path
->slots
[0] == i
)
3640 push_space
+= data_size
;
3642 this_item_size
= btrfs_item_size(left
, item
);
3643 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3647 push_space
+= this_item_size
+ sizeof(*item
);
3653 if (push_items
== 0)
3656 WARN_ON(!empty
&& push_items
== left_nritems
);
3658 /* push left to right */
3659 right_nritems
= btrfs_header_nritems(right
);
3661 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3662 push_space
-= leaf_data_end(left
);
3664 /* make room in the right data area */
3665 data_end
= leaf_data_end(right
);
3666 memmove_extent_buffer(right
,
3667 BTRFS_LEAF_DATA_OFFSET
+ data_end
- push_space
,
3668 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
3669 BTRFS_LEAF_DATA_SIZE(fs_info
) - data_end
);
3671 /* copy from the left data area */
3672 copy_extent_buffer(right
, left
, BTRFS_LEAF_DATA_OFFSET
+
3673 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3674 BTRFS_LEAF_DATA_OFFSET
+ leaf_data_end(left
),
3677 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3678 btrfs_item_nr_offset(0),
3679 right_nritems
* sizeof(struct btrfs_item
));
3681 /* copy the items from left to right */
3682 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3683 btrfs_item_nr_offset(left_nritems
- push_items
),
3684 push_items
* sizeof(struct btrfs_item
));
3686 /* update the item pointers */
3687 right_nritems
+= push_items
;
3688 btrfs_set_header_nritems(right
, right_nritems
);
3689 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3690 for (i
= 0; i
< right_nritems
; i
++) {
3691 item
= btrfs_item_nr(i
);
3692 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3693 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3696 left_nritems
-= push_items
;
3697 btrfs_set_header_nritems(left
, left_nritems
);
3700 btrfs_mark_buffer_dirty(left
);
3702 btrfs_clean_tree_block(left
);
3704 btrfs_mark_buffer_dirty(right
);
3706 btrfs_item_key(right
, &disk_key
, 0);
3707 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3708 btrfs_mark_buffer_dirty(upper
);
3710 /* then fixup the leaf pointer in the path */
3711 if (path
->slots
[0] >= left_nritems
) {
3712 path
->slots
[0] -= left_nritems
;
3713 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3714 btrfs_clean_tree_block(path
->nodes
[0]);
3715 btrfs_tree_unlock(path
->nodes
[0]);
3716 free_extent_buffer(path
->nodes
[0]);
3717 path
->nodes
[0] = right
;
3718 path
->slots
[1] += 1;
3720 btrfs_tree_unlock(right
);
3721 free_extent_buffer(right
);
3726 btrfs_tree_unlock(right
);
3727 free_extent_buffer(right
);
3732 * push some data in the path leaf to the right, trying to free up at
3733 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3735 * returns 1 if the push failed because the other node didn't have enough
3736 * room, 0 if everything worked out and < 0 if there were major errors.
3738 * this will push starting from min_slot to the end of the leaf. It won't
3739 * push any slot lower than min_slot
3741 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3742 *root
, struct btrfs_path
*path
,
3743 int min_data_size
, int data_size
,
3744 int empty
, u32 min_slot
)
3746 struct extent_buffer
*left
= path
->nodes
[0];
3747 struct extent_buffer
*right
;
3748 struct extent_buffer
*upper
;
3754 if (!path
->nodes
[1])
3757 slot
= path
->slots
[1];
3758 upper
= path
->nodes
[1];
3759 if (slot
>= btrfs_header_nritems(upper
) - 1)
3762 btrfs_assert_tree_locked(path
->nodes
[1]);
3764 right
= read_node_slot(upper
, slot
+ 1);
3766 * slot + 1 is not valid or we fail to read the right node,
3767 * no big deal, just return.
3772 btrfs_tree_lock(right
);
3773 btrfs_set_lock_blocking_write(right
);
3775 free_space
= btrfs_leaf_free_space(right
);
3776 if (free_space
< data_size
)
3779 /* cow and double check */
3780 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3785 free_space
= btrfs_leaf_free_space(right
);
3786 if (free_space
< data_size
)
3789 left_nritems
= btrfs_header_nritems(left
);
3790 if (left_nritems
== 0)
3793 if (path
->slots
[0] == left_nritems
&& !empty
) {
3794 /* Key greater than all keys in the leaf, right neighbor has
3795 * enough room for it and we're not emptying our leaf to delete
3796 * it, therefore use right neighbor to insert the new item and
3797 * no need to touch/dirty our left leaf. */
3798 btrfs_tree_unlock(left
);
3799 free_extent_buffer(left
);
3800 path
->nodes
[0] = right
;
3806 return __push_leaf_right(path
, min_data_size
, empty
,
3807 right
, free_space
, left_nritems
, min_slot
);
3809 btrfs_tree_unlock(right
);
3810 free_extent_buffer(right
);
3815 * push some data in the path leaf to the left, trying to free up at
3816 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3818 * max_slot can put a limit on how far into the leaf we'll push items. The
3819 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3822 static noinline
int __push_leaf_left(struct btrfs_path
*path
, int data_size
,
3823 int empty
, struct extent_buffer
*left
,
3824 int free_space
, u32 right_nritems
,
3827 struct btrfs_fs_info
*fs_info
= left
->fs_info
;
3828 struct btrfs_disk_key disk_key
;
3829 struct extent_buffer
*right
= path
->nodes
[0];
3833 struct btrfs_item
*item
;
3834 u32 old_left_nritems
;
3838 u32 old_left_item_size
;
3839 struct btrfs_map_token token
;
3841 btrfs_init_map_token(&token
);
3844 nr
= min(right_nritems
, max_slot
);
3846 nr
= min(right_nritems
- 1, max_slot
);
3848 for (i
= 0; i
< nr
; i
++) {
3849 item
= btrfs_item_nr(i
);
3851 if (!empty
&& push_items
> 0) {
3852 if (path
->slots
[0] < i
)
3854 if (path
->slots
[0] == i
) {
3855 int space
= btrfs_leaf_free_space(right
);
3857 if (space
+ push_space
* 2 > free_space
)
3862 if (path
->slots
[0] == i
)
3863 push_space
+= data_size
;
3865 this_item_size
= btrfs_item_size(right
, item
);
3866 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3870 push_space
+= this_item_size
+ sizeof(*item
);
3873 if (push_items
== 0) {
3877 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3879 /* push data from right to left */
3880 copy_extent_buffer(left
, right
,
3881 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3882 btrfs_item_nr_offset(0),
3883 push_items
* sizeof(struct btrfs_item
));
3885 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
) -
3886 btrfs_item_offset_nr(right
, push_items
- 1);
3888 copy_extent_buffer(left
, right
, BTRFS_LEAF_DATA_OFFSET
+
3889 leaf_data_end(left
) - push_space
,
3890 BTRFS_LEAF_DATA_OFFSET
+
3891 btrfs_item_offset_nr(right
, push_items
- 1),
3893 old_left_nritems
= btrfs_header_nritems(left
);
3894 BUG_ON(old_left_nritems
<= 0);
3896 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3897 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3900 item
