2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
53 #include "core_priv.h"
55 static const char * const ib_events
[] = {
56 [IB_EVENT_CQ_ERR
] = "CQ error",
57 [IB_EVENT_QP_FATAL
] = "QP fatal error",
58 [IB_EVENT_QP_REQ_ERR
] = "QP request error",
59 [IB_EVENT_QP_ACCESS_ERR
] = "QP access error",
60 [IB_EVENT_COMM_EST
] = "communication established",
61 [IB_EVENT_SQ_DRAINED
] = "send queue drained",
62 [IB_EVENT_PATH_MIG
] = "path migration successful",
63 [IB_EVENT_PATH_MIG_ERR
] = "path migration error",
64 [IB_EVENT_DEVICE_FATAL
] = "device fatal error",
65 [IB_EVENT_PORT_ACTIVE
] = "port active",
66 [IB_EVENT_PORT_ERR
] = "port error",
67 [IB_EVENT_LID_CHANGE
] = "LID change",
68 [IB_EVENT_PKEY_CHANGE
] = "P_key change",
69 [IB_EVENT_SM_CHANGE
] = "SM change",
70 [IB_EVENT_SRQ_ERR
] = "SRQ error",
71 [IB_EVENT_SRQ_LIMIT_REACHED
] = "SRQ limit reached",
72 [IB_EVENT_QP_LAST_WQE_REACHED
] = "last WQE reached",
73 [IB_EVENT_CLIENT_REREGISTER
] = "client reregister",
74 [IB_EVENT_GID_CHANGE
] = "GID changed",
77 const char *__attribute_const__
ib_event_msg(enum ib_event_type event
)
81 return (index
< ARRAY_SIZE(ib_events
) && ib_events
[index
]) ?
82 ib_events
[index
] : "unrecognized event";
84 EXPORT_SYMBOL(ib_event_msg
);
86 static const char * const wc_statuses
[] = {
87 [IB_WC_SUCCESS
] = "success",
88 [IB_WC_LOC_LEN_ERR
] = "local length error",
89 [IB_WC_LOC_QP_OP_ERR
] = "local QP operation error",
90 [IB_WC_LOC_EEC_OP_ERR
] = "local EE context operation error",
91 [IB_WC_LOC_PROT_ERR
] = "local protection error",
92 [IB_WC_WR_FLUSH_ERR
] = "WR flushed",
93 [IB_WC_MW_BIND_ERR
] = "memory management operation error",
94 [IB_WC_BAD_RESP_ERR
] = "bad response error",
95 [IB_WC_LOC_ACCESS_ERR
] = "local access error",
96 [IB_WC_REM_INV_REQ_ERR
] = "invalid request error",
97 [IB_WC_REM_ACCESS_ERR
] = "remote access error",
98 [IB_WC_REM_OP_ERR
] = "remote operation error",
99 [IB_WC_RETRY_EXC_ERR
] = "transport retry counter exceeded",
100 [IB_WC_RNR_RETRY_EXC_ERR
] = "RNR retry counter exceeded",
101 [IB_WC_LOC_RDD_VIOL_ERR
] = "local RDD violation error",
102 [IB_WC_REM_INV_RD_REQ_ERR
] = "remote invalid RD request",
103 [IB_WC_REM_ABORT_ERR
] = "operation aborted",
104 [IB_WC_INV_EECN_ERR
] = "invalid EE context number",
105 [IB_WC_INV_EEC_STATE_ERR
] = "invalid EE context state",
106 [IB_WC_FATAL_ERR
] = "fatal error",
107 [IB_WC_RESP_TIMEOUT_ERR
] = "response timeout error",
108 [IB_WC_GENERAL_ERR
] = "general error",
111 const char *__attribute_const__
ib_wc_status_msg(enum ib_wc_status status
)
113 size_t index
= status
;
115 return (index
< ARRAY_SIZE(wc_statuses
) && wc_statuses
[index
]) ?
116 wc_statuses
[index
] : "unrecognized status";
118 EXPORT_SYMBOL(ib_wc_status_msg
);
120 __attribute_const__
int ib_rate_to_mult(enum ib_rate rate
)
123 case IB_RATE_2_5_GBPS
: return 1;
124 case IB_RATE_5_GBPS
: return 2;
125 case IB_RATE_10_GBPS
: return 4;
126 case IB_RATE_20_GBPS
: return 8;
127 case IB_RATE_30_GBPS
: return 12;
128 case IB_RATE_40_GBPS
: return 16;
129 case IB_RATE_60_GBPS
: return 24;
130 case IB_RATE_80_GBPS
: return 32;
131 case IB_RATE_120_GBPS
: return 48;
135 EXPORT_SYMBOL(ib_rate_to_mult
);
137 __attribute_const__
enum ib_rate
mult_to_ib_rate(int mult
)
140 case 1: return IB_RATE_2_5_GBPS
;
141 case 2: return IB_RATE_5_GBPS
;
142 case 4: return IB_RATE_10_GBPS
;
143 case 8: return IB_RATE_20_GBPS
;
144 case 12: return IB_RATE_30_GBPS
;
145 case 16: return IB_RATE_40_GBPS
;
146 case 24: return IB_RATE_60_GBPS
;
147 case 32: return IB_RATE_80_GBPS
;
148 case 48: return IB_RATE_120_GBPS
;
149 default: return IB_RATE_PORT_CURRENT
;
152 EXPORT_SYMBOL(mult_to_ib_rate
);
154 __attribute_const__
int ib_rate_to_mbps(enum ib_rate rate
)
157 case IB_RATE_2_5_GBPS
: return 2500;
158 case IB_RATE_5_GBPS
: return 5000;
159 case IB_RATE_10_GBPS
: return 10000;
160 case IB_RATE_20_GBPS
: return 20000;
161 case IB_RATE_30_GBPS
: return 30000;
162 case IB_RATE_40_GBPS
: return 40000;
163 case IB_RATE_60_GBPS
: return 60000;
164 case IB_RATE_80_GBPS
: return 80000;
165 case IB_RATE_120_GBPS
: return 120000;
166 case IB_RATE_14_GBPS
: return 14062;
167 case IB_RATE_56_GBPS
: return 56250;
168 case IB_RATE_112_GBPS
: return 112500;
169 case IB_RATE_168_GBPS
: return 168750;
170 case IB_RATE_25_GBPS
: return 25781;
171 case IB_RATE_100_GBPS
: return 103125;
172 case IB_RATE_200_GBPS
: return 206250;
173 case IB_RATE_300_GBPS
: return 309375;
177 EXPORT_SYMBOL(ib_rate_to_mbps
);
179 __attribute_const__
enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type
)
183 case RDMA_NODE_IB_CA
:
184 case RDMA_NODE_IB_SWITCH
:
185 case RDMA_NODE_IB_ROUTER
:
186 return RDMA_TRANSPORT_IB
;
188 return RDMA_TRANSPORT_IWARP
;
189 case RDMA_NODE_USNIC
:
190 return RDMA_TRANSPORT_USNIC
;
191 case RDMA_NODE_USNIC_UDP
:
192 return RDMA_TRANSPORT_USNIC_UDP
;
198 EXPORT_SYMBOL(rdma_node_get_transport
);
200 enum rdma_link_layer
rdma_port_get_link_layer(struct ib_device
*device
, u8 port_num
)
202 if (device
->get_link_layer
)
203 return device
->get_link_layer(device
, port_num
);
205 switch (rdma_node_get_transport(device
->node_type
)) {
206 case RDMA_TRANSPORT_IB
:
207 return IB_LINK_LAYER_INFINIBAND
;
208 case RDMA_TRANSPORT_IWARP
:
209 case RDMA_TRANSPORT_USNIC
:
210 case RDMA_TRANSPORT_USNIC_UDP
:
211 return IB_LINK_LAYER_ETHERNET
;
213 return IB_LINK_LAYER_UNSPECIFIED
;
216 EXPORT_SYMBOL(rdma_port_get_link_layer
);
218 /* Protection domains */
221 * ib_alloc_pd - Allocates an unused protection domain.
222 * @device: The device on which to allocate the protection domain.
224 * A protection domain object provides an association between QPs, shared
225 * receive queues, address handles, memory regions, and memory windows.
