1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
23 [link no longer provides useful info -jgarzik]
27 * big endian support with CFG:BEM instead of cpu_to_le32
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h> /* Processor type for cache alignment. */
54 #include <asm/uaccess.h>
56 #define DRV_NAME "natsemi"
57 #define DRV_VERSION "2.1"
58 #define DRV_RELDATE "Sept 11, 2006"
62 /* Updated to recommendations in pci-skeleton v2.03. */
64 /* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
72 static int debug
= -1;
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
78 static const int multicast_filter_limit
= 100;
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak
;
84 static int dspcfg_workaround
= 1;
86 /* Used to pass the media type, etc.
87 Both 'options[]' and 'full_duplex[]' should exist for driver
89 The media type is usually passed in 'options[]'.
91 #define MAX_UNITS 8 /* More are supported, limit only on options */
92 static int options
[MAX_UNITS
];
93 static int full_duplex
[MAX_UNITS
];
95 /* Operational parameters that are set at compile time. */
97 /* Keep the ring sizes a power of two for compile efficiency.
98 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99 Making the Tx ring too large decreases the effectiveness of channel
100 bonding and packet priority.
101 There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE 16
103 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE 32
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT (2*HZ)
110 #define NATSEMI_HW_TIMEOUT 400
111 #define NATSEMI_TIMER_FREQ 5*HZ
112 #define NATSEMI_PG0_NREGS 64
113 #define NATSEMI_RFDR_NREGS 8
114 #define NATSEMI_PG1_NREGS 4
115 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
117 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
124 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
127 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
129 /* These identify the driver base version and may not be removed. */
130 static const char version
[] =
131 KERN_INFO DRV_NAME
" dp8381x driver, version "
132 DRV_VERSION
", " DRV_RELDATE
"\n"
133 " originally by Donald Becker <becker@scyld.com>\n"
134 " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
140 module_param(mtu
, int, 0);
141 module_param(debug
, int, 0);
142 module_param(rx_copybreak
, int, 0);
143 module_param(dspcfg_workaround
, int, 0);
144 module_param_array(options
, int, NULL
, 0);
145 module_param_array(full_duplex
, int, NULL
, 0);
146 MODULE_PARM_DESC(mtu
, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug
, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak
,
149 "DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround
, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options
,
152 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex
, "DP8381x full duplex setting(s) (1)");
158 I. Board Compatibility
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
163 II. Board-specific settings
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
168 III. Driver operation
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
178 IIIb/c. Transmit/Receive Structure
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack. Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames. New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets. When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine. Copying also preloads the cache, which is
196 most useful with small frames.
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing. On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
203 IIId. Synchronization
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 receive and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
224 * Support for fibre connections on Am79C874:
225 * This phy needs a special setup when connected to a fibre cable.
226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
228 #define PHYID_AM79C874 0x0022561b
231 MII_MCTRL
= 0x15, /* mode control register */
232 MII_FX_SEL
= 0x0001, /* 100BASE-FX (fiber) */
233 MII_EN_SCRM
= 0x0004, /* enable scrambler (tp) */
237 NATSEMI_FLAG_IGNORE_PHY
= 0x1,
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
244 unsigned int eeprom_size
;
245 } natsemi_pci_info
[] = {
246 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY
, 128 },
247 { "NatSemi DP8381[56]", 0, 24 },
250 static const struct pci_device_id natsemi_pci_tbl
[] = {
251 { PCI_VENDOR_ID_NS
, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
252 { PCI_VENDOR_ID_NS
, 0x0020, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 1 },
253 { } /* terminate list */
255 MODULE_DEVICE_TABLE(pci
, natsemi_pci_tbl
);
257 /* Offsets to the device registers.
258 Unlike software-only systems, device drivers interact with complex hardware.
259 It's not useful to define symbolic names for every register bit in the
262 enum register_offsets
{
270 IntrHoldoff
= 0x1C, /* DP83816 only */
297 /* These are from the spec, around page 78... on a separate table.
298 * The meaning of these registers depend on the value of PGSEL. */
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL 0x0
308 #define DSPCFG_VAL 0x5040
309 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
314 /* misc PCI space registers */
315 enum pci_register_offsets
{
329 enum ChipConfig_bits
{
333 CfgAnegEnable
= 0x2000,
335 CfgAnegFull
= 0x8000,
336 CfgAnegDone
= 0x8000000,
337 CfgFullDuplex
= 0x20000000,
338 CfgSpeed100
= 0x40000000,
339 CfgLink
= 0x80000000,
345 EE_ChipSelect
= 0x08,
352 enum PCIBusCfg_bits
{
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits
{
361 IntrRxEarly
= 0x0008,
363 IntrRxOverrun
= 0x0020,
368 IntrTxUnderrun
= 0x0400,
373 IntrHighBits
= 0x8000,
374 RxStatusFIFOOver
= 0x10000,
375 IntrPCIErr
= 0xf00000,
376 RxResetDone
= 0x1000000,
377 TxResetDone
= 0x2000000,
378 IntrAbnormalSummary
= 0xCD20,
382 * Default Interrupts:
383 * Rx OK, Rx Packet Error, Rx Overrun,
384 * Tx OK, Tx Packet Error, Tx Underrun,
385 * MIB Service, Phy Interrupt, High Bits,
386 * Rx Status FIFO overrun,
387 * Received Target Abort, Received Master Abort,
388 * Signalled System Error, Received Parity Error
390 #define DEFAULT_INTR 0x00f1cd65
395 TxMxdmaMask
= 0x700000,
397 TxMxdma_4
= 0x100000,
398 TxMxdma_8
= 0x200000,
399 TxMxdma_16
= 0x300000,
400 TxMxdma_32
= 0x400000,
401 TxMxdma_64
= 0x500000,
402 TxMxdma_128
= 0x600000,
403 TxMxdma_256
= 0x700000,
404 TxCollRetry
= 0x800000,
405 TxAutoPad
= 0x10000000,
406 TxMacLoop
= 0x20000000,
407 TxHeartIgn
= 0x40000000,
408 TxCarrierIgn
= 0x80000000
413 * - 256 byte DMA burst length
414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
416 * when 64 byte are in the fifo)
417 * - on tx underruns, increase drain threshold by 64.
418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
419 * threshold and the drain threshold must be less than 2016 bytes.
422 #define TX_FLTH_VAL ((512/32) << 8)
423 #define TX_DRTH_VAL_START (64/32)
424 #define TX_DRTH_VAL_INC 2
425 #define TX_DRTH_VAL_LIMIT (1472/32)
429 RxMxdmaMask
= 0x700000,
431 RxMxdma_4
= 0x100000,
432 RxMxdma_8
= 0x200000,
433 RxMxdma_16
= 0x300000,
434 RxMxdma_32
= 0x400000,
435 RxMxdma_64
= 0x500000,
436 RxMxdma_128
= 0x600000,
437 RxMxdma_256
= 0x700000,
438 RxAcceptLong
= 0x8000000,
439 RxAcceptTx
= 0x10000000,
440 RxAcceptRunt
= 0x40000000,
441 RxAcceptErr
= 0x80000000
443 #define RX_DRTH_VAL (128/8)
461 WakeMagicSecure
= 0x400,
462 SecureHack
= 0x100000,
464 WokeUnicast
= 0x800000,
465 WokeMulticast
= 0x1000000,
466 WokeBroadcast
= 0x2000000,
468 WokePMatch0
= 0x8000000,
469 WokePMatch1
= 0x10000000,
470 WokePMatch2
= 0x20000000,
471 WokePMatch3
= 0x40000000,
472 WokeMagic
= 0x80000000,
473 WakeOptsSummary
= 0x7ff
476 enum RxFilterAddr_bits
{
477 RFCRAddressMask
= 0x3ff,
478 AcceptMulticast
= 0x00200000,
479 AcceptMyPhys
= 0x08000000,
480 AcceptAllPhys
= 0x10000000,
481 AcceptAllMulticast
= 0x20000000,
482 AcceptBroadcast
= 0x40000000,
483 RxFilterEnable
= 0x80000000
486 enum StatsCtrl_bits
{
493 enum MIntrCtrl_bits
{
501 #define PHY_ADDR_NONE 32
502 #define PHY_ADDR_INTERNAL 1
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C 0x0302
506 #define SRR_DP83815_D 0x0403
507 #define SRR_DP83816_A4 0x0504
508 #define SRR_DP83816_A5 0x0505
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
520 /* Bits in network_desc.status */
521 enum desc_status_bits
{
522 DescOwn
=0x80000000, DescMore
=0x40000000, DescIntr
=0x20000000,
523 DescNoCRC
=0x10000000, DescPktOK
=0x08000000,
526 DescTxAbort
=0x04000000, DescTxFIFO
=0x02000000,
527 DescTxCarrier
=0x01000000, DescTxDefer
=0x00800000,
528 DescTxExcDefer
=0x00400000, DescTxOOWCol
=0x00200000,
529 DescTxExcColl
=0x00100000, DescTxCollCount
=0x000f0000,
531 DescRxAbort
=0x04000000, DescRxOver
=0x02000000,
532 DescRxDest
=0x01800000, DescRxLong
=0x00400000,
533 DescRxRunt
=0x00200000, DescRxInvalid
=0x00100000,
534 DescRxCRC
=0x00080000, DescRxAlign
=0x00040000,
535 DescRxLoop
=0x00020000, DesRxColl
=0x00010000,
538 struct netdev_private
{
539 /* Descriptor rings first for alignment */
541 struct netdev_desc
*rx_ring
;
542 struct netdev_desc
*tx_ring
;
543 /* The addresses of receive-in-place skbuffs */
544 struct sk_buff
*rx_skbuff
[RX_RING_SIZE
];
545 dma_addr_t rx_dma
[RX_RING_SIZE
];
546 /* address of a sent-in-place packet/buffer, for later free() */
547 struct sk_buff
*tx_skbuff
[TX_RING_SIZE
];
548 dma_addr_t tx_dma
[TX_RING_SIZE
];
549 struct net_device
*dev
;
550 void __iomem
*ioaddr
;
551 struct napi_struct napi
;
552 /* Media monitoring timer */
553 struct timer_list timer
;
554 /* Frequently used values: keep some adjacent for cache effect */
555 struct pci_dev
*pci_dev
;
556 struct netdev_desc
*rx_head_desc
;
557 /* Producer/consumer ring indices */
558 unsigned int cur_rx
, dirty_rx
;
559 unsigned int cur_tx
, dirty_tx
;
560 /* Based on MTU+slack. */
561 unsigned int rx_buf_sz
;
563 /* Interrupt status */
565 /* Do not touch the nic registers */
567 /* Don't pay attention to the reported link state. */
569 /* external phy that is used: only valid if dev->if_port != PORT_TP */
571 int phy_addr_external
;
572 unsigned int full_duplex
;
576 /* FIFO and PCI burst thresholds */
577 u32 tx_config
, rx_config
;
578 /* original contents of ClkRun register */
580 /* silicon revision */
582 /* expected DSPCFG value */
584 int dspcfg_workaround
;
585 /* parms saved in ethtool format */
586 u16 speed
; /* The forced speed, 10Mb, 100Mb, gigabit */
587 u8 duplex
; /* Duplex, half or full */
588 u8 autoneg
; /* Autonegotiation enabled */
589 /* MII transceiver section */
598 static void move_int_phy(struct net_device
*dev
, int addr
);
599 static int eeprom_read(void __iomem
*ioaddr
, int location
);
600 static int mdio_read(struct net_device
*dev
, int reg
);
601 static void mdio_write(struct net_device
*dev
, int reg
, u16 data
);
602 static void init_phy_fixup(struct net_device
*dev
);
603 static int miiport_read(struct net_device
*dev
, int phy_id
, int reg
);
604 static void miiport_write(struct net_device
*dev
, int phy_id
, int reg
, u16 data
);
605 static int find_mii(struct net_device
*dev
);
606 static void natsemi_reset(struct net_device
*dev
);
607 static void natsemi_reload_eeprom(struct net_device
*dev
);
608 static void natsemi_stop_rxtx(struct net_device
*dev
);
609 static int netdev_open(struct net_device
*dev
);
610 static void do_cable_magic(struct net_device
*dev
);
611 static void undo_cable_magic(struct net_device
*dev
);
612 static void check_link(struct net_device
*dev
);
613 static void netdev_timer(unsigned long data
);
614 static void dump_ring(struct net_device
*dev
);
615 static void ns_tx_timeout(struct net_device
*dev
);
616 static int alloc_ring(struct net_device
*dev
);
617 static void refill_rx(struct net_device
*dev
);
618 static void init_ring(struct net_device
*dev
);
619 static void drain_tx(struct net_device
*dev
);
620 static void drain_ring(struct net_device
*dev
);
621 static void free_ring(struct net_device
*dev
);
622 static void reinit_ring(struct net_device
*dev
);
623 static void init_registers(struct net_device
*dev
);
624 static netdev_tx_t
start_tx(struct sk_buff
*skb
, struct net_device
*dev
);
625 static irqreturn_t
intr_handler(int irq
, void *dev_instance
);
626 static void netdev_error(struct net_device
*dev
, int intr_status
);
627 static int natsemi_poll(struct napi_struct
*napi
, int budget
);
628 static void netdev_rx(struct net_device
*dev
, int *work_done
, int work_to_do
);
629 static void netdev_tx_done(struct net_device
*dev
);
630 static int natsemi_change_mtu(struct net_device
*dev
, int new_mtu
);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device
*dev
);
634 static void __set_rx_mode(struct net_device
*dev
);
635 static void set_rx_mode(struct net_device
*dev
);
636 static void __get_stats(struct net_device
*dev
);
637 static struct net_device_stats
*get_stats(struct net_device
*dev
);
638 static int netdev_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
639 static int netdev_set_wol(struct net_device
*dev
, u32 newval
);
640 static int netdev_get_wol(struct net_device
*dev
, u32
*supported
, u32
*cur
);
641 static int netdev_set_sopass(struct net_device
*dev
, u8
*newval
);
642 static int netdev_get_sopass(struct net_device
*dev
, u8
*data
);
643 static int netdev_get_ecmd(struct net_device
*dev
, struct ethtool_cmd
*ecmd
);
644 static int netdev_set_ecmd(struct net_device
*dev
, struct ethtool_cmd
*ecmd
);
645 static void enable_wol_mode(struct net_device
*dev
, int enable_intr
);
646 static int netdev_close(struct net_device
*dev
);
647 static int netdev_get_regs(struct net_device
*dev
, u8
*buf
);
648 static int netdev_get_eeprom(struct net_device
*dev
, u8
*buf
);
649 static const struct ethtool_ops ethtool_ops
;
651 #define NATSEMI_ATTR(_name) \
652 static ssize_t natsemi_show_##_name(struct device *dev, \
653 struct device_attribute *attr, char *buf); \
654 static ssize_t natsemi_set_##_name(struct device *dev, \
655 struct device_attribute *attr, \
656 const char *buf, size_t count); \
657 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
659 #define NATSEMI_CREATE_FILE(_dev, _name) \
660 device_create_file(&_dev->dev, &dev_attr_##_name)
661 #define NATSEMI_REMOVE_FILE(_dev, _name) \
662 device_remove_file(&_dev->dev, &dev_attr_##_name)
664 NATSEMI_ATTR(dspcfg_workaround
);
666 static ssize_t
natsemi_show_dspcfg_workaround(struct device
*dev
,
667 struct device_attribute
*attr
,
670 struct netdev_private
*np
= netdev_priv(to_net_dev(dev
));
672 return sprintf(buf
, "%s\n", np
->dspcfg_workaround
? "on" : "off");
675 static ssize_t
natsemi_set_dspcfg_workaround(struct device
*dev
,
676 struct device_attribute
*attr
,
677 const char *buf
, size_t count
)
679 struct netdev_private
*np
= netdev_priv(to_net_dev(dev
));
683 /* Find out the new setting */
684 if (!strncmp("on", buf
, count
- 1) || !strncmp("1", buf
, count
- 1))
686 else if (!strncmp("off", buf
, count
- 1) ||
687 !strncmp("0", buf
, count
- 1))
692 spin_lock_irqsave(&np
->lock
, flags
);
694 np
->dspcfg_workaround
= new_setting
;
696 spin_unlock_irqrestore(&np
->lock
, flags
);
701 static inline void __iomem
*ns_ioaddr(struct net_device
*dev
)
703 struct netdev_private
*np
= netdev_priv(dev
);
708 static inline void natsemi_irq_enable(struct net_device
*dev
)
710 writel(1, ns_ioaddr(dev
) + IntrEnable
);
711 readl(ns_ioaddr(dev
) + IntrEnable
);
714 static inline void natsemi_irq_disable(struct net_device
*dev
)
716 writel(0, ns_ioaddr(dev
) + IntrEnable
);
717 readl(ns_ioaddr(dev
) + IntrEnable
);
720 static void move_int_phy(struct net_device
*dev
, int addr
)
722 struct netdev_private
*np
= netdev_priv(dev
);
723 void __iomem
*ioaddr
= ns_ioaddr(dev
);
727 * The internal phy is visible on the external mii bus. Therefore we must
728 * move it away before we can send commands to an external phy.