= btrfs_item_nr(i
);
3902 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3903 btrfs_set_token_item_offset(left
, item
,
3904 ioff
- (BTRFS_LEAF_DATA_SIZE(fs_info
) - old_left_item_size
),
3907 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3909 /* fixup right node */
3910 if (push_items
> right_nritems
)
3911 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3914 if (push_items
< right_nritems
) {
3915 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3916 leaf_data_end(right
);
3917 memmove_extent_buffer(right
, BTRFS_LEAF_DATA_OFFSET
+
3918 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3919 BTRFS_LEAF_DATA_OFFSET
+
3920 leaf_data_end(right
), push_space
);
3922 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3923 btrfs_item_nr_offset(push_items
),
3924 (btrfs_header_nritems(right
) - push_items
) *
3925 sizeof(struct btrfs_item
));
3927 right_nritems
-= push_items
;
3928 btrfs_set_header_nritems(right
, right_nritems
);
3929 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3930 for (i
= 0; i
< right_nritems
; i
++) {
3931 item
= btrfs_item_nr(i
);
3933 push_space
= push_space
- btrfs_token_item_size(right
,
3935 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3938 btrfs_mark_buffer_dirty(left
);
3940 btrfs_mark_buffer_dirty(right
);
3942 btrfs_clean_tree_block(right
);
3944 btrfs_item_key(right
, &disk_key
, 0);
3945 fixup_low_keys(path
, &disk_key
, 1);
3947 /* then fixup the leaf pointer in the path */
3948 if (path
->slots
[0] < push_items
) {
3949 path
->slots
[0] += old_left_nritems
;
3950 btrfs_tree_unlock(path
->nodes
[0]);
3951 free_extent_buffer(path
->nodes
[0]);
3952 path
->nodes
[0] = left
;
3953 path
->slots
[1] -= 1;
3955 btrfs_tree_unlock(left
);
3956 free_extent_buffer(left
);
3957 path
->slots
[0] -= push_items
;
3959 BUG_ON(path
->slots
[0] < 0);
3962 btrfs_tree_unlock(left
);
3963 free_extent_buffer(left
);
3968 * push some data in the path leaf to the left, trying to free up at
3969 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3971 * max_slot can put a limit on how far into the leaf we'll push items. The
3972 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3975 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3976 *root
, struct btrfs_path
*path
, int min_data_size
,
3977 int data_size
, int empty
, u32 max_slot
)
3979 struct extent_buffer
*right
= path
->nodes
[0];
3980 struct extent_buffer
*left
;
3986 slot
= path
->slots
[1];
3989 if (!path
->nodes
[1])
3992 right_nritems
= btrfs_header_nritems(right
);
3993 if (right_nritems
== 0)
3996 btrfs_assert_tree_locked(path
->nodes
[1]);
3998 left
= read_node_slot(path
->nodes
[1], slot
- 1);
4000 * slot - 1 is not valid or we fail to read the left node,
4001 * no big deal, just return.
4006 btrfs_tree_lock(left
);
4007 btrfs_set_lock_blocking_write(left
);
4009 free_space
= btrfs_leaf_free_space(left
);
4010 if (free_space
< data_size
) {
4015 /* cow and double check */
4016 ret
= btrfs_cow_block(trans
, root
, left
,
4017 path
->nodes
[1], slot
- 1, &left
);
4019 /* we hit -ENOSPC, but it isn't fatal here */
4025 free_space
= btrfs_leaf_free_space(left
);
4026 if (free_space
< data_size
) {
4031 return __push_leaf_left(path
, min_data_size
,
4032 empty
, left
, free_space
, right_nritems
,
4035 btrfs_tree_unlock(left
);
4036 free_extent_buffer(left
);
4041 * split the path's leaf in two, making sure there is at least data_size
4042 * available for the resulting leaf level of the path.
4044 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
4045 struct btrfs_path
*path
,
4046 struct extent_buffer
*l
,
4047 struct extent_buffer
*right
,
4048 int slot
, int mid
, int nritems
)
4050 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4054 struct btrfs_disk_key disk_key
;
4055 struct btrfs_map_token token
;
4057 btrfs_init_map_token(&token
);
4059 nritems
= nritems
- mid
;
4060 btrfs_set_header_nritems(right
, nritems
);
4061 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(l
);
4063 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
4064 btrfs_item_nr_offset(mid
),
4065 nritems
* sizeof(struct btrfs_item
));
4067 copy_extent_buffer(right
, l
,
4068 BTRFS_LEAF_DATA_OFFSET
+ BTRFS_LEAF_DATA_SIZE(fs_info
) -
4069 data_copy_size
, BTRFS_LEAF_DATA_OFFSET
+
4070 leaf_data_end(l
), data_copy_size
);
4072 rt_data_off
= BTRFS_LEAF_DATA_SIZE(fs_info
) - btrfs_item_end_nr(l
, mid
);
4074 for (i
= 0; i
< nritems
; i
++) {
4075 struct btrfs_item
*item
= btrfs_item_nr(i
);
4078 ioff
= btrfs_token_item_offset(right
, item
, &token
);
4079 btrfs_set_token_item_offset(right
, item
,
4080 ioff
+ rt_data_off
, &token
);
4083 btrfs_set_header_nritems(l
, mid
);
4084 btrfs_item_key(right
, &disk_key
, 0);
4085 insert_ptr(trans
, path
, &disk_key
, right
->start
, path
->slots
[1] + 1, 1);
4087 btrfs_mark_buffer_dirty(right
);
4088 btrfs_mark_buffer_dirty(l
);
4089 BUG_ON(path
->slots
[0] != slot
);
4092 btrfs_tree_unlock(path
->nodes
[0]);
4093 free_extent_buffer(path
->nodes
[0]);
4094 path
->nodes
[0] = right
;
4095 path
->slots
[0] -= mid
;
4096 path
->slots
[1] += 1;
4098 btrfs_tree_unlock(right
);
4099 free_extent_buffer(right
);
4102 BUG_ON(path
->slots
[0] < 0);
4106 * double splits happen when we need to insert a big item in the middle
4107 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4108 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4111 * We avoid this by trying to push the items on either side of our target
4112 * into the adjacent leaves. If all goes well we can avoid the double split
4115 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
4116 struct btrfs_root
*root
,
4117 struct btrfs_path
*path
,
4124 int space_needed
= data_size
;
4126 slot
= path
->slots
[0];
4127 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
4128 space_needed
-= btrfs_leaf_free_space(path
->nodes
[0]);
4131 * try to push all the items after our slot into the
4134 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
4141 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4143 * our goal is to get our slot at the start or end of a leaf. If
4144 * we've done so we're done
4146 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
4149 if (btrfs_leaf_free_space(path
->nodes
[0]) >= data_size
)
4152 /* try to push all the items before our slot into the next leaf */
4153 slot
= path
->slots
[0];
4154 space_needed
= data_size
;
4156 space_needed
-= btrfs_leaf_free_space(path
->nodes
[0]);
4157 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
4170 * split the path's leaf in two, making sure there is at least data_size
4171 * available for the resulting leaf level of the path.
