1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/processor.h>
29 #include "edac_core.h"
32 static LIST_HEAD(sbridge_edac_list
);
35 * Alter this version for the module when modifications are made
37 #define SBRIDGE_REVISION " Ver: 1.1.1 "
38 #define EDAC_MOD_STR "sbridge_edac"
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule
[] = {
57 0x80, 0x88, 0x90, 0x98, 0xa0,
58 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
61 static const u32 ibridge_dram_rule
[] = {
62 0x60, 0x68, 0x70, 0x78, 0x80,
63 0x88, 0x90, 0x98, 0xa0, 0xa8,
64 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
68 static const u32 knl_dram_rule
[] = {
69 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
70 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
71 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
72 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
73 0x100, 0x108, 0x110, 0x118, /* 20-23 */
76 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
77 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
79 static char *show_dram_attr(u32 attr
)
93 static const u32 sbridge_interleave_list
[] = {
94 0x84, 0x8c, 0x94, 0x9c, 0xa4,
95 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
98 static const u32 ibridge_interleave_list
[] = {
99 0x64, 0x6c, 0x74, 0x7c, 0x84,
100 0x8c, 0x94, 0x9c, 0xa4, 0xac,
101 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
102 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
105 static const u32 knl_interleave_list
[] = {
106 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
107 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
108 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
109 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
110 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
113 struct interleave_pkg
{
118 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
129 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
140 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
143 return GET_BITFIELD(reg
, table
[interleave
].start
,
144 table
[interleave
].end
);
147 /* Devices 12 Function 7 */
151 #define HASWELL_TOLM 0xd0
152 #define HASWELL_TOHM_0 0xd4
153 #define HASWELL_TOHM_1 0xd8
154 #define KNL_TOLM 0xd0
155 #define KNL_TOHM_0 0xd4
156 #define KNL_TOHM_1 0xd8
158 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
159 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
161 /* Device 13 Function 6 */
163 #define SAD_TARGET 0xf0
165 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
167 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
169 #define SAD_CONTROL 0xf4
171 /* Device 14 function 0 */
173 static const u32 tad_dram_rule
[] = {
174 0x40, 0x44, 0x48, 0x4c,
175 0x50, 0x54, 0x58, 0x5c,
176 0x60, 0x64, 0x68, 0x6c,
178 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
180 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
181 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
182 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
183 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
184 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
185 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
186 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
188 /* Device 15, function 0 */
191 #define KNL_MCMTR 0x624
193 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
194 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
195 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
197 /* Device 15, function 1 */
199 #define RASENABLES 0xac
200 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
202 /* Device 15, functions 2-5 */
204 static const int mtr_regs
[] = {
208 static const int knl_mtr_reg
= 0xb60;
210 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
211 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
212 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
213 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
214 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
216 static const u32 tad_ch_nilv_offset
[] = {
217 0x90, 0x94, 0x98, 0x9c,
218 0xa0, 0xa4, 0xa8, 0xac,
219 0xb0, 0xb4, 0xb8, 0xbc,
221 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
222 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
224 static const u32 rir_way_limit
[] = {
225 0x108, 0x10c, 0x110, 0x114, 0x118,
227 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
229 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
230 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
232 #define MAX_RIR_WAY 8
234 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
235 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
236 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
237 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
238 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
239 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
242 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
243 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
245 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
246 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
248 /* Device 16, functions 2-7 */
251 * FIXME: Implement the error count reads directly
254 static const u32 correrrcnt
[] = {
255 0x104, 0x108, 0x10c, 0x110,
258 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
259 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
261 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
263 static const u32 correrrthrsld
[] = {
264 0x11c, 0x120, 0x124, 0x128,
267 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
268 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
271 /* Device 17, function 0 */
273 #define SB_RANK_CFG_A 0x0328
275 #define IB_RANK_CFG_A 0x0320
281 #define NUM_CHANNELS 8 /* 2MC per socket, four chan per MC */
282 #define MAX_DIMMS 3 /* Max DIMMS per channel */
283 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
284 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
285 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
286 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
297 struct sbridge_info
{
301 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
302 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
303 u64 (*rir_limit
)(u32 reg
);
304 u64 (*sad_limit
)(u32 reg
);
305 u32 (*interleave_mode
)(u32 reg
);
306 char* (*show_interleave_mode
)(u32 reg
);
307 u32 (*dram_attr
)(u32 reg
);
308 const u32
*dram_rule
;
309 const u32
*interleave_list
;
310 const struct interleave_pkg
*interleave_pkg
;
313 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
314 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
315 enum dev_type (*get_width
)(struct sbridge_pvt
*pvt
, u32 mtr
);
316 struct pci_dev
*pci_vtd
;
319 struct sbridge_channel
{
324 struct pci_id_descr
{
329 struct pci_id_table
{
330 const struct pci_id_descr
*descr
;
336 struct list_head list
;
338 u8 node_id
, source_id
;
339 struct pci_dev
**pdev
;
341 struct mem_ctl_info
*mci
;
345 struct pci_dev
*pci_cha
[KNL_MAX_CHAS
];
346 struct pci_dev
*pci_channel
[KNL_MAX_CHANNELS
];
347 struct pci_dev
*pci_mc0
;
348 struct pci_dev
*pci_mc1
;
349 struct pci_dev
*pci_mc0_misc
;
350 struct pci_dev
*pci_mc1_misc
;
351 struct pci_dev
*pci_mc_info
; /* tolm, tohm */
355 struct pci_dev
*pci_ta
, *pci_ddrio
, *pci_ras
;
356 struct pci_dev
*pci_sad0
, *pci_sad1
;
357 struct pci_dev
*pci_ha0
, *pci_ha1
;
358 struct pci_dev
*pci_br0
, *pci_br1
;
359 struct pci_dev
*pci_ha1_ta
;
360 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
362 struct sbridge_dev
*sbridge_dev
;
364 struct sbridge_info info
;
365 struct sbridge_channel channel
[NUM_CHANNELS
];
367 /* Memory type detection */
368 bool is_mirrored
, is_lockstep
, is_close_pg
;
371 /* Memory description */
376 #define PCI_DESCR(device_id, opt) \
377 .dev_id = (device_id), \
380 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
381 /* Processor Home Agent */
382 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0) },
384 /* Memory controller */
385 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0) },
386 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0) },
387 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0) },
388 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0) },
389 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0) },
390 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0) },
391 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1) },
393 /* System Address Decoder */
394 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0) },
395 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0) },
397 /* Broadcast Registers */
398 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0) },
401 #define PCI_ID_TABLE_ENTRY(A, T) { \
403 .n_devs = ARRAY_SIZE(A), \
407 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
408 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
, SANDY_BRIDGE
),
409 {0,} /* 0 terminated list. */
412 /* This changes depending if 1HA or 2HA:
414 * 0x0eb8 (17.0) is DDRIO0
416 * 0x0ebc (17.4) is DDRIO0
418 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
422 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
429 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
430 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
431 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
432 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
435 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
436 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
440 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
441 /* Processor Home Agent */
442 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0) },
444 /* Memory controller */
445 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0) },
446 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0) },
447 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0) },
448 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0) },
449 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0) },
450 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0) },
452 /* System Address Decoder */
453 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0) },
455 /* Broadcast Registers */
456 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1) },
457 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0) },
459 /* Optional, mode 2HA */
460 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1) },
462 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1) },
463 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1) },
465 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1) },
466 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1) },
467 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
, 1) },
468 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
, 1) },
470 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1) },
471 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1) },
474 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
475 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
, IVY_BRIDGE
),
476 {0,} /* 0 terminated list. */
479 /* Haswell support */
482 * - 3 DDR3 channels, 2 DPC per channel
485 * - 4 DDR4 channels, 3 DPC per channel
488 * - 4 DDR4 channels, 3 DPC per channel
491 * - each IMC interfaces with a SMI 2 channel
492 * - each SMI channel interfaces with a scalable memory buffer
493 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
495 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
496 #define HASWELL_HASYSDEFEATURE2 0x84
497 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
508 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
509 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
510 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
518 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
519 /* first item must be the HA */
520 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0) },
522 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0) },
523 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0) },
525 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1) },
527 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0) },
528 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
, 0) },
529 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0) },
530 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0) },
531 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1) },
532 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1) },
534 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1) },
535 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
, 1) },
536 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
, 1) },
537 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
, 1) },
539 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1) },
540 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL
, 1) },
541 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1) },
542 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1) },
543 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1) },
544 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1) },
547 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
548 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
, HASWELL
),
549 {0,} /* 0 terminated list. */
552 /* Knight's Landing Support */
554 * KNL's memory channels are swizzled between memory controllers.
555 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
557 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
559 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
560 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
561 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
562 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL 0x7843
563 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
564 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
565 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
566 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
567 /* SAD target - 1-29-1 (1 of these) */
568 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
569 /* Caching / Home Agent */
570 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
571 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
572 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
575 * KNL differs from SB, IB, and Haswell in that it has multiple
576 * instances of the same device with the same device ID, so we handle that
577 * by creating as many copies in the table as we expect to find.
578 * (Like device ID must be grouped together.)