227 * Every PD has a local_dma_lkey which can be used as the lkey value for local
230 struct ib_pd
*__ib_alloc_pd(struct ib_device
*device
, unsigned int flags
,
234 int mr_access_flags
= 0;
236 pd
= device
->alloc_pd(device
, NULL
, NULL
);
242 pd
->__internal_mr
= NULL
;
243 atomic_set(&pd
->usecnt
, 0);
246 if (device
->attrs
.device_cap_flags
& IB_DEVICE_LOCAL_DMA_LKEY
)
247 pd
->local_dma_lkey
= device
->local_dma_lkey
;
249 mr_access_flags
|= IB_ACCESS_LOCAL_WRITE
;
251 if (flags
& IB_PD_UNSAFE_GLOBAL_RKEY
) {
252 pr_warn("%s: enabling unsafe global rkey\n", caller
);
253 mr_access_flags
|= IB_ACCESS_REMOTE_READ
| IB_ACCESS_REMOTE_WRITE
;
256 if (mr_access_flags
) {
259 mr
= pd
->device
->get_dma_mr(pd
, mr_access_flags
);
265 mr
->device
= pd
->device
;
268 mr
->need_inval
= false;
270 pd
->__internal_mr
= mr
;
272 if (!(device
->attrs
.device_cap_flags
& IB_DEVICE_LOCAL_DMA_LKEY
))
273 pd
->local_dma_lkey
= pd
->__internal_mr
->lkey
;
275 if (flags
& IB_PD_UNSAFE_GLOBAL_RKEY
)
276 pd
->unsafe_global_rkey
= pd
->__internal_mr
->rkey
;
281 EXPORT_SYMBOL(__ib_alloc_pd
);
284 * ib_dealloc_pd - Deallocates a protection domain.
285 * @pd: The protection domain to deallocate.
287 * It is an error to call this function while any resources in the pd still
288 * exist. The caller is responsible to synchronously destroy them and
289 * guarantee no new allocations will happen.
291 void ib_dealloc_pd(struct ib_pd
*pd
)
295 if (pd
->__internal_mr
) {
296 ret
= pd
->device
->dereg_mr(pd
->__internal_mr
);
298 pd
->__internal_mr
= NULL
;
301 /* uverbs manipulates usecnt with proper locking, while the kabi
302 requires the caller to guarantee we can't race here. */
303 WARN_ON(atomic_read(&pd
->usecnt
));
305 /* Making delalloc_pd a void return is a WIP, no driver should return
307 ret
= pd
->device
->dealloc_pd(pd
);
308 WARN_ONCE(ret
, "Infiniband HW driver failed dealloc_pd");
310 EXPORT_SYMBOL(ib_dealloc_pd
);
312 /* Address handles */
314 struct ib_ah
*ib_create_ah(struct ib_pd
*pd
, struct ib_ah_attr
*ah_attr
)
318 ah
= pd
->device
->create_ah(pd
, ah_attr
);
321 ah
->device
= pd
->device
;
324 atomic_inc(&pd
->usecnt
);
329 EXPORT_SYMBOL(ib_create_ah
);
331 static int ib_get_header_version(const union rdma_network_hdr
*hdr
)
333 const struct iphdr
*ip4h
= (struct iphdr
*)&hdr
->roce4grh
;
334 struct iphdr ip4h_checked
;
335 const struct ipv6hdr
*ip6h
= (struct ipv6hdr
*)&hdr
->ibgrh
;
337 /* If it's IPv6, the version must be 6, otherwise, the first
338 * 20 bytes (before the IPv4 header) are garbled.
340 if (ip6h
->version
!= 6)
341 return (ip4h
->version
== 4) ? 4 : 0;
342 /* version may be 6 or 4 because the first 20 bytes could be garbled */
344 /* RoCE v2 requires no options, thus header length
351 * We can't write on scattered buffers so we need to copy to
354 memcpy(&ip4h_checked
, ip4h
, sizeof(ip4h_checked
));
355 ip4h_checked
.check
= 0;
356 ip4h_checked
.check
= ip_fast_csum((u8
*)&ip4h_checked
, 5);
357 /* if IPv4 header checksum is OK, believe it */
358 if (ip4h
->check
== ip4h_checked
.check
)
363 static enum rdma_network_type
ib_get_net_type_by_grh(struct ib_device
*device
,
365 const struct ib_grh
*grh
)
369 if (rdma_protocol_ib(device
, port_num
))
370 return RDMA_NETWORK_IB
;
372 grh_version
= ib_get_header_version((union rdma_network_hdr
*)grh
);
374 if (grh_version
== 4)
375 return RDMA_NETWORK_IPV4
;
377 if (grh
->next_hdr
== IPPROTO_UDP
)
378 return RDMA_NETWORK_IPV6
;
380 return RDMA_NETWORK_ROCE_V1
;
383 struct find_gid_index_context
{
385 enum ib_gid_type gid_type
;
388 static bool find_gid_index(const union ib_gid
*gid
,
389 const struct ib_gid_attr
*gid_attr
,
392 struct find_gid_index_context
*ctx
=
393 (struct find_gid_index_context
*)context
;
395 if (ctx
->gid_type
!= gid_attr
->gid_type
)
398 if ((!!(ctx
->vlan_id
!= 0xffff) == !is_vlan_dev(gid_attr
->ndev
)) ||
399 (is_vlan_dev(gid_attr
->ndev
) &&
400 vlan_dev_vlan_id(gid_attr
->ndev
) != ctx
->vlan_id
))
406 static int get_sgid_index_from_eth(struct ib_device
*device
, u8 port_num
,
407 u16 vlan_id
, const union ib_gid
*sgid
,
408 enum ib_gid_type gid_type
,
411 struct find_gid_index_context context
= {.vlan_id
= vlan_id
,
412 .gid_type
= gid_type
};
414 return ib_find_gid_by_filter(device
, sgid
, port_num
, find_gid_index
,
415 &context
, gid_index
);
418 static int get_gids_from_rdma_hdr(union rdma_network_hdr
*hdr
,
419 enum rdma_network_type net_type
,
420 union ib_gid
*sgid
, union ib_gid
*dgid
)
422 struct sockaddr_in src_in
;
423 struct sockaddr_in dst_in
;
424 __be32 src_saddr
, dst_saddr
;
429 if (net_type
== RDMA_NETWORK_IPV4
) {
430 memcpy(&src_in
.sin_addr
.s_addr
,
431 &hdr
->roce4grh
.saddr
, 4);
432 memcpy(&dst_in
.sin_addr
.s_addr
,
433 &hdr
->roce4grh
.daddr
, 4);
434 src_saddr
= src_in
.sin_addr
.s_addr
;
435 dst_saddr
= dst_in
.sin_addr
.s_addr
;
436 ipv6_addr_set_v4mapped(src_saddr
,
437 (struct in6_addr
*)sgid
);
438 ipv6_addr_set_v4mapped(dst_saddr
,
439 (struct in6_addr
*)dgid
);
441 } else if (net_type
== RDMA_NETWORK_IPV6
||
442 net_type
== RDMA_NETWORK_IB
) {
443 *dgid
= hdr
->ibgrh
.dgid
;
444 *sgid
= hdr
->ibgrh
.sgid
;
451 int ib_init_ah_from_wc(struct ib_device
*device
, u8 port_num
,
452 const struct ib_wc
*wc
, const struct ib_grh
*grh
,
453 struct ib_ah_attr
*ah_attr
)
458 enum rdma_network_type net_type
= RDMA_NETWORK_IB
;
459 enum ib_gid_type gid_type
= IB_GID_TYPE_IB
;
464 memset(ah_attr
, 0, sizeof *ah_attr
);
465 if (rdma_cap_eth_ah(device
, port_num
)) {
466 if (wc
->wc_flags
& IB_WC_WITH_NETWORK_HDR_TYPE
)
467 net_type
= wc
->network_hdr_type
;
469 net_type
= ib_get_net_type_by_grh(device
, port_num
, grh
);
470 gid_type
= ib_network_to_gid_type(net_type
);
472 ret
= get_gids_from_rdma_hdr((union rdma_network_hdr
*)grh
, net_type
,
477 if (rdma_protocol_roce(device
, port_num
)) {
479 u16 vlan_id
= wc
->wc_flags
& IB_WC_WITH_VLAN
?