729 * There are two addresses we must avoid:
730 * - the address on the external phy that is used for transmission.
731 * - the address that we want to access. User space can access phys
732 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
733 * phy that is used for transmission.
738 if (target
== np
->phy_addr_external
)
740 writew(target
, ioaddr
+ PhyCtrl
);
741 readw(ioaddr
+ PhyCtrl
);
745 static void natsemi_init_media(struct net_device
*dev
)
747 struct netdev_private
*np
= netdev_priv(dev
);
751 netif_carrier_on(dev
);
753 netif_carrier_off(dev
);
755 /* get the initial settings from hardware */
756 tmp
= mdio_read(dev
, MII_BMCR
);
757 np
->speed
= (tmp
& BMCR_SPEED100
)? SPEED_100
: SPEED_10
;
758 np
->duplex
= (tmp
& BMCR_FULLDPLX
)? DUPLEX_FULL
: DUPLEX_HALF
;
759 np
->autoneg
= (tmp
& BMCR_ANENABLE
)? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
760 np
->advertising
= mdio_read(dev
, MII_ADVERTISE
);
762 if ((np
->advertising
& ADVERTISE_ALL
) != ADVERTISE_ALL
&&
763 netif_msg_probe(np
)) {
764 printk(KERN_INFO
"natsemi %s: Transceiver default autonegotiation %s "
766 pci_name(np
->pci_dev
),
767 (mdio_read(dev
, MII_BMCR
) & BMCR_ANENABLE
)?
768 "enabled, advertise" : "disabled, force",
770 (ADVERTISE_100FULL
|ADVERTISE_100HALF
))?
773 (ADVERTISE_100FULL
|ADVERTISE_10FULL
))?
776 if (netif_msg_probe(np
))
778 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
779 pci_name(np
->pci_dev
), mdio_read(dev
, MII_BMSR
),
784 static const struct net_device_ops natsemi_netdev_ops
= {
785 .ndo_open
= netdev_open
,
786 .ndo_stop
= netdev_close
,
787 .ndo_start_xmit
= start_tx
,
788 .ndo_get_stats
= get_stats
,
789 .ndo_set_rx_mode
= set_rx_mode
,
790 .ndo_change_mtu
= natsemi_change_mtu
,
791 .ndo_do_ioctl
= netdev_ioctl
,
792 .ndo_tx_timeout
= ns_tx_timeout
,
793 .ndo_set_mac_address
= eth_mac_addr
,
794 .ndo_validate_addr
= eth_validate_addr
,
795 #ifdef CONFIG_NET_POLL_CONTROLLER
796 .ndo_poll_controller
= natsemi_poll_controller
,
800 static int natsemi_probe1(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
802 struct net_device
*dev
;
803 struct netdev_private
*np
;
804 int i
, option
, irq
, chip_idx
= ent
->driver_data
;
805 static int find_cnt
= -1;
806 resource_size_t iostart
;
807 unsigned long iosize
;
808 void __iomem
*ioaddr
;
809 const int pcibar
= 1; /* PCI base address register */
813 /* when built into the kernel, we only print version if device is found */
815 static int printed_version
;
816 if (!printed_version
++)
820 i
= pci_enable_device(pdev
);
823 /* natsemi has a non-standard PM control register
824 * in PCI config space. Some boards apparently need
825 * to be brought to D0 in this manner.
827 pci_read_config_dword(pdev
, PCIPM
, &tmp
);
828 if (tmp
& PCI_PM_CTRL_STATE_MASK
) {
829 /* D0 state, disable PME assertion */
830 u32 newtmp
= tmp
& ~PCI_PM_CTRL_STATE_MASK
;
831 pci_write_config_dword(pdev
, PCIPM
, newtmp
);
835 iostart
= pci_resource_start(pdev
, pcibar
);
836 iosize
= pci_resource_len(pdev
, pcibar
);
839 pci_set_master(pdev
);
841 dev
= alloc_etherdev(sizeof (struct netdev_private
));
844 SET_NETDEV_DEV(dev
, &pdev
->dev
);
846 i
= pci_request_regions(pdev
, DRV_NAME
);
848 goto err_pci_request_regions
;
850 ioaddr
= ioremap(iostart
, iosize
);
856 /* Work around the dropped serial bit. */
857 prev_eedata
= eeprom_read(ioaddr
, 6);
858 for (i
= 0; i
< 3; i
++) {
859 int eedata
= eeprom_read(ioaddr
, i
+ 7);
860 dev
->dev_addr
[i
*2] = (eedata
<< 1) + (prev_eedata
>> 15);
861 dev
->dev_addr
[i
*2+1] = eedata
>> 7;
862 prev_eedata
= eedata
;
865 np
= netdev_priv(dev
);
868 netif_napi_add(dev
, &np
->napi
, natsemi_poll
, 64);
872 pci_set_drvdata(pdev
, dev
);
874 spin_lock_init(&np
->lock
);
875 np
->msg_enable
= (debug
>= 0) ? (1<<debug
)-1 : NATSEMI_DEF_MSG
;
878 np
->eeprom_size
= natsemi_pci_info
[chip_idx
].eeprom_size
;
879 if (natsemi_pci_info
[chip_idx
].flags
& NATSEMI_FLAG_IGNORE_PHY
)
883 np
->dspcfg_workaround
= dspcfg_workaround
;
886 * - If configured to ignore the PHY set up for external.
887 * - If the nic was configured to use an external phy and if find_mii
888 * finds a phy: use external port, first phy that replies.
889 * - Otherwise: internal port.
890 * Note that the phy address for the internal phy doesn't matter:
891 * The address would be used to access a phy over the mii bus, but
892 * the internal phy is accessed through mapped registers.
894 if (np
->ignore_phy
|| readl(ioaddr
+ ChipConfig
) & CfgExtPhy
)
895 dev
->if_port
= PORT_MII
;
897 dev
->if_port
= PORT_TP
;
898 /* Reset the chip to erase previous misconfiguration. */
899 natsemi_reload_eeprom(dev
);
902 if (dev
->if_port
!= PORT_TP
) {
903 np
->phy_addr_external
= find_mii(dev
);
904 /* If we're ignoring the PHY it doesn't matter if we can't
906 if (!np
->ignore_phy
&& np
->phy_addr_external
== PHY_ADDR_NONE
) {
907 dev
->if_port
= PORT_TP
;
908 np
->phy_addr_external
= PHY_ADDR_INTERNAL
;
911 np
->phy_addr_external
= PHY_ADDR_INTERNAL
;
914 option
= find_cnt
< MAX_UNITS
? options
[find_cnt
] : 0;
915 /* The lower four bits are the media type. */
921 "natsemi %s: ignoring user supplied media type %d",
922 pci_name(np
->pci_dev
), option
& 15);
924 if (find_cnt
< MAX_UNITS
&& full_duplex
[find_cnt
])
927 dev
->netdev_ops
= &natsemi_netdev_ops
;
928 dev
->watchdog_timeo
= TX_TIMEOUT
;
930 dev
->ethtool_ops
= ðtool_ops
;
935 natsemi_init_media(dev
);
937 /* save the silicon revision for later querying */
938 np
->srr
= readl(ioaddr
+ SiliconRev
);
939 if (netif_msg_hw(np
))
940 printk(KERN_INFO
"natsemi %s: silicon revision %#04x.\n",
941 pci_name(np
->pci_dev
), np
->srr
);
943 i
= register_netdev(dev
);
945 goto err_register_netdev
;
946 i
= NATSEMI_CREATE_FILE(pdev
, dspcfg_workaround
);
948 goto err_create_file
;
950 if (netif_msg_drv(np
)) {
951 printk(KERN_INFO
"natsemi %s: %s at %#08llx "
953 dev
->name
, natsemi_pci_info
[chip_idx
].name
,
954 (unsigned long long)iostart
, pci_name(np
->pci_dev
),
956 if (dev
->if_port
== PORT_TP
)
957 printk(", port TP.\n");
958 else if (np
->ignore_phy
)
959 printk(", port MII, ignoring PHY\n");
961 printk(", port MII, phy ad %d.\n", np
->phy_addr_external
);
966 unregister_netdev(dev
);
972 pci_release_regions(pdev
);
974 err_pci_request_regions
:
980 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
981 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
983 /* Delay between EEPROM clock transitions.
984 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
985 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
986 made udelay() unreliable.
987 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
990 #define eeprom_delay(ee_addr) readl(ee_addr)
992 #define EE_Write0 (EE_ChipSelect)
993 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
995 /* The EEPROM commands include the alway-set leading bit. */
997 EE_WriteCmd
=(5 << 6), EE_ReadCmd
=(6 << 6), EE_EraseCmd
=(7 << 6),
1000 static int eeprom_read(void __iomem
*addr
, int location
)
1004 void __iomem
*ee_addr
= addr
+ EECtrl
;
1005 int read_cmd
= location
| EE_ReadCmd
;
1007 writel(EE_Write0
, ee_addr
);
1009 /* Shift the read command bits out. */
1010 for (i
= 10; i
>= 0; i
--) {
1011 short dataval
= (read_cmd
& (1 << i
)) ? EE_Write1
: EE_Write0
;
1012 writel(dataval
, ee_addr
);
1013 eeprom_delay(ee_addr
);
1014 writel(dataval
| EE_ShiftClk
, ee_addr
);
1015 eeprom_delay(ee_addr
);
1017 writel(EE_ChipSelect
, ee_addr
);
1018 eeprom_delay(ee_addr
);
1020 for (i
= 0; i
< 16; i
++) {
1021 writel(EE_ChipSelect
| EE_ShiftClk
, ee_addr
);
1022 eeprom_delay(ee_addr
);
1023 retval
|= (readl(ee_addr
) & EE_DataOut
) ? 1 << i
: 0;
1024 writel(EE_ChipSelect
, ee_addr
);
1025 eeprom_delay(ee_addr
);
1028 /* Terminate the EEPROM access. */
1029 writel(EE_Write0
, ee_addr
);
1034 /* MII transceiver control section.
1035 * The 83815 series has an internal transceiver, and we present the
1036 * internal management registers as if they were MII connected.
1037 * External Phy registers are referenced through the MII interface.