4173 * returns 0 if all went well and < 0 on failure.
4175 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
4176 struct btrfs_root
*root
,
4177 const struct btrfs_key
*ins_key
,
4178 struct btrfs_path
*path
, int data_size
,
4181 struct btrfs_disk_key disk_key
;
4182 struct extent_buffer
*l
;
4186 struct extent_buffer
*right
;
4187 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4191 int num_doubles
= 0;
4192 int tried_avoid_double
= 0;
4195 slot
= path
->slots
[0];
4196 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
4197 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(fs_info
))
4200 /* first try to make some room by pushing left and right */
4201 if (data_size
&& path
->nodes
[1]) {
4202 int space_needed
= data_size
;
4204 if (slot
< btrfs_header_nritems(l
))
4205 space_needed
-= btrfs_leaf_free_space(l
);
4207 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
4208 space_needed
, 0, 0);
4212 space_needed
= data_size
;
4214 space_needed
-= btrfs_leaf_free_space(l
);
4215 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
4216 space_needed
, 0, (u32
)-1);
4222 /* did the pushes work? */
4223 if (btrfs_leaf_free_space(l
) >= data_size
)
4227 if (!path
->nodes
[1]) {
4228 ret
= insert_new_root(trans
, root
, path
, 1);
4235 slot
= path
->slots
[0];
4236 nritems
= btrfs_header_nritems(l
);
4237 mid
= (nritems
+ 1) / 2;
4241 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
4242 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4243 if (slot
>= nritems
) {
4247 if (mid
!= nritems
&&
4248 leaf_space_used(l
, mid
, nritems
- mid
) +
4249 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4250 if (data_size
&& !tried_avoid_double
)
4251 goto push_for_double
;
4257 if (leaf_space_used(l
, 0, mid
) + data_size
>
4258 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4259 if (!extend
&& data_size
&& slot
== 0) {
4261 } else if ((extend
|| !data_size
) && slot
== 0) {
4265 if (mid
!= nritems
&&
4266 leaf_space_used(l
, mid
, nritems
- mid
) +
4267 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4268 if (data_size
&& !tried_avoid_double
)
4269 goto push_for_double
;
4277 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4279 btrfs_item_key(l
, &disk_key
, mid
);
4281 right
= alloc_tree_block_no_bg_flush(trans
, root
, 0, &disk_key
, 0,
4284 return PTR_ERR(right
);
4286 root_add_used(root
, fs_info
->nodesize
);
4290 btrfs_set_header_nritems(right
, 0);
4291 insert_ptr(trans
, path
, &disk_key
,
4292 right
->start
, path
->slots
[1] + 1, 1);
4293 btrfs_tree_unlock(path
->nodes
[0]);
4294 free_extent_buffer(path
->nodes
[0]);
4295 path
->nodes
[0] = right
;
4297 path
->slots
[1] += 1;
4299 btrfs_set_header_nritems(right
, 0);
4300 insert_ptr(trans
, path
, &disk_key
,
4301 right
->start
, path
->slots
[1], 1);
4302 btrfs_tree_unlock(path
->nodes
[0]);
4303 free_extent_buffer(path
->nodes
[0]);
4304 path
->nodes
[0] = right
;
4306 if (path
->slots
[1] == 0)
4307 fixup_low_keys(path
, &disk_key
, 1);
4310 * We create a new leaf 'right' for the required ins_len and
4311 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4312 * the content of ins_len to 'right'.
4317 copy_for_split(trans
, path
, l
, right
, slot
, mid
, nritems
);
4320 BUG_ON(num_doubles
!= 0);
4328 push_for_double_split(trans
, root
, path
, data_size
);
4329 tried_avoid_double
= 1;
4330 if (btrfs_leaf_free_space(path
->nodes
[0]) >= data_size
)
4335 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4336 struct btrfs_root
*root
,
4337 struct btrfs_path
*path
, int ins_len
)
4339 struct btrfs_key key
;
4340 struct extent_buffer
*leaf
;
4341 struct btrfs_file_extent_item
*fi
;
4346 leaf
= path
->nodes
[0];
4347 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4349 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4350 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4352 if (btrfs_leaf_free_space(leaf
) >= ins_len
)
4355 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4356 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4357 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4358 struct btrfs_file_extent_item
);
4359 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4361 btrfs_release_path(path
);
4363 path
->keep_locks
= 1;
4364 path
->search_for_split
= 1;
4365 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4366 path
->search_for_split
= 0;
4373 leaf
= path
->nodes
[0];
4374 /* if our item isn't there, return now */
4375 if (item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4378 /* the leaf has changed, it now has room. return now */
4379 if (btrfs_leaf_free_space(path
->nodes
[0]) >= ins_len
)
4382 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4383 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4384 struct btrfs_file_extent_item
);
4385 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4389 btrfs_set_path_blocking(path
);
4390 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4394 path
->keep_locks
= 0;
4395 btrfs_unlock_up_safe(path
, 1);
4398 path
->keep_locks
= 0;
4402 static noinline
int split_item(struct btrfs_fs_info
*fs_info
,
4403 struct btrfs_path
*path
,
4404 const struct btrfs_key
*new_key
,
4405 unsigned long split_offset
)
4407 struct extent_buffer
*leaf
;
4408 struct btrfs_item
*item
;
4409 struct btrfs_item
*new_item
;
4415 struct btrfs_disk_key disk_key
;
4417 leaf
= path
->nodes
[0];
4418 BUG_ON(btrfs_leaf_free_space(leaf
) < sizeof(struct btrfs_item
));
4420 btrfs_set_path_blocking(path
);
4422 item
= btrfs_item_nr(path
->slots
[0]);
4423 orig_offset
= btrfs_item_offset(leaf
, item
);
4424 item_size
= btrfs_item_size(leaf
, item
);
4426 buf
= kmalloc(item_size
, GFP_NOFS
);
4430 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4431 path
->slots
[0]), item_size
);
4433 slot
= path
->slots
[0] + 1;
4434 nritems
= btrfs_header_nritems(leaf
);
4435 if (slot
!= nritems
) {
4436 /* shift the items */
4437 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4438 btrfs_item_nr_offset(slot
),
4439 (nritems
- slot
) * sizeof(struct btrfs_item
));
4442 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4443 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4445 new_item
= btrfs_item_nr(slot
);
4447 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4448 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4450 btrfs_set_item_offset(leaf
, item
,
4451 orig_offset
+ item_size
- split_offset
);
4452 btrfs_set_item_size(leaf
, item
, split_offset
);
4454 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4456 /* write the data for the start of the original item */
4457 write_extent_buffer(leaf
, buf
,
4458 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4461 /* write the data for the new item */
4462 write_extent_buffer(leaf
, buf
+ split_offset
,
4463 btrfs_item_ptr_offset(leaf
, slot
),
4464 item_size
- split_offset
);
4465 btrfs_mark_buffer_dirty(leaf
);
4467 BUG_ON(btrfs_leaf_free_space(leaf
) < 0);
4473 * This function splits a single item into two items,
4474 * giving 'new_key' to the new item and splitting the
4475 * old one at split_offset (from the start of the item).