480 wc
->vlan_id
: 0xffff;
481 struct net_device
*idev
;
482 struct net_device
*resolved_dev
;
484 if (!(wc
->wc_flags
& IB_WC_GRH
))
487 if (!device
->get_netdev
)
490 idev
= device
->get_netdev(device
, port_num
);
494 ret
= rdma_addr_find_l2_eth_by_grh(&dgid
, &sgid
,
496 wc
->wc_flags
& IB_WC_WITH_VLAN
?
498 &if_index
, &hoplimit
);
504 resolved_dev
= dev_get_by_index(&init_net
, if_index
);
505 if (resolved_dev
->flags
& IFF_LOOPBACK
) {
506 dev_put(resolved_dev
);
508 dev_hold(resolved_dev
);
511 if (resolved_dev
!= idev
&& !rdma_is_upper_dev_rcu(idev
,
516 dev_put(resolved_dev
);
520 ret
= get_sgid_index_from_eth(device
, port_num
, vlan_id
,
521 &dgid
, gid_type
, &gid_index
);
526 ah_attr
->dlid
= wc
->slid
;
527 ah_attr
->sl
= wc
->sl
;
528 ah_attr
->src_path_bits
= wc
->dlid_path_bits
;
529 ah_attr
->port_num
= port_num
;
531 if (wc
->wc_flags
& IB_WC_GRH
) {
532 ah_attr
->ah_flags
= IB_AH_GRH
;
533 ah_attr
->grh
.dgid
= sgid
;
535 if (!rdma_cap_eth_ah(device
, port_num
)) {
536 if (dgid
.global
.interface_id
!= cpu_to_be64(IB_SA_WELL_KNOWN_GUID
)) {
537 ret
= ib_find_cached_gid_by_port(device
, &dgid
,
548 ah_attr
->grh
.sgid_index
= (u8
) gid_index
;
549 flow_class
= be32_to_cpu(grh
->version_tclass_flow
);
550 ah_attr
->grh
.flow_label
= flow_class
& 0xFFFFF;
551 ah_attr
->grh
.hop_limit
= hoplimit
;
552 ah_attr
->grh
.traffic_class
= (flow_class
>> 20) & 0xFF;
556 EXPORT_SYMBOL(ib_init_ah_from_wc
);
558 struct ib_ah
*ib_create_ah_from_wc(struct ib_pd
*pd
, const struct ib_wc
*wc
,
559 const struct ib_grh
*grh
, u8 port_num
)
561 struct ib_ah_attr ah_attr
;
564 ret
= ib_init_ah_from_wc(pd
->device
, port_num
, wc
, grh
, &ah_attr
);
568 return ib_create_ah(pd
, &ah_attr
);
570 EXPORT_SYMBOL(ib_create_ah_from_wc
);
572 int ib_modify_ah(struct ib_ah
*ah
, struct ib_ah_attr
*ah_attr
)
574 return ah
->device
->modify_ah
?
575 ah
->device
->modify_ah(ah
, ah_attr
) :
578 EXPORT_SYMBOL(ib_modify_ah
);
580 int ib_query_ah(struct ib_ah
*ah
, struct ib_ah_attr
*ah_attr
)
582 return ah
->device
->query_ah
?
583 ah
->device
->query_ah(ah
, ah_attr
) :
586 EXPORT_SYMBOL(ib_query_ah
);
588 int ib_destroy_ah(struct ib_ah
*ah
)
594 ret
= ah
->device
->destroy_ah(ah
);
596 atomic_dec(&pd
->usecnt
);
600 EXPORT_SYMBOL(ib_destroy_ah
);
602 /* Shared receive queues */
604 struct ib_srq
*ib_create_srq(struct ib_pd
*pd
,
605 struct ib_srq_init_attr
*srq_init_attr
)
609 if (!pd
->device
->create_srq
)
610 return ERR_PTR(-ENOSYS
);
612 srq
= pd
->device
->create_srq(pd
, srq_init_attr
, NULL
);
615 srq
->device
= pd
->device
;
618 srq
->event_handler
= srq_init_attr
->event_handler
;
619 srq
->srq_context
= srq_init_attr
->srq_context
;
620 srq
->srq_type
= srq_init_attr
->srq_type
;
621 if (srq
->srq_type
== IB_SRQT_XRC
) {
622 srq
->ext
.xrc
.xrcd
= srq_init_attr
->ext
.xrc
.xrcd
;
623 srq
->ext
.xrc
.cq
= srq_init_attr
->ext
.xrc
.cq
;
624 atomic_inc(&srq
->ext
.xrc
.xrcd
->usecnt
);
625 atomic_inc(&srq
->ext
.xrc
.cq
->usecnt
);
627 atomic_inc(&pd
->usecnt
);
628 atomic_set(&srq
->usecnt
, 0);
633 EXPORT_SYMBOL(ib_create_srq
);
635 int ib_modify_srq(struct ib_srq
*srq
,
636 struct ib_srq_attr
*srq_attr
,
637 enum ib_srq_attr_mask srq_attr_mask
)
639 return srq
->device
->modify_srq
?
640 srq
->device
->modify_srq(srq
, srq_attr
, srq_attr_mask
, NULL
) :
643 EXPORT_SYMBOL(ib_modify_srq
);
645 int ib_query_srq(struct ib_srq
*srq
,
646 struct ib_srq_attr
*srq_attr
)
648 return srq
->device
->query_srq
?
649 srq
->device
->query_srq(srq
, srq_attr
) : -ENOSYS
;
651 EXPORT_SYMBOL(ib_query_srq
);
653 int ib_destroy_srq(struct ib_srq
*srq
)
656 enum ib_srq_type srq_type
;
657 struct ib_xrcd
*uninitialized_var(xrcd
);
658 struct ib_cq
*uninitialized_var(cq
);
661 if (atomic_read(&srq
->usecnt
))
665 srq_type
= srq
->srq_type
;
666 if (srq_type
== IB_SRQT_XRC
) {
667 xrcd
= srq
->ext
.xrc
.xrcd
;
668 cq
= srq
->ext
.xrc
.cq
;
671 ret
= srq
->device
->destroy_srq(srq
);
673 atomic_dec(&pd
->usecnt
);
674 if (srq_type
== IB_SRQT_XRC
) {
675 atomic_dec(&xrcd
->usecnt
);
676 atomic_dec(&cq
->usecnt
);
682 EXPORT_SYMBOL(ib_destroy_srq
);
686 static void __ib_shared_qp_event_handler(struct ib_event
*event
, void *context
)
688 struct ib_qp
*qp
= context
;
691 spin_lock_irqsave(&qp
->device
->event_handler_lock
, flags
);
692 list_for_each_entry(event
->element
.qp
, &qp
->open_list
, open_list
)
693 if (event
->element
.qp
->event_handler
)
694 event
->element
.qp
->event_handler(event
, event
->element
.qp
->qp_context
);
695 spin_unlock_irqrestore(&qp
->device
->event_handler_lock
, flags
);
698 static void __ib_insert_xrcd_qp(struct ib_xrcd
*xrcd
, struct ib_qp
*qp
)
700 mutex_lock(&xrcd
->tgt_qp_mutex
);
701 list_add(&qp
->xrcd_list
, &xrcd
->tgt_qp_list
);
702 mutex_unlock(&xrcd
->tgt_qp_mutex
);
705 static struct ib_qp
*__ib_open_qp(struct ib_qp
*real_qp
,
706 void (*event_handler
)(struct ib_event
*, void *),
712 qp
= kzalloc(sizeof *qp
, GFP_KERNEL
);
714 return ERR_PTR(-ENOMEM
);
716 qp
->real_qp
= real_qp
;
717 atomic_inc(&real_qp
->usecnt
);
718 qp
->device
= real_qp
->device
;
719 qp
->event_handler
= event_handler
;
720 qp
->qp_context
= qp_context
;
721 qp
->qp_num
= real_qp
->qp_num
;
722 qp
->qp_type
= real_qp
->qp_type
;
724 spin_lock_irqsave(&real_qp
->device
->event_handler_lock
, flags
);
725 list_add(&qp
->open_list
, &real_qp
->open_list
);
726 spin_unlock_irqrestore(&real_qp
->device
->event_handler_lock
, flags
);
731 struct ib_qp
*ib_open_qp(struct ib_xrcd
*xrcd
,
732 struct ib_qp_open_attr
*qp_open_attr
)
734 struct ib_qp
*qp
, *real_qp
;
736 if (qp_open_attr
->qp_type