1040 /* clock transitions >= 20ns (25MHz)
1041 * One readl should be good to PCI @ 100MHz
1043 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1045 static int mii_getbit (struct net_device
*dev
)
1048 void __iomem
*ioaddr
= ns_ioaddr(dev
);
1050 writel(MII_ShiftClk
, ioaddr
+ EECtrl
);
1051 data
= readl(ioaddr
+ EECtrl
);
1052 writel(0, ioaddr
+ EECtrl
);
1054 return (data
& MII_Data
)? 1 : 0;
1057 static void mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1060 void __iomem
*ioaddr
= ns_ioaddr(dev
);
1062 for (i
= (1 << (len
-1)); i
; i
>>= 1)
1064 u32 mdio_val
= MII_Write
| ((data
& i
)? MII_Data
: 0);
1065 writel(mdio_val
, ioaddr
+ EECtrl
);
1067 writel(mdio_val
| MII_ShiftClk
, ioaddr
+ EECtrl
);
1070 writel(0, ioaddr
+ EECtrl
);
1074 static int miiport_read(struct net_device
*dev
, int phy_id
, int reg
)
1081 mii_send_bits (dev
, 0xffffffff, 32);
1082 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1083 /* ST,OP = 0110'b for read operation */
1084 cmd
= (0x06 << 10) | (phy_id
<< 5) | reg
;
1085 mii_send_bits (dev
, cmd
, 14);
1087 if (mii_getbit (dev
))
1090 for (i
= 0; i
< 16; i
++) {
1092 retval
|= mii_getbit (dev
);
1099 static void miiport_write(struct net_device
*dev
, int phy_id
, int reg
, u16 data
)
1104 mii_send_bits (dev
, 0xffffffff, 32);
1105 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1106 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1107 cmd
= (0x5002 << 16) | (phy_id
<< 23) | (reg
<< 18) | data
;
1108 mii_send_bits (dev
, cmd
, 32);
1113 static int mdio_read(struct net_device
*dev
, int reg
)
1115 struct netdev_private
*np
= netdev_priv(dev
);
1116 void __iomem
*ioaddr
= ns_ioaddr(dev
);
1118 /* The 83815 series has two ports:
1119 * - an internal transceiver
1120 * - an external mii bus
1122 if (dev
->if_port
== PORT_TP
)
1123 return readw(ioaddr
+BasicControl
+(reg
<<2));
1125 return miiport_read(dev
, np
->phy_addr_external
, reg
);
1128 static void mdio_write(struct net_device
*dev
, int reg
, u16 data
)
1130 struct netdev_private
*np
= netdev_priv(dev
);
1131 void __iomem
*ioaddr
= ns_ioaddr(dev
);
1133 /* The 83815 series has an internal transceiver; handle separately */
1134 if (dev
->if_port
== PORT_TP
)
1135 writew(data
, ioaddr
+BasicControl
+(reg
<<2));
1137 miiport_write(dev
, np
->phy_addr_external
, reg
, data
);
1140 static void init_phy_fixup(struct net_device
*dev
)
1142 struct netdev_private
*np
= netdev_priv(dev
);
1143 void __iomem
*ioaddr
= ns_ioaddr(dev
);
1148 /* restore stuff lost when power was out */
1149 tmp
= mdio_read(dev
, MII_BMCR
);
1150 if (np
->autoneg
== AUTONEG_ENABLE
) {
1151 /* renegotiate if something changed */
1152 if ((tmp
& BMCR_ANENABLE
) == 0 ||
1153 np
->advertising
!= mdio_read(dev
, MII_ADVERTISE
))
1155 /* turn on autonegotiation and force negotiation */
1156 tmp
|= (BMCR_ANENABLE
| BMCR_ANRESTART
);
1157 mdio_write(dev
, MII_ADVERTISE
, np
->advertising
);
1160 /* turn off auto negotiation, set speed and duplexity */
1161 tmp
&= ~(BMCR_ANENABLE
| BMCR_SPEED100
| BMCR_FULLDPLX
);
1162 if (np
->speed
== SPEED_100
)
1163 tmp
|= BMCR_SPEED100
;
1164 if (np
->duplex
== DUPLEX_FULL
)
1165 tmp
|= BMCR_FULLDPLX
;
1167 * Note: there is no good way to inform the link partner
1168 * that our capabilities changed. The user has to unplug
1169 * and replug the network cable after some changes, e.g.
1170 * after switching from 10HD, autoneg off to 100 HD,
1174 mdio_write(dev
, MII_BMCR
, tmp
);
1175 readl(ioaddr
+ ChipConfig
);
1178 /* find out what phy this is */
1179 np
->mii
= (mdio_read(dev
, MII_PHYSID1
) << 16)
1180 + mdio_read(dev
, MII_PHYSID2
);
1182 /* handle external phys here */
1184 case PHYID_AM79C874
:
1185 /* phy specific configuration for fibre/tp operation */
1186 tmp
= mdio_read(dev
, MII_MCTRL
);
1187 tmp
&= ~(MII_FX_SEL
| MII_EN_SCRM
);
1188 if (dev
->if_port
== PORT_FIBRE
)
1192 mdio_write(dev
, MII_MCTRL
, tmp
);
1197 cfg
= readl(ioaddr
+ ChipConfig
);
1198 if (cfg
& CfgExtPhy
)
1201 /* On page 78 of the spec, they recommend some settings for "optimum
1202 performance" to be done in sequence. These settings optimize some
1203 of the 100Mbit autodetection circuitry. They say we only want to
1204 do this for rev C of the chip, but engineers at NSC (Bradley
1205 Kennedy) recommends always setting them. If you don't, you get
1206 errors on some autonegotiations that make the device unusable.
1208 It seems that the DSP needs a few usec to reinitialize after
1209 the start of the phy. Just retry writing these values until they
1212 for (i
=0;i
<NATSEMI_HW_TIMEOUT
;i
++) {
1215 writew(1, ioaddr
+ PGSEL
);
1216 writew(PMDCSR_VAL
, ioaddr
+ PMDCSR
);
1217 writew(TSTDAT_VAL
, ioaddr
+ TSTDAT
);
1218 np
->dspcfg
= (np
->srr
<= SRR_DP83815_C
)?
1219 DSPCFG_VAL
: (DSPCFG_COEF
| readw(ioaddr
+ DSPCFG
));
1220 writew(np
->dspcfg
, ioaddr
+ DSPCFG
);
1221 writew(SDCFG_VAL
, ioaddr
+ SDCFG
);
1222 writew(0, ioaddr
+ PGSEL
);
1223 readl(ioaddr
+ ChipConfig
);
1226 writew(1, ioaddr
+ PGSEL
);
1227 dspcfg
= readw(ioaddr
+ DSPCFG
);
1228 writew(0, ioaddr
+ PGSEL
);
1229 if (np
->dspcfg
== dspcfg
)
1233 if (netif_msg_link(np
)) {
1234 if (i
==NATSEMI_HW_TIMEOUT
) {
1236 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1240 "%s: DSPCFG accepted after %d usec.\n",
1245 * Enable PHY Specific event based interrupts. Link state change
1246 * and Auto-Negotiation Completion are among the affected.
1247 * Read the intr status to clear it (needed for wake events).
1249 readw(ioaddr
+ MIntrStatus
);
1250 writew(MICRIntEn
, ioaddr
+ MIntrCtrl
);
1253 static int switch_port_external(struct net_device
*dev
)
1255 struct netdev_private
*np
= netdev_priv(dev
);
1256 void __iomem
*ioaddr
= ns_ioaddr(dev
);
1259 cfg
= readl(ioaddr
+ ChipConfig
);
1260 if (cfg
& CfgExtPhy
)
1263 if (netif_msg_link(np
)) {
1264 printk(KERN_INFO
"%s: switching to external transceiver.\n",
1268 /* 1) switch back to external phy */
1269 writel(cfg
| (CfgExtPhy
| CfgPhyDis
), ioaddr
+ ChipConfig
);
1270 readl(ioaddr
+ ChipConfig
);
1273 /* 2) reset the external phy: */
1274 /* resetting the external PHY has been known to cause a hub supplying
1275 * power over Ethernet to kill the power. We don't want to kill
1276 * power to this computer, so we avoid resetting the phy.
1279 /* 3) reinit the phy fixup, it got lost during power down. */
1280 move_int_phy(dev
, np
->phy_addr_external
);
1281 init_phy_fixup(dev
);
1286 static int switch_port_internal(struct net_device
*dev
)
1288 struct netdev_private
*np
= netdev_priv(dev
);
1289 void __iomem
*ioaddr
= ns_ioaddr(dev
);
1294 cfg
= readl(ioaddr
+ ChipConfig
);
1295 if (!(cfg
&CfgExtPhy
))
1298 if (netif_msg_link(np
)) {
1299 printk(KERN_INFO
"%s: switching to internal transceiver.\n",
1302 /* 1) switch back to internal phy: */
1303 cfg
= cfg
& ~(CfgExtPhy
| CfgPhyDis
);
1304 writel(cfg
, ioaddr
+ ChipConfig
);
1305 readl(ioaddr
+ ChipConfig
);
1308 /* 2) reset the internal phy: */
1309 bmcr
= readw(ioaddr
+BasicControl
+(MII_BMCR
<<2));
1310 writel(bmcr
| BMCR_RESET
, ioaddr
+BasicControl
+(MII_BMCR
<<2));
1311 readl(ioaddr
+ ChipConfig
);
1313 for (i
=0;i
<NATSEMI_HW_TIMEOUT
;i
++) {
1314 bmcr
= readw(ioaddr
+BasicControl
+(MII_BMCR
<<2));
1315 if (!(bmcr
& BMCR_RESET
))
1319 if (i
==NATSEMI_HW_TIMEOUT
&& netif_msg_link(np
)) {
1321 "%s: phy reset did not complete in %d usec.\n",
1324 /* 3) reinit the phy fixup, it got lost during power down. */
1325 init_phy_fixup(dev
);
1330 /* Scan for a PHY on the external mii bus.
1331 * There are two tricky points:
1332 * - Do not scan while the internal phy is enabled. The internal phy will
1333 * crash: e.g. reads from the DSPCFG register will return odd values and
1334 * the nasty random phy reset code will reset the nic every few seconds.
1335 * - The internal phy must be moved around, an external phy could
1336 * have the same address as the internal phy.
1338 static int find_mii(struct net_device
*dev
)
1340 struct netdev_private
*np
= netdev_priv(dev
);
1345 /* Switch to external phy */
1346 did_switch
= switch_port_external(dev
);
1348 /* Scan the possible phy addresses:
1350 * PHY address 0 means that the phy is in isolate mode. Not yet
1351 * supported due to lack of test hardware. User space should
1352 * handle it through ethtool.
1354 for (i
= 1; i
<= 31; i
++) {
1355 move_int_phy(dev
, i
);
1356 tmp
= miiport_read(dev
, i
, MII_BMSR
);
1357 if (tmp
!= 0xffff && tmp
!= 0x0000) {
1358 /* found something! */
1359 np
->mii
= (mdio_read(dev
, MII_PHYSID1
) << 16)
1360 + mdio_read(dev
, MII_PHYSID2
);
1361 if (netif_msg_probe(np
)) {
1362 printk(KERN_INFO
"natsemi %s: found external phy %08x at address %d.\n",
1363 pci_name(np
->pci_dev
), np
->mii
, i
);
1368 /* And switch back to internal phy: */
1370 switch_port_internal(dev
);
1374 /* CFG bits [13:16] [18:23] */
1375 #define CFG_RESET_SAVE 0xfde000
1376 /* WCSR bits [0:4] [9:10] */
1377 #define WCSR_RESET_SAVE 0x61f
1378 /* RFCR bits [20] [22] [27:31] */
1379 #define RFCR_RESET_SAVE 0xf8500000
1381 static void natsemi_reset(struct net_device
*dev
)
1389 struct netdev_private
*np
= netdev_priv(dev
);
1390 void __iomem
*ioaddr
= ns_ioaddr(dev
);
1393 * Resetting the chip causes some registers to be lost.
1394 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1395 * we save the state that would have been loaded from EEPROM
1396 * on a normal power-up (see the spec EEPROM map). This assumes
1397 * whoever calls this will follow up with init_registers() eventually.