581 static const struct pci_id_descr pci_dev_descr_knl
[] = {
582 [0] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
, 0) },
583 [1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
, 0) },
584 [2 ... 3] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC
, 0)},
585 [4 ... 41] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
, 0) },
586 [42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL
, 0) },
587 [48] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA
, 0) },
588 [49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
, 0) },
591 static const struct pci_id_table pci_dev_descr_knl_table
[] = {
592 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl
, KNIGHTS_LANDING
),
601 * - 2 DDR3 channels, 2 DPC per channel
604 * - 4 DDR4 channels, 3 DPC per channel
607 * - 4 DDR4 channels, 3 DPC per channel
610 * - each IMC interfaces with a SMI 2 channel
611 * - each SMI channel interfaces with a scalable memory buffer
612 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
614 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
622 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
623 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
624 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
625 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
633 static const struct pci_id_descr pci_dev_descr_broadwell
[] = {
634 /* first item must be the HA */
635 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
, 0) },
637 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
, 0) },
638 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
, 0) },
640 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
, 1) },
642 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
, 0) },
643 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL
, 0) },
644 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
, 0) },
645 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
, 0) },
646 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
, 1) },
647 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
, 1) },
649 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
, 1) },
651 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
, 1) },
652 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL
, 1) },
653 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
, 1) },
654 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
, 1) },
655 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
, 1) },
656 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
, 1) },
659 static const struct pci_id_table pci_dev_descr_broadwell_table
[] = {
660 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell
, BROADWELL
),
661 {0,} /* 0 terminated list. */
665 /****************************************************************************
666 Ancillary status routines
667 ****************************************************************************/
669 static inline int numrank(enum type type
, u32 mtr
)
671 int ranks
= (1 << RANK_CNT_BITS(mtr
));
674 if (type
== HASWELL
|| type
== BROADWELL
|| type
== KNIGHTS_LANDING
)
678 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
679 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
686 static inline int numrow(u32 mtr
)
688 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
690 if (rows
< 13 || rows
> 18) {
691 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
692 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
699 static inline int numcol(u32 mtr
)
701 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
704 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
705 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
712 static struct sbridge_dev
*get_sbridge_dev(u8 bus
, int multi_bus
)
714 struct sbridge_dev
*sbridge_dev
;
717 * If we have devices scattered across several busses that pertain
718 * to the same memory controller, we'll lump them all together.
721 return list_first_entry_or_null(&sbridge_edac_list
,
722 struct sbridge_dev
, list
);
725 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
726 if (sbridge_dev
->bus
== bus
)
733 static struct sbridge_dev
*alloc_sbridge_dev(u8 bus
,
734 const struct pci_id_table
*table
)
736 struct sbridge_dev
*sbridge_dev
;
738 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
742 sbridge_dev
->pdev
= kzalloc(sizeof(*sbridge_dev
->pdev
) * table
->n_devs
,
744 if (!sbridge_dev
->pdev
) {
749 sbridge_dev
->bus
= bus
;
750 sbridge_dev
->n_devs
= table
->n_devs
;
751 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
756 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
758 list_del(&sbridge_dev
->list
);
759 kfree(sbridge_dev
->pdev
);
763 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
767 /* Address range is 32:28 */
768 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
769 return GET_TOLM(reg
);
772 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
776 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
777 return GET_TOHM(reg
);
780 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
784 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
786 return GET_TOLM(reg
);
789 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
793 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
795 return GET_TOHM(reg
);
798 static u64
rir_limit(u32 reg
)
800 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
803 static u64
sad_limit(u32 reg
)
805 return (GET_BITFIELD(reg
, 6, 25) << 26) | 0x3ffffff;
808 static u32
interleave_mode(u32 reg
)
810 return GET_BITFIELD(reg
, 1, 1);
813 char *show_interleave_mode(u32 reg
)
815 return interleave_mode(reg
) ? "8:6" : "[8:6]XOR[18:16]";
818 static u32
dram_attr(u32 reg
)
820 return GET_BITFIELD(reg
, 2, 3);
823 static u64
knl_sad_limit(u32 reg
)
825 return (GET_BITFIELD(reg
, 7, 26) << 26) | 0x3ffffff;
828 static u32
knl_interleave_mode(u32 reg
)
830 return GET_BITFIELD(reg
, 1, 2);
833 static char *knl_show_interleave_mode(u32 reg
)
837 switch (knl_interleave_mode(reg
)) {
839 s
= "use address bits [8:6]";
842 s
= "use address bits [10:8]";
845 s
= "use address bits [14:12]";
848 s
= "use address bits [32:30]";
858 static u32
dram_attr_knl(u32 reg
)
860 return GET_BITFIELD(reg
, 3, 4);
864 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
869 if (pvt
->pci_ddrio
) {
870 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
872 if (GET_BITFIELD(reg
, 11, 11))
873 /* FIXME: Can also be LRDIMM */
883 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
886 bool registered
= false;
887 enum mem_type mtype
= MEM_UNKNOWN
;
892 pci_read_config_dword(pvt
->pci_ddrio
,
893 HASWELL_DDRCRCLKCONTROLS
, ®
);
895 if (GET_BITFIELD(reg
, 16, 16))
898 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
899 if (GET_BITFIELD(reg
, 14, 14)) {
915 static enum dev_type
knl_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
917 /* for KNL value is fixed */
921 static enum dev_type
sbridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
923 /* there's no way to figure out */
927 static enum dev_type
__ibridge_get_width(u32 mtr
)
949 static enum dev_type
ibridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
952 * ddr3_width on the documentation but also valid for DDR4 on
955 return __ibridge_get_width(GET_BITFIELD(mtr
, 7, 8));
958 static enum dev_type
broadwell_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
960 /* ddr3_width on the documentation but also valid for DDR4 */
961 return __ibridge_get_width(GET_BITFIELD(mtr
, 8, 9));
964 static enum mem_type
knl_get_memory_type(struct sbridge_pvt
*pvt
)
966 /* DDR4 RDIMMS and LRDIMMS are supported */
970 static u8
get_node_id(struct sbridge_pvt
*pvt
)
973 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
974 return GET_BITFIELD(reg
, 0, 2);
977 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
981 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
982 return GET_BITFIELD(reg
, 0, 3);
985 static u8
knl_get_node_id(struct sbridge_pvt
*pvt
)
989 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
990 return GET_BITFIELD(reg
, 0, 2);
994 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
998 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOLM
, ®
);
999 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1002 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
1007 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
1008 rc
= GET_BITFIELD(reg
, 26, 31);
1009 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
1010 rc
= ((reg
<< 6) | rc
) << 26;
1012 return rc
| 0x1ffffff;
1015 static u64
knl_get_tolm(struct sbridge_pvt
*pvt
)
1019 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOLM
, ®
);
1020 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1023 static u64
knl_get_tohm(struct sbridge_pvt
*pvt
)
1028 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_0
, ®_lo
);
1029 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_1
, ®_hi
);
1030 rc
= ((u64
)reg_hi
<< 32) | reg_lo
;
1031 return rc
| 0x3ffffff;
1035 static u64
haswell_rir_limit(u32 reg
)
1037 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
1040 static inline u8
sad_pkg_socket(u8 pkg
)
1042 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1043 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
1046 static inline u8
sad_pkg_ha(u8 pkg
)
1048 return (pkg
>> 2) & 0x1;
1051 static int haswell_chan_hash(int idx
, u64 addr
)
1056 * XOR even bits from 12:26 to bit0 of idx,
1057 * odd bits from 13:27 to bit1
1059 for (i
= 12; i
< 28; i
+= 2)
1060 idx
^= (addr
>> i
) & 3;
1065 /****************************************************************************
1066 Memory check routines
1067 ****************************************************************************/
1068 static struct pci_dev
*get_pdev_same_bus(u8 bus
, u32 id
)
1070 struct pci_dev
*pdev
= NULL
;
1073 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, id
, pdev
);
1074 if (pdev
&& pdev
->bus
->number
== bus
)
1082 * check_if_ecc_is_active() - Checks if ECC is active
1084 * @type: Memory controller type
1085 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1088 static int check_if_ecc_is_active(const u8 bus
, enum type type
)
1090 struct pci_dev
*pdev
= NULL
;
1095 id
= PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
;
1098 id
= PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
;
1101 id
= PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
;
1104 id
= PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
;
1106 case KNIGHTS_LANDING
:
1108 * KNL doesn't group things by bus the same way
1109 * SB/IB/Haswell does.