!= IB_QPT_XRC_TGT
)
737 return ERR_PTR(-EINVAL
);
739 qp
= ERR_PTR(-EINVAL
);
740 mutex_lock(&xrcd
->tgt_qp_mutex
);
741 list_for_each_entry(real_qp
, &xrcd
->tgt_qp_list
, xrcd_list
) {
742 if (real_qp
->qp_num
== qp_open_attr
->qp_num
) {
743 qp
= __ib_open_qp(real_qp
, qp_open_attr
->event_handler
,
744 qp_open_attr
->qp_context
);
748 mutex_unlock(&xrcd
->tgt_qp_mutex
);
751 EXPORT_SYMBOL(ib_open_qp
);
753 static struct ib_qp
*ib_create_xrc_qp(struct ib_qp
*qp
,
754 struct ib_qp_init_attr
*qp_init_attr
)
756 struct ib_qp
*real_qp
= qp
;
758 qp
->event_handler
= __ib_shared_qp_event_handler
;
761 qp
->send_cq
= qp
->recv_cq
= NULL
;
763 qp
->xrcd
= qp_init_attr
->xrcd
;
764 atomic_inc(&qp_init_attr
->xrcd
->usecnt
);
765 INIT_LIST_HEAD(&qp
->open_list
);
767 qp
= __ib_open_qp(real_qp
, qp_init_attr
->event_handler
,
768 qp_init_attr
->qp_context
);
770 __ib_insert_xrcd_qp(qp_init_attr
->xrcd
, real_qp
);
772 real_qp
->device
->destroy_qp(real_qp
);
776 struct ib_qp
*ib_create_qp(struct ib_pd
*pd
,
777 struct ib_qp_init_attr
*qp_init_attr
)
779 struct ib_device
*device
= pd
? pd
->device
: qp_init_attr
->xrcd
->device
;
783 if (qp_init_attr
->rwq_ind_tbl
&&
784 (qp_init_attr
->recv_cq
||
785 qp_init_attr
->srq
|| qp_init_attr
->cap
.max_recv_wr
||
786 qp_init_attr
->cap
.max_recv_sge
))
787 return ERR_PTR(-EINVAL
);
790 * If the callers is using the RDMA API calculate the resources
791 * needed for the RDMA READ/WRITE operations.
793 * Note that these callers need to pass in a port number.
795 if (qp_init_attr
->cap
.max_rdma_ctxs
)
796 rdma_rw_init_qp(device
, qp_init_attr
);
798 qp
= device
->create_qp(pd
, qp_init_attr
, NULL
);
805 qp
->qp_type
= qp_init_attr
->qp_type
;
806 qp
->rwq_ind_tbl
= qp_init_attr
->rwq_ind_tbl
;
808 atomic_set(&qp
->usecnt
, 0);
810 spin_lock_init(&qp
->mr_lock
);
811 INIT_LIST_HEAD(&qp
->rdma_mrs
);
812 INIT_LIST_HEAD(&qp
->sig_mrs
);
814 if (qp_init_attr
->qp_type
== IB_QPT_XRC_TGT
)
815 return ib_create_xrc_qp(qp
, qp_init_attr
);
817 qp
->event_handler
= qp_init_attr
->event_handler
;
818 qp
->qp_context
= qp_init_attr
->qp_context
;
819 if (qp_init_attr
->qp_type
== IB_QPT_XRC_INI
) {
823 qp
->recv_cq
= qp_init_attr
->recv_cq
;
824 if (qp_init_attr
->recv_cq
)
825 atomic_inc(&qp_init_attr
->recv_cq
->usecnt
);
826 qp
->srq
= qp_init_attr
->srq
;
828 atomic_inc(&qp_init_attr
->srq
->usecnt
);
832 qp
->send_cq
= qp_init_attr
->send_cq
;
835 atomic_inc(&pd
->usecnt
);
836 if (qp_init_attr
->send_cq
)
837 atomic_inc(&qp_init_attr
->send_cq
->usecnt
);
838 if (qp_init_attr
->rwq_ind_tbl
)
839 atomic_inc(&qp
->rwq_ind_tbl
->usecnt
);
841 if (qp_init_attr
->cap
.max_rdma_ctxs
) {
842 ret
= rdma_rw_init_mrs(qp
, qp_init_attr
);
844 pr_err("failed to init MR pool ret= %d\n", ret
);
851 * Note: all hw drivers guarantee that max_send_sge is lower than
852 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
853 * max_send_sge <= max_sge_rd.
855 qp
->max_write_sge
= qp_init_attr
->cap
.max_send_sge
;
856 qp
->max_read_sge
= min_t(u32
, qp_init_attr
->cap
.max_send_sge
,
857 device
->attrs
.max_sge_rd
);
861 EXPORT_SYMBOL(ib_create_qp
);
863 static const struct {
865 enum ib_qp_attr_mask req_param
[IB_QPT_MAX
];
866 enum ib_qp_attr_mask opt_param
[IB_QPT_MAX
];
867 } qp_state_table
[IB_QPS_ERR
+ 1][IB_QPS_ERR
+ 1] = {
869 [IB_QPS_RESET
] = { .valid
= 1 },
873 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
876 [IB_QPT_RAW_PACKET
] = IB_QP_PORT
,
877 [IB_QPT_UC
] = (IB_QP_PKEY_INDEX
|
880 [IB_QPT_RC
] = (IB_QP_PKEY_INDEX
|
883 [IB_QPT_XRC_INI
] = (IB_QP_PKEY_INDEX
|
886 [IB_QPT_XRC_TGT
] = (IB_QP_PKEY_INDEX
|
889 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
891 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
897 [IB_QPS_RESET
] = { .valid
= 1 },
898 [IB_QPS_ERR
] = { .valid
= 1 },
902 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
905 [IB_QPT_UC
] = (IB_QP_PKEY_INDEX
|
908 [IB_QPT_RC
] = (IB_QP_PKEY_INDEX
|
911 [IB_QPT_XRC_INI
] = (IB_QP_PKEY_INDEX
|
914 [IB_QPT_XRC_TGT
] = (IB_QP_PKEY_INDEX
|
917 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
919 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
926 [IB_QPT_UC
] = (IB_QP_AV
|
930 [IB_QPT_RC
] = (IB_QP_AV
|
934 IB_QP_MAX_DEST_RD_ATOMIC
|
935 IB_QP_MIN_RNR_TIMER
),
936 [IB_QPT_XRC_INI
] = (IB_QP_AV
|
940 [IB_QPT_XRC_TGT
] = (IB_QP_AV
|
944 IB_QP_MAX_DEST_RD_ATOMIC
|
945 IB_QP_MIN_RNR_TIMER
),
948 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
950 [IB_QPT_UC
] = (IB_QP_ALT_PATH
|
953 [IB_QPT_RC
] = (IB_QP_ALT_PATH
|
956 [IB_QPT_XRC_INI
] = (IB_QP_ALT_PATH
|
959 [IB_QPT_XRC_TGT
] = (IB_QP_ALT_PATH
|
962 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
964 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
970 [IB_QPS_RESET
] = { .valid
= 1 },
971 [IB_QPS_ERR
] = { .valid
= 1 },
975 [IB_QPT_UD
] = IB_QP_SQ_PSN
,
976 [IB_QPT_UC
] = IB_QP_SQ_PSN
,
977 [IB_QPT_RC
] = (IB_QP_TIMEOUT
|
981 IB_QP_MAX_QP_RD_ATOMIC
),
982 [IB_QPT_XRC_INI
] = (IB_QP_TIMEOUT
|
986 IB_QP_MAX_QP_RD_ATOMIC
),
987 [IB_QPT_XRC_TGT
] = (IB_QP_TIMEOUT
|
989 [IB_QPT_SMI
] = IB_QP_SQ_PSN
,
990 [IB_QPT_GSI
] = IB_QP_SQ_PSN
,
993 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
995 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
998 IB_QP_PATH_MIG_STATE
),
999 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1001 IB_QP_ACCESS_FLAGS
|
1002 IB_QP_MIN_RNR_TIMER
|
1003 IB_QP_PATH_MIG_STATE
),
1004 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1006 IB_QP_ACCESS_FLAGS
|
1007 IB_QP_PATH_MIG_STATE
),
1008 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1010 IB_QP_ACCESS_FLAGS
|
