2 * Linux network driver for QLogic BR-series Converged Network Adapter.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
14 * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
15 * Copyright (c) 2014-2015 QLogic Corporation
19 #include <linux/bitops.h>
20 #include <linux/netdevice.h>
21 #include <linux/skbuff.h>
22 #include <linux/etherdevice.h>
24 #include <linux/ethtool.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_ether.h>
28 #include <linux/prefetch.h>
29 #include <linux/module.h>
35 static DEFINE_MUTEX(bnad_fwimg_mutex
);
40 static uint bnad_msix_disable
;
41 module_param(bnad_msix_disable
, uint
, 0444);
42 MODULE_PARM_DESC(bnad_msix_disable
, "Disable MSIX mode");
44 static uint bnad_ioc_auto_recover
= 1;
45 module_param(bnad_ioc_auto_recover
, uint
, 0444);
46 MODULE_PARM_DESC(bnad_ioc_auto_recover
, "Enable / Disable auto recovery");
48 static uint bna_debugfs_enable
= 1;
49 module_param(bna_debugfs_enable
, uint
, S_IRUGO
| S_IWUSR
);
50 MODULE_PARM_DESC(bna_debugfs_enable
, "Enables debugfs feature, default=1,"
51 " Range[false:0|true:1]");
56 static u32 bnad_rxqs_per_cq
= 2;
57 static atomic_t bna_id
;
58 static const u8 bnad_bcast_addr
[] __aligned(2) =
59 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
64 #define BNAD_GET_MBOX_IRQ(_bnad) \
65 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
66 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 ((_bnad)->pcidev->irq))
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \
71 (_res_info)->res_type = BNA_RES_T_MEM; \
72 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
73 (_res_info)->res_u.mem_info.num = (_num); \
74 (_res_info)->res_u.mem_info.len = (_size); \
78 * Reinitialize completions in CQ, once Rx is taken down
81 bnad_cq_cleanup(struct bnad
*bnad
, struct bna_ccb
*ccb
)
83 struct bna_cq_entry
*cmpl
;
86 for (i
= 0; i
< ccb
->q_depth
; i
++) {
87 cmpl
= &((struct bna_cq_entry
*)ccb
->sw_q
)[i
];
92 /* Tx Datapath functions */
95 /* Caller should ensure that the entry at unmap_q[index] is valid */
97 bnad_tx_buff_unmap(struct bnad
*bnad
,
98 struct bnad_tx_unmap
*unmap_q
,
99 u32 q_depth
, u32 index
)
101 struct bnad_tx_unmap
*unmap
;
105 unmap
= &unmap_q
[index
];
106 nvecs
= unmap
->nvecs
;
111 dma_unmap_single(&bnad
->pcidev
->dev
,
112 dma_unmap_addr(&unmap
->vectors
[0], dma_addr
),
113 skb_headlen(skb
), DMA_TO_DEVICE
);
114 dma_unmap_addr_set(&unmap
->vectors
[0], dma_addr
, 0);
120 if (vector
== BFI_TX_MAX_VECTORS_PER_WI
) {
122 BNA_QE_INDX_INC(index
, q_depth
);
123 unmap
= &unmap_q
[index
];
126 dma_unmap_page(&bnad
->pcidev
->dev
,
127 dma_unmap_addr(&unmap
->vectors
[vector
], dma_addr
),
128 dma_unmap_len(&unmap
->vectors
[vector
], dma_len
),
130 dma_unmap_addr_set(&unmap
->vectors
[vector
], dma_addr
, 0);
134 BNA_QE_INDX_INC(index
, q_depth
);
140 * Frees all pending Tx Bufs
141 * At this point no activity is expected on the Q,
142 * so DMA unmap & freeing is fine.
145 bnad_txq_cleanup(struct bnad
*bnad
, struct bna_tcb
*tcb
)
147 struct bnad_tx_unmap
*unmap_q
= tcb
->unmap_q
;
151 for (i
= 0; i
< tcb
->q_depth
; i
++) {
152 skb
= unmap_q
[i
].skb
;
155 bnad_tx_buff_unmap(bnad
, unmap_q
, tcb
->q_depth
, i
);
157 dev_kfree_skb_any(skb
);
162 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
163 * Can be called in a) Interrupt context
167 bnad_txcmpl_process(struct bnad
*bnad
, struct bna_tcb
*tcb
)
169 u32 sent_packets
= 0, sent_bytes
= 0;
170 u32 wis
, unmap_wis
, hw_cons
, cons
, q_depth
;
171 struct bnad_tx_unmap
*unmap_q
= tcb
->unmap_q
;
172 struct bnad_tx_unmap
*unmap
;
175 /* Just return if TX is stopped */
176 if (!test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
))
179 hw_cons
= *(tcb
->hw_consumer_index
);
180 cons
= tcb
->consumer_index
;
181 q_depth
= tcb
->q_depth
;
183 wis
= BNA_Q_INDEX_CHANGE(cons
, hw_cons
, q_depth
);
184 BUG_ON(!(wis
<= BNA_QE_IN_USE_CNT(tcb
, tcb
->q_depth
)));
187 unmap
= &unmap_q
[cons
];
192 sent_bytes
+= skb
->len
;
194 unmap_wis
= BNA_TXQ_WI_NEEDED(unmap
->nvecs
);
197 cons
= bnad_tx_buff_unmap(bnad
, unmap_q
, q_depth
, cons
);
198 dev_kfree_skb_any(skb
);
201 /* Update consumer pointers. */
202 tcb
->consumer_index
= hw_cons
;
204 tcb
->txq
->tx_packets
+= sent_packets
;
205 tcb
->txq
->tx_bytes
+= sent_bytes
;
211 bnad_tx_complete(struct bnad
*bnad
, struct bna_tcb
*tcb
)
213 struct net_device
*netdev
= bnad
->netdev
;
216 if (test_and_set_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
))
219 sent
= bnad_txcmpl_process(bnad
, tcb
);
221 if (netif_queue_stopped(netdev
) &&
222 netif_carrier_ok(netdev
) &&
223 BNA_QE_FREE_CNT(tcb
, tcb
->q_depth
) >=
224 BNAD_NETIF_WAKE_THRESHOLD
) {
225 if (test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
)) {
226 netif_wake_queue(netdev
);
227 BNAD_UPDATE_CTR(bnad
, netif_queue_wakeup
);
232 if (likely(test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
)))
233 bna_ib_ack(tcb
->i_dbell
, sent
);
235 smp_mb__before_atomic();
236 clear_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
);
241 /* MSIX Tx Completion Handler */
243 bnad_msix_tx(int irq
, void *data
)
245 struct bna_tcb
*tcb
= (struct bna_tcb
*)data
;
246 struct bnad
*bnad
= tcb
->bnad
;
248 bnad_tx_complete(bnad
, tcb
);
254 bnad_rxq_alloc_uninit(struct bnad
*bnad
, struct bna_rcb
*rcb
)
256 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
258 unmap_q
->reuse_pi
= -1;
259 unmap_q
->alloc_order
= -1;
260 unmap_q
->map_size
= 0;
261 unmap_q
->type
= BNAD_RXBUF_NONE
;
264 /* Default is page-based allocation. Multi-buffer support - TBD */
266 bnad_rxq_alloc_init(struct bnad
*bnad
, struct bna_rcb
*rcb
)
268 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
271 bnad_rxq_alloc_uninit(bnad
, rcb
);
273 order
= get_order(rcb
->rxq
->buffer_size
);
275 unmap_q
->type
= BNAD_RXBUF_PAGE
;
277 if (bna_is_small_rxq(rcb
->id
)) {
278 unmap_q
->alloc_order
= 0;
279 unmap_q
->map_size
= rcb
->rxq
->buffer_size
;
281 if (rcb
->rxq
->multi_buffer
) {
282 unmap_q
->alloc_order
= 0;
283 unmap_q
->map_size
= rcb
->rxq
->buffer_size
;
284 unmap_q
->type
= BNAD_RXBUF_MULTI_BUFF
;
286 unmap_q
->alloc_order
= order
;
288 (rcb
->rxq
->buffer_size
> 2048) ?
289 PAGE_SIZE
<< order
: 2048;
293 BUG_ON((PAGE_SIZE
<< order
) % unmap_q
->map_size
);
299 bnad_rxq_cleanup_page(struct bnad
*bnad
, struct bnad_rx_unmap
*unmap
)
304 dma_unmap_page(&bnad
->pcidev
->dev
,
305 dma_unmap_addr(&unmap
->vector
, dma_addr
),
306 unmap
->vector
.len
, DMA_FROM_DEVICE
);
307 put_page(unmap
->page
);
309 dma_unmap_addr_set(&unmap
->vector
, dma_addr
, 0);
310 unmap
->vector
.len
= 0;
314 bnad_rxq_cleanup_skb(struct bnad
*bnad
, struct bnad_rx_unmap
*unmap
)
319 dma_unmap_single(&bnad
->pcidev
->dev
,
320 dma_unmap_addr(&unmap
->vector
, dma_addr
),
321 unmap
->vector
.len
, DMA_FROM_DEVICE
);
322 dev_kfree_skb_any(unmap
->skb
);
324 dma_unmap_addr_set(&unmap
->vector
, dma_addr
, 0);
325 unmap
->vector
.len
= 0;
329 bnad_rxq_cleanup(struct bnad
*bnad
, struct bna_rcb
*rcb
)
331 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
334 for (i
= 0; i
< rcb
->q_depth
; i
++) {
335 struct bnad_rx_unmap
*unmap
= &unmap_q
->unmap
[i
];
337 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
))
338 bnad_rxq_cleanup_skb(bnad
, unmap
);
340 bnad_rxq_cleanup_page(bnad
, unmap
);
342 bnad_rxq_alloc_uninit(bnad
, rcb
);
346 bnad_rxq_refill_page(struct bnad
*bnad
, struct bna_rcb
*rcb
, u32 nalloc
)
348 u32 alloced
, prod
, q_depth
;
349 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
350 struct bnad_rx_unmap
*unmap
, *prev
;
351 struct bna_rxq_entry
*rxent
;
353 u32 page_offset
, alloc_size
;
356 prod
= rcb
->producer_index
;
357 q_depth
= rcb
->q_depth
;
359 alloc_size
= PAGE_SIZE
<< unmap_q
->alloc_order
;
363 unmap
= &unmap_q
->unmap
[prod
];
365 if (unmap_q
->reuse_pi
< 0) {
366 page
= alloc_pages(GFP_ATOMIC
| __GFP_COMP
,
367 unmap_q
->alloc_order
);
370 prev
= &unmap_q
->unmap
[unmap_q
->reuse_pi
];
372 page_offset
= prev
->page_offset
+ unmap_q
->map_size
;
376 if (unlikely(!page
)) {
377 BNAD_UPDATE_CTR(bnad
, rxbuf_alloc_failed
);
378 rcb
->rxq
->rxbuf_alloc_failed
++;
382 dma_addr
= dma_map_page(&bnad
->pcidev
->dev
, page
, page_offset
,
383 unmap_q
->map_size
, DMA_FROM_DEVICE
);
384 if (dma_mapping_error(&bnad
->pcidev
->dev
, dma_addr
)) {
386 BNAD_UPDATE_CTR(bnad
, rxbuf_map_failed
);
387 rcb
->rxq
->rxbuf_map_failed
++;
392 unmap
->page_offset
= page_offset
;
393 dma_unmap_addr_set(&unmap
->vector
, dma_addr
, dma_addr
);
394 unmap
->vector
.len
= unmap_q
->map_size
;
395 page_offset
+= unmap_q
->map_size
;
397 if (page_offset
< alloc_size
)
398 unmap_q
->reuse_pi
= prod
;
400 unmap_q
->reuse_pi
= -1;
402 rxent
= &((struct bna_rxq_entry
*)rcb
->sw_q
)[prod
];
403 BNA_SET_DMA_ADDR(dma_addr
, &rxent
->host_addr
);
404 BNA_QE_INDX_INC(prod
, q_depth
);
409 if (likely(alloced
)) {
410 rcb
->producer_index
= prod
;
412 if (likely(test_bit(BNAD_RXQ_POST_OK
, &rcb
->flags
)))
413 bna_rxq_prod_indx_doorbell(rcb
);
420 bnad_rxq_refill_skb(struct bnad
*bnad
, struct bna_rcb
*rcb
, u32 nalloc
)
422 u32 alloced
, prod
, q_depth
, buff_sz
;
423 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
424 struct bnad_rx_unmap
*unmap
;
425 struct bna_rxq_entry
*rxent
;
429 buff_sz
= rcb
->rxq
->buffer_size
;
430 prod
= rcb
->producer_index
;
431 q_depth
= rcb
->q_depth
;
435 unmap
= &unmap_q
->unmap
[prod
];
437 skb
= netdev_alloc_skb_ip_align(bnad
->netdev
, buff_sz
);
439 if (unlikely(!skb
)) {
440 BNAD_UPDATE_CTR(bnad
, rxbuf_alloc_failed
);
441 rcb
->rxq
->rxbuf_alloc_failed
++;
445 dma_addr
= dma_map_single(&bnad
->pcidev
->dev
, skb
->data
,
446 buff_sz
, DMA_FROM_DEVICE
);
447 if (dma_mapping_error(&bnad
->pcidev
->dev
, dma_addr
)) {
448 dev_kfree_skb_any(skb
);
449 BNAD_UPDATE_CTR(bnad
, rxbuf_map_failed
);
450 rcb
->rxq
->rxbuf_map_failed
++;
455 dma_unmap_addr_set(&unmap
->vector
, dma_addr
, dma_addr
);
456 unmap
->vector
.len
= buff_sz
;
458 rxent
= &((struct bna_rxq_entry
*)rcb
->sw_q
)[prod
];
459 BNA_SET_DMA_ADDR(dma_addr
, &rxent
->host_addr
);
460 BNA_QE_INDX_INC(prod
, q_depth
);
465 if (likely(alloced
)) {
466 rcb
->producer_index
= prod
;
468 if (likely(test_bit(BNAD_RXQ_POST_OK
, &rcb
->flags
)))
469 bna_rxq_prod_indx_doorbell(rcb
);
476 bnad_rxq_post(struct bnad
*bnad
, struct bna_rcb
*rcb
)
478 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
481 to_alloc
= BNA_QE_FREE_CNT(rcb
, rcb
->q_depth
);
482 if (!(to_alloc
>> BNAD_RXQ_REFILL_THRESHOLD_SHIFT
))
485 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
))
486 bnad_rxq_refill_skb(bnad
, rcb
, to_alloc
);
488 bnad_rxq_refill_page(bnad
, rcb
, to_alloc
);
491 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
493 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
494 BNA_CQ_EF_L4_CKSUM_OK)
496 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
497 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
498 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
499 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
500 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
501 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
502 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
503 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
506 bnad_cq_drop_packet(struct bnad
*bnad
, struct bna_rcb
*rcb
,
507 u32 sop_ci
, u32 nvecs
)
509 struct bnad_rx_unmap_q
*unmap_q
;
510 struct bnad_rx_unmap
*unmap
;
513 unmap_q
= rcb
->unmap_q
;
514 for (vec
= 0, ci
= sop_ci
; vec
< nvecs
; vec
++) {
515 unmap
= &unmap_q
->unmap
[ci
];
516 BNA_QE_INDX_INC(ci
, rcb
->q_depth
);
518 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
))
519 bnad_rxq_cleanup_skb(bnad
, unmap
);
521 bnad_rxq_cleanup_page(bnad
, unmap
);
526 bnad_cq_setup_skb_frags(struct bna_ccb
*ccb
, struct sk_buff
*skb
, u32 nvecs
)
530 struct bnad_rx_unmap_q
*unmap_q
;
531 struct bna_cq_entry
*cq
, *cmpl
;
532 u32 ci
, pi
, totlen
= 0;
535 pi
= ccb
->producer_index
;
538 rcb
= bna_is_small_rxq(cmpl
->rxq_id
) ? ccb
->rcb
[1] : ccb
->rcb
[0];
539 unmap_q
= rcb
->unmap_q
;
541 ci
= rcb
->consumer_index
;
543 /* prefetch header */
544 prefetch(page_address(unmap_q
->unmap
[ci
].page
) +
545 unmap_q
->unmap
[ci
].page_offset
);
548 struct bnad_rx_unmap
*unmap
;
551 unmap
= &unmap_q
->unmap
[ci
];
552 BNA_QE_INDX_INC(ci
, rcb
->q_depth
);
554 dma_unmap_page(&bnad
->pcidev
->dev
,
555 dma_unmap_addr(&unmap
->vector
, dma_addr
),
556 unmap
->vector
.len
, DMA_FROM_DEVICE
);
558 len
= ntohs(cmpl
->length
);
559 skb
->truesize
+= unmap
->vector
.len
;
562 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
563 unmap
->page
, unmap
->page_offset
, len
);
566 unmap
->vector
.len
= 0;
568 BNA_QE_INDX_INC(pi
, ccb
->q_depth
);
573 skb
->data_len
+= totlen
;
577 bnad_cq_setup_skb(struct bnad
*bnad
, struct sk_buff
*skb
,
578 struct bnad_rx_unmap
*unmap
, u32 len
)
582 dma_unmap_single(&bnad
->pcidev
->dev
,
583 dma_unmap_addr(&unmap
->vector
, dma_addr
),
584 unmap
->vector
.len
, DMA_FROM_DEVICE
);
587 skb
->protocol
= eth_type_trans(skb
, bnad
->netdev
);
590 unmap
->vector
.len
= 0;
594 bnad_cq_process(struct bnad
*bnad
, struct bna_ccb
*ccb
, int budget
)
596 struct bna_cq_entry
*cq
, *cmpl
, *next_cmpl
;
597 struct bna_rcb
*rcb
= NULL
;
598 struct bnad_rx_unmap_q
*unmap_q
;
599 struct bnad_rx_unmap
*unmap
= NULL
;
600 struct sk_buff
*skb
= NULL
;
601 struct bna_pkt_rate
*pkt_rt
= &ccb
->pkt_rate
;
602 struct bnad_rx_ctrl
*rx_ctrl
= ccb
->ctrl
;
603 u32 packets
= 0, len
= 0, totlen
= 0;
604 u32 pi
, vec
, sop_ci
= 0, nvecs
= 0;
605 u32 flags
, masked_flags
;
607 prefetch(bnad
->netdev
);
611 while (packets
< budget
) {
612 cmpl
= &cq
[ccb
->producer_index
];
615 /* The 'valid' field is set by the adapter, only after writing
616 * the other fields of completion entry. Hence, do not load
617 * other fields of completion entry *before* the 'valid' is
618 * loaded. Adding the rmb() here prevents the compiler and/or
619 * CPU from reordering the reads which would potentially result
620 * in reading stale values in completion entry.