1401 cfg
= readl(ioaddr
+ ChipConfig
) & CFG_RESET_SAVE
;
1403 wcsr
= readl(ioaddr
+ WOLCmd
) & WCSR_RESET_SAVE
;
1405 rfcr
= readl(ioaddr
+ RxFilterAddr
) & RFCR_RESET_SAVE
;
1407 for (i
= 0; i
< 3; i
++) {
1408 writel(i
*2, ioaddr
+ RxFilterAddr
);
1409 pmatch
[i
] = readw(ioaddr
+ RxFilterData
);
1412 for (i
= 0; i
< 3; i
++) {
1413 writel(0xa+(i
*2), ioaddr
+ RxFilterAddr
);
1414 sopass
[i
] = readw(ioaddr
+ RxFilterData
);
1417 /* now whack the chip */
1418 writel(ChipReset
, ioaddr
+ ChipCmd
);
1419 for (i
=0;i
<NATSEMI_HW_TIMEOUT
;i
++) {
1420 if (!(readl(ioaddr
+ ChipCmd
) & ChipReset
))
1424 if (i
==NATSEMI_HW_TIMEOUT
) {
1425 printk(KERN_WARNING
"%s: reset did not complete in %d usec.\n",
1427 } else if (netif_msg_hw(np
)) {
1428 printk(KERN_DEBUG
"%s: reset completed in %d usec.\n",
1433 cfg
|= readl(ioaddr
+ ChipConfig
) & ~CFG_RESET_SAVE
;
1434 /* turn on external phy if it was selected */
1435 if (dev
->if_port
== PORT_TP
)
1436 cfg
&= ~(CfgExtPhy
| CfgPhyDis
);
1438 cfg
|= (CfgExtPhy
| CfgPhyDis
);
1439 writel(cfg
, ioaddr
+ ChipConfig
);
1441 wcsr
|= readl(ioaddr
+ WOLCmd
) & ~WCSR_RESET_SAVE
;
1442 writel(wcsr
, ioaddr
+ WOLCmd
);
1444 rfcr
|= readl(ioaddr
+ RxFilterAddr
) & ~RFCR_RESET_SAVE
;
1445 /* restore PMATCH */
1446 for (i
= 0; i
< 3; i
++) {
1447 writel(i
*2, ioaddr
+ RxFilterAddr
);
1448 writew(pmatch
[i
], ioaddr
+ RxFilterData
);
1450 for (i
= 0; i
< 3; i
++) {
1451 writel(0xa+(i
*2), ioaddr
+ RxFilterAddr
);
1452 writew(sopass
[i
], ioaddr
+ RxFilterData
);
1455 writel(rfcr
, ioaddr
+ RxFilterAddr
);
1458 static void reset_rx(struct net_device
*dev
)
1461 struct netdev_private
*np
= netdev_priv(dev
);
1462 void __iomem
*ioaddr
= ns_ioaddr(dev
);
1464 np
->intr_status
&= ~RxResetDone
;
1466 writel(RxReset
, ioaddr
+ ChipCmd
);
1468 for (i
=0;i
<NATSEMI_HW_TIMEOUT
;i
++) {
1469 np
->intr_status
|= readl(ioaddr
+ IntrStatus
);
1470 if (np
->intr_status
& RxResetDone
)
1474 if (i
==NATSEMI_HW_TIMEOUT
) {
1475 printk(KERN_WARNING
"%s: RX reset did not complete in %d usec.\n",
1477 } else if (netif_msg_hw(np
)) {
1478 printk(KERN_WARNING
"%s: RX reset took %d usec.\n",
1483 static void natsemi_reload_eeprom(struct net_device
*dev
)
1485 struct netdev_private
*np
= netdev_priv(dev
);
1486 void __iomem
*ioaddr
= ns_ioaddr(dev
);
1489 writel(EepromReload
, ioaddr
+ PCIBusCfg
);
1490 for (i
=0;i
<NATSEMI_HW_TIMEOUT
;i
++) {
1492 if (!(readl(ioaddr
+ PCIBusCfg
) & EepromReload
))
1495 if (i
==NATSEMI_HW_TIMEOUT
) {
1496 printk(KERN_WARNING
"natsemi %s: EEPROM did not reload in %d usec.\n",
1497 pci_name(np
->pci_dev
), i
*50);
1498 } else if (netif_msg_hw(np
)) {
1499 printk(KERN_DEBUG
"natsemi %s: EEPROM reloaded in %d usec.\n",
1500 pci_name(np
->pci_dev
), i
*50);
1504 static void natsemi_stop_rxtx(struct net_device
*dev
)
1506 void __iomem
* ioaddr
= ns_ioaddr(dev
);
1507 struct netdev_private
*np
= netdev_priv(dev
);
1510 writel(RxOff
| TxOff
, ioaddr
+ ChipCmd
);
1511 for(i
=0;i
< NATSEMI_HW_TIMEOUT
;i
++) {
1512 if ((readl(ioaddr
+ ChipCmd
) & (TxOn
|RxOn
)) == 0)
1516 if (i
==NATSEMI_HW_TIMEOUT
) {
1517 printk(KERN_WARNING
"%s: Tx/Rx process did not stop in %d usec.\n",
1519 } else if (netif_msg_hw(np
)) {
1520 printk(KERN_DEBUG
"%s: Tx/Rx process stopped in %d usec.\n",
1525 static int netdev_open(struct net_device
*dev
)
1527 struct netdev_private
*np
= netdev_priv(dev
);
1528 void __iomem
* ioaddr
= ns_ioaddr(dev
);
1529 const int irq
= np
->pci_dev
->irq
;
1532 /* Reset the chip, just in case. */
1535 i
= request_irq(irq
, intr_handler
, IRQF_SHARED
, dev
->name
, dev
);
1538 if (netif_msg_ifup(np
))
1539 printk(KERN_DEBUG
"%s: netdev_open() irq %d.\n",
1541 i
= alloc_ring(dev
);
1546 napi_enable(&np
->napi
);
1549 spin_lock_irq(&np
->lock
);
1550 init_registers(dev
);
1551 /* now set the MAC address according to dev->dev_addr */
1552 for (i
= 0; i
< 3; i
++) {
1553 u16 mac
= (dev
->dev_addr
[2*i
+1]<<8) + dev
->dev_addr
[2*i
];
1555 writel(i
*2, ioaddr
+ RxFilterAddr
);
1556 writew(mac
, ioaddr
+ RxFilterData
);
1558 writel(np
->cur_rx_mode
, ioaddr
+ RxFilterAddr
);
1559 spin_unlock_irq(&np
->lock
);
1561 netif_start_queue(dev
);
1563 if (netif_msg_ifup(np
))
1564 printk(KERN_DEBUG
"%s: Done netdev_open(), status: %#08x.\n",
1565 dev
->name
, (int)readl(ioaddr
+ ChipCmd
));
1567 /* Set the timer to check for link beat. */
1568 init_timer(&np
->timer
);
1569 np
->timer
.expires
= round_jiffies(jiffies
+ NATSEMI_TIMER_FREQ
);
1570 np
->timer
.data
= (unsigned long)dev
;
1571 np
->timer
.function
= netdev_timer
; /* timer handler */
1572 add_timer(&np
->timer
);
1577 static void do_cable_magic(struct net_device
*dev
)
1579 struct netdev_private
*np
= netdev_priv(dev
);
1580 void __iomem
*ioaddr
= ns_ioaddr(dev
);
1582 if (dev
->if_port
!= PORT_TP
)
1585 if (np
->srr
>= SRR_DP83816_A5
)
1589 * 100 MBit links with short cables can trip an issue with the chip.
1590 * The problem manifests as lots of CRC errors and/or flickering
1591 * activity LED while idle. This process is based on instructions
1592 * from engineers at National.
1594 if (readl(ioaddr
+ ChipConfig
) & CfgSpeed100
) {
1597 writew(1, ioaddr
+ PGSEL
);
1599 * coefficient visibility should already be enabled via
1602 data
= readw(ioaddr
+ TSTDAT
) & 0xff;
1604 * the value must be negative, and within certain values
1605 * (these values all come from National)
1607 if (!(data
& 0x80) || ((data
>= 0xd8) && (data
<= 0xff))) {
1608 np
= netdev_priv(dev
);
1610 /* the bug has been triggered - fix the coefficient */
1611 writew(TSTDAT_FIXED
, ioaddr
+ TSTDAT
);
1612 /* lock the value */
1613 data
= readw(ioaddr
+ DSPCFG
);
1614 np
->dspcfg
= data
| DSPCFG_LOCK
;
1615 writew(np
->dspcfg
, ioaddr
+ DSPCFG
);
1617 writew(0, ioaddr
+ PGSEL
);
1621 static void undo_cable_magic(struct net_device
*dev
)
1624 struct netdev_private
*np
= netdev_priv(dev
);
1625 void __iomem
* ioaddr
= ns_ioaddr(dev
);
1627 if (dev
->if_port
!= PORT_TP
)
1630 if (np
->srr
>= SRR_DP83816_A5
)
1633 writew(1, ioaddr
+ PGSEL
);
1634 /* make sure the lock bit is clear */
1635 data
= readw(ioaddr
+ DSPCFG
);
1636 np
->dspcfg
= data
& ~DSPCFG_LOCK
;
1637 writew(np
->dspcfg
, ioaddr
+ DSPCFG
);
1638 writew(0, ioaddr
+ PGSEL
);
1641 static void check_link(struct net_device
*dev
)
1643 struct netdev_private
*np
= netdev_priv(dev
);
1644 void __iomem
* ioaddr
= ns_ioaddr(dev
);
1645 int duplex
= np
->duplex
;
1648 /* If we are ignoring the PHY then don't try reading it. */
1650 goto propagate_state
;
1652 /* The link status field is latched: it remains low after a temporary
1653 * link failure until it's read. We need the current link status,
1656 mdio_read(dev
, MII_BMSR
);
1657 bmsr
= mdio_read(dev
, MII_BMSR
);
1659 if (!(bmsr
& BMSR_LSTATUS
)) {
1660 if (netif_carrier_ok(dev
)) {
1661 if (netif_msg_link(np
))
1662 printk(KERN_NOTICE
"%s: link down.\n",
1664 netif_carrier_off(dev
);
1665 undo_cable_magic(dev
);
1669 if (!netif_carrier_ok(dev
)) {
1670 if (netif_msg_link(np
))
1671 printk(KERN_NOTICE
"%s: link up.\n", dev
->name
);
1672 netif_carrier_on(dev
);
1673 do_cable_magic(dev
);
1676 duplex
= np
->full_duplex
;
1678 if (bmsr
& BMSR_ANEGCOMPLETE
) {
1679 int tmp
= mii_nway_result(
1680 np
->advertising
& mdio_read(dev
, MII_LPA
));
1681 if (tmp
== LPA_100FULL
|| tmp
== LPA_10FULL
)
1683 } else if (mdio_read(dev
, MII_BMCR
) & BMCR_FULLDPLX
)
1688 /* if duplex is set then bit 28 must be set, too */
1689 if (duplex
^ !!(np
->rx_config
& RxAcceptTx
)) {
1690 if (netif_msg_link(np
))
1692 "%s: Setting %s-duplex based on negotiated "
1693 "link capability.\n", dev
->name
,
1694 duplex
? "full" : "half");
1696 np
->rx_config
|= RxAcceptTx
;
1697 np
->tx_config
|= TxCarrierIgn
| TxHeartIgn
;
1699 np
->rx_config
&= ~RxAcceptTx
;
1700 np
->tx_config
&= ~(TxCarrierIgn
| TxHeartIgn
);
1702 writel(np
->tx_config
, ioaddr
+ TxConfig
);
1703 writel(np
->rx_config
, ioaddr
+ RxConfig
);
1707 static void init_registers(struct net_device
*dev
)
1709 struct netdev_private
*np
= netdev_priv(dev
);
1710 void __iomem
* ioaddr
= ns_ioaddr(dev
);
1712 init_phy_fixup(dev
);
1714 /* clear any interrupts that are pending, such as wake events */
1715 readl(ioaddr
+ IntrStatus
);
1717 writel(np
->ring_dma
, ioaddr
+ RxRingPtr
);
1718 writel(np
->ring_dma
+ RX_RING_SIZE
* sizeof(struct netdev_desc
),
1719 ioaddr
+ TxRingPtr
);
1721 /* Initialize other registers.
1722 * Configure the PCI bus bursts and FIFO thresholds.
1723 * Configure for standard, in-spec Ethernet.
1724 * Start with half-duplex. check_link will update
1725 * to the correct settings.
1728 /* DRTH: 2: start tx if 64 bytes are in the fifo
1729 * FLTH: 0x10: refill with next packet if 512 bytes are free
1730 * MXDMA: 0: up to 256 byte bursts.
1731 * MXDMA must be <= FLTH
1735 np
->tx_config
= TxAutoPad
| TxCollRetry
| TxMxdma_256
|
1736 TX_FLTH_VAL
| TX_DRTH_VAL_START
;
1737 writel(np
->tx_config
, ioaddr
+ TxConfig
);
1739 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1740 * MXDMA 0: up to 256 byte bursts
1742 np
->rx_config
= RxMxdma_256
| RX_DRTH_VAL
;
1743 /* if receive ring now has bigger buffers than normal, enable jumbo */
1744 if (np
->rx_buf_sz
> NATSEMI_LONGPKT
)
1745 np
->rx_config
|= RxAcceptLong
;
1747 writel(np
->rx_config
, ioaddr
+ RxConfig
);
1750 * The PME bit is initialized from the EEPROM contents.
1751 * PCI cards probably have PME disabled, but motherboard
1752 * implementations may have PME set to enable WakeOnLan.
1753 * With PME set the chip will scan incoming packets but
1754 * nothing will be written to memory. */
1755 np
->SavedClkRun
= readl(ioaddr
+ ClkRun
);
1756 writel(np
->SavedClkRun
& ~PMEEnable
, ioaddr
+ ClkRun
);
1757 if (np
->SavedClkRun
& PMEStatus
&& netif_msg_wol(np
)) {
1758 printk(KERN_NOTICE
"%s: Wake-up event %#08x\n",
1759 dev
->name
, readl(ioaddr
+ WOLCmd
));
1765 /* Enable interrupts by setting the interrupt mask. */
1766 writel(DEFAULT_INTR
, ioaddr
+ IntrMask
);
1767 natsemi_irq_enable(dev
);
1769 writel(RxOn
| TxOn
, ioaddr
+ ChipCmd
);
1770 writel(StatsClear
, ioaddr
+ StatsCtrl
); /* Clear Stats */
1776 * 1) check for link changes. Usually they are handled by the MII interrupt
1777 * but it doesn't hurt to check twice.
1778 * 2) check for sudden death of the NIC:
1779 * It seems that a reference set for this chip went out with incorrect info,
1780 * and there exist boards that aren't quite right. An unexpected voltage
1781 * drop can cause the PHY to get itself in a weird state (basically reset).
1782 * NOTE: this only seems to affect revC chips. The user can disable
1783 * this check via dspcfg_workaround sysfs option.
1784 * 3) check of death of the RX path due to OOM
1786 static void netdev_timer(unsigned long data
)
1788 struct net_device
*dev
= (struct net_device
*)data
;
1789 struct netdev_private
*np
= netdev_priv(dev
);
1790 void __iomem
* ioaddr
= ns_ioaddr(dev
);
1791 int next_tick
= NATSEMI_TIMER_FREQ
;
1792 const int irq
= np
->pci_dev
->irq
;
1794 if (netif_msg_timer(np
)) {
1795 /* DO NOT read the IntrStatus register,
1796 * a read clears any pending interrupts.