1111 id
= PCI_DEVICE_ID_INTEL_KNL_IMC_TA
;
1117 if (type
!= KNIGHTS_LANDING
)
1118 pdev
= get_pdev_same_bus(bus
, id
);
1120 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, id
, 0);
1123 sbridge_printk(KERN_ERR
, "Couldn't find PCI device "
1124 "%04x:%04x! on bus %02d\n",
1125 PCI_VENDOR_ID_INTEL
, id
, bus
);
1129 pci_read_config_dword(pdev
,
1130 type
== KNIGHTS_LANDING
? KNL_MCMTR
: MCMTR
, &mcmtr
);
1131 if (!IS_ECC_ENABLED(mcmtr
)) {
1132 sbridge_printk(KERN_ERR
, "ECC is disabled. Aborting\n");
1138 /* Low bits of TAD limit, and some metadata. */
1139 static const u32 knl_tad_dram_limit_lo
[] = {
1140 0x400, 0x500, 0x600, 0x700,
1141 0x800, 0x900, 0xa00, 0xb00,
1144 /* Low bits of TAD offset. */
1145 static const u32 knl_tad_dram_offset_lo
[] = {
1146 0x404, 0x504, 0x604, 0x704,
1147 0x804, 0x904, 0xa04, 0xb04,
1150 /* High 16 bits of TAD limit and offset. */
1151 static const u32 knl_tad_dram_hi
[] = {
1152 0x408, 0x508, 0x608, 0x708,
1153 0x808, 0x908, 0xa08, 0xb08,
1156 /* Number of ways a tad entry is interleaved. */
1157 static const u32 knl_tad_ways
[] = {
1162 * Retrieve the n'th Target Address Decode table entry
1163 * from the memory controller's TAD table.
1165 * @pvt: driver private data
1166 * @entry: which entry you want to retrieve
1167 * @mc: which memory controller (0 or 1)
1168 * @offset: output tad range offset
1169 * @limit: output address of first byte above tad range
1170 * @ways: output number of interleave ways
1172 * The offset value has curious semantics. It's a sort of running total
1173 * of the sizes of all the memory regions that aren't mapped in this
1176 static int knl_get_tad(const struct sbridge_pvt
*pvt
,
1183 u32 reg_limit_lo
, reg_offset_lo
, reg_hi
;
1184 struct pci_dev
*pci_mc
;
1189 pci_mc
= pvt
->knl
.pci_mc0
;
1192 pci_mc
= pvt
->knl
.pci_mc1
;
1199 pci_read_config_dword(pci_mc
,
1200 knl_tad_dram_limit_lo
[entry
], ®_limit_lo
);
1201 pci_read_config_dword(pci_mc
,
1202 knl_tad_dram_offset_lo
[entry
], ®_offset_lo
);
1203 pci_read_config_dword(pci_mc
,
1204 knl_tad_dram_hi
[entry
], ®_hi
);
1206 /* Is this TAD entry enabled? */
1207 if (!GET_BITFIELD(reg_limit_lo
, 0, 0))
1210 way_id
= GET_BITFIELD(reg_limit_lo
, 3, 5);
1212 if (way_id
< ARRAY_SIZE(knl_tad_ways
)) {
1213 *ways
= knl_tad_ways
[way_id
];
1216 sbridge_printk(KERN_ERR
,
1217 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1223 * The least significant 6 bits of base and limit are truncated.
1224 * For limit, we fill the missing bits with 1s.
1226 *offset
= ((u64
) GET_BITFIELD(reg_offset_lo
, 6, 31) << 6) |
1227 ((u64
) GET_BITFIELD(reg_hi
, 0, 15) << 32);
1228 *limit
= ((u64
) GET_BITFIELD(reg_limit_lo
, 6, 31) << 6) | 63 |
1229 ((u64
) GET_BITFIELD(reg_hi
, 16, 31) << 32);
1234 /* Determine which memory controller is responsible for a given channel. */
1235 static int knl_channel_mc(int channel
)
1237 WARN_ON(channel
< 0 || channel
>= 6);
1239 return channel
< 3 ? 1 : 0;
1243 * Get the Nth entry from EDC_ROUTE_TABLE register.
1244 * (This is the per-tile mapping of logical interleave targets to
1245 * physical EDC modules.)
1257 static u32
knl_get_edc_route(int entry
, u32 reg
)
1259 WARN_ON(entry
>= KNL_MAX_EDCS
);
1260 return GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1264 * Get the Nth entry from MC_ROUTE_TABLE register.
1265 * (This is the per-tile mapping of logical interleave targets to
1266 * physical DRAM channels modules.)
1268 * entry 0: mc 0:2 channel 18:19
1269 * 1: mc 3:5 channel 20:21
1270 * 2: mc 6:8 channel 22:23
1271 * 3: mc 9:11 channel 24:25
1272 * 4: mc 12:14 channel 26:27
1273 * 5: mc 15:17 channel 28:29
1276 * Though we have 3 bits to identify the MC, we should only see
1277 * the values 0 or 1.
1280 static u32
knl_get_mc_route(int entry
, u32 reg
)
1284 WARN_ON(entry
>= KNL_MAX_CHANNELS
);
1286 mc
= GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1287 chan
= GET_BITFIELD(reg
, (entry
*2) + 18, (entry
*2) + 18 + 1);
1289 return knl_channel_remap(mc
, chan
);
1293 * Render the EDC_ROUTE register in human-readable form.
1294 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1296 static void knl_show_edc_route(u32 reg
, char *s
)
1300 for (i
= 0; i
< KNL_MAX_EDCS
; i
++) {
1301 s
[i
*2] = knl_get_edc_route(i
, reg
) + '0';
1305 s
[KNL_MAX_EDCS
*2 - 1] = '\0';
1309 * Render the MC_ROUTE register in human-readable form.
1310 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1312 static void knl_show_mc_route(u32 reg
, char *s
)
1316 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
1317 s
[i
*2] = knl_get_mc_route(i
, reg
) + '0';
1321 s
[KNL_MAX_CHANNELS
*2 - 1] = '\0';
1324 #define KNL_EDC_ROUTE 0xb8
1325 #define KNL_MC_ROUTE 0xb4
1327 /* Is this dram rule backed by regular DRAM in flat mode? */
1328 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1330 /* Is this dram rule cached? */
1331 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1333 /* Is this rule backed by edc ? */
1334 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1336 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1337 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1339 /* Is this rule mod3? */
1340 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1343 * Figure out how big our RAM modules are.
1345 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1346 * have to figure this out from the SAD rules, interleave lists, route tables,
1349 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1350 * inspect the TAD rules to figure out how large the SAD regions really are.
1352 * When we know the real size of a SAD region and how many ways it's
1353 * interleaved, we know the individual contribution of each channel to
1356 * Finally, we have to check whether each channel participates in each SAD
1359 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1360 * much memory the channel uses, we know the DIMM is at least that large.
1361 * (The BIOS might possibly choose not to map all available memory, in which
1362 * case we will underreport the size of the DIMM.)
1364 * In theory, we could try to determine the EDC sizes as well, but that would
1365 * only work in flat mode, not in cache mode.
1367 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1370 static int knl_get_dimm_capacity(struct sbridge_pvt
*pvt
, u64
*mc_sizes
)
1372 u64 sad_base
, sad_size
, sad_limit
= 0;
1373 u64 tad_base
, tad_size
, tad_limit
, tad_deadspace
, tad_livespace
;
1376 int intrlv_ways
, tad_ways
;
1379 u64 sad_actual_size
[2]; /* sad size accounting for holes, per mc */
1380 u32 dram_rule
, interleave_reg
;
1381 u32 mc_route_reg
[KNL_MAX_CHAS
];
1382 u32 edc_route_reg
[KNL_MAX_CHAS
];
1384 char edc_route_string
[KNL_MAX_EDCS
*2];
1385 char mc_route_string
[KNL_MAX_CHANNELS
*2];
1390 int participants
[KNL_MAX_CHANNELS
];
1391 int participant_count
= 0;
1393 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++)
1396 /* Read the EDC route table in each CHA. */
1398 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1399 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1400 KNL_EDC_ROUTE
, &edc_route_reg
[i
]);
1402 if (i
> 0 && edc_route_reg
[i
] != edc_route_reg
[i
-1]) {
1403 knl_show_edc_route(edc_route_reg
[i
-1],
1405 if (cur_reg_start
== i
-1)
1406 edac_dbg(0, "edc route table for CHA %d: %s\n",
1407 cur_reg_start
, edc_route_string
);
1409 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1410 cur_reg_start
, i
-1, edc_route_string
);
1414 knl_show_edc_route(edc_route_reg
[i
-1], edc_route_string
);
1415 if (cur_reg_start
== i
-1)
1416 edac_dbg(0, "edc route table for CHA %d: %s\n",
1417 cur_reg_start
, edc_route_string
);
1419 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1420 cur_reg_start
, i
-1, edc_route_string
);
1422 /* Read the MC route table in each CHA. */
1424 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1425 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1426 KNL_MC_ROUTE
, &mc_route_reg
[i
]);
1428 if (i
> 0 && mc_route_reg
[i
] != mc_route_reg
[i
-1]) {
1429 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1430 if (cur_reg_start
== i
-1)
1431 edac_dbg(0, "mc route table for CHA %d: %s\n",
1432 cur_reg_start
, mc_route_string
);
1434 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1435 cur_reg_start
, i
-1, mc_route_string
);
1439 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1440 if (cur_reg_start
== i
-1)
1441 edac_dbg(0, "mc route table for CHA %d: %s\n",
1442 cur_reg_start
, mc_route_string
);
1444 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1445 cur_reg_start
, i
-1, mc_route_string
);
1447 /* Process DRAM rules */
1448 for (sad_rule
= 0; sad_rule
< pvt
->info
.max_sad
; sad_rule
++) {
1449 /* previous limit becomes the new base */
1450 sad_base
= sad_limit
;
1452 pci_read_config_dword(pvt
->pci_sad0
,
1453 pvt
->info
.dram_rule
[sad_rule
], &dram_rule
);
1455 if (!DRAM_RULE_ENABLE(dram_rule
))
1458 edram_only
= KNL_EDRAM_ONLY(dram_rule
);
1460 sad_limit
= pvt
->info
.sad_limit(dram_rule
)+1;
1461 sad_size
= sad_limit
- sad_base
;
1463 pci_read_config_dword(pvt
->pci_sad0
,
1464 pvt
->info
.interleave_list
[sad_rule
], &interleave_reg
);
1467 * Find out how many ways this dram rule is interleaved.