4477 * The path may be released by this operation. After
4478 * the split, the path is pointing to the old item. The
4479 * new item is going to be in the same node as the old one.
4481 * Note, the item being split must be smaller enough to live alone on
4482 * a tree block with room for one extra struct btrfs_item
4484 * This allows us to split the item in place, keeping a lock on the
4485 * leaf the entire time.
4487 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4488 struct btrfs_root
*root
,
4489 struct btrfs_path
*path
,
4490 const struct btrfs_key
*new_key
,
4491 unsigned long split_offset
)
4494 ret
= setup_leaf_for_split(trans
, root
, path
,
4495 sizeof(struct btrfs_item
));
4499 ret
= split_item(root
->fs_info
, path
, new_key
, split_offset
);
4504 * This function duplicate a item, giving 'new_key' to the new item.
4505 * It guarantees both items live in the same tree leaf and the new item
4506 * is contiguous with the original item.
4508 * This allows us to split file extent in place, keeping a lock on the
4509 * leaf the entire time.
4511 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4512 struct btrfs_root
*root
,
4513 struct btrfs_path
*path
,
4514 const struct btrfs_key
*new_key
)
4516 struct extent_buffer
*leaf
;
4520 leaf
= path
->nodes
[0];
4521 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4522 ret
= setup_leaf_for_split(trans
, root
, path
,
4523 item_size
+ sizeof(struct btrfs_item
));
4528 setup_items_for_insert(root
, path
, new_key
, &item_size
,
4529 item_size
, item_size
+
4530 sizeof(struct btrfs_item
), 1);
4531 leaf
= path
->nodes
[0];
4532 memcpy_extent_buffer(leaf
,
4533 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4534 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4540 * make the item pointed to by the path smaller. new_size indicates
4541 * how small to make it, and from_end tells us if we just chop bytes
4542 * off the end of the item or if we shift the item to chop bytes off
4545 void btrfs_truncate_item(struct btrfs_fs_info
*fs_info
,
4546 struct btrfs_path
*path
, u32 new_size
, int from_end
)
4549 struct extent_buffer
*leaf
;
4550 struct btrfs_item
*item
;
4552 unsigned int data_end
;
4553 unsigned int old_data_start
;
4554 unsigned int old_size
;
4555 unsigned int size_diff
;
4557 struct btrfs_map_token token
;
4559 btrfs_init_map_token(&token
);
4561 leaf
= path
->nodes
[0];
4562 slot
= path
->slots
[0];
4564 old_size
= btrfs_item_size_nr(leaf
, slot
);
4565 if (old_size
== new_size
)
4568 nritems
= btrfs_header_nritems(leaf
);
4569 data_end
= leaf_data_end(leaf
);
4571 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4573 size_diff
= old_size
- new_size
;
4576 BUG_ON(slot
>= nritems
);
4579 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4581 /* first correct the data pointers */
4582 for (i
= slot
; i
< nritems
; i
++) {
4584 item
= btrfs_item_nr(i
);
4586 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4587 btrfs_set_token_item_offset(leaf
, item
,
4588 ioff
+ size_diff
, &token
);
4591 /* shift the data */
4593 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4594 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4595 data_end
, old_data_start
+ new_size
- data_end
);
4597 struct btrfs_disk_key disk_key
;
4600 btrfs_item_key(leaf
, &disk_key
, slot
);
4602 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4604 struct btrfs_file_extent_item
*fi
;
4606 fi
= btrfs_item_ptr(leaf
, slot
,
4607 struct btrfs_file_extent_item
);
4608 fi
= (struct btrfs_file_extent_item
*)(
4609 (unsigned long)fi
- size_diff
);
4611 if (btrfs_file_extent_type(leaf
, fi
) ==
4612 BTRFS_FILE_EXTENT_INLINE
) {
4613 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4614 memmove_extent_buffer(leaf
, ptr
,
4616 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4620 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4621 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4622 data_end
, old_data_start
- data_end
);
4624 offset
= btrfs_disk_key_offset(&disk_key
);
4625 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4626 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4628 fixup_low_keys(path
, &disk_key
, 1);
4631 item
= btrfs_item_nr(slot
);
4632 btrfs_set_item_size(leaf
, item
, new_size
);
4633 btrfs_mark_buffer_dirty(leaf
);
4635 if (btrfs_leaf_free_space(leaf
) < 0) {
4636 btrfs_print_leaf(leaf
);
4642 * make the item pointed to by the path bigger, data_size is the added size.
4644 void btrfs_extend_item(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
4648 struct extent_buffer
*leaf
;
4649 struct btrfs_item
*item
;
4651 unsigned int data_end
;
4652 unsigned int old_data
;
4653 unsigned int old_size
;
4655 struct btrfs_map_token token
;
4657 btrfs_init_map_token(&token
);
4659 leaf
= path
->nodes
[0];
4661 nritems
= btrfs_header_nritems(leaf
);
4662 data_end
= leaf_data_end(leaf
);
4664 if (btrfs_leaf_free_space(leaf
) < data_size
) {
4665 btrfs_print_leaf(leaf
);
4668 slot
= path
->slots
[0];
4669 old_data
= btrfs_item_end_nr(leaf
, slot
);
4672 if (slot
>= nritems
) {
4673 btrfs_print_leaf(leaf
);
4674 btrfs_crit(fs_info
, "slot %d too large, nritems %d",
4680 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4682 /* first correct the data pointers */
4683 for (i
= slot
; i
< nritems
; i
++) {
4685 item
= btrfs_item_nr(i
);
4687 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4688 btrfs_set_token_item_offset(leaf
, item
,
4689 ioff
- data_size
, &token
);
4692 /* shift the data */
4693 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4694 data_end
- data_size
, BTRFS_LEAF_DATA_OFFSET
+
4695 data_end
, old_data
- data_end
);
4697 data_end
= old_data
;
4698 old_size
= btrfs_item_size_nr(leaf
, slot
);
4699 item
= btrfs_item_nr(slot
);
4700 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4701 btrfs_mark_buffer_dirty(leaf
);
4703 if (btrfs_leaf_free_space(leaf
) < 0) {
4704 btrfs_print_leaf(leaf
);
4710 * this is a helper for btrfs_insert_empty_items, the main goal here is
4711 * to save stack depth by doing the bulk of the work in a function
4712 * that doesn't call btrfs_search_slot
4714 void setup_items_for_insert(struct btrfs_root
*root
, struct btrfs_path
*path
,
4715 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4716 u32 total_data
, u32 total_size
, int nr
)
4718 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4719 struct btrfs_item
*item
;
4722 unsigned int data_end
;
4723 struct btrfs_disk_key disk_key
;
4724 struct extent_buffer
*leaf
;
4726 struct btrfs_map_token token
;
4728 if (path
->slots
[0] == 0) {
4729 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4730 fixup_low_keys(path
, &disk_key
, 1);
4732 btrfs_unlock_up_safe(path
, 1);
4734 btrfs_init_map_token(&token
);
4736 leaf
= path
->nodes
[0];
4737 slot
= path
->slots
[0];
4739 nritems
= btrfs_header_nritems(leaf
);
4740 data_end
= leaf_data_end(leaf
);
4742 if (btrfs_leaf_free_space(leaf
) < total_size
) {
4743 btrfs_print_leaf(leaf
);
4744 btrfs_crit(fs_info
, "not enough freespace need %u have %d",
4745 total_size
, btrfs_leaf_free_space(leaf
));
4749 if (slot
!= nritems
) {
4750 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4752 if (old_data
< data_end
) {
4753 btrfs_print_leaf(leaf
);
4754 btrfs_crit(fs_info
, "slot %d old_data %d data_end %d",
4755 slot
, old_data
, data_end
);
4759 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4761 /* first correct the data pointers */
4762 for (i
= slot
; i
< nritems
; i
++) {
4765 item
= btrfs_item_nr(i
);
4766 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4767 btrfs_set_token_item_offset(leaf
, item
,
4768 ioff
- total_data
, &token
);
4770 /* shift the items */
4771 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4772 btrfs_item_nr_offset(slot
),
4773 (nritems
- slot
) * sizeof(struct btrfs_item
));
4775 /* shift the data */
4776 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4777 data_end
- total_data
, BTRFS_LEAF_DATA_OFFSET
+
4778 data_end
, old_data
- data_end
);
4779 data_end
= old_data
;
4782 /* setup the item for the new data */
4783 for (i
= 0; i
< nr
; i
++) {
4784 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4785 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4786 item
= btrfs_item_nr(slot
+ i
);
4787 btrfs_set_token_item_offset(leaf
, item
,
4788 data_end
- data_size
[i
], &token
);
4789 data_end
-= data_size
[i
];
4790 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4793 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4794 btrfs_mark_buffer_dirty(leaf
);
4796 if (btrfs_leaf_free_space(leaf
) < 0) {
4797 btrfs_print_leaf(leaf
);
4803 * Given a key and some data, insert items into the tree.