1798 printk(KERN_DEBUG
"%s: Media selection timer tick.\n",
1802 if (dev
->if_port
== PORT_TP
) {
1805 spin_lock_irq(&np
->lock
);
1806 /* check for a nasty random phy-reset - use dspcfg as a flag */
1807 writew(1, ioaddr
+PGSEL
);
1808 dspcfg
= readw(ioaddr
+DSPCFG
);
1809 writew(0, ioaddr
+PGSEL
);
1810 if (np
->dspcfg_workaround
&& dspcfg
!= np
->dspcfg
) {
1811 if (!netif_queue_stopped(dev
)) {
1812 spin_unlock_irq(&np
->lock
);
1813 if (netif_msg_drv(np
))
1814 printk(KERN_NOTICE
"%s: possible phy reset: "
1815 "re-initializing\n", dev
->name
);
1817 spin_lock_irq(&np
->lock
);
1818 natsemi_stop_rxtx(dev
);
1821 init_registers(dev
);
1822 spin_unlock_irq(&np
->lock
);
1827 spin_unlock_irq(&np
->lock
);
1830 /* init_registers() calls check_link() for the above case */
1832 spin_unlock_irq(&np
->lock
);
1835 spin_lock_irq(&np
->lock
);
1837 spin_unlock_irq(&np
->lock
);
1845 writel(RxOn
, ioaddr
+ ChipCmd
);
1852 mod_timer(&np
->timer
, round_jiffies(jiffies
+ next_tick
));
1854 mod_timer(&np
->timer
, jiffies
+ next_tick
);
1857 static void dump_ring(struct net_device
*dev
)
1859 struct netdev_private
*np
= netdev_priv(dev
);
1861 if (netif_msg_pktdata(np
)) {
1863 printk(KERN_DEBUG
" Tx ring at %p:\n", np
->tx_ring
);
1864 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1865 printk(KERN_DEBUG
" #%d desc. %#08x %#08x %#08x.\n",
1866 i
, np
->tx_ring
[i
].next_desc
,
1867 np
->tx_ring
[i
].cmd_status
,
1868 np
->tx_ring
[i
].addr
);
1870 printk(KERN_DEBUG
" Rx ring %p:\n", np
->rx_ring
);
1871 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1872 printk(KERN_DEBUG
" #%d desc. %#08x %#08x %#08x.\n",
1873 i
, np
->rx_ring
[i
].next_desc
,
1874 np
->rx_ring
[i
].cmd_status
,
1875 np
->rx_ring
[i
].addr
);
1880 static void ns_tx_timeout(struct net_device
*dev
)
1882 struct netdev_private
*np
= netdev_priv(dev
);
1883 void __iomem
* ioaddr
= ns_ioaddr(dev
);
1884 const int irq
= np
->pci_dev
->irq
;
1887 spin_lock_irq(&np
->lock
);
1888 if (!np
->hands_off
) {
1889 if (netif_msg_tx_err(np
))
1891 "%s: Transmit timed out, status %#08x,"
1893 dev
->name
, readl(ioaddr
+ IntrStatus
));
1898 init_registers(dev
);
1901 "%s: tx_timeout while in hands_off state?\n",
1904 spin_unlock_irq(&np
->lock
);
1907 netif_trans_update(dev
); /* prevent tx timeout */
1908 dev
->stats
.tx_errors
++;
1909 netif_wake_queue(dev
);
1912 static int alloc_ring(struct net_device
*dev
)
1914 struct netdev_private
*np
= netdev_priv(dev
);
1915 np
->rx_ring
= pci_alloc_consistent(np
->pci_dev
,
1916 sizeof(struct netdev_desc
) * (RX_RING_SIZE
+TX_RING_SIZE
),
1920 np
->tx_ring
= &np
->rx_ring
[RX_RING_SIZE
];
1924 static void refill_rx(struct net_device
*dev
)
1926 struct netdev_private
*np
= netdev_priv(dev
);
1928 /* Refill the Rx ring buffers. */
1929 for (; np
->cur_rx
- np
->dirty_rx
> 0; np
->dirty_rx
++) {
1930 struct sk_buff
*skb
;
1931 int entry
= np
->dirty_rx
% RX_RING_SIZE
;
1932 if (np
->rx_skbuff
[entry
] == NULL
) {
1933 unsigned int buflen
= np
->rx_buf_sz
+NATSEMI_PADDING
;
1934 skb
= netdev_alloc_skb(dev
, buflen
);
1935 np
->rx_skbuff
[entry
] = skb
;
1937 break; /* Better luck next round. */
1938 np
->rx_dma
[entry
] = pci_map_single(np
->pci_dev
,
1939 skb
->data
, buflen
, PCI_DMA_FROMDEVICE
);
1940 if (pci_dma_mapping_error(np
->pci_dev
,
1941 np
->rx_dma
[entry
])) {
1942 dev_kfree_skb_any(skb
);
1943 np
->rx_skbuff
[entry
] = NULL
;
1944 break; /* Better luck next round. */
1946 np
->rx_ring
[entry
].addr
= cpu_to_le32(np
->rx_dma
[entry
]);
1948 np
->rx_ring
[entry
].cmd_status
= cpu_to_le32(np
->rx_buf_sz
);
1950 if (np
->cur_rx
- np
->dirty_rx
== RX_RING_SIZE
) {
1951 if (netif_msg_rx_err(np
))
1952 printk(KERN_WARNING
"%s: going OOM.\n", dev
->name
);
1957 static void set_bufsize(struct net_device
*dev
)
1959 struct netdev_private
*np
= netdev_priv(dev
);
1960 if (dev
->mtu
<= ETH_DATA_LEN
)
1961 np
->rx_buf_sz
= ETH_DATA_LEN
+ NATSEMI_HEADERS
;
1963 np
->rx_buf_sz
= dev
->mtu
+ NATSEMI_HEADERS
;
1966 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1967 static void init_ring(struct net_device
*dev
)
1969 struct netdev_private
*np
= netdev_priv(dev
);
1973 np
->dirty_tx
= np
->cur_tx
= 0;
1974 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1975 np
->tx_skbuff
[i
] = NULL
;
1976 np
->tx_ring
[i
].next_desc
= cpu_to_le32(np
->ring_dma
1977 +sizeof(struct netdev_desc
)
1978 *((i
+1)%TX_RING_SIZE
+RX_RING_SIZE
));
1979 np
->tx_ring
[i
].cmd_status
= 0;
1984 np
->cur_rx
= RX_RING_SIZE
;
1988 np
->rx_head_desc
= &np
->rx_ring
[0];
1990 /* Please be careful before changing this loop - at least gcc-2.95.1
1991 * miscompiles it otherwise.
1993 /* Initialize all Rx descriptors. */
1994 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1995 np
->rx_ring
[i
].next_desc
= cpu_to_le32(np
->ring_dma
1996 +sizeof(struct netdev_desc
)
1997 *((i
+1)%RX_RING_SIZE
));
1998 np
->rx_ring
[i
].cmd_status
= cpu_to_le32(DescOwn
);
1999 np
->rx_skbuff
[i
] = NULL
;
2005 static void drain_tx(struct net_device
*dev
)
2007 struct netdev_private
*np
= netdev_priv(dev
);
2010 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
2011 if (np
->tx_skbuff
[i
]) {
2012 pci_unmap_single(np
->pci_dev
,
2013 np
->tx_dma
[i
], np
->tx_skbuff
[i
]->len
,
2015 dev_kfree_skb(np
->tx_skbuff
[i
]);
2016 dev
->stats
.tx_dropped
++;
2018 np
->tx_skbuff
[i
] = NULL
;
2022 static void drain_rx(struct net_device
*dev
)
2024 struct netdev_private
*np
= netdev_priv(dev
);
2025 unsigned int buflen
= np
->rx_buf_sz
;
2028 /* Free all the skbuffs in the Rx queue. */
2029 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
2030 np
->rx_ring
[i
].cmd_status
= 0;
2031 np
->rx_ring
[i
].addr
= cpu_to_le32(0xBADF00D0); /* An invalid address. */
2032 if (np
->rx_skbuff
[i
]) {
2033 pci_unmap_single(np
->pci_dev
, np
->rx_dma
[i
],
2034 buflen
+ NATSEMI_PADDING
,
2035 PCI_DMA_FROMDEVICE
);
2036 dev_kfree_skb(np
->rx_skbuff
[i
]);
2038 np
->rx_skbuff
[i
] = NULL
;
2042 static void drain_ring(struct net_device
*dev
)
2048 static void free_ring(struct net_device
*dev
)
2050 struct netdev_private
*np
= netdev_priv(dev
);
2051 pci_free_consistent(np
->pci_dev
,
2052 sizeof(struct netdev_desc
) * (RX_RING_SIZE
+TX_RING_SIZE
),
2053 np
->rx_ring
, np
->ring_dma
);
2056 static void reinit_rx(struct net_device
*dev
)
2058 struct netdev_private
*np
= netdev_priv(dev
);
2063 np
->cur_rx
= RX_RING_SIZE
;
2064 np
->rx_head_desc
= &np
->rx_ring
[0];
2065 /* Initialize all Rx descriptors. */
2066 for (i
= 0; i
< RX_RING_SIZE
; i
++)
2067 np
->rx_ring
[i
].cmd_status
= cpu_to_le32(DescOwn
);
2072 static void reinit_ring(struct net_device
*dev
)
2074 struct netdev_private
*np
= netdev_priv(dev
);
2079 np
->dirty_tx
= np
->cur_tx
= 0;
2080 for (i
=0;i
<TX_RING_SIZE
;i
++)
2081 np
->tx_ring
[i
].cmd_status
= 0;
2086 static netdev_tx_t
start_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2088 struct netdev_private
*np
= netdev_priv(dev
);
2089 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2091 unsigned long flags
;
2093 /* Note: Ordering is important here, set the field with the
2094 "ownership" bit last, and only then increment cur_tx. */
2096 /* Calculate the next Tx descriptor entry. */
2097 entry
= np
->cur_tx
% TX_RING_SIZE
;
2099 np
->tx_skbuff
[entry
] = skb
;
2100 np
->tx_dma
[entry
] = pci_map_single(np
->pci_dev
,
2101 skb
->data
,skb
->len
, PCI_DMA_TODEVICE
);
2102 if (pci_dma_mapping_error(np
->pci_dev
, np
->tx_dma
[entry
])) {
2103 np
->tx_skbuff
[entry
] = NULL
;
2104 dev_kfree_skb_irq(skb
);
2105 dev
->stats
.tx_dropped
++;
2106 return NETDEV_TX_OK
;
2109 np
->tx_ring
[entry
].addr
= cpu_to_le32(np
->tx_dma
[entry
]);
2111 spin_lock_irqsave(&np
->lock
, flags
);
2113 if (!np
->hands_off
) {
2114 np
->tx_ring
[entry
].cmd_status
= cpu_to_le32(DescOwn
| skb
->len
);
2115 /* StrongARM: Explicitly cache flush np->tx_ring and
2116 * skb->data,skb->len. */
2119 if (np
->cur_tx
- np
->dirty_tx
>= TX_QUEUE_LEN
- 1) {
2120 netdev_tx_done(dev
);
2121 if (np
->cur_tx
- np
->dirty_tx
>= TX_QUEUE_LEN
- 1)
2122 netif_stop_queue(dev
);
2124 /* Wake the potentially-idle transmit channel. */
2125 writel(TxOn
, ioaddr
+ ChipCmd
);
2127 dev_kfree_skb_irq(skb
);
2128 dev
->stats
.tx_dropped
++;
2130 spin_unlock_irqrestore(&np
->lock
, flags
);
2132 if (netif_msg_tx_queued(np
)) {
2133 printk(KERN_DEBUG
"%s: Transmit frame #%d queued in slot %d.\n",
2134 dev
->name
, np
->cur_tx
, entry
);
2136 return NETDEV_TX_OK
;
2139 static void netdev_tx_done(struct net_device
*dev
)
2141 struct netdev_private
*np
= netdev_priv(dev
);
2143 for (; np
->cur_tx
- np
->dirty_tx
> 0; np
->dirty_tx
++) {
2144 int entry
= np
->dirty_tx
% TX_RING_SIZE
;
2145 if (np
->tx_ring
[entry
].cmd_status
& cpu_to_le32(DescOwn
))
2147 if (netif_msg_tx_done(np
))
2149 "%s: tx frame #%d finished, status %#08x.\n",
2150 dev
->name
, np
->dirty_tx
,
2151 le32_to_cpu(np
->tx_ring
[entry
].cmd_status
));
2152 if (np
->tx_ring
[entry
].cmd_status
& cpu_to_le32(DescPktOK
)) {
2153 dev
->stats
.tx_packets
++;
2154 dev
->stats
.tx_bytes
+= np
->tx_skbuff
[entry
]->len
;
2155 } else { /* Various Tx errors */
2157 le32_to_cpu(np
->tx_ring
[entry
].cmd_status
);
2158 if (tx_status
& (DescTxAbort
|DescTxExcColl
))
2159 dev
->stats
.tx_aborted_errors
++;
2160 if (tx_status
& DescTxFIFO
)
2161 dev
->stats
.tx_fifo_errors
++;
2162 if (tx_status
& DescTxCarrier
)
2163 dev
->stats
.tx_carrier_errors
++;
2164 if (tx_status
& DescTxOOWCol
)
2165 dev
->stats
.tx_window_errors
++;
2166 dev
->stats
.tx_errors
++;
2168 pci_unmap_single(np
->pci_dev
,np
->tx_dma
[entry
],
2169 np
->tx_skbuff
[entry
]->len
,
2171 /* Free the original skb. */
2172 dev_kfree_skb_irq(np
->tx_skbuff
[entry
]);
2173 np
->tx_skbuff
[entry
] = NULL
;
2175 if (netif_queue_stopped(dev
) &&
2176 np
->cur_tx
- np
->dirty_tx
< TX_QUEUE_LEN
- 4) {
2177 /* The ring is no longer full, wake queue. */
2178 netif_wake_queue(dev
);
2182 /* The interrupt handler doesn't actually handle interrupts itself, it
2183 * schedules a NAPI poll if there is anything to do. */
2184 static irqreturn_t
intr_handler(int irq
, void *dev_instance
)
2186 struct net_device
*dev
= dev_instance
;
2187 struct netdev_private
*np
= netdev_priv(dev
);
2188 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2190 /* Reading IntrStatus automatically acknowledges so don't do
2191 * that while interrupts are disabled, (for example, while a
2192 * poll is scheduled). */
2193 if (np
->hands_off
|| !readl(ioaddr
+ IntrEnable
))
2196 np
->intr_status
= readl(ioaddr
+ IntrStatus
);
2198 if (!np
->intr_status
)
2201 if (netif_msg_intr(np
))
2203 "%s: Interrupt, status %#08x, mask %#08x.\n",
2204 dev
->name
, np
->intr_status
,
2205 readl(ioaddr
+ IntrMask
));
2207 prefetch(&np
->rx_skbuff
[np
->cur_rx
% RX_RING_SIZE
]);
2209 if (napi_schedule_prep(&np
->napi
)) {
2210 /* Disable interrupts and register for poll */
2211 natsemi_irq_disable(dev
);
2212 __napi_schedule(&np
->napi
);
2215 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2216 dev
->name
, np
->intr_status
,
2217 readl(ioaddr
+ IntrMask
));
2222 /* This is the NAPI poll routine. As well as the standard RX handling
2223 * it also handles all other interrupts that the chip might raise.