624 BNA_UPDATE_PKT_CNT(pkt_rt
, ntohs(cmpl
->length
));
626 if (bna_is_small_rxq(cmpl
->rxq_id
))
631 unmap_q
= rcb
->unmap_q
;
633 /* start of packet ci */
634 sop_ci
= rcb
->consumer_index
;
636 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
)) {
637 unmap
= &unmap_q
->unmap
[sop_ci
];
640 skb
= napi_get_frags(&rx_ctrl
->napi
);
646 flags
= ntohl(cmpl
->flags
);
647 len
= ntohs(cmpl
->length
);
651 /* Check all the completions for this frame.
652 * busy-wait doesn't help much, break here.
654 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q
->type
) &&
655 (flags
& BNA_CQ_EF_EOP
) == 0) {
656 pi
= ccb
->producer_index
;
658 BNA_QE_INDX_INC(pi
, ccb
->q_depth
);
661 if (!next_cmpl
->valid
)
663 /* The 'valid' field is set by the adapter, only
664 * after writing the other fields of completion
665 * entry. Hence, do not load other fields of
666 * completion entry *before* the 'valid' is
667 * loaded. Adding the rmb() here prevents the
668 * compiler and/or CPU from reordering the reads
669 * which would potentially result in reading
670 * stale values in completion entry.
674 len
= ntohs(next_cmpl
->length
);
675 flags
= ntohl(next_cmpl
->flags
);
679 } while ((flags
& BNA_CQ_EF_EOP
) == 0);
681 if (!next_cmpl
->valid
)
686 /* TODO: BNA_CQ_EF_LOCAL ? */
687 if (unlikely(flags
& (BNA_CQ_EF_MAC_ERROR
|
688 BNA_CQ_EF_FCS_ERROR
|
689 BNA_CQ_EF_TOO_LONG
))) {
690 bnad_cq_drop_packet(bnad
, rcb
, sop_ci
, nvecs
);
691 rcb
->rxq
->rx_packets_with_error
++;
696 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
))
697 bnad_cq_setup_skb(bnad
, skb
, unmap
, len
);
699 bnad_cq_setup_skb_frags(ccb
, skb
, nvecs
);
701 rcb
->rxq
->rx_packets
++;
702 rcb
->rxq
->rx_bytes
+= totlen
;
703 ccb
->bytes_per_intr
+= totlen
;
705 masked_flags
= flags
& flags_cksum_prot_mask
;
708 ((bnad
->netdev
->features
& NETIF_F_RXCSUM
) &&
709 ((masked_flags
== flags_tcp4
) ||
710 (masked_flags
== flags_udp4
) ||
711 (masked_flags
== flags_tcp6
) ||
712 (masked_flags
== flags_udp6
))))
713 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
715 skb_checksum_none_assert(skb
);
717 if ((flags
& BNA_CQ_EF_VLAN
) &&
718 (bnad
->netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
))
719 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), ntohs(cmpl
->vlan_tag
));
721 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
))
722 netif_receive_skb(skb
);
724 napi_gro_frags(&rx_ctrl
->napi
);
727 BNA_QE_INDX_ADD(rcb
->consumer_index
, nvecs
, rcb
->q_depth
);
728 for (vec
= 0; vec
< nvecs
; vec
++) {
729 cmpl
= &cq
[ccb
->producer_index
];
731 BNA_QE_INDX_INC(ccb
->producer_index
, ccb
->q_depth
);
735 napi_gro_flush(&rx_ctrl
->napi
, false);
736 if (likely(test_bit(BNAD_RXQ_STARTED
, &ccb
->rcb
[0]->flags
)))
737 bna_ib_ack_disable_irq(ccb
->i_dbell
, packets
);
739 bnad_rxq_post(bnad
, ccb
->rcb
[0]);
741 bnad_rxq_post(bnad
, ccb
->rcb
[1]);
747 bnad_netif_rx_schedule_poll(struct bnad
*bnad
, struct bna_ccb
*ccb
)
749 struct bnad_rx_ctrl
*rx_ctrl
= (struct bnad_rx_ctrl
*)(ccb
->ctrl
);
750 struct napi_struct
*napi
= &rx_ctrl
->napi
;
752 if (likely(napi_schedule_prep(napi
))) {
753 __napi_schedule(napi
);
754 rx_ctrl
->rx_schedule
++;
758 /* MSIX Rx Path Handler */
760 bnad_msix_rx(int irq
, void *data
)
762 struct bna_ccb
*ccb
= (struct bna_ccb
*)data
;
765 ((struct bnad_rx_ctrl
*)ccb
->ctrl
)->rx_intr_ctr
++;
766 bnad_netif_rx_schedule_poll(ccb
->bnad
, ccb
);
772 /* Interrupt handlers */
774 /* Mbox Interrupt Handlers */
776 bnad_msix_mbox_handler(int irq
, void *data
)
780 struct bnad
*bnad
= (struct bnad
*)data
;
782 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
783 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED
, &bnad
->run_flags
))) {
784 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
788 bna_intr_status_get(&bnad
->bna
, intr_status
);
790 if (BNA_IS_MBOX_ERR_INTR(&bnad
->bna
, intr_status
))
791 bna_mbox_handler(&bnad
->bna
, intr_status
);
793 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
799 bnad_isr(int irq
, void *data
)
804 struct bnad
*bnad
= (struct bnad
*)data
;
805 struct bnad_rx_info
*rx_info
;
806 struct bnad_rx_ctrl
*rx_ctrl
;
807 struct bna_tcb
*tcb
= NULL
;
809 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
810 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED
, &bnad
->run_flags
))) {
811 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
815 bna_intr_status_get(&bnad
->bna
, intr_status
);
817 if (unlikely(!intr_status
)) {
818 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
822 if (BNA_IS_MBOX_ERR_INTR(&bnad
->bna
, intr_status
))
823 bna_mbox_handler(&bnad
->bna
, intr_status
);
825 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
827 if (!BNA_IS_INTX_DATA_INTR(intr_status
))
830 /* Process data interrupts */
832 for (i
= 0; i
< bnad
->num_tx
; i
++) {
833 for (j
= 0; j
< bnad
->num_txq_per_tx
; j
++) {
834 tcb
= bnad
->tx_info
[i
].tcb
[j
];
835 if (tcb
&& test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
))
836 bnad_tx_complete(bnad
, bnad
->tx_info
[i
].tcb
[j
]);
840 for (i
= 0; i
< bnad
->num_rx
; i
++) {
841 rx_info
= &bnad
->rx_info
[i
];
844 for (j
= 0; j
< bnad
->num_rxp_per_rx
; j
++) {
845 rx_ctrl
= &rx_info
->rx_ctrl
[j
];
847 bnad_netif_rx_schedule_poll(bnad
,
855 * Called in interrupt / callback context
856 * with bna_lock held, so cfg_flags access is OK
859 bnad_enable_mbox_irq(struct bnad
*bnad
)
861 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED
, &bnad
->run_flags
);
863 BNAD_UPDATE_CTR(bnad
, mbox_intr_enabled
);
867 * Called with bnad->bna_lock held b'cos of
868 * bnad->cfg_flags access.
871 bnad_disable_mbox_irq(struct bnad
*bnad
)
873 set_bit(BNAD_RF_MBOX_IRQ_DISABLED
, &bnad
->run_flags
);
875 BNAD_UPDATE_CTR(bnad
, mbox_intr_disabled
);
879 bnad_set_netdev_perm_addr(struct bnad
*bnad
)
881 struct net_device
*netdev
= bnad
->netdev
;
883 ether_addr_copy(netdev
->perm_addr
, bnad
->perm_addr
);
884 if (is_zero_ether_addr(netdev
->dev_addr
))
885 ether_addr_copy(netdev
->dev_addr
, bnad
->perm_addr
);
888 /* Control Path Handlers */
892 bnad_cb_mbox_intr_enable(struct bnad
*bnad
)
894 bnad_enable_mbox_irq(bnad
);
898 bnad_cb_mbox_intr_disable(struct bnad
*bnad
)
900 bnad_disable_mbox_irq(bnad
);
904 bnad_cb_ioceth_ready(struct bnad
*bnad
)
906 bnad
->bnad_completions
.ioc_comp_status
= BNA_CB_SUCCESS
;
907 complete(&bnad
->bnad_completions
.ioc_comp
);
911 bnad_cb_ioceth_failed(struct bnad
*bnad
)
913 bnad
->bnad_completions
.ioc_comp_status
= BNA_CB_FAIL
;
914 complete(&bnad
->bnad_completions
.ioc_comp
);
918 bnad_cb_ioceth_disabled(struct bnad
*bnad
)
920 bnad
->bnad_completions
.ioc_comp_status
= BNA_CB_SUCCESS
;
921 complete(&bnad
->bnad_completions
.ioc_comp
);
925 bnad_cb_enet_disabled(void *arg
)
927 struct bnad
*bnad
= (struct bnad
*)arg
;
929 netif_carrier_off(bnad
->netdev
);
930 complete(&bnad
->bnad_completions
.enet_comp
);
934 bnad_cb_ethport_link_status(struct bnad
*bnad
,
935 enum bna_link_status link_status
)
937 bool link_up
= false;
939 link_up
= (link_status
== BNA_LINK_UP
) || (link_status
== BNA_CEE_UP
);
941 if (link_status
== BNA_CEE_UP
) {
942 if (!test_bit(BNAD_RF_CEE_RUNNING
, &bnad
->run_flags
))
943 BNAD_UPDATE_CTR(bnad
, cee_toggle
);
944 set_bit(BNAD_RF_CEE_RUNNING
, &bnad
->run_flags
);
946 if (test_bit(BNAD_RF_CEE_RUNNING
, &bnad
->run_flags
))
947 BNAD_UPDATE_CTR(bnad
, cee_toggle
);
948 clear_bit(BNAD_RF_CEE_RUNNING
, &bnad
->run_flags
);
952 if (!netif_carrier_ok(bnad
->netdev
)) {
954 netdev_info(bnad
->netdev
, "link up\n");
955 netif_carrier_on(bnad
->netdev
);
956 BNAD_UPDATE_CTR(bnad
, link_toggle
);
957 for (tx_id
= 0; tx_id
< bnad
->num_tx
; tx_id
++) {
958 for (tcb_id
= 0; tcb_id
< bnad
->num_txq_per_tx
;
960 struct bna_tcb
*tcb
=
961 bnad
->tx_info
[tx_id
].tcb
[tcb_id
];
968 if (test_bit(BNAD_TXQ_TX_STARTED
,
972 * Transmit Schedule */
976 BNAD_UPDATE_CTR(bnad
,
982 BNAD_UPDATE_CTR(bnad
,
989 if (netif_carrier_ok(bnad
->netdev
)) {
990 netdev_info(bnad
->netdev
, "link down\n");
991 netif_carrier_off(bnad
->netdev
);
992 BNAD_UPDATE_CTR(bnad
, link_toggle
);
998 bnad_cb_tx_disabled(void *arg
, struct bna_tx
*tx
)
1000 struct bnad
*bnad
= (struct bnad
*)arg
;
1002 complete(&bnad
->bnad_completions
.tx_comp
);
1006 bnad_cb_tcb_setup(struct bnad
*bnad
, struct bna_tcb
*tcb
)
1008 struct bnad_tx_info
*tx_info
=
1009 (struct bnad_tx_info
*)tcb
->txq
->tx
->priv
;
1012 tx_info
->tcb
[tcb
->id
] = tcb
;
1016 bnad_cb_tcb_destroy(struct bnad
*bnad
, struct bna_tcb
*tcb
)
1018 struct bnad_tx_info
*tx_info
=
1019 (struct bnad_tx_info
*)tcb
->txq
->tx
->priv
;
1021 tx_info
->tcb
[tcb
->id
] = NULL
;
1026 bnad_cb_ccb_setup(struct bnad
*bnad
, struct bna_ccb
*ccb
)
1028 struct bnad_rx_info
*rx_info
=
1029 (struct bnad_rx_info
*)ccb
->cq
->rx
->priv
;
1031 rx_info
->rx_ctrl
[ccb
->id
].ccb
= ccb
;
1032 ccb
->ctrl
= &rx_info
->rx_ctrl
[ccb
->id
];
1036 bnad_cb_ccb_destroy(struct bnad
*bnad
, struct bna_ccb
*ccb
)
1038 struct bnad_rx_info
*rx_info
=
1039 (struct bnad_rx_info
*)ccb
->cq
->rx
->priv
;
1041 rx_info
->rx_ctrl
[ccb
->id
].ccb
= NULL
;
1045 bnad_cb_tx_stall(struct bnad
*bnad
, struct bna_tx
*tx
)
1047 struct bnad_tx_info
*tx_info
=
1048 (struct bnad_tx_info
*)tx
->priv
;
1049 struct bna_tcb
*tcb
;
1053 for (i
= 0; i
< BNAD_MAX_TXQ_PER_TX
; i
++) {
1054 tcb
= tx_info
->tcb
[i
];
1058 clear_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
);
1059 netif_stop_subqueue(bnad
->netdev
, txq_id
);
1064 bnad_cb_tx_resume(struct bnad
*bnad
, struct bna_tx
*tx
)
1066 struct bnad_tx_info
*tx_info
= (struct bnad_tx_info
*)tx
->priv
;
1067 struct bna_tcb
*tcb
;
1071 for (i
= 0; i
< BNAD_MAX_TXQ_PER_TX
; i
++) {
1072 tcb
= tx_info
->tcb
[i
];
1077 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
));
1078 set_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
);
1079 BUG_ON(*(tcb
->hw_consumer_index
) != 0);
1081 if (netif_carrier_ok(bnad
->netdev
)) {
1082 netif_wake_subqueue(bnad
->netdev
, txq_id
);
1083 BNAD_UPDATE_CTR(bnad
, netif_queue_wakeup
);
1088 * Workaround for first ioceth enable failure & we
1089 * get a 0 MAC address. We try to get the MAC address
1092 if (is_zero_ether_addr(bnad
->perm_addr
)) {
1093 bna_enet_perm_mac_get(&bnad
->bna
.enet
, bnad
->perm_addr
);
1094 bnad_set_netdev_perm_addr(bnad
);
1099 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1102 bnad_tx_cleanup(struct delayed_work
*work
)
1104 struct bnad_tx_info
*tx_info
=
1105 container_of(work
, struct bnad_tx_info
, tx_cleanup_work
);
1106 struct bnad
*bnad
= NULL
;
1107 struct bna_tcb
*tcb
;
1108 unsigned long flags
;
1111 for (i
= 0; i
< BNAD_MAX_TXQ_PER_TX
; i
++) {
1112 tcb
= tx_info
->tcb
[i
];
1118 if (test_and_set_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
)) {
1123 bnad_txq_cleanup(bnad
, tcb
);
1125 smp_mb__before_atomic();
1126 clear_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
);
1130 queue_delayed_work(bnad
->work_q
, &tx_info
->tx_cleanup_work
,
1131 msecs_to_jiffies(1));