4804 * This does all the path init required, making room in the tree if needed.
4806 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4807 struct btrfs_root
*root
,
4808 struct btrfs_path
*path
,
4809 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4818 for (i
= 0; i
< nr
; i
++)
4819 total_data
+= data_size
[i
];
4821 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4822 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4828 slot
= path
->slots
[0];
4831 setup_items_for_insert(root
, path
, cpu_key
, data_size
,
4832 total_data
, total_size
, nr
);
4837 * Given a key and some data, insert an item into the tree.
4838 * This does all the path init required, making room in the tree if needed.
4840 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4841 const struct btrfs_key
*cpu_key
, void *data
,
4845 struct btrfs_path
*path
;
4846 struct extent_buffer
*leaf
;
4849 path
= btrfs_alloc_path();
4852 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4854 leaf
= path
->nodes
[0];
4855 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4856 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4857 btrfs_mark_buffer_dirty(leaf
);
4859 btrfs_free_path(path
);
4864 * delete the pointer from a given node.
4866 * the tree should have been previously balanced so the deletion does not
4869 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
4870 int level
, int slot
)
4872 struct extent_buffer
*parent
= path
->nodes
[level
];
4876 nritems
= btrfs_header_nritems(parent
);
4877 if (slot
!= nritems
- 1) {
4879 ret
= tree_mod_log_insert_move(parent
, slot
, slot
+ 1,
4880 nritems
- slot
- 1);
4883 memmove_extent_buffer(parent
,
4884 btrfs_node_key_ptr_offset(slot
),
4885 btrfs_node_key_ptr_offset(slot
+ 1),
4886 sizeof(struct btrfs_key_ptr
) *
4887 (nritems
- slot
- 1));
4889 ret
= tree_mod_log_insert_key(parent
, slot
, MOD_LOG_KEY_REMOVE
,
4895 btrfs_set_header_nritems(parent
, nritems
);
4896 if (nritems
== 0 && parent
== root
->node
) {
4897 BUG_ON(btrfs_header_level(root
->node
) != 1);
4898 /* just turn the root into a leaf and break */
4899 btrfs_set_header_level(root
->node
, 0);
4900 } else if (slot
== 0) {
4901 struct btrfs_disk_key disk_key
;
4903 btrfs_node_key(parent
, &disk_key
, 0);
4904 fixup_low_keys(path
, &disk_key
, level
+ 1);
4906 btrfs_mark_buffer_dirty(parent
);
4910 * a helper function to delete the leaf pointed to by path->slots[1] and
4913 * This deletes the pointer in path->nodes[1] and frees the leaf
4914 * block extent. zero is returned if it all worked out, < 0 otherwise.
4916 * The path must have already been setup for deleting the leaf, including
4917 * all the proper balancing. path->nodes[1] must be locked.
4919 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4920 struct btrfs_root
*root
,
4921 struct btrfs_path
*path
,
4922 struct extent_buffer
*leaf
)
4924 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4925 del_ptr(root
, path
, 1, path
->slots
[1]);
4928 * btrfs_free_extent is expensive, we want to make sure we
4929 * aren't holding any locks when we call it
4931 btrfs_unlock_up_safe(path
, 0);
4933 root_sub_used(root
, leaf
->len
);
4935 extent_buffer_get(leaf
);
4936 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4937 free_extent_buffer_stale(leaf
);
4940 * delete the item at the leaf level in path. If that empties
4941 * the leaf, remove it from the tree
4943 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4944 struct btrfs_path
*path
, int slot
, int nr
)
4946 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4947 struct extent_buffer
*leaf
;
4948 struct btrfs_item
*item
;
4955 struct btrfs_map_token token
;
4957 btrfs_init_map_token(&token
);
4959 leaf
= path
->nodes
[0];
4960 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4962 for (i
= 0; i
< nr
; i
++)
4963 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4965 nritems
= btrfs_header_nritems(leaf
);
4967 if (slot
+ nr
!= nritems
) {
4968 int data_end
= leaf_data_end(leaf
);
4970 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4972 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
4973 last_off
- data_end
);
4975 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4978 item
= btrfs_item_nr(i
);
4979 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4980 btrfs_set_token_item_offset(leaf
, item
,
4981 ioff
+ dsize
, &token
);
4984 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4985 btrfs_item_nr_offset(slot
+ nr
),
4986 sizeof(struct btrfs_item
) *
4987 (nritems
- slot
- nr
));
4989 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4992 /* delete the leaf if we've emptied it */
4994 if (leaf
== root
->node
) {
4995 btrfs_set_header_level(leaf
, 0);
4997 btrfs_set_path_blocking(path
);
4998 btrfs_clean_tree_block(leaf
);
4999 btrfs_del_leaf(trans
, root
, path
, leaf
);
5002 int used
= leaf_space_used(leaf
, 0, nritems
);
5004 struct btrfs_disk_key disk_key
;
5006 btrfs_item_key(leaf
, &disk_key
, 0);
5007 fixup_low_keys(path
, &disk_key
, 1);
5010 /* delete the leaf if it is mostly empty */
5011 if (used
< BTRFS_LEAF_DATA_SIZE(fs_info
) / 3) {
5012 /* push_leaf_left fixes the path.