2225 static int natsemi_poll(struct napi_struct
*napi
, int budget
)
2227 struct netdev_private
*np
= container_of(napi
, struct netdev_private
, napi
);
2228 struct net_device
*dev
= np
->dev
;
2229 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2233 if (netif_msg_intr(np
))
2235 "%s: Poll, status %#08x, mask %#08x.\n",
2236 dev
->name
, np
->intr_status
,
2237 readl(ioaddr
+ IntrMask
));
2239 /* netdev_rx() may read IntrStatus again if the RX state
2240 * machine falls over so do it first. */
2241 if (np
->intr_status
&
2242 (IntrRxDone
| IntrRxIntr
| RxStatusFIFOOver
|
2243 IntrRxErr
| IntrRxOverrun
)) {
2244 netdev_rx(dev
, &work_done
, budget
);
2247 if (np
->intr_status
&
2248 (IntrTxDone
| IntrTxIntr
| IntrTxIdle
| IntrTxErr
)) {
2249 spin_lock(&np
->lock
);
2250 netdev_tx_done(dev
);
2251 spin_unlock(&np
->lock
);
2254 /* Abnormal error summary/uncommon events handlers. */
2255 if (np
->intr_status
& IntrAbnormalSummary
)
2256 netdev_error(dev
, np
->intr_status
);
2258 if (work_done
>= budget
)
2261 np
->intr_status
= readl(ioaddr
+ IntrStatus
);
2262 } while (np
->intr_status
);
2264 napi_complete(napi
);
2266 /* Reenable interrupts providing nothing is trying to shut
2268 spin_lock(&np
->lock
);
2270 natsemi_irq_enable(dev
);
2271 spin_unlock(&np
->lock
);
2276 /* This routine is logically part of the interrupt handler, but separated
2277 for clarity and better register allocation. */
2278 static void netdev_rx(struct net_device
*dev
, int *work_done
, int work_to_do
)
2280 struct netdev_private
*np
= netdev_priv(dev
);
2281 int entry
= np
->cur_rx
% RX_RING_SIZE
;
2282 int boguscnt
= np
->dirty_rx
+ RX_RING_SIZE
- np
->cur_rx
;
2283 s32 desc_status
= le32_to_cpu(np
->rx_head_desc
->cmd_status
);
2284 unsigned int buflen
= np
->rx_buf_sz
;
2285 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2287 /* If the driver owns the next entry it's a new packet. Send it up. */
2288 while (desc_status
< 0) { /* e.g. & DescOwn */
2290 if (netif_msg_rx_status(np
))
2292 " netdev_rx() entry %d status was %#08x.\n",
2293 entry
, desc_status
);
2297 if (*work_done
>= work_to_do
)
2302 pkt_len
= (desc_status
& DescSizeMask
) - 4;
2303 if ((desc_status
&(DescMore
|DescPktOK
|DescRxLong
)) != DescPktOK
){
2304 if (desc_status
& DescMore
) {
2305 unsigned long flags
;
2307 if (netif_msg_rx_err(np
))
2309 "%s: Oversized(?) Ethernet "
2310 "frame spanned multiple "
2311 "buffers, entry %#08x "
2312 "status %#08x.\n", dev
->name
,
2313 np
->cur_rx
, desc_status
);
2314 dev
->stats
.rx_length_errors
++;
2316 /* The RX state machine has probably
2317 * locked up beneath us. Follow the
2318 * reset procedure documented in
2321 spin_lock_irqsave(&np
->lock
, flags
);
2324 writel(np
->ring_dma
, ioaddr
+ RxRingPtr
);
2326 spin_unlock_irqrestore(&np
->lock
, flags
);
2328 /* We'll enable RX on exit from this
2333 /* There was an error. */
2334 dev
->stats
.rx_errors
++;
2335 if (desc_status
& (DescRxAbort
|DescRxOver
))
2336 dev
->stats
.rx_over_errors
++;
2337 if (desc_status
& (DescRxLong
|DescRxRunt
))
2338 dev
->stats
.rx_length_errors
++;
2339 if (desc_status
& (DescRxInvalid
|DescRxAlign
))
2340 dev
->stats
.rx_frame_errors
++;
2341 if (desc_status
& DescRxCRC
)
2342 dev
->stats
.rx_crc_errors
++;
2344 } else if (pkt_len
> np
->rx_buf_sz
) {
2345 /* if this is the tail of a double buffer
2346 * packet, we've already counted the error
2347 * on the first part. Ignore the second half.
2350 struct sk_buff
*skb
;
2351 /* Omit CRC size. */
2352 /* Check if the packet is long enough to accept
2353 * without copying to a minimally-sized skbuff. */
2354 if (pkt_len
< rx_copybreak
&&
2355 (skb
= netdev_alloc_skb(dev
, pkt_len
+ RX_OFFSET
)) != NULL
) {
2356 /* 16 byte align the IP header */
2357 skb_reserve(skb
, RX_OFFSET
);
2358 pci_dma_sync_single_for_cpu(np
->pci_dev
,
2361 PCI_DMA_FROMDEVICE
);
2362 skb_copy_to_linear_data(skb
,
2363 np
->rx_skbuff
[entry
]->data
, pkt_len
);
2364 skb_put(skb
, pkt_len
);
2365 pci_dma_sync_single_for_device(np
->pci_dev
,
2368 PCI_DMA_FROMDEVICE
);
2370 pci_unmap_single(np
->pci_dev
, np
->rx_dma
[entry
],
2371 buflen
+ NATSEMI_PADDING
,
2372 PCI_DMA_FROMDEVICE
);
2373 skb_put(skb
= np
->rx_skbuff
[entry
], pkt_len
);
2374 np
->rx_skbuff
[entry
] = NULL
;
2376 skb
->protocol
= eth_type_trans(skb
, dev
);
2377 netif_receive_skb(skb
);
2378 dev
->stats
.rx_packets
++;
2379 dev
->stats
.rx_bytes
+= pkt_len
;
2381 entry
= (++np
->cur_rx
) % RX_RING_SIZE
;
2382 np
->rx_head_desc
= &np
->rx_ring
[entry
];
2383 desc_status
= le32_to_cpu(np
->rx_head_desc
->cmd_status
);
2387 /* Restart Rx engine if stopped. */
2389 mod_timer(&np
->timer
, jiffies
+ 1);
2391 writel(RxOn
, ioaddr
+ ChipCmd
);
2394 static void netdev_error(struct net_device
*dev
, int intr_status
)
2396 struct netdev_private
*np
= netdev_priv(dev
);
2397 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2399 spin_lock(&np
->lock
);
2400 if (intr_status
& LinkChange
) {
2401 u16 lpa
= mdio_read(dev
, MII_LPA
);
2402 if (mdio_read(dev
, MII_BMCR
) & BMCR_ANENABLE
&&
2403 netif_msg_link(np
)) {
2405 "%s: Autonegotiation advertising"
2406 " %#04x partner %#04x.\n", dev
->name
,
2407 np
->advertising
, lpa
);
2410 /* read MII int status to clear the flag */
2411 readw(ioaddr
+ MIntrStatus
);
2414 if (intr_status
& StatsMax
) {
2417 if (intr_status
& IntrTxUnderrun
) {
2418 if ((np
->tx_config
& TxDrthMask
) < TX_DRTH_VAL_LIMIT
) {
2419 np
->tx_config
+= TX_DRTH_VAL_INC
;
2420 if (netif_msg_tx_err(np
))
2422 "%s: increased tx threshold, txcfg %#08x.\n",
2423 dev
->name
, np
->tx_config
);
2425 if (netif_msg_tx_err(np
))
2427 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2428 dev
->name
, np
->tx_config
);
2430 writel(np
->tx_config
, ioaddr
+ TxConfig
);
2432 if (intr_status
& WOLPkt
&& netif_msg_wol(np
)) {
2433 int wol_status
= readl(ioaddr
+ WOLCmd
);
2434 printk(KERN_NOTICE
"%s: Link wake-up event %#08x\n",
2435 dev
->name
, wol_status
);
2437 if (intr_status
& RxStatusFIFOOver
) {
2438 if (netif_msg_rx_err(np
) && netif_msg_intr(np
)) {
2439 printk(KERN_NOTICE
"%s: Rx status FIFO overrun\n",
2442 dev
->stats
.rx_fifo_errors
++;
2443 dev
->stats
.rx_errors
++;
2445 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2446 if (intr_status
& IntrPCIErr
) {
2447 printk(KERN_NOTICE
"%s: PCI error %#08x\n", dev
->name
,
2448 intr_status
& IntrPCIErr
);
2449 dev
->stats
.tx_fifo_errors
++;
2450 dev
->stats
.tx_errors
++;
2451 dev
->stats
.rx_fifo_errors
++;
2452 dev
->stats
.rx_errors
++;
2454 spin_unlock(&np
->lock
);
2457 static void __get_stats(struct net_device
*dev
)
2459 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2461 /* The chip only need report frame silently dropped. */
2462 dev
->stats
.rx_crc_errors
+= readl(ioaddr
+ RxCRCErrs
);
2463 dev
->stats
.rx_missed_errors
+= readl(ioaddr
+ RxMissed
);
2466 static struct net_device_stats
*get_stats(struct net_device
*dev
)
2468 struct netdev_private
*np
= netdev_priv(dev
);
2470 /* The chip only need report frame silently dropped. */
2471 spin_lock_irq(&np
->lock
);
2472 if (netif_running(dev
) && !np
->hands_off
)
2474 spin_unlock_irq(&np
->lock
);
2479 #ifdef CONFIG_NET_POLL_CONTROLLER
2480 static void natsemi_poll_controller(struct net_device
*dev
)
2482 struct netdev_private
*np
= netdev_priv(dev
);
2483 const int irq
= np
->pci_dev
->irq
;
2486 intr_handler(irq
, dev
);
2491 #define HASH_TABLE 0x200
2492 static void __set_rx_mode(struct net_device
*dev
)
2494 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2495 struct netdev_private
*np
= netdev_priv(dev
);
2496 u8 mc_filter
[64]; /* Multicast hash filter */
2499 if (dev
->flags
& IFF_PROMISC
) { /* Set promiscuous. */
2500 rx_mode
= RxFilterEnable
| AcceptBroadcast
2501 | AcceptAllMulticast
| AcceptAllPhys
| AcceptMyPhys
;
2502 } else if ((netdev_mc_count(dev
) > multicast_filter_limit
) ||
2503 (dev
->flags
& IFF_ALLMULTI
)) {
2504 rx_mode
= RxFilterEnable
| AcceptBroadcast
2505 | AcceptAllMulticast
| AcceptMyPhys
;
2507 struct netdev_hw_addr
*ha
;
2510 memset(mc_filter
, 0, sizeof(mc_filter
));
2511 netdev_for_each_mc_addr(ha
, dev
) {
2512 int b
= (ether_crc(ETH_ALEN
, ha
->addr
) >> 23) & 0x1ff;
2513 mc_filter
[b
/8] |= (1 << (b
& 0x07));
2515 rx_mode
= RxFilterEnable
| AcceptBroadcast
2516 | AcceptMulticast
| AcceptMyPhys
;
2517 for (i
= 0; i
< 64; i
+= 2) {
2518 writel(HASH_TABLE
+ i
, ioaddr
+ RxFilterAddr
);
2519 writel((mc_filter
[i
+ 1] << 8) + mc_filter
[i
],
2520 ioaddr
+ RxFilterData
);
2523 writel(rx_mode
, ioaddr
+ RxFilterAddr
);
2524 np
->cur_rx_mode
= rx_mode
;
2527 static int natsemi_change_mtu(struct net_device
*dev
, int new_mtu
)
2529 if (new_mtu
< 64 || new_mtu
> NATSEMI_RX_LIMIT
-NATSEMI_HEADERS
)
2534 /* synchronized against open : rtnl_lock() held by caller */
2535 if (netif_running(dev
)) {
2536 struct netdev_private
*np
= netdev_priv(dev
);
2537 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2538 const int irq
= np
->pci_dev
->irq
;
2541 spin_lock(&np
->lock
);
2543 natsemi_stop_rxtx(dev
);
2544 /* drain rx queue */
2546 /* change buffers */
2549 writel(np
->ring_dma
, ioaddr
+ RxRingPtr
);
2550 /* restart engines */
2551 writel(RxOn
| TxOn
, ioaddr
+ ChipCmd
);
2552 spin_unlock(&np
->lock
);
2558 static void set_rx_mode(struct net_device
*dev
)
2560 struct netdev_private
*np
= netdev_priv(dev
);
2561 spin_lock_irq(&np
->lock
);
2564 spin_unlock_irq(&np
->lock
);
2567 static void get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2569 struct netdev_private
*np
= netdev_priv(dev
);
2570 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
2571 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
2572 strlcpy(info
->bus_info
, pci_name(np
->pci_dev
), sizeof(info
->bus_info
));
2575 static int get_regs_len(struct net_device
*dev
)
2577 return NATSEMI_REGS_SIZE