1135 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1136 bna_tx_cleanup_complete(tx_info
->tx
);
1137 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1141 bnad_cb_tx_cleanup(struct bnad
*bnad
, struct bna_tx
*tx
)
1143 struct bnad_tx_info
*tx_info
= (struct bnad_tx_info
*)tx
->priv
;
1144 struct bna_tcb
*tcb
;
1147 for (i
= 0; i
< BNAD_MAX_TXQ_PER_TX
; i
++) {
1148 tcb
= tx_info
->tcb
[i
];
1153 queue_delayed_work(bnad
->work_q
, &tx_info
->tx_cleanup_work
, 0);
1157 bnad_cb_rx_stall(struct bnad
*bnad
, struct bna_rx
*rx
)
1159 struct bnad_rx_info
*rx_info
= (struct bnad_rx_info
*)rx
->priv
;
1160 struct bna_ccb
*ccb
;
1161 struct bnad_rx_ctrl
*rx_ctrl
;
1164 for (i
= 0; i
< BNAD_MAX_RXP_PER_RX
; i
++) {
1165 rx_ctrl
= &rx_info
->rx_ctrl
[i
];
1170 clear_bit(BNAD_RXQ_POST_OK
, &ccb
->rcb
[0]->flags
);
1173 clear_bit(BNAD_RXQ_POST_OK
, &ccb
->rcb
[1]->flags
);
1178 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1181 bnad_rx_cleanup(void *work
)
1183 struct bnad_rx_info
*rx_info
=
1184 container_of(work
, struct bnad_rx_info
, rx_cleanup_work
);
1185 struct bnad_rx_ctrl
*rx_ctrl
;
1186 struct bnad
*bnad
= NULL
;
1187 unsigned long flags
;
1190 for (i
= 0; i
< BNAD_MAX_RXP_PER_RX
; i
++) {
1191 rx_ctrl
= &rx_info
->rx_ctrl
[i
];
1196 bnad
= rx_ctrl
->ccb
->bnad
;
1199 * Wait till the poll handler has exited
1200 * and nothing can be scheduled anymore
1202 napi_disable(&rx_ctrl
->napi
);
1204 bnad_cq_cleanup(bnad
, rx_ctrl
->ccb
);
1205 bnad_rxq_cleanup(bnad
, rx_ctrl
->ccb
->rcb
[0]);
1206 if (rx_ctrl
->ccb
->rcb
[1])
1207 bnad_rxq_cleanup(bnad
, rx_ctrl
->ccb
->rcb
[1]);
1210 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1211 bna_rx_cleanup_complete(rx_info
->rx
);
1212 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1216 bnad_cb_rx_cleanup(struct bnad
*bnad
, struct bna_rx
*rx
)
1218 struct bnad_rx_info
*rx_info
= (struct bnad_rx_info
*)rx
->priv
;
1219 struct bna_ccb
*ccb
;
1220 struct bnad_rx_ctrl
*rx_ctrl
;
1223 for (i
= 0; i
< BNAD_MAX_RXP_PER_RX
; i
++) {
1224 rx_ctrl
= &rx_info
->rx_ctrl
[i
];
1229 clear_bit(BNAD_RXQ_STARTED
, &ccb
->rcb
[0]->flags
);
1232 clear_bit(BNAD_RXQ_STARTED
, &ccb
->rcb
[1]->flags
);
1235 queue_work(bnad
->work_q
, &rx_info
->rx_cleanup_work
);
1239 bnad_cb_rx_post(struct bnad
*bnad
, struct bna_rx
*rx
)
1241 struct bnad_rx_info
*rx_info
= (struct bnad_rx_info
*)rx
->priv
;
1242 struct bna_ccb
*ccb
;
1243 struct bna_rcb
*rcb
;
1244 struct bnad_rx_ctrl
*rx_ctrl
;
1247 for (i
= 0; i
< BNAD_MAX_RXP_PER_RX
; i
++) {
1248 rx_ctrl
= &rx_info
->rx_ctrl
[i
];
1253 napi_enable(&rx_ctrl
->napi
);
1255 for (j
= 0; j
< BNAD_MAX_RXQ_PER_RXP
; j
++) {
1260 bnad_rxq_alloc_init(bnad
, rcb
);
1261 set_bit(BNAD_RXQ_STARTED
, &rcb
->flags
);
1262 set_bit(BNAD_RXQ_POST_OK
, &rcb
->flags
);
1263 bnad_rxq_post(bnad
, rcb
);
1269 bnad_cb_rx_disabled(void *arg
, struct bna_rx
*rx
)
1271 struct bnad
*bnad
= (struct bnad
*)arg
;
1273 complete(&bnad
->bnad_completions
.rx_comp
);
1277 bnad_cb_rx_mcast_add(struct bnad
*bnad
, struct bna_rx
*rx
)
1279 bnad
->bnad_completions
.mcast_comp_status
= BNA_CB_SUCCESS
;
1280 complete(&bnad
->bnad_completions
.mcast_comp
);
1284 bnad_cb_stats_get(struct bnad
*bnad
, enum bna_cb_status status
,
1285 struct bna_stats
*stats
)
1287 if (status
== BNA_CB_SUCCESS
)
1288 BNAD_UPDATE_CTR(bnad
, hw_stats_updates
);
1290 if (!netif_running(bnad
->netdev
) ||
1291 !test_bit(BNAD_RF_STATS_TIMER_RUNNING
, &bnad
->run_flags
))
1294 mod_timer(&bnad
->stats_timer
,
1295 jiffies
+ msecs_to_jiffies(BNAD_STATS_TIMER_FREQ
));
1299 bnad_cb_enet_mtu_set(struct bnad
*bnad
)
1301 bnad
->bnad_completions
.mtu_comp_status
= BNA_CB_SUCCESS
;
1302 complete(&bnad
->bnad_completions
.mtu_comp
);
1306 bnad_cb_completion(void *arg
, enum bfa_status status
)
1308 struct bnad_iocmd_comp
*iocmd_comp
=
1309 (struct bnad_iocmd_comp
*)arg
;
1311 iocmd_comp
->comp_status
= (u32
) status
;
1312 complete(&iocmd_comp
->comp
);
1315 /* Resource allocation, free functions */
1318 bnad_mem_free(struct bnad
*bnad
,
1319 struct bna_mem_info
*mem_info
)
1324 if (mem_info
->mdl
== NULL
)
1327 for (i
= 0; i
< mem_info
->num
; i
++) {
1328 if (mem_info
->mdl
[i
].kva
!= NULL
) {
1329 if (mem_info
->mem_type
== BNA_MEM_T_DMA
) {
1330 BNA_GET_DMA_ADDR(&(mem_info
->mdl
[i
].dma
),
1332 dma_free_coherent(&bnad
->pcidev
->dev
,
1333 mem_info
->mdl
[i
].len
,
1334 mem_info
->mdl
[i
].kva
, dma_pa
);
1336 kfree(mem_info
->mdl
[i
].kva
);
1339 kfree(mem_info
->mdl
);
1340 mem_info
->mdl
= NULL
;
1344 bnad_mem_alloc(struct bnad
*bnad
,
1345 struct bna_mem_info
*mem_info
)
1350 if ((mem_info
->num
== 0) || (mem_info
->len
== 0)) {
1351 mem_info
->mdl
= NULL
;
1355 mem_info
->mdl
= kcalloc(mem_info
->num
, sizeof(struct bna_mem_descr
),
1357 if (mem_info
->mdl
== NULL
)
1360 if (mem_info
->mem_type
== BNA_MEM_T_DMA
) {
1361 for (i
= 0; i
< mem_info
->num
; i
++) {
1362 mem_info
->mdl
[i
].len
= mem_info
->len
;
1363 mem_info
->mdl
[i
].kva
=
1364 dma_alloc_coherent(&bnad
->pcidev
->dev
,
1365 mem_info
->len
, &dma_pa
,
1367 if (mem_info
->mdl
[i
].kva
== NULL
)
1370 BNA_SET_DMA_ADDR(dma_pa
,
1371 &(mem_info
->mdl
[i
].dma
));
1374 for (i
= 0; i
< mem_info
->num
; i
++) {
1375 mem_info
->mdl
[i
].len
= mem_info
->len
;
1376 mem_info
->mdl
[i
].kva
= kzalloc(mem_info
->len
,
1378 if (mem_info
->mdl
[i
].kva
== NULL
)
1386 bnad_mem_free(bnad
, mem_info
);
1390 /* Free IRQ for Mailbox */
1392 bnad_mbox_irq_free(struct bnad
*bnad
)
1395 unsigned long flags
;
1397 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1398 bnad_disable_mbox_irq(bnad
);
1399 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1401 irq
= BNAD_GET_MBOX_IRQ(bnad
);
1402 free_irq(irq
, bnad
);
1406 * Allocates IRQ for Mailbox, but keep it disabled
1407 * This will be enabled once we get the mbox enable callback
1411 bnad_mbox_irq_alloc(struct bnad
*bnad
)
1414 unsigned long irq_flags
, flags
;
1416 irq_handler_t irq_handler
;
1418 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1419 if (bnad
->cfg_flags
& BNAD_CF_MSIX
) {
1420 irq_handler
= (irq_handler_t
)bnad_msix_mbox_handler
;
1421 irq
= bnad
->msix_table
[BNAD_MAILBOX_MSIX_INDEX
].vector
;
1424 irq_handler
= (irq_handler_t
)bnad_isr
;
1425 irq
= bnad
->pcidev
->irq
;
1426 irq_flags
= IRQF_SHARED
;
1429 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1430 sprintf(bnad
->mbox_irq_name
, "%s", BNAD_NAME
);
1433 * Set the Mbox IRQ disable flag, so that the IRQ handler
1434 * called from request_irq() for SHARED IRQs do not execute
1436 set_bit(BNAD_RF_MBOX_IRQ_DISABLED
, &bnad
->run_flags
);
1438 BNAD_UPDATE_CTR(bnad
, mbox_intr_disabled
);
1440 err
= request_irq(irq
, irq_handler
, irq_flags
,
1441 bnad
->mbox_irq_name
, bnad
);
1447 bnad_txrx_irq_free(struct bnad
*bnad
, struct bna_intr_info
*intr_info
)
1449 kfree(intr_info
->idl
);
1450 intr_info
->idl
= NULL
;
1453 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1455 bnad_txrx_irq_alloc(struct bnad
*bnad
, enum bnad_intr_source src
,
1456 u32 txrx_id
, struct bna_intr_info
*intr_info
)
1458 int i
, vector_start
= 0;
1460 unsigned long flags
;
1462 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1463 cfg_flags
= bnad
->cfg_flags
;
1464 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1466 if (cfg_flags
& BNAD_CF_MSIX
) {
1467 intr_info
->intr_type
= BNA_INTR_T_MSIX
;
1468 intr_info
->idl
= kcalloc(intr_info
->num
,
1469 sizeof(struct bna_intr_descr
),
1471 if (!intr_info
->idl
)
1476 vector_start
= BNAD_MAILBOX_MSIX_VECTORS
+ txrx_id
;
1480 vector_start
= BNAD_MAILBOX_MSIX_VECTORS
+
1481 (bnad
->num_tx
* bnad
->num_txq_per_tx
) +
1489 for (i
= 0; i
< intr_info
->num
; i
++)
1490 intr_info
->idl
[i
].vector
= vector_start
+ i
;
1492 intr_info
->intr_type
= BNA_INTR_T_INTX
;
1494 intr_info
->idl
= kcalloc(intr_info
->num
,
1495 sizeof(struct bna_intr_descr
),
1497 if (!intr_info
->idl
)
1502 intr_info
->idl
[0].vector
= BNAD_INTX_TX_IB_BITMASK
;
1506 intr_info
->idl
[0].vector
= BNAD_INTX_RX_IB_BITMASK
;
1513 /* NOTE: Should be called for MSIX only
1514 * Unregisters Tx MSIX vector(s) from the kernel
1517 bnad_tx_msix_unregister(struct bnad
*bnad
, struct bnad_tx_info
*tx_info
,
1523 for (i
= 0; i
< num_txqs
; i
++) {
1524 if (tx_info
->tcb
[i
] == NULL
)
1527 vector_num
= tx_info
->tcb
[i
]->intr_vector
;
1528 free_irq(bnad
->msix_table
[vector_num
].vector
, tx_info
->tcb
[i
]);
1532 /* NOTE: Should be called for MSIX only
1533 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1536 bnad_tx_msix_register(struct bnad
*bnad
, struct bnad_tx_info
*tx_info
,
1537 u32 tx_id
, int num_txqs
)
1543 for (i
= 0; i
< num_txqs
; i
++) {
1544 vector_num
= tx_info
->tcb
[i
]->intr_vector
;
1545 sprintf(tx_info
->tcb
[i
]->name
, "%s TXQ %d", bnad
->netdev
->name
,
1546 tx_id
+ tx_info
->tcb
[i
]->id
);
1547 err
= request_irq(bnad
->msix_table
[vector_num
].vector
,
1548 (irq_handler_t
)bnad_msix_tx
, 0,
1549 tx_info
->tcb
[i
]->name
,
1559 bnad_tx_msix_unregister(bnad
, tx_info
, (i
- 1));
1563 /* NOTE: Should be called for MSIX only
1564 * Unregisters Rx MSIX vector(s) from the kernel
1567 bnad_rx_msix_unregister(struct bnad
*bnad
, struct bnad_rx_info
*rx_info
,
1573 for (i
= 0; i
< num_rxps
; i
++) {
1574 if (rx_info
->rx_ctrl
[i
].ccb
== NULL
)
1577 vector_num
= rx_info
->rx_ctrl
[i
].ccb
->intr_vector
;
1578 free_irq(bnad
->msix_table
[vector_num
].vector
,
1579 rx_info
->rx_ctrl
[i
].ccb
);
1583 /* NOTE: Should be called for MSIX only
1584 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1587 bnad_rx_msix_register(struct bnad
*bnad
, struct bnad_rx_info
*rx_info
,
1588 u32 rx_id
, int num_rxps
)
1594 for (i
= 0; i
< num_rxps
; i
++) {
1595 vector_num
= rx_info
->rx_ctrl
[i
].ccb
->intr_vector
;
1596 sprintf(rx_info
->rx_ctrl
[i
].ccb
->name
, "%s CQ %d",
1598 rx_id
+ rx_info
->rx_ctrl
[i
].ccb
->id
);
1599 err
= request_irq(bnad
->msix_table
[vector_num
].vector
,
1600 (irq_handler_t
)bnad_msix_rx
, 0,
1601 rx_info
->rx_ctrl
[i
].ccb
->name
,
1602 rx_info
->rx_ctrl
[i
].ccb
);
1611 bnad_rx_msix_unregister(bnad
, rx_info
, (i
- 1));
1615 /* Free Tx object Resources */
1617 bnad_tx_res_free(struct bnad
*bnad
, struct bna_res_info
*res_info
)
1621 for (i
= 0; i
< BNA_TX_RES_T_MAX
; i
++) {
1622 if (res_info
[i
].res_type
== BNA_RES_T_MEM
)
1623 bnad_mem_free(bnad
, &res_info
[i
].res_u
.mem_info
);
1624 else if (res_info
[i
].res_type
== BNA_RES_T_INTR
)
1625 bnad_txrx_irq_free(bnad
, &res_info
[i
].res_u
.intr_info
);
1629 /* Allocates memory and interrupt resources for Tx object */
1631 bnad_tx_res_alloc(struct bnad
*bnad
, struct bna_res_info
*res_info
,
1636 for (i
= 0; i
< BNA_TX_RES_T_MAX
; i
++) {
1637 if (res_info
[i
].res_type
== BNA_RES_T_MEM
)
1638 err
= bnad_mem_alloc(bnad
,
1639 &res_info
[i
].res_u
.mem_info
);
1640 else if (res_info
[i
].res_type
== BNA_RES_T_INTR
)
1641 err
= bnad_txrx_irq_alloc(bnad
, BNAD_INTR_TX
, tx_id
,
1642 &res_info
[i
].res_u
.intr_info
);
1649 bnad_tx_res_free(bnad
, res_info
);
1653 /* Free Rx object Resources */
1655 bnad_rx_res_free(struct bnad