1011 IB_QP_MIN_RNR_TIMER
|
1012 IB_QP_PATH_MIG_STATE
),
1013 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1015 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1021 [IB_QPS_RESET
] = { .valid
= 1 },
1022 [IB_QPS_ERR
] = { .valid
= 1 },
1026 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1028 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1029 IB_QP_ACCESS_FLAGS
|
1031 IB_QP_PATH_MIG_STATE
),
1032 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1033 IB_QP_ACCESS_FLAGS
|
1035 IB_QP_PATH_MIG_STATE
|
1036 IB_QP_MIN_RNR_TIMER
),
1037 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1038 IB_QP_ACCESS_FLAGS
|
1040 IB_QP_PATH_MIG_STATE
),
1041 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1042 IB_QP_ACCESS_FLAGS
|
1044 IB_QP_PATH_MIG_STATE
|
1045 IB_QP_MIN_RNR_TIMER
),
1046 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1048 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1055 [IB_QPT_UD
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1056 [IB_QPT_UC
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1057 [IB_QPT_RC
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1058 [IB_QPT_XRC_INI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1059 [IB_QPT_XRC_TGT
] = IB_QP_EN_SQD_ASYNC_NOTIFY
, /* ??? */
1060 [IB_QPT_SMI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1061 [IB_QPT_GSI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
1066 [IB_QPS_RESET
] = { .valid
= 1 },
1067 [IB_QPS_ERR
] = { .valid
= 1 },
1071 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1073 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1075 IB_QP_ACCESS_FLAGS
|
1076 IB_QP_PATH_MIG_STATE
),
1077 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1079 IB_QP_ACCESS_FLAGS
|
1080 IB_QP_MIN_RNR_TIMER
|
1081 IB_QP_PATH_MIG_STATE
),
1082 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1084 IB_QP_ACCESS_FLAGS
|
1085 IB_QP_PATH_MIG_STATE
),
1086 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1088 IB_QP_ACCESS_FLAGS
|
1089 IB_QP_MIN_RNR_TIMER
|
1090 IB_QP_PATH_MIG_STATE
),
1091 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1093 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1100 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1102 [IB_QPT_UC
] = (IB_QP_AV
|
1104 IB_QP_ACCESS_FLAGS
|
1106 IB_QP_PATH_MIG_STATE
),
1107 [IB_QPT_RC
] = (IB_QP_PORT
|
1112 IB_QP_MAX_QP_RD_ATOMIC
|
1113 IB_QP_MAX_DEST_RD_ATOMIC
|
1115 IB_QP_ACCESS_FLAGS
|
1117 IB_QP_MIN_RNR_TIMER
|
1118 IB_QP_PATH_MIG_STATE
),
1119 [IB_QPT_XRC_INI
] = (IB_QP_PORT
|
1124 IB_QP_MAX_QP_RD_ATOMIC
|
1126 IB_QP_ACCESS_FLAGS
|
1128 IB_QP_PATH_MIG_STATE
),
1129 [IB_QPT_XRC_TGT
] = (IB_QP_PORT
|
1132 IB_QP_MAX_DEST_RD_ATOMIC
|
1134 IB_QP_ACCESS_FLAGS
|
1136 IB_QP_MIN_RNR_TIMER
|
1137 IB_QP_PATH_MIG_STATE
),
1138 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1140 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1146 [IB_QPS_RESET
] = { .valid
= 1 },
1147 [IB_QPS_ERR
] = { .valid
= 1 },
1151 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1153 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1154 IB_QP_ACCESS_FLAGS
),
1155 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1157 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1163 [IB_QPS_RESET
] = { .valid
= 1 },
1164 [IB_QPS_ERR
] = { .valid
= 1 }
1168 int ib_modify_qp_is_ok(enum ib_qp_state cur_state
, enum ib_qp_state next_state
,
1169 enum ib_qp_type type
, enum ib_qp_attr_mask mask
,
1170 enum rdma_link_layer ll
)
1172 enum ib_qp_attr_mask req_param
, opt_param
;
1174 if (cur_state
< 0 || cur_state
> IB_QPS_ERR
||
1175 next_state
< 0 || next_state
> IB_QPS_ERR
)
1178 if (mask
& IB_QP_CUR_STATE
&&
1179 cur_state
!= IB_QPS_RTR
&& cur_state
!= IB_QPS_RTS
&&
1180 cur_state
!= IB_QPS_SQD
&& cur_state
!= IB_QPS_SQE
)
1183 if (!qp_state_table
[cur_state
][next_state
].valid
)
1186 req_param
= qp_state_table
[cur_state
][next_state
].req_param
[type
];
1187 opt_param
= qp_state_table
[cur_state
][next_state
].opt_param
[type
];
1189 if ((mask
& req_param
) != req_param
)
1192 if (mask
& ~(req_param
| opt_param
| IB_QP_STATE
))
1197 EXPORT_SYMBOL(ib_modify_qp_is_ok
);
1199 int ib_resolve_eth_dmac(struct ib_qp
*qp
,
1200 struct ib_qp_attr
*qp_attr
, int *qp_attr_mask
)
1204 if (*qp_attr_mask
& IB_QP_AV
) {
1205 if (qp_attr
->ah_attr
.port_num
< rdma_start_port(qp
->device
) ||
1206 qp_attr
->ah_attr
.port_num
> rdma_end_port(qp
->device
))
1209 if (!rdma_cap_eth_ah(qp
->device
, qp_attr
->ah_attr
.port_num
))
1212 if (rdma_link_local_addr((struct in6_addr
*)qp_attr
->ah_attr
.grh
.dgid
.raw
)) {
1213 rdma_get_ll_mac((struct in6_addr
*)qp_attr
->ah_attr
.grh
.dgid
.raw
,
1214 qp_attr
->ah_attr
.dmac
);
1217 struct ib_gid_attr sgid_attr
;
1221 ret
= ib_query_gid(qp
->device
,
1222 qp_attr
->ah_attr
.port_num
,
1223 qp_attr
->ah_attr
.grh
.sgid_index
,
1226 if (ret
|| !sgid_attr
.ndev
) {
1232 ifindex
= sgid_attr
.ndev
->ifindex
;
1234 ret
= rdma_addr_find_l2_eth_by_grh(&sgid
,
1235 &qp_attr
->ah_attr
.grh
.dgid
,
1236 qp_attr
->ah_attr
.dmac
,
1237 NULL
, &ifindex
, &hop_limit
);
1239 dev_put(sgid_attr
.ndev
);
1241 qp_attr
->ah_attr
.grh
.hop_limit
= hop_limit
;
1247 EXPORT_SYMBOL(ib_resolve_eth_dmac
);
1250 int ib_modify_qp(struct ib_qp
*qp
,
1251 struct ib_qp_attr
*qp_attr
,
1256 ret
= ib_resolve_eth_dmac(qp
, qp_attr
, &qp_attr_mask
);
1260 return qp
->device
->modify_qp(qp
->real_qp
, qp_attr
, qp_attr_mask
, NULL
);
1262 EXPORT_SYMBOL(ib_modify_qp
);
1264 int ib_query_qp(struct ib_qp
*qp
,
1265 struct ib_qp_attr
*qp_attr
,
1267 struct ib_qp_init_attr
*qp_init_attr
)
1269 return qp
->device
->query_qp
?