5013 * make sure the path still points to our leaf
5014 * for possible call to del_ptr below
5016 slot
= path
->slots
[1];
5017 extent_buffer_get(leaf
);
5019 btrfs_set_path_blocking(path
);
5020 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
5022 if (wret
< 0 && wret
!= -ENOSPC
)
5025 if (path
->nodes
[0] == leaf
&&
5026 btrfs_header_nritems(leaf
)) {
5027 wret
= push_leaf_right(trans
, root
, path
, 1,
5029 if (wret
< 0 && wret
!= -ENOSPC
)
5033 if (btrfs_header_nritems(leaf
) == 0) {
5034 path
->slots
[1] = slot
;
5035 btrfs_del_leaf(trans
, root
, path
, leaf
);
5036 free_extent_buffer(leaf
);
5039 /* if we're still in the path, make sure
5040 * we're dirty. Otherwise, one of the
5041 * push_leaf functions must have already
5042 * dirtied this buffer
5044 if (path
->nodes
[0] == leaf
)
5045 btrfs_mark_buffer_dirty(leaf
);
5046 free_extent_buffer(leaf
);
5049 btrfs_mark_buffer_dirty(leaf
);
5056 * search the tree again to find a leaf with lesser keys
5057 * returns 0 if it found something or 1 if there are no lesser leaves.
5058 * returns < 0 on io errors.
5060 * This may release the path, and so you may lose any locks held at the
5063 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5065 struct btrfs_key key
;
5066 struct btrfs_disk_key found_key
;
5069 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
5071 if (key
.offset
> 0) {
5073 } else if (key
.type
> 0) {
5075 key
.offset
= (u64
)-1;
5076 } else if (key
.objectid
> 0) {
5079 key
.offset
= (u64
)-1;
5084 btrfs_release_path(path
);
5085 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5088 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
5089 ret
= comp_keys(&found_key
, &key
);
5091 * We might have had an item with the previous key in the tree right
5092 * before we released our path. And after we released our path, that
5093 * item might have been pushed to the first slot (0) of the leaf we
5094 * were holding due to a tree balance. Alternatively, an item with the
5095 * previous key can exist as the only element of a leaf (big fat item).
5096 * Therefore account for these 2 cases, so that our callers (like
5097 * btrfs_previous_item) don't miss an existing item with a key matching
5098 * the previous key we computed above.
5106 * A helper function to walk down the tree starting at min_key, and looking
5107 * for nodes or leaves that are have a minimum transaction id.
5108 * This is used by the btree defrag code, and tree logging
5110 * This does not cow, but it does stuff the starting key it finds back
5111 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5112 * key and get a writable path.
5114 * This honors path->lowest_level to prevent descent past a given level
5117 * min_trans indicates the oldest transaction that you are interested
5118 * in walking through. Any nodes or leaves older than min_trans are
5119 * skipped over (without reading them).
5121 * returns zero if something useful was found, < 0 on error and 1 if there
5122 * was nothing in the tree that matched the search criteria.
5124 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
5125 struct btrfs_path
*path
,
5128 struct extent_buffer
*cur
;
5129 struct btrfs_key found_key
;
5135 int keep_locks
= path
->keep_locks
;
5137 path
->keep_locks
= 1;
5139 cur
= btrfs_read_lock_root_node(root
);
5140 level
= btrfs_header_level(cur
);
5141 WARN_ON(path
->nodes
[level
]);
5142 path
->nodes
[level
] = cur
;
5143 path
->locks
[level
] = BTRFS_READ_LOCK
;
5145 if (btrfs_header_generation(cur
) < min_trans
) {
5150 nritems
= btrfs_header_nritems(cur
);
5151 level
= btrfs_header_level(cur
);
5152 sret
= btrfs_bin_search(cur
, min_key
, level
, &slot
);
5158 /* at the lowest level, we're done, setup the path and exit */
5159 if (level
== path
->lowest_level
) {
5160 if (slot
>= nritems
)
5163 path
->slots
[level
] = slot
;
5164 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
5167 if (sret
&& slot
> 0)
5170 * check this node pointer against the min_trans parameters.
5171 * If it is too old, old, skip to the next one.
5173 while (slot
< nritems
) {
5176 gen
= btrfs_node_ptr_generation(cur
, slot
);
5177 if (gen
< min_trans
) {
5185 * we didn't find a candidate key in this node, walk forward
5186 * and find another one
5188 if (slot
>= nritems
) {
5189 path
->slots
[level
] = slot
;
5190 btrfs_set_path_blocking(path
);
5191 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5194 btrfs_release_path(path
);
5200 /* save our key for returning back */
5201 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5202 path
->slots
[level
] = slot
;
5203 if (level
== path
->lowest_level
) {
5207 btrfs_set_path_blocking(path
);
5208 cur
= read_node_slot(cur
, slot
);
5214 btrfs_tree_read_lock(cur
);
5216 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5217 path
->nodes
[level
- 1] = cur
;
5218 unlock_up(path
, level
, 1, 0, NULL
);
5221 path
->keep_locks
= keep_locks
;
5223 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
5224 btrfs_set_path_blocking(path
);
5225 memcpy(min_key
, &found_key
, sizeof(found_key
));
5230 static int tree_move_down(struct btrfs_fs_info
*fs_info
,
5231 struct btrfs_path
*path
,
5234 struct extent_buffer
*eb
;
5236 BUG_ON(*level
== 0);
5237 eb
= read_node_slot(path
->nodes
[*level
], path
->slots
[*level
]);
5241 path
->nodes
[*level
- 1] = eb
;
5242 path
->slots
[*level
- 1] = 0;
5247 static int tree_move_next_or_upnext(struct btrfs_path
*path
,
5248 int *level
, int root_level
)
5252 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5254 path
->slots
[*level
]++;
5256 while (path
->slots
[*level
] >= nritems
) {
5257 if (*level
== root_level
)
5261 path
->slots
[*level
] = 0;
5262 free_extent_buffer(path
->nodes
[*level
]);
5263 path
->nodes
[*level
] = NULL
;
5265 path
->slots
[*level
]++;
5267 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5274 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5277 static int tree_advance(struct btrfs_fs_info
*fs_info
,
5278 struct btrfs_path
*path
,
5279 int *level
, int root_level
,
5281 struct btrfs_key
*key
)
5285 if (*level
== 0 || !allow_down
) {
5286 ret
= tree_move_next_or_upnext(path
, level
, root_level
);
5288 ret
= tree_move_down(fs_info
, path
, level
);
5292 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5293 path
->slots
[*level
]);
5295 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5296 path
->slots
[*level
]);
5301 static int tree_compare_item(struct btrfs_path
*left_path
,
5302 struct btrfs_path
*right_path
,
5307 unsigned long off1
, off2
;
5309 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5310 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5314 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5315 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5316 right_path
->slots
[0]);
5318 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5320 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5327 #define ADVANCE_ONLY_NEXT -1
5330 * This function compares two trees and calls the provided callback for
5331 * every changed/new/deleted item it finds.