*bnad
, struct bna_res_info
*res_info
)
1659 for (i
= 0; i
< BNA_RX_RES_T_MAX
; i
++) {
1660 if (res_info
[i
].res_type
== BNA_RES_T_MEM
)
1661 bnad_mem_free(bnad
, &res_info
[i
].res_u
.mem_info
);
1662 else if (res_info
[i
].res_type
== BNA_RES_T_INTR
)
1663 bnad_txrx_irq_free(bnad
, &res_info
[i
].res_u
.intr_info
);
1667 /* Allocates memory and interrupt resources for Rx object */
1669 bnad_rx_res_alloc(struct bnad
*bnad
, struct bna_res_info
*res_info
,
1674 /* All memory needs to be allocated before setup_ccbs */
1675 for (i
= 0; i
< BNA_RX_RES_T_MAX
; i
++) {
1676 if (res_info
[i
].res_type
== BNA_RES_T_MEM
)
1677 err
= bnad_mem_alloc(bnad
,
1678 &res_info
[i
].res_u
.mem_info
);
1679 else if (res_info
[i
].res_type
== BNA_RES_T_INTR
)
1680 err
= bnad_txrx_irq_alloc(bnad
, BNAD_INTR_RX
, rx_id
,
1681 &res_info
[i
].res_u
.intr_info
);
1688 bnad_rx_res_free(bnad
, res_info
);
1692 /* Timer callbacks */
1695 bnad_ioc_timeout(unsigned long data
)
1697 struct bnad
*bnad
= (struct bnad
*)data
;
1698 unsigned long flags
;
1700 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1701 bfa_nw_ioc_timeout(&bnad
->bna
.ioceth
.ioc
);
1702 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1706 bnad_ioc_hb_check(unsigned long data
)
1708 struct bnad
*bnad
= (struct bnad
*)data
;
1709 unsigned long flags
;
1711 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1712 bfa_nw_ioc_hb_check(&bnad
->bna
.ioceth
.ioc
);
1713 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1717 bnad_iocpf_timeout(unsigned long data
)
1719 struct bnad
*bnad
= (struct bnad
*)data
;
1720 unsigned long flags
;
1722 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1723 bfa_nw_iocpf_timeout(&bnad
->bna
.ioceth
.ioc
);
1724 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1728 bnad_iocpf_sem_timeout(unsigned long data
)
1730 struct bnad
*bnad
= (struct bnad
*)data
;
1731 unsigned long flags
;
1733 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1734 bfa_nw_iocpf_sem_timeout(&bnad
->bna
.ioceth
.ioc
);
1735 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1739 * All timer routines use bnad->bna_lock to protect against
1740 * the following race, which may occur in case of no locking:
1748 /* b) Dynamic Interrupt Moderation Timer */
1750 bnad_dim_timeout(unsigned long data
)
1752 struct bnad
*bnad
= (struct bnad
*)data
;
1753 struct bnad_rx_info
*rx_info
;
1754 struct bnad_rx_ctrl
*rx_ctrl
;
1756 unsigned long flags
;
1758 if (!netif_carrier_ok(bnad
->netdev
))
1761 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1762 for (i
= 0; i
< bnad
->num_rx
; i
++) {
1763 rx_info
= &bnad
->rx_info
[i
];
1766 for (j
= 0; j
< bnad
->num_rxp_per_rx
; j
++) {
1767 rx_ctrl
= &rx_info
->rx_ctrl
[j
];
1770 bna_rx_dim_update(rx_ctrl
->ccb
);
1774 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1775 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING
, &bnad
->run_flags
))
1776 mod_timer(&bnad
->dim_timer
,
1777 jiffies
+ msecs_to_jiffies(BNAD_DIM_TIMER_FREQ
));
1778 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1781 /* c) Statistics Timer */
1783 bnad_stats_timeout(unsigned long data
)
1785 struct bnad
*bnad
= (struct bnad
*)data
;
1786 unsigned long flags
;
1788 if (!netif_running(bnad
->netdev
) ||
1789 !test_bit(BNAD_RF_STATS_TIMER_RUNNING
, &bnad
->run_flags
))
1792 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1793 bna_hw_stats_get(&bnad
->bna
);
1794 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1798 * Set up timer for DIM
1799 * Called with bnad->bna_lock held
1802 bnad_dim_timer_start(struct bnad
*bnad
)
1804 if (bnad
->cfg_flags
& BNAD_CF_DIM_ENABLED
&&
1805 !test_bit(BNAD_RF_DIM_TIMER_RUNNING
, &bnad
->run_flags
)) {
1806 setup_timer(&bnad
->dim_timer
, bnad_dim_timeout
,
1807 (unsigned long)bnad
);
1808 set_bit(BNAD_RF_DIM_TIMER_RUNNING
, &bnad
->run_flags
);
1809 mod_timer(&bnad
->dim_timer
,
1810 jiffies
+ msecs_to_jiffies(BNAD_DIM_TIMER_FREQ
));
1815 * Set up timer for statistics
1816 * Called with mutex_lock(&bnad->conf_mutex) held
1819 bnad_stats_timer_start(struct bnad
*bnad
)
1821 unsigned long flags
;
1823 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1824 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING
, &bnad
->run_flags
)) {
1825 setup_timer(&bnad
->stats_timer
, bnad_stats_timeout
,
1826 (unsigned long)bnad
);
1827 mod_timer(&bnad
->stats_timer
,
1828 jiffies
+ msecs_to_jiffies(BNAD_STATS_TIMER_FREQ
));
1830 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1834 * Stops the stats timer
1835 * Called with mutex_lock(&bnad->conf_mutex) held
1838 bnad_stats_timer_stop(struct bnad
*bnad
)
1841 unsigned long flags
;
1843 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1844 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING
, &bnad
->run_flags
))
1846 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1848 del_timer_sync(&bnad
->stats_timer
);
1854 bnad_netdev_mc_list_get(struct net_device
*netdev
, u8
*mc_list
)
1856 int i
= 1; /* Index 0 has broadcast address */
1857 struct netdev_hw_addr
*mc_addr
;
1859 netdev_for_each_mc_addr(mc_addr
, netdev
) {
1860 ether_addr_copy(&mc_list
[i
* ETH_ALEN
], &mc_addr
->addr
[0]);
1866 bnad_napi_poll_rx(struct napi_struct
*napi
, int budget
)
1868 struct bnad_rx_ctrl
*rx_ctrl
=
1869 container_of(napi
, struct bnad_rx_ctrl
, napi
);
1870 struct bnad
*bnad
= rx_ctrl
->bnad
;
1873 rx_ctrl
->rx_poll_ctr
++;
1875 if (!netif_carrier_ok(bnad
->netdev
))
1878 rcvd
= bnad_cq_process(bnad
, rx_ctrl
->ccb
, budget
);
1883 napi_complete(napi
);
1885 rx_ctrl
->rx_complete
++;
1888 bnad_enable_rx_irq_unsafe(rx_ctrl
->ccb
);
1893 #define BNAD_NAPI_POLL_QUOTA 64
1895 bnad_napi_add(struct bnad
*bnad
, u32 rx_id
)
1897 struct bnad_rx_ctrl
*rx_ctrl
;
1900 /* Initialize & enable NAPI */
1901 for (i
= 0; i
< bnad
->num_rxp_per_rx
; i
++) {
1902 rx_ctrl
= &bnad
->rx_info
[rx_id
].rx_ctrl
[i
];
1903 netif_napi_add(bnad
->netdev
, &rx_ctrl
->napi
,
1904 bnad_napi_poll_rx
, BNAD_NAPI_POLL_QUOTA
);
1909 bnad_napi_delete(struct bnad
*bnad
, u32 rx_id
)
1913 /* First disable and then clean up */
1914 for (i
= 0; i
< bnad
->num_rxp_per_rx
; i
++)
1915 netif_napi_del(&bnad
->rx_info
[rx_id
].rx_ctrl
[i
].napi
);
1918 /* Should be held with conf_lock held */
1920 bnad_destroy_tx(struct bnad
*bnad
, u32 tx_id
)
1922 struct bnad_tx_info
*tx_info
= &bnad
->tx_info
[tx_id
];
1923 struct bna_res_info
*res_info
= &bnad
->tx_res_info
[tx_id
].res_info
[0];
1924 unsigned long flags
;
1929 init_completion(&bnad
->bnad_completions
.tx_comp
);
1930 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1931 bna_tx_disable(tx_info
->tx
, BNA_HARD_CLEANUP
, bnad_cb_tx_disabled
);
1932 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1933 wait_for_completion(&bnad
->bnad_completions
.tx_comp
);
1935 if (tx_info
->tcb
[0]->intr_type
== BNA_INTR_T_MSIX
)
1936 bnad_tx_msix_unregister(bnad
, tx_info
,
1937 bnad
->num_txq_per_tx
);
1939 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1940 bna_tx_destroy(tx_info
->tx
);
1941 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1946 bnad_tx_res_free(bnad
, res_info
);
1949 /* Should be held with conf_lock held */
1951 bnad_setup_tx(struct bnad
*bnad
, u32 tx_id
)
1954 struct bnad_tx_info
*tx_info
= &bnad
->tx_info
[tx_id
];
1955 struct bna_res_info
*res_info
= &bnad
->tx_res_info
[tx_id
].res_info
[0];
1956 struct bna_intr_info
*intr_info
=
1957 &res_info
[BNA_TX_RES_INTR_T_TXCMPL
].res_u
.intr_info
;
1958 struct bna_tx_config
*tx_config
= &bnad
->tx_config
[tx_id
];
1959 static const struct bna_tx_event_cbfn tx_cbfn
= {
1960 .tcb_setup_cbfn
= bnad_cb_tcb_setup
,
1961 .tcb_destroy_cbfn
= bnad_cb_tcb_destroy
,
1962 .tx_stall_cbfn
= bnad_cb_tx_stall
,
1963 .tx_resume_cbfn
= bnad_cb_tx_resume
,
1964 .tx_cleanup_cbfn
= bnad_cb_tx_cleanup
,
1968 unsigned long flags
;
1970 tx_info
->tx_id
= tx_id
;
1972 /* Initialize the Tx object configuration */
1973 tx_config
->num_txq
= bnad
->num_txq_per_tx
;
1974 tx_config
->txq_depth
= bnad
->txq_depth
;
1975 tx_config
->tx_type
= BNA_TX_T_REGULAR
;
1976 tx_config
->coalescing_timeo
= bnad
->tx_coalescing_timeo
;
1978 /* Get BNA's resource requirement for one tx object */
1979 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1980 bna_tx_res_req(bnad
->num_txq_per_tx
,
1981 bnad
->txq_depth
, res_info
);
1982 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1984 /* Fill Unmap Q memory requirements */
1985 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info
[BNA_TX_RES_MEM_T_UNMAPQ
],
1986 bnad
->num_txq_per_tx
, (sizeof(struct bnad_tx_unmap
) *
1989 /* Allocate resources */
1990 err
= bnad_tx_res_alloc(bnad
, res_info
, tx_id
);
1994 /* Ask BNA to create one Tx object, supplying required resources */
1995 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1996 tx
= bna_tx_create(&bnad
->bna
, bnad
, tx_config
, &tx_cbfn
, res_info
,
1998 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2005 INIT_DELAYED_WORK(&tx_info
->tx_cleanup_work
,
2006 (work_func_t
)bnad_tx_cleanup
);
2008 /* Register ISR for the Tx object */
2009 if (intr_info
->intr_type
== BNA_INTR_T_MSIX
) {
2010 err
= bnad_tx_msix_register(bnad
, tx_info
,
2011 tx_id
, bnad
->num_txq_per_tx
);
2016 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2018 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2023 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2024 bna_tx_destroy(tx_info
->tx
);
2025 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2029 bnad_tx_res_free(bnad
, res_info
);
2033 /* Setup the rx config for bna_rx_create */
2034 /* bnad decides the configuration */
2036 bnad_init_rx_config(struct bnad
*bnad
, struct bna_rx_config
*rx_config
)
2038 memset(rx_config
, 0, sizeof(*rx_config
));
2039 rx_config
->rx_type
= BNA_RX_T_REGULAR
;
2040 rx_config
->num_paths
= bnad
->num_rxp_per_rx
;
2041 rx_config
->coalescing_timeo
= bnad
->rx_coalescing_timeo
;
2043 if (bnad
->num_rxp_per_rx
> 1) {
2044 rx_config
->rss_status
= BNA_STATUS_T_ENABLED
;
2045 rx_config
->rss_config
.hash_type
=
2046 (BFI_ENET_RSS_IPV6
|
2047 BFI_ENET_RSS_IPV6_TCP
|
2049 BFI_ENET_RSS_IPV4_TCP
);
2050 rx_config
->rss_config
.hash_mask
=
2051 bnad
->num_rxp_per_rx
- 1;
2052 netdev_rss_key_fill(rx_config
->rss_config
.toeplitz_hash_key
,
2053 sizeof(rx_config
->rss_config
.toeplitz_hash_key
));
2055 rx_config
->rss_status
= BNA_STATUS_T_DISABLED
;
2056 memset(&rx_config
->rss_config
, 0,
2057 sizeof(rx_config
->rss_config
));
2060 rx_config
->frame_size
= BNAD_FRAME_SIZE(bnad
->netdev
->mtu
);
2061 rx_config
->q0_multi_buf
= BNA_STATUS_T_DISABLED
;
2063 /* BNA_RXP_SINGLE - one data-buffer queue
2064 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2065 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2067 /* TODO: configurable param for queue type */
2068 rx_config
->rxp_type
= BNA_RXP_SLR
;
2070 if (BNAD_PCI_DEV_IS_CAT2(bnad
) &&
2071 rx_config
->frame_size
> 4096) {
2072 /* though size_routing_enable is set in SLR,
2073 * small packets may get routed to same rxq.