1468 * We stop when we see the first channel again.
1470 first_pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1472 for (intrlv_ways
= 1; intrlv_ways
< 8; intrlv_ways
++) {
1473 pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1474 interleave_reg
, intrlv_ways
);
1476 if ((pkg
& 0x8) == 0) {
1478 * 0 bit means memory is non-local,
1479 * which KNL doesn't support
1481 edac_dbg(0, "Unexpected interleave target %d\n",
1486 if (pkg
== first_pkg
)
1489 if (KNL_MOD3(dram_rule
))
1492 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1497 edram_only
? ", EDRAM" : "");
1500 * Find out how big the SAD region really is by iterating
1501 * over TAD tables (SAD regions may contain holes).
1502 * Each memory controller might have a different TAD table, so
1503 * we have to look at both.
1505 * Livespace is the memory that's mapped in this TAD table,
1506 * deadspace is the holes (this could be the MMIO hole, or it
1507 * could be memory that's mapped by the other TAD table but
1510 for (mc
= 0; mc
< 2; mc
++) {
1511 sad_actual_size
[mc
] = 0;
1514 tad_rule
< ARRAY_SIZE(
1515 knl_tad_dram_limit_lo
);
1517 if (knl_get_tad(pvt
,
1525 tad_size
= (tad_limit
+1) -
1526 (tad_livespace
+ tad_deadspace
);
1527 tad_livespace
+= tad_size
;
1528 tad_base
= (tad_limit
+1) - tad_size
;
1530 if (tad_base
< sad_base
) {
1531 if (tad_limit
> sad_base
)
1532 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1533 } else if (tad_base
< sad_limit
) {
1534 if (tad_limit
+1 > sad_limit
) {
1535 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1537 /* TAD region is completely inside SAD region */
1538 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1540 tad_limit
, tad_size
,
1542 sad_actual_size
[mc
] += tad_size
;
1545 tad_base
= tad_limit
+1;
1549 for (mc
= 0; mc
< 2; mc
++) {
1550 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1551 mc
, sad_actual_size
[mc
], sad_actual_size
[mc
]);
1554 /* Ignore EDRAM rule */
1558 /* Figure out which channels participate in interleave. */
1559 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++)
1560 participants
[channel
] = 0;
1562 /* For each channel, does at least one CHA have
1563 * this channel mapped to the given target?
1565 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1566 for (way
= 0; way
< intrlv_ways
; way
++) {
1570 if (KNL_MOD3(dram_rule
))
1573 target
= 0x7 & sad_pkg(
1574 pvt
->info
.interleave_pkg
, interleave_reg
, way
);
1576 for (cha
= 0; cha
< KNL_MAX_CHAS
; cha
++) {
1577 if (knl_get_mc_route(target
,
1578 mc_route_reg
[cha
]) == channel
1579 && !participants
[channel
]) {
1580 participant_count
++;
1581 participants
[channel
] = 1;
1588 if (participant_count
!= intrlv_ways
)
1589 edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1590 participant_count
, intrlv_ways
);
1592 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1593 mc
= knl_channel_mc(channel
);
1594 if (participants
[channel
]) {
1595 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1597 sad_actual_size
[mc
]/intrlv_ways
,
1599 mc_sizes
[channel
] +=
1600 sad_actual_size
[mc
]/intrlv_ways
;
1608 static int get_dimm_config(struct mem_ctl_info
*mci
)
1610 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1611 struct dimm_info
*dimm
;
1612 unsigned i
, j
, banks
, ranks
, rows
, cols
, npages
;
1615 enum edac_type mode
;
1616 enum mem_type mtype
;
1617 int channels
= pvt
->info
.type
== KNIGHTS_LANDING
?
1618 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
1619 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
];
1621 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1622 pci_read_config_dword(pvt
->pci_ha0
, HASWELL_HASYSDEFEATURE2
, ®
);
1623 pvt
->is_chan_hash
= GET_BITFIELD(reg
, 21, 21);
1625 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
||
1626 pvt
->info
.type
== KNIGHTS_LANDING
)
1627 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
1629 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
1631 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1632 pvt
->sbridge_dev
->source_id
= SOURCE_ID_KNL(reg
);
1634 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
1636 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
1637 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1638 pvt
->sbridge_dev
->mc
,
1639 pvt
->sbridge_dev
->node_id
,
1640 pvt
->sbridge_dev
->source_id
);
1642 /* KNL doesn't support mirroring or lockstep,
1643 * and is always closed page
1645 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1646 mode
= EDAC_S4ECD4ED
;
1647 pvt
->is_mirrored
= false;
1649 if (knl_get_dimm_capacity(pvt
, knl_mc_sizes
) != 0)
1652 pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
);
1653 if (IS_MIRROR_ENABLED(reg
)) {
1654 edac_dbg(0, "Memory mirror is enabled\n");
1655 pvt
->is_mirrored
= true;
1657 edac_dbg(0, "Memory mirror is disabled\n");
1658 pvt
->is_mirrored
= false;
1661 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
);
1662 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
1663 edac_dbg(0, "Lockstep is enabled\n");
1664 mode
= EDAC_S8ECD8ED
;
1665 pvt
->is_lockstep
= true;
1667 edac_dbg(0, "Lockstep is disabled\n");
1668 mode
= EDAC_S4ECD4ED
;
1669 pvt
->is_lockstep
= false;
1671 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
1672 edac_dbg(0, "address map is on closed page mode\n");
1673 pvt
->is_close_pg
= true;
1675 edac_dbg(0, "address map is on open page mode\n");
1676 pvt
->is_close_pg
= false;
1680 mtype
= pvt
->info
.get_memory_type(pvt
);
1681 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
1682 edac_dbg(0, "Memory is registered\n");
1683 else if (mtype
== MEM_UNKNOWN
)
1684 edac_dbg(0, "Cannot determine memory type\n");
1686 edac_dbg(0, "Memory is unregistered\n");
1688 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
1693 for (i
= 0; i
< channels
; i
++) {
1696 int max_dimms_per_channel
;
1698 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1699 max_dimms_per_channel
= 1;
1700 if (!pvt
->knl
.pci_channel
[i
])
1703 max_dimms_per_channel
= ARRAY_SIZE(mtr_regs
);
1704 if (!pvt
->pci_tad
[i
])
1708 for (j
= 0; j
< max_dimms_per_channel
; j
++) {
1709 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
, mci
->n_layers
,
1711 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1712 pci_read_config_dword(pvt
->knl
.pci_channel
[i
],
1715 pci_read_config_dword(pvt
->pci_tad
[i
],
1718 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
1719 if (IS_DIMM_PRESENT(mtr
)) {
1720 pvt
->channel
[i
].dimms
++;
1722 ranks
= numrank(pvt
->info
.type
, mtr
);
1724 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1725 /* For DDR4, this is fixed. */
1727 rows
= knl_mc_sizes
[i
] /
1728 ((u64
) cols
* ranks
* banks
* 8);
1734 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
1735 npages
= MiB_TO_PAGES(size
);
1737 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1738 pvt
->sbridge_dev
->mc
, i
/4, i
%4, j
,
1740 banks
, ranks
, rows
, cols
);
1742 dimm
->nr_pages
= npages
;
1744 dimm
->dtype
= pvt
->info
.get_width(pvt
, mtr
);
1745 dimm
->mtype
= mtype
;
1746 dimm
->edac_mode
= mode
;
1747 snprintf(dimm
->label
, sizeof(dimm
->label
),
1748 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1749 pvt
->sbridge_dev
->source_id
, i
/4, i
%4, j
);
1757 static void get_memory_layout(const struct mem_ctl_info
*mci
)
1759 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1760 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
1768 * Step 1) Get TOLM/TOHM ranges
1771 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
1772 tmp_mb
= (1 + pvt
->tolm
) >> 20;
1774 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1775 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1776 gb
, (mb
*1000)/1024, (u64
)pvt
->tolm
);
1778 /* Address range is already 45:25 */
1779 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
1780 tmp_mb
= (1 + pvt
->tohm
) >> 20;
1782 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1783 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1784 gb
, (mb
*1000)/1024, (u64
)pvt
->tohm
);
1787 * Step 2) Get SAD range and SAD Interleave list
1788 * TAD registers contain the interleave wayness. However, it
1789 * seems simpler to just discover it indirectly, with the
1793 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1794 /* SAD_LIMIT Address range is 45:26 */
1795 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1797 limit
= pvt
->info
.sad_limit(reg
);
1799 if (!DRAM_RULE_ENABLE(reg
))
1805 tmp_mb
= (limit
+ 1) >> 20;
1806 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1807 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1809 show_dram_attr(pvt
->info
.dram_attr(reg
)),
1811 ((u64
)tmp_mb
) << 20L,
1812 pvt
->info
.show_interleave_mode(reg
),
1816 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1818 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1819 for (j
= 0; j
< 8; j
++) {
1820 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
1821 if (j
> 0 && sad_interl
== pkg
)
1824 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1829 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1833 * Step 3) Get TAD range
1836 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1837 pci_read_config_dword(pvt
->pci_ha0
, tad_dram_rule
[n_tads
],
1839 limit
= TAD_LIMIT(reg
);
1842 tmp_mb
= (limit
+ 1) >> 20;
1844 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1845 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1846 n_tads
, gb
, (mb
*1000)/1024,
1847 ((u64
)tmp_mb
) << 20L,
1848 (u32
)(1 << TAD_SOCK(reg
)),
1849 (u32
)TAD_CH(reg
) + 1,
1859 * Step 4) Get TAD offsets, per each channel
1861 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1862 if (!pvt
->channel
[i
].dimms
)
1864 for (j
= 0; j
< n_tads
; j
++) {
1865 pci_read_config_dword(pvt
->pci_tad
[i
],
1866 tad_ch_nilv_offset
[j
],
1868 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1869 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1870 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1873 ((u64
)tmp_mb
) << 20L,
1879 * Step 6) Get RIR Wayness/Limit, per each channel