5332 * If shared tree blocks are encountered, whole subtrees are skipped, making
5333 * the compare pretty fast on snapshotted subvolumes.
5335 * This currently works on commit roots only. As commit roots are read only,
5336 * we don't do any locking. The commit roots are protected with transactions.
5337 * Transactions are ended and rejoined when a commit is tried in between.
5339 * This function checks for modifications done to the trees while comparing.
5340 * If it detects a change, it aborts immediately.
5342 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5343 struct btrfs_root
*right_root
,
5344 btrfs_changed_cb_t changed_cb
, void *ctx
)
5346 struct btrfs_fs_info
*fs_info
= left_root
->fs_info
;
5349 struct btrfs_path
*left_path
= NULL
;
5350 struct btrfs_path
*right_path
= NULL
;
5351 struct btrfs_key left_key
;
5352 struct btrfs_key right_key
;
5353 char *tmp_buf
= NULL
;
5354 int left_root_level
;
5355 int right_root_level
;
5358 int left_end_reached
;
5359 int right_end_reached
;
5367 left_path
= btrfs_alloc_path();
5372 right_path
= btrfs_alloc_path();
5378 tmp_buf
= kvmalloc(fs_info
->nodesize
, GFP_KERNEL
);
5384 left_path
->search_commit_root
= 1;
5385 left_path
->skip_locking
= 1;
5386 right_path
->search_commit_root
= 1;
5387 right_path
->skip_locking
= 1;
5390 * Strategy: Go to the first items of both trees. Then do
5392 * If both trees are at level 0
5393 * Compare keys of current items
5394 * If left < right treat left item as new, advance left tree
5396 * If left > right treat right item as deleted, advance right tree
5398 * If left == right do deep compare of items, treat as changed if
5399 * needed, advance both trees and repeat
5400 * If both trees are at the same level but not at level 0
5401 * Compare keys of current nodes/leafs
5402 * If left < right advance left tree and repeat
5403 * If left > right advance right tree and repeat
5404 * If left == right compare blockptrs of the next nodes/leafs
5405 * If they match advance both trees but stay at the same level
5407 * If they don't match advance both trees while allowing to go
5409 * If tree levels are different
5410 * Advance the tree that needs it and repeat
5412 * Advancing a tree means:
5413 * If we are at level 0, try to go to the next slot. If that's not
5414 * possible, go one level up and repeat. Stop when we found a level
5415 * where we could go to the next slot. We may at this point be on a
5418 * If we are not at level 0 and not on shared tree blocks, go one
5421 * If we are not at level 0 and on shared tree blocks, go one slot to
5422 * the right if possible or go up and right.
5425 down_read(&fs_info
->commit_root_sem
);
5426 left_level
= btrfs_header_level(left_root
->commit_root
);
5427 left_root_level
= left_level
;
5428 left_path
->nodes
[left_level
] =
5429 btrfs_clone_extent_buffer(left_root
->commit_root
);
5430 if (!left_path
->nodes
[left_level
]) {
5431 up_read(&fs_info
->commit_root_sem
);
5436 right_level
= btrfs_header_level(right_root
->commit_root
);
5437 right_root_level
= right_level
;
5438 right_path
->nodes
[right_level
] =
5439 btrfs_clone_extent_buffer(right_root
->commit_root
);
5440 if (!right_path
->nodes
[right_level
]) {
5441 up_read(&fs_info
->commit_root_sem
);
5445 up_read(&fs_info
->commit_root_sem
);
5447 if (left_level
== 0)
5448 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5449 &left_key
, left_path
->slots
[left_level
]);
5451 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5452 &left_key
, left_path
->slots
[left_level
]);
5453 if (right_level
== 0)
5454 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5455 &right_key
, right_path
->slots
[right_level
]);
5457 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5458 &right_key
, right_path
->slots
[right_level
]);
5460 left_end_reached
= right_end_reached
= 0;
5461 advance_left
= advance_right
= 0;
5464 if (advance_left
&& !left_end_reached
) {
5465 ret
= tree_advance(fs_info
, left_path
, &left_level
,
5467 advance_left
!= ADVANCE_ONLY_NEXT
,
5470 left_end_reached
= ADVANCE
;
5475 if (advance_right
&& !right_end_reached
) {
5476 ret
= tree_advance(fs_info
, right_path
, &right_level
,
5478 advance_right
!= ADVANCE_ONLY_NEXT
,
5481 right_end_reached
= ADVANCE
;
5487 if (left_end_reached
&& right_end_reached
) {
5490 } else if (left_end_reached
) {
5491 if (right_level
== 0) {
5492 ret
= changed_cb(left_path
, right_path
,
5494 BTRFS_COMPARE_TREE_DELETED
,
5499 advance_right
= ADVANCE
;
5501 } else if (right_end_reached
) {
5502 if (left_level
== 0) {
5503 ret
= changed_cb(left_path
, right_path
,
5505 BTRFS_COMPARE_TREE_NEW
,
5510 advance_left
= ADVANCE
;
5514 if (left_level
== 0 && right_level
== 0) {
5515 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5517 ret
= changed_cb(left_path
, right_path
,
5519 BTRFS_COMPARE_TREE_NEW
,
5523 advance_left
= ADVANCE
;
5524 } else if (cmp
> 0) {
5525 ret
= changed_cb(left_path
, right_path
,
5527 BTRFS_COMPARE_TREE_DELETED
,
5531 advance_right
= ADVANCE
;
5533 enum btrfs_compare_tree_result result
;
5535 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5536 ret
= tree_compare_item(left_path
, right_path
,
5539 result
= BTRFS_COMPARE_TREE_CHANGED
;
5541 result
= BTRFS_COMPARE_TREE_SAME
;
5542 ret
= changed_cb(left_path
, right_path
,
5543 &left_key
, result
, ctx
);
5546 advance_left
= ADVANCE
;
5547 advance_right
= ADVANCE
;
5549 } else if (left_level
== right_level
) {
5550 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5552 advance_left
= ADVANCE
;
5553 } else if (cmp
> 0) {
5554 advance_right
= ADVANCE
;
5556 left_blockptr
= btrfs_node_blockptr(
5557 left_path
->nodes
[left_level
],
5558 left_path
->slots
[left_level
]);
5559 right_blockptr
= btrfs_node_blockptr(
5560 right_path
->nodes
[right_level
],
5561 right_path
->slots
[right_level
]);
5562 left_gen
= btrfs_node_ptr_generation(
5563 left_path
->nodes
[left_level
],
5564 left_path
->slots
[left_level
]);
5565 right_gen
= btrfs_node_ptr_generation(
5566 right_path
->nodes
[right_level
],
5567 right_path
->slots
[right_level
]);
5568 if (left_blockptr
== right_blockptr
&&
5569 left_gen
== right_gen
) {
5571 * As we're on a shared block, don't
5572 * allow to go deeper.