2074 * set buf_size to 2048 instead of PAGE_SIZE.
2076 rx_config
->q0_buf_size
= 2048;
2077 /* this should be in multiples of 2 */
2078 rx_config
->q0_num_vecs
= 4;
2079 rx_config
->q0_depth
= bnad
->rxq_depth
* rx_config
->q0_num_vecs
;
2080 rx_config
->q0_multi_buf
= BNA_STATUS_T_ENABLED
;
2082 rx_config
->q0_buf_size
= rx_config
->frame_size
;
2083 rx_config
->q0_num_vecs
= 1;
2084 rx_config
->q0_depth
= bnad
->rxq_depth
;
2087 /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2088 if (rx_config
->rxp_type
== BNA_RXP_SLR
) {
2089 rx_config
->q1_depth
= bnad
->rxq_depth
;
2090 rx_config
->q1_buf_size
= BFI_SMALL_RXBUF_SIZE
;
2093 rx_config
->vlan_strip_status
=
2094 (bnad
->netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) ?
2095 BNA_STATUS_T_ENABLED
: BNA_STATUS_T_DISABLED
;
2099 bnad_rx_ctrl_init(struct bnad
*bnad
, u32 rx_id
)
2101 struct bnad_rx_info
*rx_info
= &bnad
->rx_info
[rx_id
];
2104 for (i
= 0; i
< bnad
->num_rxp_per_rx
; i
++)
2105 rx_info
->rx_ctrl
[i
].bnad
= bnad
;
2108 /* Called with mutex_lock(&bnad->conf_mutex) held */
2110 bnad_reinit_rx(struct bnad
*bnad
)
2112 struct net_device
*netdev
= bnad
->netdev
;
2113 u32 err
= 0, current_err
= 0;
2114 u32 rx_id
= 0, count
= 0;
2115 unsigned long flags
;
2117 /* destroy and create new rx objects */
2118 for (rx_id
= 0; rx_id
< bnad
->num_rx
; rx_id
++) {
2119 if (!bnad
->rx_info
[rx_id
].rx
)
2121 bnad_destroy_rx(bnad
, rx_id
);
2124 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2125 bna_enet_mtu_set(&bnad
->bna
.enet
,
2126 BNAD_FRAME_SIZE(bnad
->netdev
->mtu
), NULL
);
2127 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2129 for (rx_id
= 0; rx_id
< bnad
->num_rx
; rx_id
++) {
2131 current_err
= bnad_setup_rx(bnad
, rx_id
);
2132 if (current_err
&& !err
) {
2134 netdev_err(netdev
, "RXQ:%u setup failed\n", rx_id
);
2138 /* restore rx configuration */
2139 if (bnad
->rx_info
[0].rx
&& !err
) {
2140 bnad_restore_vlans(bnad
, 0);
2141 bnad_enable_default_bcast(bnad
);
2142 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2143 bnad_mac_addr_set_locked(bnad
, netdev
->dev_addr
);
2144 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2145 bnad_set_rx_mode(netdev
);
2151 /* Called with bnad_conf_lock() held */
2153 bnad_destroy_rx(struct bnad
*bnad
, u32 rx_id
)
2155 struct bnad_rx_info
*rx_info
= &bnad
->rx_info
[rx_id
];
2156 struct bna_rx_config
*rx_config
= &bnad
->rx_config
[rx_id
];
2157 struct bna_res_info
*res_info
= &bnad
->rx_res_info
[rx_id
].res_info
[0];
2158 unsigned long flags
;
2165 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2166 if (bnad
->cfg_flags
& BNAD_CF_DIM_ENABLED
&&
2167 test_bit(BNAD_RF_DIM_TIMER_RUNNING
, &bnad
->run_flags
)) {
2168 clear_bit(BNAD_RF_DIM_TIMER_RUNNING
, &bnad
->run_flags
);
2171 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2173 del_timer_sync(&bnad
->dim_timer
);
2176 init_completion(&bnad
->bnad_completions
.rx_comp
);
2177 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2178 bna_rx_disable(rx_info
->rx
, BNA_HARD_CLEANUP
, bnad_cb_rx_disabled
);
2179 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2180 wait_for_completion(&bnad
->bnad_completions
.rx_comp
);
2182 if (rx_info
->rx_ctrl
[0].ccb
->intr_type
== BNA_INTR_T_MSIX
)
2183 bnad_rx_msix_unregister(bnad
, rx_info
, rx_config
->num_paths
);
2185 bnad_napi_delete(bnad
, rx_id
);
2187 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2188 bna_rx_destroy(rx_info
->rx
);
2192 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2194 bnad_rx_res_free(bnad
, res_info
);
2197 /* Called with mutex_lock(&bnad->conf_mutex) held */
2199 bnad_setup_rx(struct bnad
*bnad
, u32 rx_id
)
2202 struct bnad_rx_info
*rx_info
= &bnad
->rx_info
[rx_id
];
2203 struct bna_res_info
*res_info
= &bnad
->rx_res_info
[rx_id
].res_info
[0];
2204 struct bna_intr_info
*intr_info
=
2205 &res_info
[BNA_RX_RES_T_INTR
].res_u
.intr_info
;
2206 struct bna_rx_config
*rx_config
= &bnad
->rx_config
[rx_id
];
2207 static const struct bna_rx_event_cbfn rx_cbfn
= {
2208 .rcb_setup_cbfn
= NULL
,
2209 .rcb_destroy_cbfn
= NULL
,
2210 .ccb_setup_cbfn
= bnad_cb_ccb_setup
,
2211 .ccb_destroy_cbfn
= bnad_cb_ccb_destroy
,
2212 .rx_stall_cbfn
= bnad_cb_rx_stall
,
2213 .rx_cleanup_cbfn
= bnad_cb_rx_cleanup
,
2214 .rx_post_cbfn
= bnad_cb_rx_post
,
2217 unsigned long flags
;
2219 rx_info
->rx_id
= rx_id
;
2221 /* Initialize the Rx object configuration */
2222 bnad_init_rx_config(bnad
, rx_config
);
2224 /* Get BNA's resource requirement for one Rx object */
2225 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2226 bna_rx_res_req(rx_config
, res_info
);
2227 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2229 /* Fill Unmap Q memory requirements */
2230 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info
[BNA_RX_RES_MEM_T_UNMAPDQ
],
2231 rx_config
->num_paths
,
2232 (rx_config
->q0_depth
*
2233 sizeof(struct bnad_rx_unmap
)) +
2234 sizeof(struct bnad_rx_unmap_q
));
2236 if (rx_config
->rxp_type
!= BNA_RXP_SINGLE
) {
2237 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info
[BNA_RX_RES_MEM_T_UNMAPHQ
],
2238 rx_config
->num_paths
,
2239 (rx_config
->q1_depth
*
2240 sizeof(struct bnad_rx_unmap
) +
2241 sizeof(struct bnad_rx_unmap_q
)));
2243 /* Allocate resource */
2244 err
= bnad_rx_res_alloc(bnad
, res_info
, rx_id
);
2248 bnad_rx_ctrl_init(bnad
, rx_id
);
2250 /* Ask BNA to create one Rx object, supplying required resources */
2251 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2252 rx
= bna_rx_create(&bnad
->bna
, bnad
, rx_config
, &rx_cbfn
, res_info
,
2256 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2260 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2262 INIT_WORK(&rx_info
->rx_cleanup_work
,
2263 (work_func_t
)(bnad_rx_cleanup
));
2266 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2267 * so that IRQ handler cannot schedule NAPI at this point.
2269 bnad_napi_add(bnad
, rx_id
);
2271 /* Register ISR for the Rx object */
2272 if (intr_info
->intr_type
== BNA_INTR_T_MSIX
) {
2273 err
= bnad_rx_msix_register(bnad
, rx_info
, rx_id
,
2274 rx_config
->num_paths
);
2279 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2281 /* Set up Dynamic Interrupt Moderation Vector */
2282 if (bnad
->cfg_flags
& BNAD_CF_DIM_ENABLED
)
2283 bna_rx_dim_reconfig(&bnad
->bna
, bna_napi_dim_vector
);
2285 /* Enable VLAN filtering only on the default Rx */
2286 bna_rx_vlanfilter_enable(rx
);
2288 /* Start the DIM timer */
2289 bnad_dim_timer_start(bnad
);
2293 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2298 bnad_destroy_rx(bnad
, rx_id
);
2302 /* Called with conf_lock & bnad->bna_lock held */
2304 bnad_tx_coalescing_timeo_set(struct bnad
*bnad
)
2306 struct bnad_tx_info
*tx_info
;
2308 tx_info
= &bnad
->tx_info
[0];
2312 bna_tx_coalescing_timeo_set(tx_info
->tx
, bnad
->tx_coalescing_timeo
);
2315 /* Called with conf_lock & bnad->bna_lock held */
2317 bnad_rx_coalescing_timeo_set(struct bnad
*bnad
)
2319 struct bnad_rx_info
*rx_info
;
2322 for (i
= 0; i
< bnad
->num_rx
; i
++) {
2323 rx_info
= &bnad
->rx_info
[i
];
2326 bna_rx_coalescing_timeo_set(rx_info
->rx
,
2327 bnad
->rx_coalescing_timeo
);
2332 * Called with bnad->bna_lock held
2335 bnad_mac_addr_set_locked(struct bnad
*bnad
, const u8
*mac_addr
)
2339 if (!is_valid_ether_addr(mac_addr
))
2340 return -EADDRNOTAVAIL
;
2342 /* If datapath is down, pretend everything went through */
2343 if (!bnad
->rx_info
[0].rx
)
2346 ret
= bna_rx_ucast_set(bnad
->rx_info
[0].rx
, mac_addr
);
2347 if (ret
!= BNA_CB_SUCCESS
)
2348 return -EADDRNOTAVAIL
;
2353 /* Should be called with conf_lock held */
2355 bnad_enable_default_bcast(struct bnad
*bnad
)
2357 struct bnad_rx_info
*rx_info
= &bnad
->rx_info
[0];
2359 unsigned long flags
;
2361 init_completion(&bnad
->bnad_completions
.mcast_comp
);
2363 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2364 ret
= bna_rx_mcast_add(rx_info
->rx
, bnad_bcast_addr
,
2365 bnad_cb_rx_mcast_add
);
2366 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2368 if (ret
== BNA_CB_SUCCESS
)
2369 wait_for_completion(&bnad
->bnad_completions
.mcast_comp
);
2373 if (bnad
->bnad_completions
.mcast_comp_status
!= BNA_CB_SUCCESS
)
2379 /* Called with mutex_lock(&bnad->conf_mutex) held */
2381 bnad_restore_vlans(struct bnad
*bnad
, u32 rx_id
)
2384 unsigned long flags
;
2386 for_each_set_bit(vid
, bnad
->active_vlans
, VLAN_N_VID
) {
2387 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2388 bna_rx_vlan_add(bnad
->rx_info
[rx_id
].rx
, vid
);
2389 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2393 /* Statistics utilities */
2395 bnad_netdev_qstats_fill(struct bnad
*bnad
, struct rtnl_link_stats64
*stats
)
2399 for (i
= 0; i
< bnad
->num_rx
; i
++) {
2400 for (j
= 0; j
< bnad
->num_rxp_per_rx
; j
++) {
2401 if (bnad
->rx_info
[i
].rx_ctrl
[j
].ccb
) {
2402 stats
->rx_packets
+= bnad
->rx_info
[i
].
2403 rx_ctrl
[j
].ccb
->rcb
[0]->rxq
->rx_packets
;
2404 stats
->rx_bytes
+= bnad
->rx_info
[i
].
2405 rx_ctrl
[j
].ccb
->rcb
[0]->rxq
->rx_bytes
;
2406 if (bnad
->rx_info
[i
].rx_ctrl
[j
].ccb
->rcb
[1] &&
2407 bnad
->rx_info
[i
].rx_ctrl
[j
].ccb
->
2409 stats
->rx_packets
+=
2410 bnad
->rx_info
[i
].rx_ctrl
[j
].
2411 ccb
->rcb
[1]->rxq
->rx_packets
;
2413 bnad
->rx_info
[i
].rx_ctrl
[j
].
2414 ccb
->rcb
[1]->rxq
->rx_bytes
;
2419 for (i
= 0; i
< bnad
->num_tx
; i
++) {
2420 for (j
= 0; j
< bnad
->num_txq_per_tx
; j
++) {
2421 if (bnad
->tx_info
[i
].tcb
[j
]) {
2422 stats
->tx_packets
+=
2423 bnad
->tx_info
[i
].tcb
[j
]->txq
->tx_packets
;
2425 bnad
->tx_info
[i
].tcb
[j
]->txq
->tx_bytes
;
2432 * Must be called with the bna_lock held.
2435 bnad_netdev_hwstats_fill(struct bnad
*bnad
, struct rtnl_link_stats64
*stats
)
2437 struct bfi_enet_stats_mac
*mac_stats
;
2441 mac_stats
= &bnad
->stats
.bna_stats
->hw_stats
.mac_stats
;
2443 mac_stats
->rx_fcs_error
+ mac_stats
->rx_alignment_error
+
2444 mac_stats
->rx_frame_length_error
+ mac_stats
->rx_code_error
+
2445 mac_stats
->rx_undersize
;
2446 stats
->tx_errors
= mac_stats
->tx_fcs_error
+
2447 mac_stats
->tx_undersize
;
2448 stats
->rx_dropped
= mac_stats
->rx_drop
;
2449 stats
->tx_dropped
= mac_stats
->tx_drop
;
2450 stats
->multicast
= mac_stats
->rx_multicast
;
2451 stats
->collisions
= mac_stats
->tx_total_collision
;
2453 stats
->rx_length_errors
= mac_stats
->rx_frame_length_error
;
2455 /* receive ring buffer overflow ?? */
2457 stats
->rx_crc_errors
= mac_stats
->rx_fcs_error
;
2458 stats
->rx_frame_errors
= mac_stats
->rx_alignment_error
;
2459 /* recv'r fifo overrun */
2460 bmap
= bna_rx_rid_mask(&bnad
->bna
);
2461 for (i
= 0; bmap
; i
++) {
2463 stats
->rx_fifo_errors
+=
2464 bnad
->stats
.bna_stats
->
2465 hw_stats
.rxf_stats
[i
].frame_drops
;
2473 bnad_mbox_irq_sync(struct bnad
*bnad
)
2476 unsigned long flags
;
2478 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2479 if (bnad
->cfg_flags
& BNAD_CF_MSIX
)
2480 irq
= bnad
->msix_table
[BNAD_MAILBOX_MSIX_INDEX
].vector
;
2482 irq
= bnad
->pcidev
->irq
;
2483 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2485 synchronize_irq(irq
);
2488 /* Utility used by bnad_start_xmit, for doing TSO */
2490 bnad_tso_prepare(struct bnad
*bnad
, struct sk_buff
*skb
)
2494 err
= skb_cow_head(skb
, 0);
2496 BNAD_UPDATE_CTR(bnad
, tso_err
);
2501 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2502 * excluding the length field.