;
2580 static int get_eeprom_len(struct net_device
*dev
)
2582 struct netdev_private
*np
= netdev_priv(dev
);
2583 return np
->eeprom_size
;
2586 static int get_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2588 struct netdev_private
*np
= netdev_priv(dev
);
2589 spin_lock_irq(&np
->lock
);
2590 netdev_get_ecmd(dev
, ecmd
);
2591 spin_unlock_irq(&np
->lock
);
2595 static int set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2597 struct netdev_private
*np
= netdev_priv(dev
);
2599 spin_lock_irq(&np
->lock
);
2600 res
= netdev_set_ecmd(dev
, ecmd
);
2601 spin_unlock_irq(&np
->lock
);
2605 static void get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2607 struct netdev_private
*np
= netdev_priv(dev
);
2608 spin_lock_irq(&np
->lock
);
2609 netdev_get_wol(dev
, &wol
->supported
, &wol
->wolopts
);
2610 netdev_get_sopass(dev
, wol
->sopass
);
2611 spin_unlock_irq(&np
->lock
);
2614 static int set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2616 struct netdev_private
*np
= netdev_priv(dev
);
2618 spin_lock_irq(&np
->lock
);
2619 netdev_set_wol(dev
, wol
->wolopts
);
2620 res
= netdev_set_sopass(dev
, wol
->sopass
);
2621 spin_unlock_irq(&np
->lock
);
2625 static void get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *buf
)
2627 struct netdev_private
*np
= netdev_priv(dev
);
2628 regs
->version
= NATSEMI_REGS_VER
;
2629 spin_lock_irq(&np
->lock
);
2630 netdev_get_regs(dev
, buf
);
2631 spin_unlock_irq(&np
->lock
);
2634 static u32
get_msglevel(struct net_device
*dev
)
2636 struct netdev_private
*np
= netdev_priv(dev
);
2637 return np
->msg_enable
;
2640 static void set_msglevel(struct net_device
*dev
, u32 val
)
2642 struct netdev_private
*np
= netdev_priv(dev
);
2643 np
->msg_enable
= val
;
2646 static int nway_reset(struct net_device
*dev
)
2650 /* if autoneg is off, it's an error */
2651 tmp
= mdio_read(dev
, MII_BMCR
);
2652 if (tmp
& BMCR_ANENABLE
) {
2653 tmp
|= (BMCR_ANRESTART
);
2654 mdio_write(dev
, MII_BMCR
, tmp
);
2660 static u32
get_link(struct net_device
*dev
)
2662 /* LSTATUS is latched low until a read - so read twice */
2663 mdio_read(dev
, MII_BMSR
);
2664 return (mdio_read(dev
, MII_BMSR
)&BMSR_LSTATUS
) ? 1:0;
2667 static int get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
, u8
*data
)
2669 struct netdev_private
*np
= netdev_priv(dev
);
2673 eebuf
= kmalloc(np
->eeprom_size
, GFP_KERNEL
);
2677 eeprom
->magic
= PCI_VENDOR_ID_NS
| (PCI_DEVICE_ID_NS_83815
<<16);
2678 spin_lock_irq(&np
->lock
);
2679 res
= netdev_get_eeprom(dev
, eebuf
);
2680 spin_unlock_irq(&np
->lock
);
2682 memcpy(data
, eebuf
+eeprom
->offset
, eeprom
->len
);
2687 static const struct ethtool_ops ethtool_ops
= {
2688 .get_drvinfo
= get_drvinfo
,
2689 .get_regs_len
= get_regs_len
,
2690 .get_eeprom_len
= get_eeprom_len
,
2691 .get_settings
= get_settings
,
2692 .set_settings
= set_settings
,
2695 .get_regs
= get_regs
,
2696 .get_msglevel
= get_msglevel
,
2697 .set_msglevel
= set_msglevel
,
2698 .nway_reset
= nway_reset
,
2699 .get_link
= get_link
,
2700 .get_eeprom
= get_eeprom
,
2703 static int netdev_set_wol(struct net_device
*dev
, u32 newval
)
2705 struct netdev_private
*np
= netdev_priv(dev
);
2706 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2707 u32 data
= readl(ioaddr
+ WOLCmd
) & ~WakeOptsSummary
;
2709 /* translate to bitmasks this chip understands */
2710 if (newval
& WAKE_PHY
)
2712 if (newval
& WAKE_UCAST
)
2713 data
|= WakeUnicast
;
2714 if (newval
& WAKE_MCAST
)
2715 data
|= WakeMulticast
;
2716 if (newval
& WAKE_BCAST
)
2717 data
|= WakeBroadcast
;
2718 if (newval
& WAKE_ARP
)
2720 if (newval
& WAKE_MAGIC
)
2722 if (np
->srr
>= SRR_DP83815_D
) {
2723 if (newval
& WAKE_MAGICSECURE
) {
2724 data
|= WakeMagicSecure
;
2728 writel(data
, ioaddr
+ WOLCmd
);
2733 static int netdev_get_wol(struct net_device
*dev
, u32
*supported
, u32
*cur
)
2735 struct netdev_private
*np
= netdev_priv(dev
);
2736 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2737 u32 regval
= readl(ioaddr
+ WOLCmd
);
2739 *supported
= (WAKE_PHY
| WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
2740 | WAKE_ARP
| WAKE_MAGIC
);
2742 if (np
->srr
>= SRR_DP83815_D
) {
2743 /* SOPASS works on revD and higher */
2744 *supported
|= WAKE_MAGICSECURE
;
2748 /* translate from chip bitmasks */
2749 if (regval
& WakePhy
)
2751 if (regval
& WakeUnicast
)
2753 if (regval
& WakeMulticast
)
2755 if (regval
& WakeBroadcast
)
2757 if (regval
& WakeArp
)
2759 if (regval
& WakeMagic
)
2761 if (regval
& WakeMagicSecure
) {
2762 /* this can be on in revC, but it's broken */
2763 *cur
|= WAKE_MAGICSECURE
;
2769 static int netdev_set_sopass(struct net_device
*dev
, u8
*newval
)
2771 struct netdev_private
*np
= netdev_priv(dev
);
2772 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2773 u16
*sval
= (u16
*)newval
;
2776 if (np
->srr
< SRR_DP83815_D
) {
2780 /* enable writing to these registers by disabling the RX filter */
2781 addr
= readl(ioaddr
+ RxFilterAddr
) & ~RFCRAddressMask
;
2782 addr
&= ~RxFilterEnable
;
2783 writel(addr
, ioaddr
+ RxFilterAddr
);
2785 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2786 writel(addr
| 0xa, ioaddr
+ RxFilterAddr
);
2787 writew(sval
[0], ioaddr
+ RxFilterData
);
2789 writel(addr
| 0xc, ioaddr
+ RxFilterAddr
);
2790 writew(sval
[1], ioaddr
+ RxFilterData
);
2792 writel(addr
| 0xe, ioaddr
+ RxFilterAddr
);
2793 writew(sval
[2], ioaddr
+ RxFilterData
);
2795 /* re-enable the RX filter */
2796 writel(addr
| RxFilterEnable
, ioaddr
+ RxFilterAddr
);
2801 static int netdev_get_sopass(struct net_device
*dev
, u8
*data
)
2803 struct netdev_private
*np
= netdev_priv(dev
);
2804 void __iomem
* ioaddr
= ns_ioaddr(dev
);
2805 u16
*sval
= (u16
*)data
;
2808 if (np
->srr
< SRR_DP83815_D
) {
2809 sval
[0] = sval
[1] = sval
[2] = 0;
2813 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2814 addr
= readl(ioaddr
+ RxFilterAddr
) & ~RFCRAddressMask
;
2816 writel(addr
| 0xa, ioaddr
+ RxFilterAddr
);
2817 sval
[0] = readw(ioaddr
+ RxFilterData
);
2819 writel(addr
| 0xc, ioaddr
+ RxFilterAddr
);
2820 sval
[1] = readw(ioaddr
+ RxFilterData
);
2822 writel(addr
| 0xe, ioaddr
+ RxFilterAddr
);
2823 sval
[2] = readw(ioaddr
+ RxFilterData
);
2825 writel(addr
, ioaddr
+ RxFilterAddr
);
2830 static int netdev_get_ecmd(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2832 struct netdev_private
*np
= netdev_priv(dev
);
2835 ecmd
->port
= dev
->if_port
;
2836 ethtool_cmd_speed_set(ecmd
, np
->speed
);
2837 ecmd
->duplex
= np
->duplex
;
2838 ecmd
->autoneg
= np
->autoneg
;
2839 ecmd
->advertising
= 0;
2840 if (np
->advertising
& ADVERTISE_10HALF
)
2841 ecmd
->advertising
|= ADVERTISED_10baseT_Half
;
2842 if (np
->advertising
& ADVERTISE_10FULL
)
2843 ecmd
->advertising
|= ADVERTISED_10baseT_Full
;
2844 if (np
->advertising
& ADVERTISE_100HALF
)
2845 ecmd
->advertising
|= ADVERTISED_100baseT_Half
;
2846 if (np
->advertising
& ADVERTISE_100FULL
)
2847 ecmd
->advertising
|= ADVERTISED_100baseT_Full
;
2848 ecmd
->supported
= (SUPPORTED_Autoneg
|
2849 SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2850 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2851 SUPPORTED_TP
| SUPPORTED_MII
| SUPPORTED_FIBRE
);
2852 ecmd
->phy_address
= np
->phy_addr_external
;
2854 * We intentionally report the phy address of the external
2855 * phy, even if the internal phy is used. This is necessary
2856 * to work around a deficiency of the ethtool interface:
2857 * It's only possible to query the settings of the active
2859 * # ethtool -s ethX port mii
2860 * actually sends an ioctl to switch to port mii with the
2861 * settings that are used for the current active port.
2862 * If we would report a different phy address in this
2864 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2865 * would unintentionally change the phy address.
2867 * Fortunately the phy address doesn't matter with the
2871 /* set information based on active port type */
2872 switch (ecmd
->port
) {
2875 ecmd
->advertising
|= ADVERTISED_TP
;
2876 ecmd
->transceiver
= XCVR_INTERNAL
;
2879 ecmd
->advertising
|= ADVERTISED_MII
;
2880 ecmd
->transceiver
= XCVR_EXTERNAL
;
2883 ecmd
->advertising
|= ADVERTISED_FIBRE
;
2884 ecmd
->transceiver
= XCVR_EXTERNAL
;
2888 /* if autonegotiation is on, try to return the active speed/duplex */
2889 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
2890 ecmd
->advertising
|= ADVERTISED_Autoneg
;
2891 tmp
= mii_nway_result(
2892 np
->advertising
& mdio_read(dev
, MII_LPA
));
2893 if (tmp
== LPA_100FULL
|| tmp
== LPA_100HALF
)
2894 ethtool_cmd_speed_set(ecmd
, SPEED_100
);
2896 ethtool_cmd_speed_set(ecmd
, SPEED_10
);
2897 if (tmp
== LPA_100FULL
|| tmp
== LPA_10FULL
)
2898 ecmd
->duplex
= DUPLEX_FULL
;
2900 ecmd
->duplex
= DUPLEX_HALF
;
2903 /* ignore maxtxpkt, maxrxpkt for now */
2908 static int netdev_set_ecmd(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2910 struct netdev_private
*np
= netdev_priv(dev
);
2912 if (ecmd
->port
!= PORT_TP
&& ecmd
->port
!= PORT_MII
&& ecmd
->port
!= PORT_FIBRE
)
2914 if (ecmd
->transceiver
!= XCVR_INTERNAL
&& ecmd
->transceiver
!= XCVR_EXTERNAL
)
2916 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
2917 if ((ecmd
->advertising
& (ADVERTISED_10baseT_Half
|
2918 ADVERTISED_10baseT_Full
|
2919 ADVERTISED_100baseT_Half
|
2920 ADVERTISED_100baseT_Full
)) == 0) {
2923 } else if (ecmd
->autoneg
== AUTONEG_DISABLE
) {
2924 u32 speed
= ethtool_cmd_speed(ecmd
);
2925 if (speed
!= SPEED_10
&& speed
!= SPEED_100
)
2927 if (ecmd
->duplex
!= DUPLEX_HALF
&& ecmd
->duplex
!= DUPLEX_FULL
)
2934 * If we're ignoring the PHY then autoneg and the internal
2935 * transceiver are really not going to work so don't let the
2938 if (np
->ignore_phy
&& (ecmd
->autoneg
== AUTONEG_ENABLE
||
2939 ecmd
->port
== PORT_TP
))
2943 * maxtxpkt, maxrxpkt: ignored for now.