1270 qp
->device
->query_qp(qp
->real_qp
, qp_attr
, qp_attr_mask
, qp_init_attr
) :
1273 EXPORT_SYMBOL(ib_query_qp
);
1275 int ib_close_qp(struct ib_qp
*qp
)
1277 struct ib_qp
*real_qp
;
1278 unsigned long flags
;
1280 real_qp
= qp
->real_qp
;
1284 spin_lock_irqsave(&real_qp
->device
->event_handler_lock
, flags
);
1285 list_del(&qp
->open_list
);
1286 spin_unlock_irqrestore(&real_qp
->device
->event_handler_lock
, flags
);
1288 atomic_dec(&real_qp
->usecnt
);
1293 EXPORT_SYMBOL(ib_close_qp
);
1295 static int __ib_destroy_shared_qp(struct ib_qp
*qp
)
1297 struct ib_xrcd
*xrcd
;
1298 struct ib_qp
*real_qp
;
1301 real_qp
= qp
->real_qp
;
1302 xrcd
= real_qp
->xrcd
;
1304 mutex_lock(&xrcd
->tgt_qp_mutex
);
1306 if (atomic_read(&real_qp
->usecnt
) == 0)
1307 list_del(&real_qp
->xrcd_list
);
1310 mutex_unlock(&xrcd
->tgt_qp_mutex
);
1313 ret
= ib_destroy_qp(real_qp
);
1315 atomic_dec(&xrcd
->usecnt
);
1317 __ib_insert_xrcd_qp(xrcd
, real_qp
);
1323 int ib_destroy_qp(struct ib_qp
*qp
)
1326 struct ib_cq
*scq
, *rcq
;
1328 struct ib_rwq_ind_table
*ind_tbl
;
1331 WARN_ON_ONCE(qp
->mrs_used
> 0);
1333 if (atomic_read(&qp
->usecnt
))
1336 if (qp
->real_qp
!= qp
)
1337 return __ib_destroy_shared_qp(qp
);
1343 ind_tbl
= qp
->rwq_ind_tbl
;
1346 rdma_rw_cleanup_mrs(qp
);
1348 ret
= qp
->device
->destroy_qp(qp
);
1351 atomic_dec(&pd
->usecnt
);
1353 atomic_dec(&scq
->usecnt
);
1355 atomic_dec(&rcq
->usecnt
);
1357 atomic_dec(&srq
->usecnt
);
1359 atomic_dec(&ind_tbl
->usecnt
);
1364 EXPORT_SYMBOL(ib_destroy_qp
);
1366 /* Completion queues */
1368 struct ib_cq
*ib_create_cq(struct ib_device
*device
,
1369 ib_comp_handler comp_handler
,
1370 void (*event_handler
)(struct ib_event
*, void *),
1372 const struct ib_cq_init_attr
*cq_attr
)
1376 cq
= device
->create_cq(device
, cq_attr
, NULL
, NULL
);
1379 cq
->device
= device
;
1381 cq
->comp_handler
= comp_handler
;
1382 cq
->event_handler
= event_handler
;
1383 cq
->cq_context
= cq_context
;
1384 atomic_set(&cq
->usecnt
, 0);
1389 EXPORT_SYMBOL(ib_create_cq
);
1391 int ib_modify_cq(struct ib_cq
*cq
, u16 cq_count
, u16 cq_period
)
1393 return cq
->device
->modify_cq
?
1394 cq
->device
->modify_cq(cq
, cq_count
, cq_period
) : -ENOSYS
;
1396 EXPORT_SYMBOL(ib_modify_cq
);
1398 int ib_destroy_cq(struct ib_cq
*cq
)
1400 if (atomic_read(&cq
->usecnt
))
1403 return cq
->device
->destroy_cq(cq
);
1405 EXPORT_SYMBOL(ib_destroy_cq
);
1407 int ib_resize_cq(struct ib_cq
*cq
, int cqe
)
1409 return cq
->device
->resize_cq
?
1410 cq
->device
->resize_cq(cq
, cqe
, NULL
) : -ENOSYS
;
1412 EXPORT_SYMBOL(ib_resize_cq
);
1414 /* Memory regions */
1416 int ib_dereg_mr(struct ib_mr
*mr
)
1418 struct ib_pd
*pd
= mr
->pd
;
1421 ret
= mr
->device
->dereg_mr(mr
);
1423 atomic_dec(&pd
->usecnt
);
1427 EXPORT_SYMBOL(ib_dereg_mr
);
1430 * ib_alloc_mr() - Allocates a memory region
1431 * @pd: protection domain associated with the region
1432 * @mr_type: memory region type
1433 * @max_num_sg: maximum sg entries available for registration.
1436 * Memory registeration page/sg lists must not exceed max_num_sg.
1437 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1438 * max_num_sg * used_page_size.
1441 struct ib_mr
*ib_alloc_mr(struct ib_pd
*pd
,
1442 enum ib_mr_type mr_type
,
1447 if (!pd
->device
->alloc_mr
)
1448 return ERR_PTR(-ENOSYS
);
1450 mr
= pd
->device
->alloc_mr(pd
, mr_type
, max_num_sg
);
1452 mr
->device
= pd
->device
;
1455 atomic_inc(&pd
->usecnt
);
1456 mr
->need_inval
= false;
1461 EXPORT_SYMBOL(ib_alloc_mr
);
1463 /* "Fast" memory regions */
1465 struct ib_fmr
*ib_alloc_fmr(struct ib_pd
*pd
,
1466 int mr_access_flags
,
1467 struct ib_fmr_attr
*fmr_attr
)
1471 if (!pd
->device
->alloc_fmr
)
1472 return ERR_PTR(-ENOSYS
);
1474 fmr
= pd
->device
->alloc_fmr(pd
, mr_access_flags
, fmr_attr
);
1476 fmr
->device
= pd
->device
;
1478 atomic_inc(&pd
->usecnt
);
1483 EXPORT_SYMBOL(ib_alloc_fmr
);
1485 int ib_unmap_fmr(struct list_head
*fmr_list
)
1489 if (list_empty(fmr_list
))
1492 fmr
= list_entry(fmr_list
->next
, struct ib_fmr
, list
);
1493 return fmr
->device
->unmap_fmr(fmr_list
);
1495 EXPORT_SYMBOL(ib_unmap_fmr
);
1497 int ib_dealloc_fmr(struct ib_fmr
*fmr
)
1503 ret
= fmr
->device
->dealloc_fmr(fmr
);
1505 atomic_dec(&pd
->usecnt
);
1509 EXPORT_SYMBOL(ib_dealloc_fmr
);
1511 /* Multicast groups */
1513 int ib_attach_mcast(struct ib_qp
*qp
, union ib_gid
*gid
, u16 lid
)
1517 if (!qp
->device
->attach_mcast
)
1519 if (gid
->raw
[0] != 0xff || qp
->qp_type
!= IB_QPT_UD
)
1522 ret
= qp
->device
->attach_mcast(qp
, gid
, lid
);
1524 atomic_inc(&qp
->usecnt
);
1527 EXPORT_SYMBOL(ib_attach_mcast
);
1529 int ib_detach_mcast(struct ib_qp
*qp
, union ib_gid
*gid
, u16 lid
)
1533 if (!qp
->device
->detach_mcast
)
1535 if (gid
->raw
[0] != 0xff || qp
->qp_type
!= IB_QPT_UD
)
1538 ret
= qp
->device
->detach_mcast(qp
, gid
, lid
);
1540 atomic_dec(&qp
->usecnt
);
1543 EXPORT_SYMBOL(ib_detach_mcast
);
1545 struct ib_xrcd
*ib_alloc_xrcd(struct ib_device
*device
)
1547 struct ib_xrcd
*xrcd
;
1549 if (!device
->alloc_xrcd
)
1550 return ERR_PTR(-ENOSYS
);
1552 xrcd
= device
->alloc_xrcd(device
, NULL
, NULL
);
1553 if (!IS_ERR(xrcd
)) {
1554 xrcd
->device
= device
;
1556 atomic_set(&xrcd
->usecnt
, 0);
1557 mutex_init(&xrcd
->tgt_qp_mutex
);
1558 INIT_LIST_HEAD(&xrcd
->tgt_qp_list
);
1563 EXPORT_SYMBOL(ib_alloc_xrcd
);
1565 int ib_dealloc_xrcd(struct ib_xrcd
*xrcd
)
1570 if (atomic_read(&xrcd
->usecnt
))
1573 while (!list_empty(&xrcd
->tgt_qp_list
)) {
1574 qp
= list_entry(xrcd
->tgt_qp_list
.next
, struct ib_qp
, xrcd_list
);
1575 ret
= ib_destroy_qp(qp
);
1580 return xrcd
->device
->dealloc_xrcd(xrcd
);
1582 EXPORT_SYMBOL(ib_dealloc_xrcd
);
1585 * ib_create_wq - Creates a WQ associated with the specified protection
1587 * @pd: The protection domain associated with the WQ.