1881 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1882 if (!pvt
->channel
[i
].dimms
)
1884 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1885 pci_read_config_dword(pvt
->pci_tad
[i
],
1889 if (!IS_RIR_VALID(reg
))
1892 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1893 rir_way
= 1 << RIR_WAY(reg
);
1894 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1895 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1898 ((u64
)tmp_mb
) << 20L,
1902 for (k
= 0; k
< rir_way
; k
++) {
1903 pci_read_config_dword(pvt
->pci_tad
[i
],
1906 tmp_mb
= RIR_OFFSET(pvt
->info
.type
, reg
) << 6;
1908 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1909 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1912 ((u64
)tmp_mb
) << 20L,
1913 (u32
)RIR_RNK_TGT(pvt
->info
.type
, reg
),
1920 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
)
1922 struct sbridge_dev
*sbridge_dev
;
1924 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1925 if (sbridge_dev
->node_id
== node_id
)
1926 return sbridge_dev
->mci
;
1931 static int get_memory_error_data(struct mem_ctl_info
*mci
,
1936 char **area_type
, char *msg
)
1938 struct mem_ctl_info
*new_mci
;
1939 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1940 struct pci_dev
*pci_ha
;
1941 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
1942 int sad_interl
, idx
, base_ch
;
1943 int interleave_mode
, shiftup
= 0;
1944 unsigned sad_interleave
[pvt
->info
.max_interleave
];
1946 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0, ch_add
= 0;
1950 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
1954 * Step 0) Check if the address is at special memory ranges
1955 * The check bellow is probably enough to fill all cases where
1956 * the error is not inside a memory, except for the legacy
1957 * range (e. g. VGA addresses). It is unlikely, however, that the
1958 * memory controller would generate an error on that range.
1960 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
1961 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
1964 if (addr
>= (u64
)pvt
->tohm
) {
1965 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
1970 * Step 1) Get socket
1972 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1973 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1976 if (!DRAM_RULE_ENABLE(reg
))
1979 limit
= pvt
->info
.sad_limit(reg
);
1981 sprintf(msg
, "Can't discover the memory socket");
1988 if (n_sads
== pvt
->info
.max_sad
) {
1989 sprintf(msg
, "Can't discover the memory socket");
1993 *area_type
= show_dram_attr(pvt
->info
.dram_attr(dram_rule
));
1994 interleave_mode
= pvt
->info
.interleave_mode(dram_rule
);
1996 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1999 if (pvt
->info
.type
== SANDY_BRIDGE
) {
2000 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
2001 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
2002 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
2003 if (sad_way
> 0 && sad_interl
== pkg
)
2005 sad_interleave
[sad_way
] = pkg
;
2006 edac_dbg(0, "SAD interleave #%d: %d\n",
2007 sad_way
, sad_interleave
[sad_way
]);
2009 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2010 pvt
->sbridge_dev
->mc
,
2015 !interleave_mode
? "" : "XOR[18:16]");
2016 if (interleave_mode
)
2017 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
2019 idx
= (addr
>> 6) & 7;
2033 sprintf(msg
, "Can't discover socket interleave");
2036 *socket
= sad_interleave
[idx
];
2037 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2038 idx
, sad_way
, *socket
);
2039 } else if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
2040 int bits
, a7mode
= A7MODE(dram_rule
);
2043 /* A7 mode swaps P9 with P6 */
2044 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
2045 bits
|= GET_BITFIELD(addr
, 9, 9);
2047 bits
= GET_BITFIELD(addr
, 6, 8);
2049 if (interleave_mode
== 0) {
2050 /* interleave mode will XOR {8,7,6} with {18,17,16} */
2051 idx
= GET_BITFIELD(addr
, 16, 18);
2056 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2057 *socket
= sad_pkg_socket(pkg
);
2058 sad_ha
= sad_pkg_ha(pkg
);
2063 /* MCChanShiftUpEnable */
2064 pci_read_config_dword(pvt
->pci_ha0
,
2065 HASWELL_HASYSDEFEATURE2
, ®
);
2066 shiftup
= GET_BITFIELD(reg
, 22, 22);
2069 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2070 idx
, *socket
, sad_ha
, shiftup
);
2072 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2073 idx
= (addr
>> 6) & 7;
2074 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2075 *socket
= sad_pkg_socket(pkg
);
2076 sad_ha
= sad_pkg_ha(pkg
);
2079 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2080 idx
, *socket
, sad_ha
);
2086 * Move to the proper node structure, in order to access the
2087 * right PCI registers
2089 new_mci
= get_mci_for_node_id(*socket
);
2091 sprintf(msg
, "Struct for socket #%u wasn't initialized",
2096 pvt
= mci
->pvt_info
;
2099 * Step 2) Get memory channel
2102 if (pvt
->info
.type
== SANDY_BRIDGE
)
2103 pci_ha
= pvt
->pci_ha0
;
2106 pci_ha
= pvt
->pci_ha1
;
2108 pci_ha
= pvt
->pci_ha0
;
2110 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
2111 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
2112 limit
= TAD_LIMIT(reg
);
2114 sprintf(msg
, "Can't discover the memory channel");
2121 if (n_tads
== MAX_TAD
) {
2122 sprintf(msg
, "Can't discover the memory channel");
2126 ch_way
= TAD_CH(reg
) + 1;
2127 sck_way
= TAD_SOCK(reg
);
2132 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
2133 if (pvt
->is_chan_hash
)
2134 idx
= haswell_chan_hash(idx
, addr
);
2139 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2143 base_ch
= TAD_TGT0(reg
);
2146 base_ch
= TAD_TGT1(reg
);
2149 base_ch
= TAD_TGT2(reg
);
2152 base_ch
= TAD_TGT3(reg
);
2155 sprintf(msg
, "Can't discover the TAD target");
2158 *channel_mask
= 1 << base_ch
;
2160 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
2161 tad_ch_nilv_offset
[n_tads
],
2164 if (pvt
->is_mirrored
) {
2165 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
2169 sck_xch
= (1 << sck_way
) * (ch_way
>> 1);
2172 sprintf(msg
, "Invalid mirror set. Can't decode addr");
2176 sck_xch
= (1 << sck_way
) * ch_way
;
2178 if (pvt
->is_lockstep
)
2179 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
2181 offset
= TAD_OFFSET(tad_offset
);
2183 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2194 /* Calculate channel address */
2195 /* Remove the TAD offset */
2197 if (offset
> addr
) {
2198 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2203 ch_addr
= addr
- offset
;
2204 ch_addr
>>= (6 + shiftup
);
2206 ch_addr
<<= (6 + shiftup
);
2207 ch_addr
|= addr
& ((1 << (6 + shiftup
)) - 1);
2210 * Step 3) Decode rank
2212 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
2213 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
2214 rir_way_limit
[n_rir
],
2217 if (!IS_RIR_VALID(reg
))
2220 limit
= pvt
->info
.rir_limit(reg
);
2221 gb
= div_u64_rem(limit
>> 20, 1024, &mb
);
2222 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2227 if (ch_addr
<= limit
)
2230 if (n_rir
== MAX_RIR_RANGES
) {
2231 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
2235 rir_way
= RIR_WAY(reg
);
2237 if (pvt
->is_close_pg
)
2238 idx
= (ch_addr
>> 6);
2240 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
2241 idx
%= 1 << rir_way
;
2243 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
2244 rir_offset
[n_rir
][idx
],
2246 *rank
= RIR_RNK_TGT(pvt
->info
.type
, reg
);
2248 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2258 /****************************************************************************
2259 Device initialization routines: put/get, init/exit
2260 ****************************************************************************/
2263 * sbridge_put_all_devices 'put' all the devices that we have
2264 * reserved via 'get'
2266 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
2271 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2272 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
2275 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2277 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
2282 static void sbridge_put_all_devices(void)
2284 struct sbridge_dev
*sbridge_dev
, *tmp
;
2286 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
2287 sbridge_put_devices(sbridge_dev
);
2288 free_sbridge_dev(sbridge_dev
);
2292 static int sbridge_get_onedevice(struct pci_dev
**prev
,
2294 const struct pci_id_table
*table
,
2295 const unsigned devno
,
2296 const int multi_bus
)
2298 struct sbridge_dev
*sbridge_dev
;
2299 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
2300 struct pci_dev
*pdev
= NULL
;
2303 sbridge_printk(KERN_DEBUG
,
2304 "Seeking for: PCI ID %04x:%04x\n",
2305 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2307 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2308 dev_descr
->dev_id
, *prev
);
2316 if (dev_descr
->optional
)
2319 /* if the HA wasn't found */
2323 sbridge_printk(KERN_INFO
,
2324 "Device not found: %04x:%04x\n",
2325 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2327 /* End of list, leave */
2330 bus
= pdev
->bus
->number
;
2332 sbridge_dev
= get_sbridge_dev(bus
, multi_bus
);
2334 sbridge_dev
= alloc_sbridge_dev(bus
, table
);
2342 if (sbridge_dev
->pdev
[devno
]) {
2343 sbridge_printk(KERN_ERR
,
2344 "Duplicated device for %04x:%04x\n",
2345 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2350 sbridge_dev
->pdev
[devno
] = pdev
;
2352 /* Be sure that the device is enabled */
2353 if (unlikely(pci_enable_device(pdev
) < 0)) {
2354 sbridge_printk(KERN_ERR
,
2355 "Couldn't enable %04x:%04x\n",
2356 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2360 edac_dbg(0, "Detected %04x:%04x\n",
2361 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2364 * As stated on drivers/pci/search.c, the reference count for
2365 * @from is always decremented if it is not %NULL. So, as we need
2366 * to get all devices up to null, we need to do a get for the device
2376 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2377 * devices we want to reference for this driver.