2504 if (vlan_get_protocol(skb
) == htons(ETH_P_IP
)) {
2505 struct iphdr
*iph
= ip_hdr(skb
);
2507 /* Do we really need these? */
2511 tcp_hdr(skb
)->check
=
2512 ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
, 0,
2514 BNAD_UPDATE_CTR(bnad
, tso4
);
2516 struct ipv6hdr
*ipv6h
= ipv6_hdr(skb
);
2518 ipv6h
->payload_len
= 0;
2519 tcp_hdr(skb
)->check
=
2520 ~csum_ipv6_magic(&ipv6h
->saddr
, &ipv6h
->daddr
, 0,
2522 BNAD_UPDATE_CTR(bnad
, tso6
);
2529 * Initialize Q numbers depending on Rx Paths
2530 * Called with bnad->bna_lock held, because of cfg_flags
2534 bnad_q_num_init(struct bnad
*bnad
)
2538 rxps
= min((uint
)num_online_cpus(),
2539 (uint
)(BNAD_MAX_RX
* BNAD_MAX_RXP_PER_RX
));
2541 if (!(bnad
->cfg_flags
& BNAD_CF_MSIX
))
2542 rxps
= 1; /* INTx */
2546 bnad
->num_rxp_per_rx
= rxps
;
2547 bnad
->num_txq_per_tx
= BNAD_TXQ_NUM
;
2551 * Adjusts the Q numbers, given a number of msix vectors
2552 * Give preference to RSS as opposed to Tx priority Queues,
2553 * in such a case, just use 1 Tx Q
2554 * Called with bnad->bna_lock held b'cos of cfg_flags access
2557 bnad_q_num_adjust(struct bnad
*bnad
, int msix_vectors
, int temp
)
2559 bnad
->num_txq_per_tx
= 1;
2560 if ((msix_vectors
>= (bnad
->num_tx
* bnad
->num_txq_per_tx
) +
2561 bnad_rxqs_per_cq
+ BNAD_MAILBOX_MSIX_VECTORS
) &&
2562 (bnad
->cfg_flags
& BNAD_CF_MSIX
)) {
2563 bnad
->num_rxp_per_rx
= msix_vectors
-
2564 (bnad
->num_tx
* bnad
->num_txq_per_tx
) -
2565 BNAD_MAILBOX_MSIX_VECTORS
;
2567 bnad
->num_rxp_per_rx
= 1;
2570 /* Enable / disable ioceth */
2572 bnad_ioceth_disable(struct bnad
*bnad
)
2574 unsigned long flags
;
2577 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2578 init_completion(&bnad
->bnad_completions
.ioc_comp
);
2579 bna_ioceth_disable(&bnad
->bna
.ioceth
, BNA_HARD_CLEANUP
);
2580 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2582 wait_for_completion_timeout(&bnad
->bnad_completions
.ioc_comp
,
2583 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT
));
2585 err
= bnad
->bnad_completions
.ioc_comp_status
;
2590 bnad_ioceth_enable(struct bnad
*bnad
)
2593 unsigned long flags
;
2595 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2596 init_completion(&bnad
->bnad_completions
.ioc_comp
);
2597 bnad
->bnad_completions
.ioc_comp_status
= BNA_CB_WAITING
;
2598 bna_ioceth_enable(&bnad
->bna
.ioceth
);
2599 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2601 wait_for_completion_timeout(&bnad
->bnad_completions
.ioc_comp
,
2602 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT
));
2604 err
= bnad
->bnad_completions
.ioc_comp_status
;
2609 /* Free BNA resources */
2611 bnad_res_free(struct bnad
*bnad
, struct bna_res_info
*res_info
,
2616 for (i
= 0; i
< res_val_max
; i
++)
2617 bnad_mem_free(bnad
, &res_info
[i
].res_u
.mem_info
);
2620 /* Allocates memory and interrupt resources for BNA */
2622 bnad_res_alloc(struct bnad
*bnad
, struct bna_res_info
*res_info
,
2627 for (i
= 0; i
< res_val_max
; i
++) {
2628 err
= bnad_mem_alloc(bnad
, &res_info
[i
].res_u
.mem_info
);
2635 bnad_res_free(bnad
, res_info
, res_val_max
);
2639 /* Interrupt enable / disable */
2641 bnad_enable_msix(struct bnad
*bnad
)
2644 unsigned long flags
;
2646 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2647 if (!(bnad
->cfg_flags
& BNAD_CF_MSIX
)) {
2648 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2651 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2653 if (bnad
->msix_table
)
2657 kcalloc(bnad
->msix_num
, sizeof(struct msix_entry
), GFP_KERNEL
);
2659 if (!bnad
->msix_table
)
2662 for (i
= 0; i
< bnad
->msix_num
; i
++)
2663 bnad
->msix_table
[i
].entry
= i
;
2665 ret
= pci_enable_msix_range(bnad
->pcidev
, bnad
->msix_table
,
2669 } else if (ret
< bnad
->msix_num
) {
2670 dev_warn(&bnad
->pcidev
->dev
,
2671 "%d MSI-X vectors allocated < %d requested\n",
2672 ret
, bnad
->msix_num
);
2674 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2675 /* ret = #of vectors that we got */
2676 bnad_q_num_adjust(bnad
, (ret
- BNAD_MAILBOX_MSIX_VECTORS
) / 2,
2677 (ret
- BNAD_MAILBOX_MSIX_VECTORS
) / 2);
2678 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2680 bnad
->msix_num
= BNAD_NUM_TXQ
+ BNAD_NUM_RXP
+
2681 BNAD_MAILBOX_MSIX_VECTORS
;
2683 if (bnad
->msix_num
> ret
) {
2684 pci_disable_msix(bnad
->pcidev
);
2689 pci_intx(bnad
->pcidev
, 0);
2694 dev_warn(&bnad
->pcidev
->dev
,
2695 "MSI-X enable failed - operating in INTx mode\n");
2697 kfree(bnad
->msix_table
);
2698 bnad
->msix_table
= NULL
;
2700 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2701 bnad
->cfg_flags
&= ~BNAD_CF_MSIX
;
2702 bnad_q_num_init(bnad
);
2703 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2707 bnad_disable_msix(struct bnad
*bnad
)
2710 unsigned long flags
;
2712 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2713 cfg_flags
= bnad
->cfg_flags
;
2714 if (bnad
->cfg_flags
& BNAD_CF_MSIX
)
2715 bnad
->cfg_flags
&= ~BNAD_CF_MSIX
;
2716 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2718 if (cfg_flags
& BNAD_CF_MSIX
) {
2719 pci_disable_msix(bnad
->pcidev
);
2720 kfree(bnad
->msix_table
);
2721 bnad
->msix_table
= NULL
;
2725 /* Netdev entry points */
2727 bnad_open(struct net_device
*netdev
)
2730 struct bnad
*bnad
= netdev_priv(netdev
);
2731 struct bna_pause_config pause_config
;
2732 unsigned long flags
;
2734 mutex_lock(&bnad
->conf_mutex
);
2737 err
= bnad_setup_tx(bnad
, 0);
2742 err
= bnad_setup_rx(bnad
, 0);
2747 pause_config
.tx_pause
= 0;
2748 pause_config
.rx_pause
= 0;
2750 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2751 bna_enet_mtu_set(&bnad
->bna
.enet
,
2752 BNAD_FRAME_SIZE(bnad
->netdev
->mtu
), NULL
);
2753 bna_enet_pause_config(&bnad
->bna
.enet
, &pause_config
);
2754 bna_enet_enable(&bnad
->bna
.enet
);
2755 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2757 /* Enable broadcast */
2758 bnad_enable_default_bcast(bnad
);
2760 /* Restore VLANs, if any */
2761 bnad_restore_vlans(bnad
, 0);
2763 /* Set the UCAST address */
2764 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2765 bnad_mac_addr_set_locked(bnad
, netdev
->dev_addr
);
2766 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2768 /* Start the stats timer */
2769 bnad_stats_timer_start(bnad
);
2771 mutex_unlock(&bnad
->conf_mutex
);
2776 bnad_destroy_tx(bnad
, 0);
2779 mutex_unlock(&bnad
->conf_mutex
);
2784 bnad_stop(struct net_device
*netdev
)
2786 struct bnad
*bnad
= netdev_priv(netdev
);
2787 unsigned long flags
;
2789 mutex_lock(&bnad
->conf_mutex
);
2791 /* Stop the stats timer */
2792 bnad_stats_timer_stop(bnad
);
2794 init_completion(&bnad
->bnad_completions
.enet_comp
);
2796 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2797 bna_enet_disable(&bnad
->bna
.enet
, BNA_HARD_CLEANUP
,
2798 bnad_cb_enet_disabled
);
2799 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2801 wait_for_completion(&bnad
->bnad_completions
.enet_comp
);
2803 bnad_destroy_tx(bnad
, 0);
2804 bnad_destroy_rx(bnad
, 0);
2806 /* Synchronize mailbox IRQ */
2807 bnad_mbox_irq_sync(bnad
);
2809 mutex_unlock(&bnad
->conf_mutex
);
2815 /* Returns 0 for success */
2817 bnad_txq_wi_prepare(struct bnad
*bnad
, struct bna_tcb
*tcb
,
2818 struct sk_buff
*skb
, struct bna_txq_entry
*txqent
)
2824 if (skb_vlan_tag_present(skb
)) {
2825 vlan_tag
= (u16
)skb_vlan_tag_get(skb
);
2826 flags
|= (BNA_TXQ_WI_CF_INS_PRIO
| BNA_TXQ_WI_CF_INS_VLAN
);
2828 if (test_bit(BNAD_RF_CEE_RUNNING
, &bnad
->run_flags
)) {
2829 vlan_tag
= ((tcb
->priority
& 0x7) << VLAN_PRIO_SHIFT
)
2830 | (vlan_tag
& 0x1fff);
2831 flags
|= (BNA_TXQ_WI_CF_INS_PRIO
| BNA_TXQ_WI_CF_INS_VLAN
);
2833 txqent
->hdr
.wi
.vlan_tag
= htons(vlan_tag
);
2835 if (skb_is_gso(skb
)) {
2836 gso_size
= skb_shinfo(skb
)->gso_size
;
2837 if (unlikely(gso_size
> bnad
->netdev
->mtu
)) {
2838 BNAD_UPDATE_CTR(bnad
, tx_skb_mss_too_long
);
2841 if (unlikely((gso_size
+ skb_transport_offset(skb
) +
2842 tcp_hdrlen(skb
)) >= skb
->len
)) {
2843 txqent
->hdr
.wi
.opcode
= htons(BNA_TXQ_WI_SEND
);
2844 txqent
->hdr
.wi
.lso_mss
= 0;
2845 BNAD_UPDATE_CTR(bnad
, tx_skb_tso_too_short
);
2847 txqent
->hdr
.wi
.opcode
= htons(BNA_TXQ_WI_SEND_LSO
);
2848 txqent
->hdr
.wi
.lso_mss
= htons(gso_size
);
2851 if (bnad_tso_prepare(bnad
, skb
)) {
2852 BNAD_UPDATE_CTR(bnad
, tx_skb_tso_prepare
);
2856 flags
|= (BNA_TXQ_WI_CF_IP_CKSUM
| BNA_TXQ_WI_CF_TCP_CKSUM
);
2857 txqent
->hdr
.wi
.l4_hdr_size_n_offset
=
2858 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2859 tcp_hdrlen(skb
) >> 2, skb_transport_offset(skb
)));
2861 txqent
->hdr
.wi
.opcode
= htons(BNA_TXQ_WI_SEND
);
2862 txqent
->hdr
.wi
.lso_mss
= 0;
2864 if (unlikely(skb
->len
> (bnad
->netdev
->mtu
+ VLAN_ETH_HLEN
))) {
2865 BNAD_UPDATE_CTR(bnad
, tx_skb_non_tso_too_long
);
2869 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2870 __be16 net_proto
= vlan_get_protocol(skb
);
2873 if (net_proto
== htons(ETH_P_IP
))
2874 proto
= ip_hdr(skb
)->protocol
;
2875 #ifdef NETIF_F_IPV6_CSUM
2876 else if (net_proto
== htons(ETH_P_IPV6
)) {
2877 /* nexthdr may not be TCP immediately. */
2878 proto
= ipv6_hdr(skb
)->nexthdr
;
2881 if (proto
== IPPROTO_TCP
) {
2882 flags
|= BNA_TXQ_WI_CF_TCP_CKSUM
;
2883 txqent
->hdr
.wi
.l4_hdr_size_n_offset
=
2884 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2885 (0, skb_transport_offset(skb
)));
2887 BNAD_UPDATE_CTR(bnad
, tcpcsum_offload
);
2889 if (unlikely(skb_headlen(skb
) <
2890 skb_transport_offset(skb
) +
2892 BNAD_UPDATE_CTR(bnad
, tx_skb_tcp_hdr
);
2895 } else if (proto
== IPPROTO_UDP
) {
2896 flags
|= BNA_TXQ_WI_CF_UDP_CKSUM
;
2897 txqent
->hdr
.wi
.l4_hdr_size_n_offset
=
2898 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2899 (0, skb_transport_offset(skb
)));
2901 BNAD_UPDATE_CTR(bnad
, udpcsum_offload
);
2902 if (unlikely(skb_headlen(skb
) <
2903 skb_transport_offset(skb
) +
2904 sizeof(struct udphdr
))) {
2905 BNAD_UPDATE_CTR(bnad
, tx_skb_udp_hdr
);
2910 BNAD_UPDATE_CTR(bnad
, tx_skb_csum_err
);
2914 txqent
->hdr
.wi
.l4_hdr_size_n_offset
= 0;
2917 txqent
->hdr
.wi
.flags
= htons(flags
);
2918 txqent
->hdr
.wi
.frame_length
= htonl(skb
->len
);
2924 * bnad_start_xmit : Netdev entry point for Transmit
2925 * Called under lock held by net_device
2928 bnad_start_xmit(struct sk_buff
*skb
, struct net_device
*netdev
)
2930 struct bnad
*bnad
= netdev_priv(netdev
);
2932 struct bna_tcb
*tcb
= NULL
;
2933 struct bnad_tx_unmap
*unmap_q
, *unmap
, *head_unmap
;
2934 u32 prod
, q_depth
, vect_id
;
2935 u32 wis
, vectors
, len
;
2937 dma_addr_t dma_addr
;
2938 struct bna_txq_entry
*txqent
;
2940 len
= skb_headlen(skb
);
2942 /* Sanity checks for the skb */
2944 if (unlikely(skb
->len
<= ETH_HLEN
)) {
2945 dev_kfree_skb_any(skb
);
2946 BNAD_UPDATE_CTR(bnad
, tx_skb_too_short
);
2947 return NETDEV_TX_OK
;
2949 if (unlikely(len
> BFI_TX_MAX_DATA_PER_VECTOR
)) {
2950 dev_kfree_skb_any(skb
);
2951 BNAD_UPDATE_CTR(bnad
, tx_skb_headlen_zero
);
2952 return NETDEV_TX_OK
;
2954 if (unlikely(len
== 0)) {
2955 dev_kfree_skb_any(skb
);
2956 BNAD_UPDATE_CTR(bnad
, tx_skb_headlen_zero
);
2957 return NETDEV_TX_OK
;
2960 tcb
= bnad
->tx_info
[0].tcb
[txq_id
];
2963 * Takes care of the Tx that is scheduled between clearing the flag
2964 * and the netif_tx_stop_all_queues() call.