1588 * @wq_init_attr: A list of initial attributes required to create the
1589 * WQ. If WQ creation succeeds, then the attributes are updated to
1590 * the actual capabilities of the created WQ.
1592 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1593 * the requested size of the WQ, and set to the actual values allocated
1595 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1596 * at least as large as the requested values.
1598 struct ib_wq
*ib_create_wq(struct ib_pd
*pd
,
1599 struct ib_wq_init_attr
*wq_attr
)
1603 if (!pd
->device
->create_wq
)
1604 return ERR_PTR(-ENOSYS
);
1606 wq
= pd
->device
->create_wq(pd
, wq_attr
, NULL
);
1608 wq
->event_handler
= wq_attr
->event_handler
;
1609 wq
->wq_context
= wq_attr
->wq_context
;
1610 wq
->wq_type
= wq_attr
->wq_type
;
1611 wq
->cq
= wq_attr
->cq
;
1612 wq
->device
= pd
->device
;
1615 atomic_inc(&pd
->usecnt
);
1616 atomic_inc(&wq_attr
->cq
->usecnt
);
1617 atomic_set(&wq
->usecnt
, 0);
1621 EXPORT_SYMBOL(ib_create_wq
);
1624 * ib_destroy_wq - Destroys the specified WQ.
1625 * @wq: The WQ to destroy.
1627 int ib_destroy_wq(struct ib_wq
*wq
)
1630 struct ib_cq
*cq
= wq
->cq
;
1631 struct ib_pd
*pd
= wq
->pd
;
1633 if (atomic_read(&wq
->usecnt
))
1636 err
= wq
->device
->destroy_wq(wq
);
1638 atomic_dec(&pd
->usecnt
);
1639 atomic_dec(&cq
->usecnt
);
1643 EXPORT_SYMBOL(ib_destroy_wq
);
1646 * ib_modify_wq - Modifies the specified WQ.
1647 * @wq: The WQ to modify.
1648 * @wq_attr: On input, specifies the WQ attributes to modify.
1649 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1650 * are being modified.
1651 * On output, the current values of selected WQ attributes are returned.
1653 int ib_modify_wq(struct ib_wq
*wq
, struct ib_wq_attr
*wq_attr
,
1658 if (!wq
->device
->modify_wq
)
1661 err
= wq
->device
->modify_wq(wq
, wq_attr
, wq_attr_mask
, NULL
);
1664 EXPORT_SYMBOL(ib_modify_wq
);
1667 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1668 * @device: The device on which to create the rwq indirection table.
1669 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1670 * create the Indirection Table.
1672 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1673 * than the created ib_rwq_ind_table object and the caller is responsible
1674 * for its memory allocation/free.
1676 struct ib_rwq_ind_table
*ib_create_rwq_ind_table(struct ib_device
*device
,
1677 struct ib_rwq_ind_table_init_attr
*init_attr
)
1679 struct ib_rwq_ind_table
*rwq_ind_table
;
1683 if (!device
->create_rwq_ind_table
)
1684 return ERR_PTR(-ENOSYS
);
1686 table_size
= (1 << init_attr
->log_ind_tbl_size
);
1687 rwq_ind_table
= device
->create_rwq_ind_table(device
,
1689 if (IS_ERR(rwq_ind_table
))
1690 return rwq_ind_table
;
1692 rwq_ind_table
->ind_tbl
= init_attr
->ind_tbl
;
1693 rwq_ind_table
->log_ind_tbl_size
= init_attr
->log_ind_tbl_size
;
1694 rwq_ind_table
->device
= device
;
1695 rwq_ind_table
->uobject
= NULL
;
1696 atomic_set(&rwq_ind_table
->usecnt
, 0);
1698 for (i
= 0; i
< table_size
; i
++)
1699 atomic_inc(&rwq_ind_table
->ind_tbl
[i
]->usecnt
);
1701 return rwq_ind_table
;
1703 EXPORT_SYMBOL(ib_create_rwq_ind_table
);
1706 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1707 * @wq_ind_table: The Indirection Table to destroy.
1709 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table
*rwq_ind_table
)
1712 u32 table_size
= (1 << rwq_ind_table
->log_ind_tbl_size
);
1713 struct ib_wq
**ind_tbl
= rwq_ind_table
->ind_tbl
;
1715 if (atomic_read(&rwq_ind_table
->usecnt
))
1718 err
= rwq_ind_table
->device
->destroy_rwq_ind_table(rwq_ind_table
);
1720 for (i
= 0; i
< table_size
; i
++)
1721 atomic_dec(&ind_tbl
[i
]->usecnt
);
1726 EXPORT_SYMBOL(ib_destroy_rwq_ind_table
);
1728 struct ib_flow
*ib_create_flow(struct ib_qp
*qp
,
1729 struct ib_flow_attr
*flow_attr
,
1732 struct ib_flow
*flow_id
;
1733 if (!qp
->device
->create_flow
)
1734 return ERR_PTR(-ENOSYS
);
1736 flow_id
= qp
->device
->create_flow(qp
, flow_attr
, domain
);
1737 if (!IS_ERR(flow_id
))
1738 atomic_inc(&qp
->usecnt
);
1741 EXPORT_SYMBOL(ib_create_flow
);
1743 int ib_destroy_flow(struct ib_flow
*flow_id
)
1746 struct ib_qp
*qp
= flow_id
->qp
;
1748 err
= qp
->device
->destroy_flow(flow_id
);
1750 atomic_dec(&qp
->usecnt
);
1753 EXPORT_SYMBOL(ib_destroy_flow
);
1755 int ib_check_mr_status(struct ib_mr
*mr
, u32 check_mask
,
1756 struct ib_mr_status
*mr_status
)
1758 return mr
->device
->check_mr_status
?
1759 mr
->device
->check_mr_status(mr
, check_mask
, mr_status
) : -ENOSYS
;
1761 EXPORT_SYMBOL(ib_check_mr_status
);
1763 int ib_set_vf_link_state(struct ib_device
*device
, int vf
, u8 port
,
1766 if (!device
->set_vf_link_state
)
1769 return device
->set_vf_link_state(device
, vf
, port
, state
);
1771 EXPORT_SYMBOL(ib_set_vf_link_state
);
1773 int ib_get_vf_config(struct ib_device
*device
, int vf
, u8 port
,
1774 struct ifla_vf_info
*info
)
1776 if (!device
->get_vf_config
)
1779 return device
->get_vf_config(device
, vf
, port
, info
);
1781 EXPORT_SYMBOL(ib_get_vf_config
);
1783 int ib_get_vf_stats(struct ib_device
*device
, int vf
, u8 port
,
1784 struct ifla_vf_stats
*stats
)
1786 if (!device
->get_vf_stats
)
1789 return device
->get_vf_stats(device
, vf
, port
, stats
);
1791 EXPORT_SYMBOL(ib_get_vf_stats
);
1793 int ib_set_vf_guid(struct ib_device
*device
, int vf
, u8 port
, u64 guid
,
1796 if (!device
->set_vf_guid
)
1799 return device
->set_vf_guid(device
, vf
, port
, guid
, type
);
1801 EXPORT_SYMBOL(ib_set_vf_guid
);
1804 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1805 * and set it the memory region.
1806 * @mr: memory region
1807 * @sg: dma mapped scatterlist
1808 * @sg_nents: number of entries in sg
1809 * @sg_offset: offset in bytes into sg
1810 * @page_size: page vector desired page size
1813 * - The first sg element is allowed to have an offset.