2378 * @num_mc: pointer to the memory controllers count, to be incremented in case
2380 * @table: model specific table
2382 * returns 0 in case of success or error code
2384 static int sbridge_get_all_devices(u8
*num_mc
,
2385 const struct pci_id_table
*table
)
2388 struct pci_dev
*pdev
= NULL
;
2392 if (table
->type
== KNIGHTS_LANDING
)
2393 allow_dups
= multi_bus
= 1;
2394 while (table
&& table
->descr
) {
2395 for (i
= 0; i
< table
->n_devs
; i
++) {
2396 if (!allow_dups
|| i
== 0 ||
2397 table
->descr
[i
].dev_id
!=
2398 table
->descr
[i
-1].dev_id
) {
2402 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
2403 table
, i
, multi_bus
);
2409 sbridge_put_all_devices();
2412 } while (pdev
&& !allow_dups
);
2420 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2421 struct sbridge_dev
*sbridge_dev
)
2423 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2424 struct pci_dev
*pdev
;
2425 u8 saw_chan_mask
= 0;
2428 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2429 pdev
= sbridge_dev
->pdev
[i
];
2433 switch (pdev
->device
) {
2434 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
2435 pvt
->pci_sad0
= pdev
;
2437 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
2438 pvt
->pci_sad1
= pdev
;
2440 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
2441 pvt
->pci_br0
= pdev
;
2443 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
2444 pvt
->pci_ha0
= pdev
;
2446 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
2449 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
2450 pvt
->pci_ras
= pdev
;
2452 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
2453 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
2454 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
2455 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
2457 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
;
2458 pvt
->pci_tad
[id
] = pdev
;
2459 saw_chan_mask
|= 1 << id
;
2462 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
2463 pvt
->pci_ddrio
= pdev
;
2469 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2470 pdev
->vendor
, pdev
->device
,
2475 /* Check if everything were registered */
2476 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha0
||
2477 !pvt
->pci_ras
|| !pvt
->pci_ta
)
2480 if (saw_chan_mask
!= 0x0f)
2485 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2489 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
2490 PCI_VENDOR_ID_INTEL
, pdev
->device
);
2494 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2495 struct sbridge_dev
*sbridge_dev
)
2497 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2498 struct pci_dev
*pdev
;
2499 u8 saw_chan_mask
= 0;
2502 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2503 pdev
= sbridge_dev
->pdev
[i
];
2507 switch (pdev
->device
) {
2508 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
2509 pvt
->pci_ha0
= pdev
;
2511 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2513 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
2514 pvt
->pci_ras
= pdev
;
2516 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
2517 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
2518 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
2519 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
2521 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
;
2522 pvt
->pci_tad
[id
] = pdev
;
2523 saw_chan_mask
|= 1 << id
;
2526 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
2527 pvt
->pci_ddrio
= pdev
;
2529 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
2530 pvt
->pci_ddrio
= pdev
;
2532 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
2533 pvt
->pci_sad0
= pdev
;
2535 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
2536 pvt
->pci_br0
= pdev
;
2538 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
2539 pvt
->pci_br1
= pdev
;
2541 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
2542 pvt
->pci_ha1
= pdev
;
2544 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
2545 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
2546 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
:
2547 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
:
2549 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
+ 4;
2550 pvt
->pci_tad
[id
] = pdev
;
2551 saw_chan_mask
|= 1 << id
;
2558 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2560 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2564 /* Check if everything were registered */
2565 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_br0
||
2566 !pvt
->pci_br1
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
2569 if (saw_chan_mask
!= 0x0f && /* -EN */
2570 saw_chan_mask
!= 0x33 && /* -EP */
2571 saw_chan_mask
!= 0xff) /* -EX */
2576 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2580 sbridge_printk(KERN_ERR
,
2581 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
2586 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
2587 struct sbridge_dev
*sbridge_dev
)
2589 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2590 struct pci_dev
*pdev
;
2591 u8 saw_chan_mask
= 0;
2594 /* there's only one device per system; not tied to any bus */
2595 if (pvt
->info
.pci_vtd
== NULL
)
2596 /* result will be checked later */
2597 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2598 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
2601 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2602 pdev
= sbridge_dev
->pdev
[i
];
2606 switch (pdev
->device
) {
2607 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
2608 pvt
->pci_sad0
= pdev
;
2610 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
2611 pvt
->pci_sad1
= pdev
;
2613 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2614 pvt
->pci_ha0
= pdev
;
2616 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
2619 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
:
2620 pvt
->pci_ras
= pdev
;
2622 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
2623 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
2624 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
2625 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
2627 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
;
2629 pvt
->pci_tad
[id
] = pdev
;
2630 saw_chan_mask
|= 1 << id
;
2633 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
2634 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
2635 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
:
2636 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
:
2638 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
+ 4;
2640 pvt
->pci_tad
[id
] = pdev
;
2641 saw_chan_mask
|= 1 << id
;
2644 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
2645 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
:
2646 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
:
2647 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
:
2648 if (!pvt
->pci_ddrio
)
2649 pvt
->pci_ddrio
= pdev
;
2651 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
2652 pvt
->pci_ha1
= pdev
;
2654 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
2655 pvt
->pci_ha1_ta
= pdev
;
2661 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2663 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2667 /* Check if everything were registered */
2668 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_sad1
||
2669 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2672 if (saw_chan_mask
!= 0x0f && /* -EN */
2673 saw_chan_mask
!= 0x33 && /* -EP */
2674 saw_chan_mask
!= 0xff) /* -EX */
2679 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2683 static int broadwell_mci_bind_devs(struct mem_ctl_info
*mci
,
2684 struct sbridge_dev
*sbridge_dev
)
2686 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2687 struct pci_dev
*pdev
;
2688 u8 saw_chan_mask
= 0;
2691 /* there's only one device per system; not tied to any bus */
2692 if (pvt
->info
.pci_vtd
== NULL
)
2693 /* result will be checked later */
2694 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2695 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC
,
2698 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2699 pdev
= sbridge_dev
->pdev
[i
];
2703 switch (pdev
->device
) {
2704 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
:
2705 pvt
->pci_sad0
= pdev
;
2707 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
:
2708 pvt
->pci_sad1
= pdev
;
2710 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
2711 pvt
->pci_ha0
= pdev
;
2713 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
:
2716 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL
:
2717 pvt
->pci_ras
= pdev
;
2719 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
:
2720 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
:
2721 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
:
2722 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
:
2724 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
;
2725 pvt
->pci_tad
[id
] = pdev
;
2726 saw_chan_mask
|= 1 << id
;
2729 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
:
2730 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
:
2731 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
:
2732 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
:
2734 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
+ 4;
2735 pvt
->pci_tad
[id
] = pdev
;
2736 saw_chan_mask
|= 1 << id
;
2739 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
:
2740 pvt
->pci_ddrio
= pdev
;
2742 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
:
2743 pvt
->pci_ha1
= pdev
;
2745 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
:
2746 pvt
->pci_ha1_ta
= pdev
;
2752 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2754 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2758 /* Check if everything were registered */
2759 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_sad1
||
2760 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2763 if (saw_chan_mask
!= 0x0f && /* -EN */
2764 saw_chan_mask
!= 0x33 && /* -EP */
2765 saw_chan_mask
!= 0xff) /* -EX */
2770 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2774 static int knl_mci_bind_devs(struct mem_ctl_info
*mci
,
2775 struct sbridge_dev
*sbridge_dev
)
2777 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2778 struct pci_dev
*pdev
;
2784 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2785 pdev
= sbridge_dev
->pdev
[i
];
2789 /* Extract PCI device and function. */
2790 dev
= (pdev
->devfn
>> 3) & 0x1f;
2791 func
= pdev
->devfn
& 0x7;
2793 switch (pdev
->device
) {
2794 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC
:
2796 pvt
->knl
.pci_mc0
= pdev
;
2798 pvt
->knl
.pci_mc1
= pdev
;
2800 sbridge_printk(KERN_ERR
,
2801 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2807 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
:
2808 pvt
->pci_sad0
= pdev
;
2811 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
:
2812 pvt
->pci_sad1
= pdev
;
2815 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
:
2816 /* There are one of these per tile, and range from
2819 devidx
= ((dev
-14)*8)+func
;
2821 if (devidx
< 0 || devidx
>= KNL_MAX_CHAS
) {
2822 sbridge_printk(KERN_ERR
,
2823 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2828 WARN_ON(pvt
->knl
.pci_cha
[devidx
] != NULL
);
2830 pvt
->knl
.pci_cha
[devidx
] = pdev
;
2833 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL
:
2837 * MC0 channels 0-2 are device 9 function 2-4,
2838 * MC1 channels 3-5 are device 8 function 2-4.