2966 if (unlikely(!tcb
|| !test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
))) {
2967 dev_kfree_skb_any(skb
);
2968 BNAD_UPDATE_CTR(bnad
, tx_skb_stopping
);
2969 return NETDEV_TX_OK
;
2972 q_depth
= tcb
->q_depth
;
2973 prod
= tcb
->producer_index
;
2974 unmap_q
= tcb
->unmap_q
;
2976 vectors
= 1 + skb_shinfo(skb
)->nr_frags
;
2977 wis
= BNA_TXQ_WI_NEEDED(vectors
); /* 4 vectors per work item */
2979 if (unlikely(vectors
> BFI_TX_MAX_VECTORS_PER_PKT
)) {
2980 dev_kfree_skb_any(skb
);
2981 BNAD_UPDATE_CTR(bnad
, tx_skb_max_vectors
);
2982 return NETDEV_TX_OK
;
2985 /* Check for available TxQ resources */
2986 if (unlikely(wis
> BNA_QE_FREE_CNT(tcb
, q_depth
))) {
2987 if ((*tcb
->hw_consumer_index
!= tcb
->consumer_index
) &&
2988 !test_and_set_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
)) {
2990 sent
= bnad_txcmpl_process(bnad
, tcb
);
2991 if (likely(test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
)))
2992 bna_ib_ack(tcb
->i_dbell
, sent
);
2993 smp_mb__before_atomic();
2994 clear_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
);
2996 netif_stop_queue(netdev
);
2997 BNAD_UPDATE_CTR(bnad
, netif_queue_stop
);
3002 * Check again to deal with race condition between
3003 * netif_stop_queue here, and netif_wake_queue in
3004 * interrupt handler which is not inside netif tx lock.
3006 if (likely(wis
> BNA_QE_FREE_CNT(tcb
, q_depth
))) {
3007 BNAD_UPDATE_CTR(bnad
, netif_queue_stop
);
3008 return NETDEV_TX_BUSY
;
3010 netif_wake_queue(netdev
);
3011 BNAD_UPDATE_CTR(bnad
, netif_queue_wakeup
);
3015 txqent
= &((struct bna_txq_entry
*)tcb
->sw_q
)[prod
];
3016 head_unmap
= &unmap_q
[prod
];
3018 /* Program the opcode, flags, frame_len, num_vectors in WI */
3019 if (bnad_txq_wi_prepare(bnad
, tcb
, skb
, txqent
)) {
3020 dev_kfree_skb_any(skb
);
3021 return NETDEV_TX_OK
;
3023 txqent
->hdr
.wi
.reserved
= 0;
3024 txqent
->hdr
.wi
.num_vectors
= vectors
;
3026 head_unmap
->skb
= skb
;
3027 head_unmap
->nvecs
= 0;
3029 /* Program the vectors */
3031 dma_addr
= dma_map_single(&bnad
->pcidev
->dev
, skb
->data
,
3032 len
, DMA_TO_DEVICE
);
3033 if (dma_mapping_error(&bnad
->pcidev
->dev
, dma_addr
)) {
3034 dev_kfree_skb_any(skb
);
3035 BNAD_UPDATE_CTR(bnad
, tx_skb_map_failed
);
3036 return NETDEV_TX_OK
;
3038 BNA_SET_DMA_ADDR(dma_addr
, &txqent
->vector
[0].host_addr
);
3039 txqent
->vector
[0].length
= htons(len
);
3040 dma_unmap_addr_set(&unmap
->vectors
[0], dma_addr
, dma_addr
);
3041 head_unmap
->nvecs
++;
3043 for (i
= 0, vect_id
= 0; i
< vectors
- 1; i
++) {
3044 const struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
];
3045 u32 size
= skb_frag_size(frag
);
3047 if (unlikely(size
== 0)) {
3048 /* Undo the changes starting at tcb->producer_index */
3049 bnad_tx_buff_unmap(bnad
, unmap_q
, q_depth
,
3050 tcb
->producer_index
);
3051 dev_kfree_skb_any(skb
);
3052 BNAD_UPDATE_CTR(bnad
, tx_skb_frag_zero
);
3053 return NETDEV_TX_OK
;
3059 if (vect_id
== BFI_TX_MAX_VECTORS_PER_WI
) {
3061 BNA_QE_INDX_INC(prod
, q_depth
);
3062 txqent
= &((struct bna_txq_entry
*)tcb
->sw_q
)[prod
];
3063 txqent
->hdr
.wi_ext
.opcode
= htons(BNA_TXQ_WI_EXTENSION
);
3064 unmap
= &unmap_q
[prod
];
3067 dma_addr
= skb_frag_dma_map(&bnad
->pcidev
->dev
, frag
,
3068 0, size
, DMA_TO_DEVICE
);
3069 if (dma_mapping_error(&bnad
->pcidev
->dev
, dma_addr
)) {
3070 /* Undo the changes starting at tcb->producer_index */
3071 bnad_tx_buff_unmap(bnad
, unmap_q
, q_depth
,
3072 tcb
->producer_index
);
3073 dev_kfree_skb_any(skb
);
3074 BNAD_UPDATE_CTR(bnad
, tx_skb_map_failed
);
3075 return NETDEV_TX_OK
;
3078 dma_unmap_len_set(&unmap
->vectors
[vect_id
], dma_len
, size
);
3079 BNA_SET_DMA_ADDR(dma_addr
, &txqent
->vector
[vect_id
].host_addr
);
3080 txqent
->vector
[vect_id
].length
= htons(size
);
3081 dma_unmap_addr_set(&unmap
->vectors
[vect_id
], dma_addr
,
3083 head_unmap
->nvecs
++;
3086 if (unlikely(len
!= skb
->len
)) {
3087 /* Undo the changes starting at tcb->producer_index */
3088 bnad_tx_buff_unmap(bnad
, unmap_q
, q_depth
, tcb
->producer_index
);
3089 dev_kfree_skb_any(skb
);
3090 BNAD_UPDATE_CTR(bnad
, tx_skb_len_mismatch
);
3091 return NETDEV_TX_OK
;
3094 BNA_QE_INDX_INC(prod
, q_depth
);
3095 tcb
->producer_index
= prod
;
3099 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
)))
3100 return NETDEV_TX_OK
;
3102 skb_tx_timestamp(skb
);
3104 bna_txq_prod_indx_doorbell(tcb
);
3107 return NETDEV_TX_OK
;
3111 * Used spin_lock to synchronize reading of stats structures, which
3112 * is written by BNA under the same lock.
3114 static struct rtnl_link_stats64
*
3115 bnad_get_stats64(struct net_device
*netdev
, struct rtnl_link_stats64
*stats
)
3117 struct bnad
*bnad
= netdev_priv(netdev
);
3118 unsigned long flags
;
3120 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3122 bnad_netdev_qstats_fill(bnad
, stats
);
3123 bnad_netdev_hwstats_fill(bnad
, stats
);
3125 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3131 bnad_set_rx_ucast_fltr(struct bnad
*bnad
)
3133 struct net_device
*netdev
= bnad
->netdev
;
3134 int uc_count
= netdev_uc_count(netdev
);
3135 enum bna_cb_status ret
;
3137 struct netdev_hw_addr
*ha
;
3140 if (netdev_uc_empty(bnad
->netdev
)) {
3141 bna_rx_ucast_listset(bnad
->rx_info
[0].rx
, 0, NULL
);
3145 if (uc_count
> bna_attr(&bnad
->bna
)->num_ucmac
)
3148 mac_list
= kzalloc(uc_count
* ETH_ALEN
, GFP_ATOMIC
);
3149 if (mac_list
== NULL
)
3153 netdev_for_each_uc_addr(ha
, netdev
) {
3154 ether_addr_copy(&mac_list
[entry
* ETH_ALEN
], &ha
->addr
[0]);
3158 ret
= bna_rx_ucast_listset(bnad
->rx_info
[0].rx
, entry
, mac_list
);
3161 if (ret
!= BNA_CB_SUCCESS
)
3166 /* ucast packets not in UCAM are routed to default function */
3168 bnad
->cfg_flags
|= BNAD_CF_DEFAULT
;
3169 bna_rx_ucast_listset(bnad
->rx_info
[0].rx
, 0, NULL
);
3173 bnad_set_rx_mcast_fltr(struct bnad
*bnad
)
3175 struct net_device
*netdev
= bnad
->netdev
;
3176 int mc_count
= netdev_mc_count(netdev
);
3177 enum bna_cb_status ret
;
3180 if (netdev
->flags
& IFF_ALLMULTI
)
3183 if (netdev_mc_empty(netdev
))
3186 if (mc_count
> bna_attr(&bnad
->bna
)->num_mcmac
)
3189 mac_list
= kzalloc((mc_count
+ 1) * ETH_ALEN
, GFP_ATOMIC
);
3191 if (mac_list
== NULL
)
3194 ether_addr_copy(&mac_list
[0], &bnad_bcast_addr
[0]);
3196 /* copy rest of the MCAST addresses */
3197 bnad_netdev_mc_list_get(netdev
, mac_list
);
3198 ret
= bna_rx_mcast_listset(bnad
->rx_info
[0].rx
, mc_count
+ 1, mac_list
);
3201 if (ret
!= BNA_CB_SUCCESS
)
3207 bnad
->cfg_flags
|= BNAD_CF_ALLMULTI
;
3208 bna_rx_mcast_delall(bnad
->rx_info
[0].rx
);
3212 bnad_set_rx_mode(struct net_device
*netdev
)
3214 struct bnad
*bnad
= netdev_priv(netdev
);
3215 enum bna_rxmode new_mode
, mode_mask
;
3216 unsigned long flags
;
3218 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3220 if (bnad
->rx_info
[0].rx
== NULL
) {
3221 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3225 /* clear bnad flags to update it with new settings */
3226 bnad
->cfg_flags
&= ~(BNAD_CF_PROMISC
| BNAD_CF_DEFAULT
|
3230 if (netdev
->flags
& IFF_PROMISC
) {
3231 new_mode
|= BNAD_RXMODE_PROMISC_DEFAULT
;
3232 bnad
->cfg_flags
|= BNAD_CF_PROMISC
;
3234 bnad_set_rx_mcast_fltr(bnad
);
3236 if (bnad
->cfg_flags
& BNAD_CF_ALLMULTI
)
3237 new_mode
|= BNA_RXMODE_ALLMULTI
;
3239 bnad_set_rx_ucast_fltr(bnad
);
3241 if (bnad
->cfg_flags
& BNAD_CF_DEFAULT
)
3242 new_mode
|= BNA_RXMODE_DEFAULT
;
3245 mode_mask
= BNA_RXMODE_PROMISC
| BNA_RXMODE_DEFAULT
|
3246 BNA_RXMODE_ALLMULTI
;
3247 bna_rx_mode_set(bnad
->rx_info
[0].rx
, new_mode
, mode_mask
);
3249 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3253 * bna_lock is used to sync writes to netdev->addr
3254 * conf_lock cannot be used since this call may be made
3255 * in a non-blocking context.
3258 bnad_set_mac_address(struct net_device
*netdev
, void *addr
)
3261 struct bnad
*bnad
= netdev_priv(netdev
);
3262 struct sockaddr
*sa
= (struct sockaddr
*)addr
;
3263 unsigned long flags
;
3265 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3267 err
= bnad_mac_addr_set_locked(bnad
, sa
->sa_data
);
3269 ether_addr_copy(netdev
->dev_addr
, sa
->sa_data
);
3271 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3277 bnad_mtu_set(struct bnad
*bnad
, int frame_size
)
3279 unsigned long flags
;
3281 init_completion(&bnad
->bnad_completions
.mtu_comp
);
3283 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3284 bna_enet_mtu_set(&bnad
->bna
.enet
, frame_size
, bnad_cb_enet_mtu_set
);
3285 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3287 wait_for_completion(&bnad
->bnad_completions
.mtu_comp
);
3289 return bnad
->bnad_completions
.mtu_comp_status
;
3293 bnad_change_mtu(struct net_device
*netdev
, int new_mtu
)
3296 struct bnad
*bnad
= netdev_priv(netdev
);
3297 u32 rx_count
= 0, frame
, new_frame
;
3299 if (new_mtu
+ ETH_HLEN
< ETH_ZLEN
|| new_mtu
> BNAD_JUMBO_MTU
)
3302 mutex_lock(&bnad
->conf_mutex
);
3305 netdev
->mtu
= new_mtu
;
3307 frame
= BNAD_FRAME_SIZE(mtu
);
3308 new_frame
= BNAD_FRAME_SIZE(new_mtu
);
3310 /* check if multi-buffer needs to be enabled */
3311 if (BNAD_PCI_DEV_IS_CAT2(bnad
) &&
3312 netif_running(bnad
->netdev
)) {
3313 /* only when transition is over 4K */
3314 if ((frame
<= 4096 && new_frame
> 4096) ||
3315 (frame
> 4096 && new_frame
<= 4096))
3316 rx_count
= bnad_reinit_rx(bnad
);
3319 /* rx_count > 0 - new rx created
3320 * - Linux set err = 0 and return
3322 err
= bnad_mtu_set(bnad
, new_frame
);
3326 mutex_unlock(&bnad
->conf_mutex
);
3331 bnad_vlan_rx_add_vid(struct net_device
*netdev
, __be16 proto
, u16 vid
)
3333 struct bnad
*bnad
= netdev_priv(netdev
);
3334 unsigned long flags
;
3336 if (!bnad
->rx_info
[0].rx
)
3339 mutex_lock(&bnad
->conf_mutex
);
3341 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3342 bna_rx_vlan_add(bnad
->rx_info
[0].rx
, vid
);
3343 set_bit(vid
, bnad
->active_vlans
);
3344 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3346 mutex_unlock(&bnad
->conf_mutex
);
3352 bnad_vlan_rx_kill_vid(struct net_device
*netdev
, __be16 proto
, u16 vid
)
3354 struct bnad
*bnad
= netdev_priv(netdev
);
3355 unsigned long flags
;
3357 if (!bnad
->rx_info
[0].rx
)
3360 mutex_lock(&bnad
->conf_mutex
);
3362 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3363 clear_bit(vid
, bnad
->active_vlans
);
3364 bna_rx_vlan_del(bnad
->rx_info
[0].rx
, vid
);
3365 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3367 mutex_unlock(&bnad
->conf_mutex
);
3372 static int bnad_set_features(struct net_device
*dev
, netdev_features_t features
)
3374 struct bnad
*bnad
= netdev_priv(dev
);
3375 netdev_features_t changed
= features
^ dev
->features
;
3377 if ((changed
& NETIF_F_HW_VLAN_CTAG_RX
) && netif_running(dev
)) {
3378 unsigned long flags
;
3380 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3382 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
3383 bna_rx_vlan_strip_enable(bnad
->rx_info
[0].rx
);
3385 bna_rx_vlan_strip_disable(bnad
->rx_info
[0].rx
);
3387 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3393 #ifdef CONFIG_NET_POLL_CONTROLLER
3395 bnad_netpoll(struct net_device
*netdev
)
3397 struct bnad
*bnad
= netdev_priv(netdev
);
3398 struct bnad_rx_info
*rx_info
;
3399 struct bnad_rx_ctrl
*rx_ctrl
;
3403 if (!(bnad
->cfg_flags
& BNAD_CF_MSIX
)) {
3404 bna_intx_disable(&bnad
->bna
, curr_mask
);
3405 bnad_isr(bnad
->pcidev
->irq
, netdev
);
3406 bna_intx_enable(&bnad
->bna
, curr_mask
);
3409 * Tx processing may happen in sending context, so no need
3410 * to explicitly process completions here
3414 for (i
= 0; i
< bnad
->num_rx
; i
++) {
3415 rx_info
= &bnad
->rx_info
[i
];
3418 for (j
= 0; j
< bnad
->num_rxp_per_rx
; j
++) {
3419 rx_ctrl
= &rx_info
->rx_ctrl
[j
];
3421 bnad_netif_rx_schedule_poll(bnad
,
3429 static const struct net_device_ops bnad_netdev_ops
= {
3430 .ndo_open
= bnad_open
,
3431 .ndo_stop
= bnad_stop
,
3432 .ndo_start_xmit
= bnad_start_xmit
,
3433 .ndo_get_stats64
= bnad_get_stats64
,
3434 .ndo_set_rx_mode
= bnad_set_rx_mode
,
3435 .ndo_validate_addr
= eth_validate_addr
,
3436 .ndo_set_mac_address
= bnad_set_mac_address
,
3437 .ndo_change_mtu
= bnad_change_mtu
,
3438 .ndo_vlan_rx_add_vid
= bnad_vlan_rx_add_vid
,
3439 .ndo_vlan_rx_kill_vid
= bnad_vlan_rx_kill_vid
,
3440 .ndo_set_features
= bnad_set_features
,
3441 #ifdef CONFIG_NET_POLL_CONTROLLER
3442 .ndo_poll_controller
= bnad_netpoll
3447 bnad_netdev_init(struct bnad
*bnad
, bool using_dac
)
3449 struct net_device
*netdev
= bnad
->netdev
;
3451 netdev
->hw_features
= NETIF_F_SG
| NETIF_F_RXCSUM
|
3452 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
3453 NETIF_F_TSO
| NETIF_F_TSO6
| NETIF_F_HW_VLAN_CTAG_TX
|
3454 NETIF_F_HW_VLAN_CTAG_RX
;
3456 netdev
->vlan_features
= NETIF_F_SG
| NETIF_F_HIGHDMA
|
3457 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
3458 NETIF_F_TSO
| NETIF_F_TSO6
;
3460 netdev
->features
|= netdev
->hw_features
| NETIF_F_HW_VLAN_CTAG_FILTER
;
3463 netdev
->features
|= NETIF_F_HIGHDMA
;
3465 netdev
->mem_start
= bnad
->mmio_start
;
3466 netdev
->mem_end
= bnad
->mmio_start
+ bnad
->mmio_len
- 1;
3468 netdev
->netdev_ops
= &bnad_netdev_ops
;
3469 bnad_set_ethtool_ops(netdev
);
3473 * 1. Initialize the bnad structure
3474 * 2. Setup netdev pointer in pci_dev
3475 * 3. Initialize no. of TxQ & CQs & MSIX vectors
3476 * 4. Initialize work queue.