2946 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2947 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2948 * selects based on ecmd->port.
2950 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2951 * phys that are connected to the mii bus. It's used to apply fibre
2955 /* WHEW! now lets bang some bits */
2957 /* save the parms */
2958 dev
->if_port
= ecmd
->port
;
2959 np
->autoneg
= ecmd
->autoneg
;
2960 np
->phy_addr_external
= ecmd
->phy_address
& PhyAddrMask
;
2961 if (np
->autoneg
== AUTONEG_ENABLE
) {
2962 /* advertise only what has been requested */
2963 np
->advertising
&= ~(ADVERTISE_ALL
| ADVERTISE_100BASE4
);
2964 if (ecmd
->advertising
& ADVERTISED_10baseT_Half
)
2965 np
->advertising
|= ADVERTISE_10HALF
;
2966 if (ecmd
->advertising
& ADVERTISED_10baseT_Full
)
2967 np
->advertising
|= ADVERTISE_10FULL
;
2968 if (ecmd
->advertising
& ADVERTISED_100baseT_Half
)
2969 np
->advertising
|= ADVERTISE_100HALF
;
2970 if (ecmd
->advertising
& ADVERTISED_100baseT_Full
)
2971 np
->advertising
|= ADVERTISE_100FULL
;
2973 np
->speed
= ethtool_cmd_speed(ecmd
);
2974 np
->duplex
= ecmd
->duplex
;
2975 /* user overriding the initial full duplex parm? */
2976 if (np
->duplex
== DUPLEX_HALF
)
2977 np
->full_duplex
= 0;
2980 /* get the right phy enabled */
2981 if (ecmd
->port
== PORT_TP
)
2982 switch_port_internal(dev
);
2984 switch_port_external(dev
);
2986 /* set parms and see how this affected our link status */
2987 init_phy_fixup(dev
);
2992 static int netdev_get_regs(struct net_device
*dev
, u8
*buf
)
2997 u32
*rbuf
= (u32
*)buf
;
2998 void __iomem
* ioaddr
= ns_ioaddr(dev
);
3000 /* read non-mii page 0 of registers */
3001 for (i
= 0; i
< NATSEMI_PG0_NREGS
/2; i
++) {
3002 rbuf
[i
] = readl(ioaddr
+ i
*4);
3005 /* read current mii registers */
3006 for (i
= NATSEMI_PG0_NREGS
/2; i
< NATSEMI_PG0_NREGS
; i
++)
3007 rbuf
[i
] = mdio_read(dev
, i
& 0x1f);
3009 /* read only the 'magic' registers from page 1 */
3010 writew(1, ioaddr
+ PGSEL
);
3011 rbuf
[i
++] = readw(ioaddr
+ PMDCSR
);
3012 rbuf
[i
++] = readw(ioaddr
+ TSTDAT
);
3013 rbuf
[i
++] = readw(ioaddr
+ DSPCFG
);
3014 rbuf
[i
++] = readw(ioaddr
+ SDCFG
);
3015 writew(0, ioaddr
+ PGSEL
);
3017 /* read RFCR indexed registers */
3018 rfcr
= readl(ioaddr
+ RxFilterAddr
);
3019 for (j
= 0; j
< NATSEMI_RFDR_NREGS
; j
++) {
3020 writel(j
*2, ioaddr
+ RxFilterAddr
);
3021 rbuf
[i
++] = readw(ioaddr
+ RxFilterData
);
3023 writel(rfcr
, ioaddr
+ RxFilterAddr
);
3025 /* the interrupt status is clear-on-read - see if we missed any */
3026 if (rbuf
[4] & rbuf
[5]) {
3028 "%s: shoot, we dropped an interrupt (%#08x)\n",
3029 dev
->name
, rbuf
[4] & rbuf
[5]);
3035 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3036 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3037 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3038 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3039 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3040 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3041 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3042 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3044 static int netdev_get_eeprom(struct net_device
*dev
, u8
*buf
)
3047 u16
*ebuf
= (u16
*)buf
;
3048 void __iomem
* ioaddr
= ns_ioaddr(dev
);
3049 struct netdev_private
*np
= netdev_priv(dev
);
3051 /* eeprom_read reads 16 bits, and indexes by 16 bits */
3052 for (i
= 0; i
< np
->eeprom_size
/2; i
++) {
3053 ebuf
[i
] = eeprom_read(ioaddr
, i
);
3054 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3055 * reads it back "sanely". So we swap it back here in order to
3056 * present it to userland as it is stored. */
3057 ebuf
[i
] = SWAP_BITS(ebuf
[i
]);
3062 static int netdev_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
3064 struct mii_ioctl_data
*data
= if_mii(rq
);
3065 struct netdev_private
*np
= netdev_priv(dev
);
3068 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
3069 data
->phy_id
= np
->phy_addr_external
;
3072 case SIOCGMIIREG
: /* Read MII PHY register. */
3073 /* The phy_id is not enough to uniquely identify
3074 * the intended target. Therefore the command is sent to
3075 * the given mii on the current port.
3077 if (dev
->if_port
== PORT_TP
) {
3078 if ((data
->phy_id
& 0x1f) == np
->phy_addr_external
)
3079 data
->val_out
= mdio_read(dev
,
3080 data
->reg_num
& 0x1f);
3084 move_int_phy(dev
, data
->phy_id
& 0x1f);
3085 data
->val_out
= miiport_read(dev
, data
->phy_id
& 0x1f,
3086 data
->reg_num
& 0x1f);
3090 case SIOCSMIIREG
: /* Write MII PHY register. */
3091 if (dev
->if_port
== PORT_TP
) {
3092 if ((data
->phy_id
& 0x1f) == np
->phy_addr_external
) {
3093 if ((data
->reg_num
& 0x1f) == MII_ADVERTISE
)
3094 np
->advertising
= data
->val_in
;
3095 mdio_write(dev
, data
->reg_num
& 0x1f,
3099 if ((data
->phy_id
& 0x1f) == np
->phy_addr_external
) {
3100 if ((data
->reg_num
& 0x1f) == MII_ADVERTISE
)
3101 np
->advertising
= data
->val_in
;
3103 move_int_phy(dev
, data
->phy_id
& 0x1f);
3104 miiport_write(dev
, data
->phy_id
& 0x1f,
3105 data
->reg_num
& 0x1f,
3114 static void enable_wol_mode(struct net_device
*dev
, int enable_intr
)
3116 void __iomem
* ioaddr
= ns_ioaddr(dev
);
3117 struct netdev_private
*np
= netdev_priv(dev
);
3119 if (netif_msg_wol(np
))
3120 printk(KERN_INFO
"%s: remaining active for wake-on-lan\n",
3123 /* For WOL we must restart the rx process in silent mode.
3124 * Write NULL to the RxRingPtr. Only possible if
3125 * rx process is stopped
3127 writel(0, ioaddr
+ RxRingPtr
);
3129 /* read WoL status to clear */
3130 readl(ioaddr
+ WOLCmd
);
3132 /* PME on, clear status */
3133 writel(np
->SavedClkRun
| PMEEnable
| PMEStatus
, ioaddr
+ ClkRun
);
3135 /* and restart the rx process */
3136 writel(RxOn
, ioaddr
+ ChipCmd
);
3139 /* enable the WOL interrupt.
3140 * Could be used to send a netlink message.
3142 writel(WOLPkt
| LinkChange
, ioaddr
+ IntrMask
);
3143 natsemi_irq_enable(dev
);
3147 static int netdev_close(struct net_device
*dev
)
3149 void __iomem
* ioaddr
= ns_ioaddr(dev
);
3150 struct netdev_private
*np
= netdev_priv(dev
);
3151 const int irq
= np
->pci_dev
->irq
;
3153 if (netif_msg_ifdown(np
))
3155 "%s: Shutting down ethercard, status was %#04x.\n",
3156 dev
->name
, (int)readl(ioaddr
+ ChipCmd
));
3157 if (netif_msg_pktdata(np
))
3159 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3160 dev
->name
, np
->cur_tx
, np
->dirty_tx
,
3161 np
->cur_rx
, np
->dirty_rx
);
3163 napi_disable(&np
->napi
);
3166 * FIXME: what if someone tries to close a device
3167 * that is suspended?
3168 * Should we reenable the nic to switch to
3169 * the final WOL settings?
3172 del_timer_sync(&np
->timer
);
3174 spin_lock_irq(&np
->lock
);
3175 natsemi_irq_disable(dev
);
3177 spin_unlock_irq(&np
->lock
);
3182 /* Interrupt disabled, interrupt handler released,
3183 * queue stopped, timer deleted, rtnl_lock held
3184 * All async codepaths that access the driver are disabled.
3186 spin_lock_irq(&np
->lock
);
3188 readl(ioaddr
+ IntrMask
);
3189 readw(ioaddr
+ MIntrStatus
);
3192 writel(StatsFreeze
, ioaddr
+ StatsCtrl
);
3194 /* Stop the chip's Tx and Rx processes. */
3195 natsemi_stop_rxtx(dev
);
3198 spin_unlock_irq(&np
->lock
);
3200 /* clear the carrier last - an interrupt could reenable it otherwise */
3201 netif_carrier_off(dev
);
3202 netif_stop_queue(dev
);
3209 u32 wol
= readl(ioaddr
+ WOLCmd
) & WakeOptsSummary
;
3211 /* restart the NIC in WOL mode.
3212 * The nic must be stopped for this.
3214 enable_wol_mode(dev
, 0);
3216 /* Restore PME enable bit unmolested */
3217 writel(np
->SavedClkRun
, ioaddr
+ ClkRun
);
3224 static void natsemi_remove1(struct pci_dev
*pdev
)
3226 struct net_device
*dev
= pci_get_drvdata(pdev
);
3227 void __iomem
* ioaddr
= ns_ioaddr(dev
);
3229 NATSEMI_REMOVE_FILE(pdev
, dspcfg_workaround
);
3230 unregister_netdev (dev
);
3231 pci_release_regions (pdev
);
3239 * The ns83815 chip doesn't have explicit RxStop bits.
3240 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3241 * of the nic, thus this function must be very careful:
3243 * suspend/resume synchronization:
3245 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3246 * start_tx, ns_tx_timeout
3248 * No function accesses the hardware without checking np->hands_off.
3249 * the check occurs under spin_lock_irq(&np->lock);
3251 * * netdev_ioctl: noncritical access.
3252 * * netdev_open: cannot happen due to the device_detach
3253 * * netdev_close: doesn't hurt.
3254 * * netdev_timer: timer stopped by natsemi_suspend.
3255 * * intr_handler: doesn't acquire the spinlock. suspend calls
3256 * disable_irq() to enforce synchronization.
3257 * * natsemi_poll: checks before reenabling interrupts. suspend
3258 * sets hands_off, disables interrupts and then waits with
3261 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3264 static int natsemi_suspend (struct pci_dev
*pdev
, pm_message_t state
)
3266 struct net_device
*dev
= pci_get_drvdata (pdev
);
3267 struct netdev_private
*np
= netdev_priv(dev
);
3268 void __iomem
* ioaddr
= ns_ioaddr(dev
);
3271 if (netif_running (dev
)) {
3272 const int irq
= np
->pci_dev
->irq
;
3274 del_timer_sync(&np
->timer
);
3277 spin_lock_irq(&np
->lock
);
3279 natsemi_irq_disable(dev
);
3281 natsemi_stop_rxtx(dev
);
3282 netif_stop_queue(dev
);
3284 spin_unlock_irq(&np
->lock
);
3287 napi_disable(&np
->napi
);
3289 /* Update the error counts. */
3292 /* pci_power_off(pdev, -1); */
3295 u32 wol
= readl(ioaddr
+ WOLCmd
) & WakeOptsSummary
;
3296 /* Restore PME enable bit */
3298 /* restart the NIC in WOL mode.
3299 * The nic must be stopped for this.
3300 * FIXME: use the WOL interrupt
3302 enable_wol_mode(dev
, 0);
3304 /* Restore PME enable bit unmolested */
3305 writel(np
->SavedClkRun
, ioaddr
+ ClkRun
);
3309 netif_device_detach(dev
);
3315 static int natsemi_resume (struct pci_dev
*pdev
)
3317 struct net_device
*dev
= pci_get_drvdata (pdev
);
3318 struct netdev_private
*np
= netdev_priv(dev
);
3322 if (netif_device_present(dev
))
3324 if (netif_running(dev
)) {
3325 const int irq
= np
->pci_dev
->irq
;
3327 BUG_ON(!np
->hands_off
);
3328 ret
= pci_enable_device(pdev
);
3331 "pci_enable_device() failed: %d\n", ret
);
3334 /* pci_power_on(pdev); */
3336 napi_enable(&np
->napi
);
3341 spin_lock_irq(&np
->lock
);
3343 init_registers(dev
);
3344 netif_device_attach(dev
);
3345 spin_unlock_irq(&np
->lock
);
3348 mod_timer(&np
->timer
, round_jiffies(jiffies
+ 1*HZ
));
3350 netif_device_attach(dev
);
3356 #endif /* CONFIG_PM */
3358 static struct pci_driver natsemi_driver
= {
3360 .id_table
= natsemi_pci_tbl
,
3361 .probe
= natsemi_probe1
,
3362 .remove
= natsemi_remove1
,
3364 .suspend
= natsemi_suspend
,
3365 .resume
= natsemi_resume
,
3369 static int __init
natsemi_init_mod (void)
3371 /* when a module, this is printed whether or not devices are found in probe */
3376 return pci_register_driver(&natsemi_driver
);
3379 static void __exit
natsemi_exit_mod (void)
3381 pci_unregister_driver (&natsemi_driver
);
3384 module_init(natsemi_init_mod
);
3385 module_exit(natsemi_exit_mod
);