5574 advance_left
= ADVANCE_ONLY_NEXT
;
5575 advance_right
= ADVANCE_ONLY_NEXT
;
5577 advance_left
= ADVANCE
;
5578 advance_right
= ADVANCE
;
5581 } else if (left_level
< right_level
) {
5582 advance_right
= ADVANCE
;
5584 advance_left
= ADVANCE
;
5589 btrfs_free_path(left_path
);
5590 btrfs_free_path(right_path
);
5596 * this is similar to btrfs_next_leaf, but does not try to preserve
5597 * and fixup the path. It looks for and returns the next key in the
5598 * tree based on the current path and the min_trans parameters.
5600 * 0 is returned if another key is found, < 0 if there are any errors
5601 * and 1 is returned if there are no higher keys in the tree
5603 * path->keep_locks should be set to 1 on the search made before
5604 * calling this function.
5606 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5607 struct btrfs_key
*key
, int level
, u64 min_trans
)
5610 struct extent_buffer
*c
;
5612 WARN_ON(!path
->keep_locks
);
5613 while (level
< BTRFS_MAX_LEVEL
) {
5614 if (!path
->nodes
[level
])
5617 slot
= path
->slots
[level
] + 1;
5618 c
= path
->nodes
[level
];
5620 if (slot
>= btrfs_header_nritems(c
)) {
5623 struct btrfs_key cur_key
;
5624 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5625 !path
->nodes
[level
+ 1])
5628 if (path
->locks
[level
+ 1]) {
5633 slot
= btrfs_header_nritems(c
) - 1;
5635 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5637 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5639 orig_lowest
= path
->lowest_level
;
5640 btrfs_release_path(path
);
5641 path
->lowest_level
= level
;
5642 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5644 path
->lowest_level
= orig_lowest
;
5648 c
= path
->nodes
[level
];
5649 slot
= path
->slots
[level
];
5656 btrfs_item_key_to_cpu(c
, key
, slot
);
5658 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5660 if (gen
< min_trans
) {
5664 btrfs_node_key_to_cpu(c
, key
, slot
);
5672 * search the tree again to find a leaf with greater keys
5673 * returns 0 if it found something or 1 if there are no greater leaves.
5674 * returns < 0 on io errors.
5676 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5678 return btrfs_next_old_leaf(root
, path
, 0);
5681 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5686 struct extent_buffer
*c
;
5687 struct extent_buffer
*next
;
5688 struct btrfs_key key
;
5691 int old_spinning
= path
->leave_spinning
;
5692 int next_rw_lock
= 0;
5694 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5698 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5703 btrfs_release_path(path
);
5705 path
->keep_locks
= 1;
5706 path
->leave_spinning
= 1;
5709 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5711 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5712 path
->keep_locks
= 0;
5717 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5719 * by releasing the path above we dropped all our locks. A balance
5720 * could have added more items next to the key that used to be
5721 * at the very end of the block. So, check again here and
5722 * advance the path if there are now more items available.
5724 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5731 * So the above check misses one case:
5732 * - after releasing the path above, someone has removed the item that
5733 * used to be at the very end of the block, and balance between leafs
5734 * gets another one with bigger key.offset to replace it.
5736 * This one should be returned as well, or we can get leaf corruption
5737 * later(esp. in __btrfs_drop_extents()).
5739 * And a bit more explanation about this check,
5740 * with ret > 0, the key isn't found, the path points to the slot
5741 * where it should be inserted, so the path->slots[0] item must be the
5744 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
5749 while (level
< BTRFS_MAX_LEVEL
) {
5750 if (!path
->nodes
[level
]) {
5755 slot
= path
->slots
[level
] + 1;
5756 c
= path
->nodes
[level
];
5757 if (slot
>= btrfs_header_nritems(c
)) {
5759 if (level
== BTRFS_MAX_LEVEL
) {
5767 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5768 free_extent_buffer(next
);
5772 next_rw_lock
= path
->locks
[level
];
5773 ret
= read_block_for_search(root
, path
, &next
, level
,
5779 btrfs_release_path(path
);
5783 if (!path
->skip_locking
) {
5784 ret
= btrfs_try_tree_read_lock(next
);
5785 if (!ret
&& time_seq
) {
5787 * If we don't get the lock, we may be racing
5788 * with push_leaf_left, holding that lock while
5789 * itself waiting for the leaf we've currently
5790 * locked. To solve this situation, we give up
5791 * on our lock and cycle.
5793 free_extent_buffer(next
);
5794 btrfs_release_path(path
);
5799 btrfs_set_path_blocking(path
);
5800 btrfs_tree_read_lock(next
);
5802 next_rw_lock
= BTRFS_READ_LOCK
;
5806 path
->slots
[level
] = slot
;
5809 c
= path
->nodes
[level
];
5810 if (path
->locks
[level
])
5811 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5813 free_extent_buffer(c
);
5814 path
->nodes
[level
] = next
;
5815 path
->slots
[level
] = 0;
5816 if (!path
->skip_locking
)
5817 path
->locks
[level
] = next_rw_lock
;
5821 ret
= read_block_for_search(root
, path
, &next
, level
,
5827 btrfs_release_path(path
);
5831 if (!path
->skip_locking
) {
5832 ret
= btrfs_try_tree_read_lock(next
);
5834 btrfs_set_path_blocking(path
);
5835 btrfs_tree_read_lock(next
);
5837 next_rw_lock
= BTRFS_READ_LOCK
;
5842 unlock_up(path
, 0, 1, 0, NULL
);
5843 path
->leave_spinning
= old_spinning
;
5845 btrfs_set_path_blocking(path
);
5851 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5852 * searching until it gets past min_objectid or finds an item of 'type'
5854 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5856 int btrfs_previous_item(struct btrfs_root
*root
,
5857 struct btrfs_path
*path
, u64 min_objectid
,
5860 struct btrfs_key found_key
;
5861 struct extent_buffer
*leaf
;
5866 if (path
->slots
[0] == 0) {
5867 btrfs_set_path_blocking(path
);
5868 ret
= btrfs_prev_leaf(root
, path
);
5874 leaf
= path
->nodes
[0];
5875 nritems
= btrfs_header_nritems(leaf
);
5878 if (path
->slots
[0] == nritems
)
5881 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5882 if (found_key
.objectid
< min_objectid
)
5884 if (found_key
.type
== type
)
5886 if (found_key
.objectid
== min_objectid
&&
5887 found_key
.type
< type
)
5894 * search in extent tree to find a previous Metadata/Data extent item with
5897 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5899 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5900 struct btrfs_path
*path
, u64 min_objectid
)
5902 struct btrfs_key found_key
;
5903 struct extent_buffer
*leaf
;
5908 if (path
->slots
[0] == 0) {
5909 btrfs_set_path_blocking(path
);
5910 ret
= btrfs_prev_leaf(root
, path
);
5916 leaf
= path
->nodes
[0];
5917 nritems
= btrfs_header_nritems(leaf
);
5920 if (path
->slots
[0] == nritems
)
5923 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5924 if (found_key
.objectid
< min_objectid
)
5926 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5927 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5929 if (found_key
.objectid
== min_objectid
&&
5930 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)