2844 devidx
= 3 + (func
-2);
2846 if (devidx
< 0 || devidx
>= KNL_MAX_CHANNELS
) {
2847 sbridge_printk(KERN_ERR
,
2848 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2853 WARN_ON(pvt
->knl
.pci_channel
[devidx
] != NULL
);
2854 pvt
->knl
.pci_channel
[devidx
] = pdev
;
2857 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
:
2858 pvt
->knl
.pci_mc_info
= pdev
;
2861 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA
:
2866 sbridge_printk(KERN_ERR
, "Unexpected device %d\n",
2872 if (!pvt
->knl
.pci_mc0
|| !pvt
->knl
.pci_mc1
||
2873 !pvt
->pci_sad0
|| !pvt
->pci_sad1
||
2878 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
2879 if (!pvt
->knl
.pci_channel
[i
]) {
2880 sbridge_printk(KERN_ERR
, "Missing channel %d\n", i
);
2885 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
2886 if (!pvt
->knl
.pci_cha
[i
]) {
2887 sbridge_printk(KERN_ERR
, "Missing CHA %d\n", i
);
2895 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2899 /****************************************************************************
2900 Error check routines
2901 ****************************************************************************/
2904 * While Sandy Bridge has error count registers, SMI BIOS read values from
2905 * and resets the counters. So, they are not reliable for the OS to read
2906 * from them. So, we have no option but to just trust on whatever MCE is
2907 * telling us about the errors.
2909 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
2910 const struct mce
*m
)
2912 struct mem_ctl_info
*new_mci
;
2913 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2914 enum hw_event_mc_err_type tp_event
;
2915 char *type
, *optype
, msg
[256];
2916 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
2917 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
2918 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
2920 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
2921 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
2922 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
2923 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
2924 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
2925 long channel_mask
, first_channel
;
2926 u8 rank
, socket
, ha
;
2928 char *area_type
= NULL
;
2930 if (pvt
->info
.type
!= SANDY_BRIDGE
)
2933 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
2935 if (uncorrected_error
) {
2938 tp_event
= HW_EVENT_ERR_FATAL
;
2941 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
2945 tp_event
= HW_EVENT_ERR_CORRECTED
;
2949 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2950 * memory errors should fit in this mask:
2951 * 000f 0000 1mmm cccc (binary)
2953 * f = Correction Report Filtering Bit. If 1, subsequent errors
2957 * If the mask doesn't match, report an error to the parsing logic
2959 if (! ((errcode
& 0xef80) == 0x80)) {
2960 optype
= "Can't parse: it is not a mem";
2962 switch (optypenum
) {
2964 optype
= "generic undef request error";
2967 optype
= "memory read error";
2970 optype
= "memory write error";
2973 optype
= "addr/cmd error";
2976 optype
= "memory scrubbing error";
2979 optype
= "reserved";
2984 /* Only decode errors with an valid address (ADDRV) */
2985 if (!GET_BITFIELD(m
->status
, 58, 58))
2988 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
2989 if (channel
== 14) {
2990 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2991 overflow
? " OVERFLOW" : "",
2992 (uncorrected_error
&& recoverable
)
2993 ? " recoverable" : "",
3000 * Reported channel is in range 0-2, so we can't map it
3001 * back to mc. To figure out mc we check machine check
3002 * bank register that reported this error.
3003 * bank15 means mc0 and bank16 means mc1.
3005 channel
= knl_channel_remap(m
->bank
== 16, channel
);
3006 channel_mask
= 1 << channel
;
3008 snprintf(msg
, sizeof(msg
),
3009 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3010 overflow
? " OVERFLOW" : "",
3011 (uncorrected_error
&& recoverable
)
3012 ? " recoverable" : " ",
3013 mscod
, errcode
, channel
, A
+ channel
);
3014 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3015 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3021 rc
= get_memory_error_data(mci
, m
->addr
, &socket
, &ha
,
3022 &channel_mask
, &rank
, &area_type
, msg
);
3027 new_mci
= get_mci_for_node_id(socket
);
3029 strcpy(msg
, "Error: socket got corrupted!");
3033 pvt
= mci
->pvt_info
;
3035 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
3046 * FIXME: On some memory configurations (mirror, lockstep), the
3047 * Memory Controller can't point the error to a single DIMM. The
3048 * EDAC core should be handling the channel mask, in order to point
3049 * to the group of dimm's where the error may be happening.
3051 if (!pvt
->is_lockstep
&& !pvt
->is_mirrored
&& !pvt
->is_close_pg
)
3052 channel
= first_channel
;
3054 snprintf(msg
, sizeof(msg
),
3055 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3056 overflow
? " OVERFLOW" : "",
3057 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
3064 edac_dbg(0, "%s\n", msg
);
3066 /* FIXME: need support for channel mask */
3068 if (channel
== CHANNEL_UNSPECIFIED
)
3071 /* Call the helper to output message */
3072 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3073 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3074 4*ha
+channel
, dimm
, -1,
3078 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
3085 * Check that logging is enabled and that this is the right type
3086 * of error for us to handle.
3088 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
3091 struct mce
*mce
= (struct mce
*)data
;
3092 struct mem_ctl_info
*mci
;
3093 struct sbridge_pvt
*pvt
;
3096 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
3099 mci
= get_mci_for_node_id(mce
->socketid
);
3102 pvt
= mci
->pvt_info
;
3105 * Just let mcelog handle it if the error is
3106 * outside the memory controller. A memory error
3107 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3108 * bit 12 has an special meaning.
3110 if ((mce
->status
& 0xefff) >> 7 != 1)
3113 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
3118 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
3120 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
3121 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
3122 mce
->mcgstatus
, mce
->bank
, mce
->status
);
3123 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
3124 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
3125 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
3127 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
3128 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
3129 mce
->time
, mce
->socketid
, mce
->apicid
);
3131 sbridge_mce_output_error(mci
, mce
);
3133 /* Advice mcelog that the error were handled */
3137 static struct notifier_block sbridge_mce_dec
= {
3138 .notifier_call
= sbridge_mce_check_error
,
3141 /****************************************************************************
3142 EDAC register/unregister logic
3143 ****************************************************************************/
3145 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
3147 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
3148 struct sbridge_pvt
*pvt
;
3150 if (unlikely(!mci
|| !mci
->pvt_info
)) {
3151 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
3153 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
3157 pvt
= mci
->pvt_info
;
3159 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3160 mci
, &sbridge_dev
->pdev
[0]->dev
);
3162 /* Remove MC sysfs nodes */
3163 edac_mc_del_mc(mci
->pdev
);
3165 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
3166 kfree(mci
->ctl_name
);
3168 sbridge_dev
->mci
= NULL
;
3171 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
3173 struct mem_ctl_info
*mci
;
3174 struct edac_mc_layer layers
[2];
3175 struct sbridge_pvt
*pvt
;
3176 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
3179 /* Check the number of active and not disabled channels */
3180 rc
= check_if_ecc_is_active(sbridge_dev
->bus
, type
);
3181 if (unlikely(rc
< 0))
3184 /* allocate a new MC control structure */
3185 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
3186 layers
[0].size
= type
== KNIGHTS_LANDING
?
3187 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
3188 layers
[0].is_virt_csrow
= false;
3189 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
3190 layers
[1].size
= type
== KNIGHTS_LANDING
? 1 : MAX_DIMMS
;
3191 layers
[1].is_virt_csrow
= true;
3192 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
3198 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3201 pvt
= mci
->pvt_info
;
3202 memset(pvt
, 0, sizeof(*pvt
));
3204 /* Associate sbridge_dev and mci for future usage */
3205 pvt
->sbridge_dev
= sbridge_dev
;
3206 sbridge_dev
->mci
= mci
;
3208 mci
->mtype_cap
= type
== KNIGHTS_LANDING
?