1814 * - Each sg element must either be aligned to page_size or virtually
1815 * contiguous to the previous element. In case an sg element has a
1816 * non-contiguous offset, the mapping prefix will not include it.
1817 * - The last sg element is allowed to have length less than page_size.
1818 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1819 * then only max_num_sg entries will be mapped.
1820 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1821 * constraints holds and the page_size argument is ignored.
1823 * Returns the number of sg elements that were mapped to the memory region.
1825 * After this completes successfully, the memory region
1826 * is ready for registration.
1828 int ib_map_mr_sg(struct ib_mr
*mr
, struct scatterlist
*sg
, int sg_nents
,
1829 unsigned int *sg_offset
, unsigned int page_size
)
1831 if (unlikely(!mr
->device
->map_mr_sg
))
1834 mr
->page_size
= page_size
;
1836 return mr
->device
->map_mr_sg(mr
, sg
, sg_nents
, sg_offset
);
1838 EXPORT_SYMBOL(ib_map_mr_sg
);
1841 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1843 * @mr: memory region
1844 * @sgl: dma mapped scatterlist
1845 * @sg_nents: number of entries in sg
1846 * @sg_offset_p: IN: start offset in bytes into sg
1847 * OUT: offset in bytes for element n of the sg of the first
1848 * byte that has not been processed where n is the return
1849 * value of this function.
1850 * @set_page: driver page assignment function pointer
1852 * Core service helper for drivers to convert the largest
1853 * prefix of given sg list to a page vector. The sg list
1854 * prefix converted is the prefix that meet the requirements
1857 * Returns the number of sg elements that were assigned to
1860 int ib_sg_to_pages(struct ib_mr
*mr
, struct scatterlist
*sgl
, int sg_nents
,
1861 unsigned int *sg_offset_p
, int (*set_page
)(struct ib_mr
*, u64
))
1863 struct scatterlist
*sg
;
1864 u64 last_end_dma_addr
= 0;
1865 unsigned int sg_offset
= sg_offset_p
? *sg_offset_p
: 0;
1866 unsigned int last_page_off
= 0;
1867 u64 page_mask
= ~((u64
)mr
->page_size
- 1);
1870 if (unlikely(sg_nents
<= 0 || sg_offset
> sg_dma_len(&sgl
[0])))
1873 mr
->iova
= sg_dma_address(&sgl
[0]) + sg_offset
;
1876 for_each_sg(sgl
, sg
, sg_nents
, i
) {
1877 u64 dma_addr
= sg_dma_address(sg
) + sg_offset
;
1878 u64 prev_addr
= dma_addr
;
1879 unsigned int dma_len
= sg_dma_len(sg
) - sg_offset
;
1880 u64 end_dma_addr
= dma_addr
+ dma_len
;
1881 u64 page_addr
= dma_addr
& page_mask
;
1884 * For the second and later elements, check whether either the
1885 * end of element i-1 or the start of element i is not aligned
1886 * on a page boundary.
1888 if (i
&& (last_page_off
!= 0 || page_addr
!= dma_addr
)) {
1889 /* Stop mapping if there is a gap. */
1890 if (last_end_dma_addr
!= dma_addr
)
1894 * Coalesce this element with the last. If it is small
1895 * enough just update mr->length. Otherwise start
1896 * mapping from the next page.
1902 ret
= set_page(mr
, page_addr
);
1903 if (unlikely(ret
< 0)) {
1904 sg_offset
= prev_addr
- sg_dma_address(sg
);
1905 mr
->length
+= prev_addr
- dma_addr
;
1907 *sg_offset_p
= sg_offset
;
1908 return i
|| sg_offset
? i
: ret
;
1910 prev_addr
= page_addr
;
1912 page_addr
+= mr
->page_size
;
1913 } while (page_addr
< end_dma_addr
);
1915 mr
->length
+= dma_len
;
1916 last_end_dma_addr
= end_dma_addr
;
1917 last_page_off
= end_dma_addr
& ~page_mask
;
1926 EXPORT_SYMBOL(ib_sg_to_pages
);
1928 struct ib_drain_cqe
{
1930 struct completion done
;
1933 static void ib_drain_qp_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1935 struct ib_drain_cqe
*cqe
= container_of(wc
->wr_cqe
, struct ib_drain_cqe
,
1938 complete(&cqe
->done
);
1942 * Post a WR and block until its completion is reaped for the SQ.
1944 static void __ib_drain_sq(struct ib_qp
*qp
)
1946 struct ib_qp_attr attr
= { .qp_state
= IB_QPS_ERR
};
1947 struct ib_drain_cqe sdrain
;
1948 struct ib_send_wr swr
= {}, *bad_swr
;
1951 if (qp
->send_cq
->poll_ctx
== IB_POLL_DIRECT
) {
1952 WARN_ONCE(qp
->send_cq
->poll_ctx
== IB_POLL_DIRECT
,
1953 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1957 swr
.wr_cqe
= &sdrain
.cqe
;
1958 sdrain
.cqe
.done
= ib_drain_qp_done
;
1959 init_completion(&sdrain
.done
);
1961 ret
= ib_modify_qp(qp
, &attr
, IB_QP_STATE
);
1963 WARN_ONCE(ret
, "failed to drain send queue: %d\n", ret
);
1967 ret
= ib_post_send(qp
, &swr
, &bad_swr
);
1969 WARN_ONCE(ret
, "failed to drain send queue: %d\n", ret
);
1973 wait_for_completion(&sdrain
.done
);
1977 * Post a WR and block until its completion is reaped for the RQ.
1979 static void __ib_drain_rq(struct ib_qp
*qp
)
1981 struct ib_qp_attr attr
= { .qp_state
= IB_QPS_ERR
};
1982 struct ib_drain_cqe rdrain
;
1983 struct ib_recv_wr rwr
= {}, *bad_rwr
;
1986 if (qp
->recv_cq
->poll_ctx
== IB_POLL_DIRECT
) {
1987 WARN_ONCE(qp
->recv_cq
->poll_ctx
== IB_POLL_DIRECT
,
1988 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1992 rwr
.wr_cqe
= &rdrain
.cqe
;
1993 rdrain
.cqe
.done
= ib_drain_qp_done
;
1994 init_completion(&rdrain
.done
);
1996 ret
= ib_modify_qp(qp
, &attr
, IB_QP_STATE
);
1998 WARN_ONCE(ret
, "failed to drain recv queue: %d\n", ret
);
2002 ret
= ib_post_recv(qp
, &rwr
, &bad_rwr
);
2004 WARN_ONCE(ret
, "failed to drain recv queue: %d\n", ret
);
2008 wait_for_completion(&rdrain
.done
);
2012 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2014 * @qp: queue pair to drain
2016 * If the device has a provider-specific drain function, then
2017 * call that. Otherwise call the generic drain function
2022 * ensure there is room in the CQ and SQ for the drain work request and
2025 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2028 * ensure that there are no other contexts that are posting WRs concurrently.
2029 * Otherwise the drain is not guaranteed.
2031 void ib_drain_sq(struct ib_qp
*qp
)
2033 if (qp
->device
->drain_sq
)
2034 qp
->device
->drain_sq(qp
);
2038 EXPORT_SYMBOL(ib_drain_sq
);
2041 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2043 * @qp: queue pair to drain
2045 * If the device has a provider-specific drain function, then
2046 * call that. Otherwise call the generic drain function
2051 * ensure there is room in the CQ and RQ for the drain work request and
2054 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2057 * ensure that there are no other contexts that are posting WRs concurrently.
2058 * Otherwise the drain is not guaranteed.
2060 void ib_drain_rq(struct ib_qp
*qp
)
2062 if (qp
->device
->drain_rq
)
2063 qp
->device
->drain_rq(qp
);
2067 EXPORT_SYMBOL(ib_drain_rq
);
2070 * ib_drain_qp() - Block until all CQEs have been consumed by the
2071 * application on both the RQ and SQ.
2072 * @qp: queue pair to drain
2076 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2079 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2082 * ensure that there are no other contexts that are posting WRs concurrently.
2083 * Otherwise the drain is not guaranteed.
2085 void ib_drain_qp(struct ib_qp
*qp
)
2091 EXPORT_SYMBOL(ib_drain_qp
);