3479 bnad_init(struct bnad
*bnad
,
3480 struct pci_dev
*pdev
, struct net_device
*netdev
)
3482 unsigned long flags
;
3484 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
3485 pci_set_drvdata(pdev
, netdev
);
3487 bnad
->netdev
= netdev
;
3488 bnad
->pcidev
= pdev
;
3489 bnad
->mmio_start
= pci_resource_start(pdev
, 0);
3490 bnad
->mmio_len
= pci_resource_len(pdev
, 0);
3491 bnad
->bar0
= ioremap_nocache(bnad
->mmio_start
, bnad
->mmio_len
);
3493 dev_err(&pdev
->dev
, "ioremap for bar0 failed\n");
3496 dev_info(&pdev
->dev
, "bar0 mapped to %p, len %llu\n", bnad
->bar0
,
3497 (unsigned long long) bnad
->mmio_len
);
3499 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3500 if (!bnad_msix_disable
)
3501 bnad
->cfg_flags
= BNAD_CF_MSIX
;
3503 bnad
->cfg_flags
|= BNAD_CF_DIM_ENABLED
;
3505 bnad_q_num_init(bnad
);
3506 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3508 bnad
->msix_num
= (bnad
->num_tx
* bnad
->num_txq_per_tx
) +
3509 (bnad
->num_rx
* bnad
->num_rxp_per_rx
) +
3510 BNAD_MAILBOX_MSIX_VECTORS
;
3512 bnad
->txq_depth
= BNAD_TXQ_DEPTH
;
3513 bnad
->rxq_depth
= BNAD_RXQ_DEPTH
;
3515 bnad
->tx_coalescing_timeo
= BFI_TX_COALESCING_TIMEO
;
3516 bnad
->rx_coalescing_timeo
= BFI_RX_COALESCING_TIMEO
;
3518 sprintf(bnad
->wq_name
, "%s_wq_%d", BNAD_NAME
, bnad
->id
);
3519 bnad
->work_q
= create_singlethread_workqueue(bnad
->wq_name
);
3520 if (!bnad
->work_q
) {
3521 iounmap(bnad
->bar0
);
3529 * Must be called after bnad_pci_uninit()
3530 * so that iounmap() and pci_set_drvdata(NULL)
3531 * happens only after PCI uninitialization.
3534 bnad_uninit(struct bnad
*bnad
)
3537 flush_workqueue(bnad
->work_q
);
3538 destroy_workqueue(bnad
->work_q
);
3539 bnad
->work_q
= NULL
;
3543 iounmap(bnad
->bar0
);
3548 a) Per ioceth mutes used for serializing configuration
3549 changes from OS interface
3550 b) spin lock used to protect bna state machine
3553 bnad_lock_init(struct bnad
*bnad
)
3555 spin_lock_init(&bnad
->bna_lock
);
3556 mutex_init(&bnad
->conf_mutex
);
3560 bnad_lock_uninit(struct bnad
*bnad
)
3562 mutex_destroy(&bnad
->conf_mutex
);
3565 /* PCI Initialization */
3567 bnad_pci_init(struct bnad
*bnad
,
3568 struct pci_dev
*pdev
, bool *using_dac
)
3572 err
= pci_enable_device(pdev
);
3575 err
= pci_request_regions(pdev
, BNAD_NAME
);
3577 goto disable_device
;
3578 if (!dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64))) {
3581 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
3583 goto release_regions
;
3586 pci_set_master(pdev
);
3590 pci_release_regions(pdev
);
3592 pci_disable_device(pdev
);
3598 bnad_pci_uninit(struct pci_dev
*pdev
)
3600 pci_release_regions(pdev
);
3601 pci_disable_device(pdev
);
3605 bnad_pci_probe(struct pci_dev
*pdev
,
3606 const struct pci_device_id
*pcidev_id
)
3612 struct net_device
*netdev
;
3613 struct bfa_pcidev pcidev_info
;
3614 unsigned long flags
;
3616 mutex_lock(&bnad_fwimg_mutex
);
3617 if (!cna_get_firmware_buf(pdev
)) {
3618 mutex_unlock(&bnad_fwimg_mutex
);
3619 dev_err(&pdev
->dev
, "failed to load firmware image!\n");
3622 mutex_unlock(&bnad_fwimg_mutex
);
3625 * Allocates sizeof(struct net_device + struct bnad)
3626 * bnad = netdev->priv
3628 netdev
= alloc_etherdev(sizeof(struct bnad
));
3633 bnad
= netdev_priv(netdev
);
3634 bnad_lock_init(bnad
);
3635 bnad
->id
= atomic_inc_return(&bna_id
) - 1;
3637 mutex_lock(&bnad
->conf_mutex
);
3639 * PCI initialization
3640 * Output : using_dac = 1 for 64 bit DMA
3641 * = 0 for 32 bit DMA
3644 err
= bnad_pci_init(bnad
, pdev
, &using_dac
);
3649 * Initialize bnad structure
3650 * Setup relation between pci_dev & netdev
3652 err
= bnad_init(bnad
, pdev
, netdev
);
3656 /* Initialize netdev structure, set up ethtool ops */
3657 bnad_netdev_init(bnad
, using_dac
);
3659 /* Set link to down state */
3660 netif_carrier_off(netdev
);
3662 /* Setup the debugfs node for this bfad */
3663 if (bna_debugfs_enable
)
3664 bnad_debugfs_init(bnad
);
3666 /* Get resource requirement form bna */
3667 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3668 bna_res_req(&bnad
->res_info
[0]);
3669 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3671 /* Allocate resources from bna */
3672 err
= bnad_res_alloc(bnad
, &bnad
->res_info
[0], BNA_RES_T_MAX
);
3678 /* Setup pcidev_info for bna_init() */
3679 pcidev_info
.pci_slot
= PCI_SLOT(bnad
->pcidev
->devfn
);
3680 pcidev_info
.pci_func
= PCI_FUNC(bnad
->pcidev
->devfn
);
3681 pcidev_info
.device_id
= bnad
->pcidev
->device
;
3682 pcidev_info
.pci_bar_kva
= bnad
->bar0
;
3684 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3685 bna_init(bna
, bnad
, &pcidev_info
, &bnad
->res_info
[0]);
3686 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3688 bnad
->stats
.bna_stats
= &bna
->stats
;
3690 bnad_enable_msix(bnad
);
3691 err
= bnad_mbox_irq_alloc(bnad
);
3696 setup_timer(&bnad
->bna
.ioceth
.ioc
.ioc_timer
, bnad_ioc_timeout
,
3697 (unsigned long)bnad
);
3698 setup_timer(&bnad
->bna
.ioceth
.ioc
.hb_timer
, bnad_ioc_hb_check
,
3699 (unsigned long)bnad
);
3700 setup_timer(&bnad
->bna
.ioceth
.ioc
.iocpf_timer
, bnad_iocpf_timeout
,
3701 (unsigned long)bnad
);
3702 setup_timer(&bnad
->bna
.ioceth
.ioc
.sem_timer
, bnad_iocpf_sem_timeout
,
3703 (unsigned long)bnad
);
3707 * If the call back comes with error, we bail out.
3708 * This is a catastrophic error.
3710 err
= bnad_ioceth_enable(bnad
);
3712 dev_err(&pdev
->dev
, "initialization failed err=%d\n", err
);
3716 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3717 if (bna_num_txq_set(bna
, BNAD_NUM_TXQ
+ 1) ||
3718 bna_num_rxp_set(bna
, BNAD_NUM_RXP
+ 1)) {
3719 bnad_q_num_adjust(bnad
, bna_attr(bna
)->num_txq
- 1,
3720 bna_attr(bna
)->num_rxp
- 1);
3721 if (bna_num_txq_set(bna
, BNAD_NUM_TXQ
+ 1) ||
3722 bna_num_rxp_set(bna
, BNAD_NUM_RXP
+ 1))
3725 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3727 goto disable_ioceth
;
3729 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3730 bna_mod_res_req(&bnad
->bna
, &bnad
->mod_res_info
[0]);
3731 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3733 err
= bnad_res_alloc(bnad
, &bnad
->mod_res_info
[0], BNA_MOD_RES_T_MAX
);
3736 goto disable_ioceth
;
3739 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3740 bna_mod_init(&bnad
->bna
, &bnad
->mod_res_info
[0]);
3741 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3743 /* Get the burnt-in mac */
3744 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3745 bna_enet_perm_mac_get(&bna
->enet
, bnad
->perm_addr
);
3746 bnad_set_netdev_perm_addr(bnad
);
3747 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3749 mutex_unlock(&bnad
->conf_mutex
);
3751 /* Finally, reguister with net_device layer */
3752 err
= register_netdev(netdev
);
3754 dev_err(&pdev
->dev
, "registering net device failed\n");
3757 set_bit(BNAD_RF_NETDEV_REGISTERED
, &bnad
->run_flags
);
3762 mutex_unlock(&bnad
->conf_mutex
);
3766 mutex_lock(&bnad
->conf_mutex
);
3767 bnad_res_free(bnad
, &bnad
->mod_res_info
[0], BNA_MOD_RES_T_MAX
);
3769 bnad_ioceth_disable(bnad
);
3770 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.ioc_timer
);
3771 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.sem_timer
);
3772 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.hb_timer
);
3773 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3775 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3776 bnad_mbox_irq_free(bnad
);
3777 bnad_disable_msix(bnad
);
3779 bnad_res_free(bnad
, &bnad
->res_info
[0], BNA_RES_T_MAX
);
3781 /* Remove the debugfs node for this bnad */
3782 kfree(bnad
->regdata
);
3783 bnad_debugfs_uninit(bnad
);
3786 bnad_pci_uninit(pdev
);
3788 mutex_unlock(&bnad
->conf_mutex
);
3789 bnad_lock_uninit(bnad
);
3790 free_netdev(netdev
);
3795 bnad_pci_remove(struct pci_dev
*pdev
)
3797 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3800 unsigned long flags
;
3805 bnad
= netdev_priv(netdev
);
3808 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED
, &bnad
->run_flags
))
3809 unregister_netdev(netdev
);
3811 mutex_lock(&bnad
->conf_mutex
);
3812 bnad_ioceth_disable(bnad
);
3813 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.ioc_timer
);
3814 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.sem_timer
);
3815 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.hb_timer
);
3816 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3818 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3820 bnad_res_free(bnad
, &bnad
->mod_res_info
[0], BNA_MOD_RES_T_MAX
);
3821 bnad_res_free(bnad
, &bnad
->res_info
[0], BNA_RES_T_MAX
);
3822 bnad_mbox_irq_free(bnad
);
3823 bnad_disable_msix(bnad
);
3824 bnad_pci_uninit(pdev
);
3825 mutex_unlock(&bnad
->conf_mutex
);
3826 bnad_lock_uninit(bnad
);
3827 /* Remove the debugfs node for this bnad */
3828 kfree(bnad
->regdata
);
3829 bnad_debugfs_uninit(bnad
);
3831 free_netdev(netdev
);
3834 static const struct pci_device_id bnad_pci_id_table
[] = {
3836 PCI_DEVICE(PCI_VENDOR_ID_BROCADE
,
3837 PCI_DEVICE_ID_BROCADE_CT
),
3838 .class = PCI_CLASS_NETWORK_ETHERNET
<< 8,
3839 .class_mask
= 0xffff00
3842 PCI_DEVICE(PCI_VENDOR_ID_BROCADE
,
3843 BFA_PCI_DEVICE_ID_CT2
),
3844 .class = PCI_CLASS_NETWORK_ETHERNET
<< 8,
3845 .class_mask
= 0xffff00
3850 MODULE_DEVICE_TABLE(pci
, bnad_pci_id_table
);
3852 static struct pci_driver bnad_pci_driver
= {
3854 .id_table
= bnad_pci_id_table
,
3855 .probe
= bnad_pci_probe
,
3856 .remove
= bnad_pci_remove
,
3860 bnad_module_init(void)
3864 pr_info("bna: QLogic BR-series 10G Ethernet driver - version: %s\n",
3867 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover
);
3869 err
= pci_register_driver(&bnad_pci_driver
);
3871 pr_err("bna: PCI driver registration failed err=%d\n", err
);
3879 bnad_module_exit(void)
3881 pci_unregister_driver(&bnad_pci_driver
);
3882 release_firmware(bfi_fw
);
3885 module_init(bnad_module_init
);
3886 module_exit(bnad_module_exit
);
3888 MODULE_AUTHOR("Brocade");
3889 MODULE_LICENSE("GPL");
3890 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3891 MODULE_VERSION(BNAD_VERSION
);
3892 MODULE_FIRMWARE(CNA_FW_FILE_CT
);
3893 MODULE_FIRMWARE(CNA_FW_FILE_CT2
);