3209 MEM_FLAG_DDR4
: MEM_FLAG_DDR3
;
3210 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3211 mci
->edac_cap
= EDAC_FLAG_NONE
;
3212 mci
->mod_name
= "sbridge_edac.c";
3213 mci
->mod_ver
= SBRIDGE_REVISION
;
3214 mci
->dev_name
= pci_name(pdev
);
3215 mci
->ctl_page_to_phys
= NULL
;
3217 pvt
->info
.type
= type
;
3220 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
3221 pvt
->info
.get_tolm
= ibridge_get_tolm
;
3222 pvt
->info
.get_tohm
= ibridge_get_tohm
;
3223 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3224 pvt
->info
.get_memory_type
= get_memory_type
;
3225 pvt
->info
.get_node_id
= get_node_id
;
3226 pvt
->info
.rir_limit
= rir_limit
;
3227 pvt
->info
.sad_limit
= sad_limit
;
3228 pvt
->info
.interleave_mode
= interleave_mode
;
3229 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3230 pvt
->info
.dram_attr
= dram_attr
;
3231 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3232 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3233 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3234 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3235 pvt
->info
.get_width
= ibridge_get_width
;
3236 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge Socket#%d", mci
->mc_idx
);
3238 /* Store pci devices at mci for faster access */
3239 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
3240 if (unlikely(rc
< 0))
3244 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
3245 pvt
->info
.get_tolm
= sbridge_get_tolm
;
3246 pvt
->info
.get_tohm
= sbridge_get_tohm
;
3247 pvt
->info
.dram_rule
= sbridge_dram_rule
;
3248 pvt
->info
.get_memory_type
= get_memory_type
;
3249 pvt
->info
.get_node_id
= get_node_id
;
3250 pvt
->info
.rir_limit
= rir_limit
;
3251 pvt
->info
.sad_limit
= sad_limit
;
3252 pvt
->info
.interleave_mode
= interleave_mode
;
3253 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3254 pvt
->info
.dram_attr
= dram_attr
;
3255 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
3256 pvt
->info
.interleave_list
= sbridge_interleave_list
;
3257 pvt
->info
.max_interleave
= ARRAY_SIZE(sbridge_interleave_list
);
3258 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
3259 pvt
->info
.get_width
= sbridge_get_width
;
3260 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge Socket#%d", mci
->mc_idx
);
3262 /* Store pci devices at mci for faster access */
3263 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
3264 if (unlikely(rc
< 0))
3268 /* rankcfgr isn't used */
3269 pvt
->info
.get_tolm
= haswell_get_tolm
;
3270 pvt
->info
.get_tohm
= haswell_get_tohm
;
3271 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3272 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3273 pvt
->info
.get_node_id
= haswell_get_node_id
;
3274 pvt
->info
.rir_limit
= haswell_rir_limit
;
3275 pvt
->info
.sad_limit
= sad_limit
;
3276 pvt
->info
.interleave_mode
= interleave_mode
;
3277 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3278 pvt
->info
.dram_attr
= dram_attr
;
3279 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3280 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3281 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3282 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3283 pvt
->info
.get_width
= ibridge_get_width
;
3284 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell Socket#%d", mci
->mc_idx
);
3286 /* Store pci devices at mci for faster access */
3287 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
3288 if (unlikely(rc
< 0))
3292 /* rankcfgr isn't used */
3293 pvt
->info
.get_tolm
= haswell_get_tolm
;
3294 pvt
->info
.get_tohm
= haswell_get_tohm
;
3295 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3296 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3297 pvt
->info
.get_node_id
= haswell_get_node_id
;
3298 pvt
->info
.rir_limit
= haswell_rir_limit
;
3299 pvt
->info
.sad_limit
= sad_limit
;
3300 pvt
->info
.interleave_mode
= interleave_mode
;
3301 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3302 pvt
->info
.dram_attr
= dram_attr
;
3303 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3304 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3305 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3306 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3307 pvt
->info
.get_width
= broadwell_get_width
;
3308 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Broadwell Socket#%d", mci
->mc_idx
);
3310 /* Store pci devices at mci for faster access */
3311 rc
= broadwell_mci_bind_devs(mci
, sbridge_dev
);
3312 if (unlikely(rc
< 0))
3315 case KNIGHTS_LANDING
:
3316 /* pvt->info.rankcfgr == ??? */
3317 pvt
->info
.get_tolm
= knl_get_tolm
;
3318 pvt
->info
.get_tohm
= knl_get_tohm
;
3319 pvt
->info
.dram_rule
= knl_dram_rule
;
3320 pvt
->info
.get_memory_type
= knl_get_memory_type
;
3321 pvt
->info
.get_node_id
= knl_get_node_id
;
3322 pvt
->info
.rir_limit
= NULL
;
3323 pvt
->info
.sad_limit
= knl_sad_limit
;
3324 pvt
->info
.interleave_mode
= knl_interleave_mode
;
3325 pvt
->info
.show_interleave_mode
= knl_show_interleave_mode
;
3326 pvt
->info
.dram_attr
= dram_attr_knl
;
3327 pvt
->info
.max_sad
= ARRAY_SIZE(knl_dram_rule
);
3328 pvt
->info
.interleave_list
= knl_interleave_list
;
3329 pvt
->info
.max_interleave
= ARRAY_SIZE(knl_interleave_list
);
3330 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3331 pvt
->info
.get_width
= knl_get_width
;
3332 mci
->ctl_name
= kasprintf(GFP_KERNEL
,
3333 "Knights Landing Socket#%d", mci
->mc_idx
);
3335 rc
= knl_mci_bind_devs(mci
, sbridge_dev
);
3336 if (unlikely(rc
< 0))
3341 /* Get dimm basic config and the memory layout */
3342 get_dimm_config(mci
);
3343 get_memory_layout(mci
);
3345 /* record ptr to the generic device */
3346 mci
->pdev
= &pdev
->dev
;
3348 /* add this new MC control structure to EDAC's list of MCs */
3349 if (unlikely(edac_mc_add_mc(mci
))) {
3350 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3358 kfree(mci
->ctl_name
);
3360 sbridge_dev
->mci
= NULL
;
3364 #define ICPU(model, table) \
3365 { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3367 static const struct x86_cpu_id sbridge_cpuids
[] = {
3368 ICPU(0x2d, pci_dev_descr_sbridge_table
), /* SANDY_BRIDGE */
3369 ICPU(0x3e, pci_dev_descr_ibridge_table
), /* IVY_BRIDGE */
3370 ICPU(0x3f, pci_dev_descr_haswell_table
), /* HASWELL */
3371 ICPU(0x4f, pci_dev_descr_broadwell_table
), /* BROADWELL */
3372 ICPU(0x56, pci_dev_descr_broadwell_table
), /* BROADWELL-DE */
3373 ICPU(0x57, pci_dev_descr_knl_table
), /* KNIGHTS_LANDING */
3376 MODULE_DEVICE_TABLE(x86cpu
, sbridge_cpuids
);
3379 * sbridge_probe Get all devices and register memory controllers
3382 * 0 for FOUND a device
3383 * < 0 for error code
3386 static int sbridge_probe(const struct x86_cpu_id
*id
)
3390 struct sbridge_dev
*sbridge_dev
;
3391 struct pci_id_table
*ptable
= (struct pci_id_table
*)id
->driver_data
;
3393 /* get the pci devices we want to reserve for our use */
3394 rc
= sbridge_get_all_devices(&num_mc
, ptable
);
3396 if (unlikely(rc
< 0)) {
3397 edac_dbg(0, "couldn't get all devices\n");
3403 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
3404 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3405 mc
, mc
+ 1, num_mc
);
3407 sbridge_dev
->mc
= mc
++;
3408 rc
= sbridge_register_mci(sbridge_dev
, ptable
->type
);
3409 if (unlikely(rc
< 0))
3413 sbridge_printk(KERN_INFO
, "%s\n", SBRIDGE_REVISION
);
3418 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3419 sbridge_unregister_mci(sbridge_dev
);
3421 sbridge_put_all_devices();
3427 * sbridge_remove cleanup
3430 static void sbridge_remove(void)
3432 struct sbridge_dev
*sbridge_dev
;
3436 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3437 sbridge_unregister_mci(sbridge_dev
);
3439 /* Release PCI resources */
3440 sbridge_put_all_devices();
3444 * sbridge_init Module entry function
3445 * Try to initialize this module for its devices
3447 static int __init
sbridge_init(void)
3449 const struct x86_cpu_id
*id
;
3454 id
= x86_match_cpu(sbridge_cpuids
);
3458 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3461 rc
= sbridge_probe(id
);
3464 mce_register_decode_chain(&sbridge_mce_dec
);
3465 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
3466 sbridge_printk(KERN_WARNING
, "Loading driver, error reporting disabled.\n");
3470 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
3477 * sbridge_exit() Module exit function
3478 * Unregister the driver
3480 static void __exit
sbridge_exit(void)
3484 mce_unregister_decode_chain(&sbridge_mce_dec
);
3487 module_init(sbridge_init
);
3488 module_exit(sbridge_exit
);
3490 module_param(edac_op_state
, int, 0444);
3491 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
3493 MODULE_LICENSE("GPL");
3494 MODULE_AUTHOR("Mauro Carvalho Chehab");
3495 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3496 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "