1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
32 #include "workarounds.h"
34 /**************************************************************************
38 **************************************************************************
41 /* Loopback mode names (see LOOPBACK_MODE()) */
42 const unsigned int efx_loopback_mode_max
= LOOPBACK_MAX
;
43 const char *const efx_loopback_mode_names
[] = {
44 [LOOPBACK_NONE
] = "NONE",
45 [LOOPBACK_DATA
] = "DATAPATH",
46 [LOOPBACK_GMAC
] = "GMAC",
47 [LOOPBACK_XGMII
] = "XGMII",
48 [LOOPBACK_XGXS
] = "XGXS",
49 [LOOPBACK_XAUI
] = "XAUI",
50 [LOOPBACK_GMII
] = "GMII",
51 [LOOPBACK_SGMII
] = "SGMII",
52 [LOOPBACK_XGBR
] = "XGBR",
53 [LOOPBACK_XFI
] = "XFI",
54 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
55 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
56 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
57 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
58 [LOOPBACK_GPHY
] = "GPHY",
59 [LOOPBACK_PHYXS
] = "PHYXS",
60 [LOOPBACK_PCS
] = "PCS",
61 [LOOPBACK_PMAPMD
] = "PMA/PMD",
62 [LOOPBACK_XPORT
] = "XPORT",
63 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
64 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
65 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
66 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
67 [LOOPBACK_GMII_WS
] = "GMII_WS",
68 [LOOPBACK_XFI_WS
] = "XFI_WS",
69 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
70 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
73 const unsigned int efx_reset_type_max
= RESET_TYPE_MAX
;
74 const char *const efx_reset_type_names
[] = {
75 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
76 [RESET_TYPE_ALL
] = "ALL",
77 [RESET_TYPE_RECOVER_OR_ALL
] = "RECOVER_OR_ALL",
78 [RESET_TYPE_WORLD
] = "WORLD",
79 [RESET_TYPE_RECOVER_OR_DISABLE
] = "RECOVER_OR_DISABLE",
80 [RESET_TYPE_DATAPATH
] = "DATAPATH",
81 [RESET_TYPE_MC_BIST
] = "MC_BIST",
82 [RESET_TYPE_DISABLE
] = "DISABLE",
83 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
84 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
85 [RESET_TYPE_RX_RECOVERY
] = "RX_RECOVERY",
86 [RESET_TYPE_DMA_ERROR
] = "DMA_ERROR",
87 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
88 [RESET_TYPE_MC_FAILURE
] = "MC_FAILURE",
89 [RESET_TYPE_MCDI_TIMEOUT
] = "MCDI_TIMEOUT (FLR)",
92 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
93 * queued onto this work queue. This is not a per-nic work queue, because
94 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
96 static struct workqueue_struct
*reset_workqueue
;
98 /* How often and how many times to poll for a reset while waiting for a
99 * BIST that another function started to complete.
101 #define BIST_WAIT_DELAY_MS 100
102 #define BIST_WAIT_DELAY_COUNT 100
104 /**************************************************************************
106 * Configurable values
108 *************************************************************************/
111 * Use separate channels for TX and RX events
113 * Set this to 1 to use separate channels for TX and RX. It allows us
114 * to control interrupt affinity separately for TX and RX.
116 * This is only used in MSI-X interrupt mode
118 bool efx_separate_tx_channels
;
119 module_param(efx_separate_tx_channels
, bool, 0444);
120 MODULE_PARM_DESC(efx_separate_tx_channels
,
121 "Use separate channels for TX and RX");
123 /* This is the weight assigned to each of the (per-channel) virtual
126 static int napi_weight
= 64;
128 /* This is the time (in jiffies) between invocations of the hardware
130 * On Falcon-based NICs, this will:
131 * - Check the on-board hardware monitor;
132 * - Poll the link state and reconfigure the hardware as necessary.
133 * On Siena-based NICs for power systems with EEH support, this will give EEH a
136 static unsigned int efx_monitor_interval
= 1 * HZ
;
138 /* Initial interrupt moderation settings. They can be modified after
139 * module load with ethtool.
141 * The default for RX should strike a balance between increasing the
142 * round-trip latency and reducing overhead.
144 static unsigned int rx_irq_mod_usec
= 60;
146 /* Initial interrupt moderation settings. They can be modified after
147 * module load with ethtool.
149 * This default is chosen to ensure that a 10G link does not go idle
150 * while a TX queue is stopped after it has become full. A queue is
151 * restarted when it drops below half full. The time this takes (assuming
152 * worst case 3 descriptors per packet and 1024 descriptors) is
153 * 512 / 3 * 1.2 = 205 usec.
155 static unsigned int tx_irq_mod_usec
= 150;
157 /* This is the first interrupt mode to try out of:
162 static unsigned int interrupt_mode
;
164 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
165 * i.e. the number of CPUs among which we may distribute simultaneous
166 * interrupt handling.
168 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
169 * The default (0) means to assign an interrupt to each core.
171 static unsigned int rss_cpus
;
172 module_param(rss_cpus
, uint
, 0444);
173 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
175 static bool phy_flash_cfg
;
176 module_param(phy_flash_cfg
, bool, 0644);
177 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
179 static unsigned irq_adapt_low_thresh
= 8000;
180 module_param(irq_adapt_low_thresh
, uint
, 0644);
181 MODULE_PARM_DESC(irq_adapt_low_thresh
,
182 "Threshold score for reducing IRQ moderation");
184 static unsigned irq_adapt_high_thresh
= 16000;
185 module_param(irq_adapt_high_thresh
, uint
, 0644);
186 MODULE_PARM_DESC(irq_adapt_high_thresh
,
187 "Threshold score for increasing IRQ moderation");
189 static unsigned debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
190 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
191 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
192 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
193 module_param(debug
, uint
, 0);
194 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
196 /**************************************************************************
198 * Utility functions and prototypes
200 *************************************************************************/
202 static int efx_soft_enable_interrupts(struct efx_nic
*efx
);
203 static void efx_soft_disable_interrupts(struct efx_nic
*efx
);
204 static void efx_remove_channel(struct efx_channel
*channel
);
205 static void efx_remove_channels(struct efx_nic
*efx
);
206 static const struct efx_channel_type efx_default_channel_type
;
207 static void efx_remove_port(struct efx_nic
*efx
);
208 static void efx_init_napi_channel(struct efx_channel
*channel
);
209 static void efx_fini_napi(struct efx_nic
*efx
);
210 static void efx_fini_napi_channel(struct efx_channel
*channel
);
211 static void efx_fini_struct(struct efx_nic
*efx
);
212 static void efx_start_all(struct efx_nic
*efx
);
213 static void efx_stop_all(struct efx_nic
*efx
);
215 #define EFX_ASSERT_RESET_SERIALISED(efx) \
217 if ((efx->state == STATE_READY) || \
218 (efx->state == STATE_RECOVERY) || \
219 (efx->state == STATE_DISABLED)) \
223 static int efx_check_disabled(struct efx_nic
*efx
)
225 if (efx
->state
== STATE_DISABLED
|| efx
->state
== STATE_RECOVERY
) {
226 netif_err(efx
, drv
, efx
->net_dev
,
227 "device is disabled due to earlier errors\n");
233 /**************************************************************************
235 * Event queue processing
237 *************************************************************************/
239 /* Process channel's event queue
241 * This function is responsible for processing the event queue of a
242 * single channel. The caller must guarantee that this function will
243 * never be concurrently called more than once on the same channel,
244 * though different channels may be being processed concurrently.
246 static int efx_process_channel(struct efx_channel
*channel
, int budget
)
248 struct efx_tx_queue
*tx_queue
;
251 if (unlikely(!channel
->enabled
))
254 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
255 tx_queue
->pkts_compl
= 0;
256 tx_queue
->bytes_compl
= 0;
259 spent
= efx_nic_process_eventq(channel
, budget
);
260 if (spent
&& efx_channel_has_rx_queue(channel
)) {
261 struct efx_rx_queue
*rx_queue
=
262 efx_channel_get_rx_queue(channel
);
264 efx_rx_flush_packet(channel
);
265 efx_fast_push_rx_descriptors(rx_queue
, true);
269 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
270 if (tx_queue
->bytes_compl
) {
271 netdev_tx_completed_queue(tx_queue
->core_txq
,
272 tx_queue
->pkts_compl
, tx_queue
->bytes_compl
);
281 * NAPI guarantees serialisation of polls of the same device, which
282 * provides the guarantee required by efx_process_channel().
284 static void efx_update_irq_mod(struct efx_nic
*efx
, struct efx_channel
*channel
)
286 int step
= efx
->irq_mod_step_us
;
288 if (channel
->irq_mod_score
< irq_adapt_low_thresh
) {
289 if (channel
->irq_moderation_us
> step
) {
290 channel
->irq_moderation_us
-= step
;
291 efx
->type
->push_irq_moderation(channel
);
293 } else if (channel
->irq_mod_score
> irq_adapt_high_thresh
) {
294 if (channel
->irq_moderation_us
<
295 efx
->irq_rx_moderation_us
) {
296 channel
->irq_moderation_us
+= step
;
297 efx
->type
->push_irq_moderation(channel
);
301 channel
->irq_count
= 0;
302 channel
->irq_mod_score
= 0;
305 static int efx_poll(struct napi_struct
*napi
, int budget
)
307 struct efx_channel
*channel
=
308 container_of(napi
, struct efx_channel
, napi_str
);
309 struct efx_nic
*efx
= channel
->efx
;
312 if (!efx_channel_lock_napi(channel
))
315 netif_vdbg(efx
, intr
, efx
->net_dev
,
316 "channel %d NAPI poll executing on CPU %d\n",
317 channel
->channel
, raw_smp_processor_id());
319 spent
= efx_process_channel(channel
, budget
);
321 if (spent
< budget
) {
322 if (efx_channel_has_rx_queue(channel
) &&
323 efx
->irq_rx_adaptive
&&
324 unlikely(++channel
->irq_count
== 1000)) {
325 efx_update_irq_mod(efx
, channel
);
328 efx_filter_rfs_expire(channel
);
330 /* There is no race here; although napi_disable() will
331 * only wait for napi_complete(), this isn't a problem
332 * since efx_nic_eventq_read_ack() will have no effect if
333 * interrupts have already been disabled.
336 efx_nic_eventq_read_ack(channel
);
339 efx_channel_unlock_napi(channel
);
343 /* Create event queue
344 * Event queue memory allocations are done only once. If the channel
345 * is reset, the memory buffer will be reused; this guards against
346 * errors during channel reset and also simplifies interrupt handling.
348 static int efx_probe_eventq(struct efx_channel
*channel
)
350 struct efx_nic
*efx
= channel
->efx
;
351 unsigned long entries
;
353 netif_dbg(efx
, probe
, efx
->net_dev
,
354 "chan %d create event queue\n", channel
->channel
);
356 /* Build an event queue with room for one event per tx and rx buffer,
357 * plus some extra for link state events and MCDI completions. */
358 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
359 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_EVQ_SIZE
);
360 channel
->eventq_mask
= max(entries
, EFX_MIN_EVQ_SIZE
) - 1;
362 return efx_nic_probe_eventq(channel
);
365 /* Prepare channel's event queue */
366 static int efx_init_eventq(struct efx_channel
*channel
)
368 struct efx_nic
*efx
= channel
->efx
;
371 EFX_WARN_ON_PARANOID(channel
->eventq_init
);
373 netif_dbg(efx
, drv
, efx
->net_dev
,
374 "chan %d init event queue\n", channel
->channel
);
376 rc
= efx_nic_init_eventq(channel
);
378 efx
->type
->push_irq_moderation(channel
);
379 channel
->eventq_read_ptr
= 0;
380 channel
->eventq_init
= true;
385 /* Enable event queue processing and NAPI */
386 void efx_start_eventq(struct efx_channel
*channel
)
388 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
389 "chan %d start event queue\n", channel
->channel
);
391 /* Make sure the NAPI handler sees the enabled flag set */
392 channel
->enabled
= true;
395 efx_channel_enable(channel
);
396 napi_enable(&channel
->napi_str
);
397 efx_nic_eventq_read_ack(channel
);
400 /* Disable event queue processing and NAPI */
401 void efx_stop_eventq(struct efx_channel
*channel
)
403 if (!channel
->enabled
)
406 napi_disable(&channel
->napi_str
);
407 while (!efx_channel_disable(channel
))
408 usleep_range(1000, 20000);
409 channel
->enabled
= false;
412 static void efx_fini_eventq(struct efx_channel
*channel
)
414 if (!channel
->eventq_init
)
417 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
418 "chan %d fini event queue\n", channel
->channel
);
420 efx_nic_fini_eventq(channel
);
421 channel
->eventq_init
= false;
424 static void efx_remove_eventq(struct efx_channel
*channel
)
426 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
427 "chan %d remove event queue\n", channel
->channel
);
429 efx_nic_remove_eventq(channel
);
432 /**************************************************************************
436 *************************************************************************/
438 /* Allocate and initialise a channel structure. */
439 static struct efx_channel
*
440 efx_alloc_channel(struct efx_nic
*efx
, int i
, struct efx_channel
*old_channel
)
442 struct efx_channel
*channel
;
443 struct efx_rx_queue
*rx_queue
;
444 struct efx_tx_queue
*tx_queue
;
447 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
452 channel
->channel
= i
;
453 channel
->type
= &efx_default_channel_type
;
455 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
456 tx_queue
= &channel
->tx_queue
[j
];
458 tx_queue
->queue
= i
* EFX_TXQ_TYPES
+ j
;
459 tx_queue
->channel
= channel
;
462 rx_queue
= &channel
->rx_queue
;
464 setup_timer(&rx_queue
->slow_fill
, efx_rx_slow_fill
,
465 (unsigned long)rx_queue
);
470 /* Allocate and initialise a channel structure, copying parameters
471 * (but not resources) from an old channel structure.
473 static struct efx_channel
*
474 efx_copy_channel(const struct efx_channel
*old_channel
)
476 struct efx_channel
*channel
;
477 struct efx_rx_queue
*rx_queue
;
478 struct efx_tx_queue
*tx_queue
;
481 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
485 *channel
= *old_channel
;
487 channel
->napi_dev
= NULL
;
488 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
490 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
491 tx_queue
= &channel
->tx_queue
[j
];
492 if (tx_queue
->channel
)
493 tx_queue
->channel
= channel
;
494 tx_queue
->buffer
= NULL
;
495 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
498 rx_queue
= &channel
->rx_queue
;
499 rx_queue
->buffer
= NULL
;
500 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
501 setup_timer(&rx_queue
->slow_fill
, efx_rx_slow_fill
,
502 (unsigned long)rx_queue
);
507 static int efx_probe_channel(struct efx_channel
*channel
)
509 struct efx_tx_queue
*tx_queue
;
510 struct efx_rx_queue
*rx_queue
;
513 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
514 "creating channel %d\n", channel
->channel
);
516 rc
= channel
->type
->pre_probe(channel
);
520 rc
= efx_probe_eventq(channel
);
524 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
525 rc
= efx_probe_tx_queue(tx_queue
);
530 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
531 rc
= efx_probe_rx_queue(rx_queue
);
539 efx_remove_channel(channel
);
544 efx_get_channel_name(struct efx_channel
*channel
, char *buf
, size_t len
)
546 struct efx_nic
*efx
= channel
->efx
;
550 number
= channel
->channel
;
551 if (efx
->tx_channel_offset
== 0) {
553 } else if (channel
->channel
< efx
->tx_channel_offset
) {
557 number
-= efx
->tx_channel_offset
;
559 snprintf(buf
, len
, "%s%s-%d", efx
->name
, type
, number
);
562 static void efx_set_channel_names(struct efx_nic
*efx
)
564 struct efx_channel
*channel
;
566 efx_for_each_channel(channel
, efx
)
567 channel
->type
->get_name(channel
,
568 efx
->msi_context
[channel
->channel
].name
,
569 sizeof(efx
->msi_context
[0].name
));
572 static int efx_probe_channels(struct efx_nic
*efx
)
574 struct efx_channel
*channel
;
577 /* Restart special buffer allocation */
578 efx
->next_buffer_table
= 0;
580 /* Probe channels in reverse, so that any 'extra' channels
581 * use the start of the buffer table. This allows the traffic
582 * channels to be resized without moving them or wasting the
583 * entries before them.
585 efx_for_each_channel_rev(channel
, efx
) {
586 rc
= efx_probe_channel(channel
);
588 netif_err(efx
, probe
, efx
->net_dev
,
589 "failed to create channel %d\n",
594 efx_set_channel_names(efx
);
599 efx_remove_channels(efx
);
603 /* Channels are shutdown and reinitialised whilst the NIC is running
604 * to propagate configuration changes (mtu, checksum offload), or
605 * to clear hardware error conditions
607 static void efx_start_datapath(struct efx_nic
*efx
)
609 netdev_features_t old_features
= efx
->net_dev
->features
;
610 bool old_rx_scatter
= efx
->rx_scatter
;
611 struct efx_tx_queue
*tx_queue
;
612 struct efx_rx_queue
*rx_queue
;
613 struct efx_channel
*channel
;
616 /* Calculate the rx buffer allocation parameters required to
617 * support the current MTU, including padding for header
618 * alignment and overruns.
620 efx
->rx_dma_len
= (efx
->rx_prefix_size
+
621 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
622 efx
->type
->rx_buffer_padding
);
623 rx_buf_len
= (sizeof(struct efx_rx_page_state
) +
624 efx
->rx_ip_align
+ efx
->rx_dma_len
);
625 if (rx_buf_len
<= PAGE_SIZE
) {
626 efx
->rx_scatter
= efx
->type
->always_rx_scatter
;
627 efx
->rx_buffer_order
= 0;
628 } else if (efx
->type
->can_rx_scatter
) {
629 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE
% L1_CACHE_BYTES
);
630 BUILD_BUG_ON(sizeof(struct efx_rx_page_state
) +
631 2 * ALIGN(NET_IP_ALIGN
+ EFX_RX_USR_BUF_SIZE
,
632 EFX_RX_BUF_ALIGNMENT
) >
634 efx
->rx_scatter
= true;
635 efx
->rx_dma_len
= EFX_RX_USR_BUF_SIZE
;
636 efx
->rx_buffer_order
= 0;
638 efx
->rx_scatter
= false;
639 efx
->rx_buffer_order
= get_order(rx_buf_len
);
642 efx_rx_config_page_split(efx
);
643 if (efx
->rx_buffer_order
)
644 netif_dbg(efx
, drv
, efx
->net_dev
,
645 "RX buf len=%u; page order=%u batch=%u\n",
646 efx
->rx_dma_len
, efx
->rx_buffer_order
,
647 efx
->rx_pages_per_batch
);
649 netif_dbg(efx
, drv
, efx
->net_dev
,
650 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
651 efx
->rx_dma_len
, efx
->rx_page_buf_step
,
652 efx
->rx_bufs_per_page
, efx
->rx_pages_per_batch
);
654 /* Restore previously fixed features in hw_features and remove
655 * features which are fixed now
657 efx
->net_dev
->hw_features
|= efx
->net_dev
->features
;
658 efx
->net_dev
->hw_features
&= ~efx
->fixed_features
;
659 efx
->net_dev
->features
|= efx
->fixed_features
;
660 if (efx
->net_dev
->features
!= old_features
)
661 netdev_features_change(efx
->net_dev
);
663 /* RX filters may also have scatter-enabled flags */
664 if (efx
->rx_scatter
!= old_rx_scatter
)
665 efx
->type
->filter_update_rx_scatter(efx
);
667 /* We must keep at least one descriptor in a TX ring empty.
668 * We could avoid this when the queue size does not exactly
669 * match the hardware ring size, but it's not that important.
670 * Therefore we stop the queue when one more skb might fill
671 * the ring completely. We wake it when half way back to
674 efx
->txq_stop_thresh
= efx
->txq_entries
- efx_tx_max_skb_descs(efx
);
675 efx
->txq_wake_thresh
= efx
->txq_stop_thresh
/ 2;
677 /* Initialise the channels */
678 efx_for_each_channel(channel
, efx
) {
679 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
680 efx_init_tx_queue(tx_queue
);
681 atomic_inc(&efx
->active_queues
);
684 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
685 efx_init_rx_queue(rx_queue
);
686 atomic_inc(&efx
->active_queues
);
687 efx_stop_eventq(channel
);
688 efx_fast_push_rx_descriptors(rx_queue
, false);
689 efx_start_eventq(channel
);
692 WARN_ON(channel
->rx_pkt_n_frags
);
695 efx_ptp_start_datapath(efx
);
697 if (netif_device_present(efx
->net_dev
))
698 netif_tx_wake_all_queues(efx
->net_dev
);
701 static void efx_stop_datapath(struct efx_nic
*efx
)
703 struct efx_channel
*channel
;
704 struct efx_tx_queue
*tx_queue
;
705 struct efx_rx_queue
*rx_queue
;
708 EFX_ASSERT_RESET_SERIALISED(efx
);
709 BUG_ON(efx
->port_enabled
);
711 efx_ptp_stop_datapath(efx
);
714 efx_for_each_channel(channel
, efx
) {
715 efx_for_each_channel_rx_queue(rx_queue
, channel
)
716 rx_queue
->refill_enabled
= false;
719 efx_for_each_channel(channel
, efx
) {
720 /* RX packet processing is pipelined, so wait for the
721 * NAPI handler to complete. At least event queue 0
722 * might be kept active by non-data events, so don't
723 * use napi_synchronize() but actually disable NAPI
726 if (efx_channel_has_rx_queue(channel
)) {
727 efx_stop_eventq(channel
);
728 efx_start_eventq(channel
);
732 rc
= efx
->type
->fini_dmaq(efx
);
733 if (rc
&& EFX_WORKAROUND_7803(efx
)) {
734 /* Schedule a reset to recover from the flush failure. The
735 * descriptor caches reference memory we're about to free,
736 * but falcon_reconfigure_mac_wrapper() won't reconnect
737 * the MACs because of the pending reset.
739 netif_err(efx
, drv
, efx
->net_dev
,
740 "Resetting to recover from flush failure\n");
741 efx_schedule_reset(efx
, RESET_TYPE_ALL
);
743 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
745 netif_dbg(efx
, drv
, efx
->net_dev
,
746 "successfully flushed all queues\n");
749 efx_for_each_channel(channel
, efx
) {
750 efx_for_each_channel_rx_queue(rx_queue
, channel
)
751 efx_fini_rx_queue(rx_queue
);
752 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
753 efx_fini_tx_queue(tx_queue
);
757 static void efx_remove_channel(struct efx_channel
*channel
)
759 struct efx_tx_queue
*tx_queue
;
760 struct efx_rx_queue
*rx_queue
;
762 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
763 "destroy chan %d\n", channel
->channel
);
765 efx_for_each_channel_rx_queue(rx_queue
, channel
)
766 efx_remove_rx_queue(rx_queue
);
767 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
768 efx_remove_tx_queue(tx_queue
);
769 efx_remove_eventq(channel
);
770 channel
->type
->post_remove(channel
);
773 static void efx_remove_channels(struct efx_nic
*efx
)
775 struct efx_channel
*channel
;
777 efx_for_each_channel(channel
, efx
)
778 efx_remove_channel(channel
);
782 efx_realloc_channels(struct efx_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
784 struct efx_channel
*other_channel
[EFX_MAX_CHANNELS
], *channel
;
785 u32 old_rxq_entries
, old_txq_entries
;
786 unsigned i
, next_buffer_table
= 0;
789 rc
= efx_check_disabled(efx
);
793 /* Not all channels should be reallocated. We must avoid
794 * reallocating their buffer table entries.
796 efx_for_each_channel(channel
, efx
) {
797 struct efx_rx_queue
*rx_queue
;
798 struct efx_tx_queue
*tx_queue
;
800 if (channel
->type
->copy
)
802 next_buffer_table
= max(next_buffer_table
,
803 channel
->eventq
.index
+
804 channel
->eventq
.entries
);
805 efx_for_each_channel_rx_queue(rx_queue
, channel
)
806 next_buffer_table
= max(next_buffer_table
,
807 rx_queue
->rxd
.index
+
808 rx_queue
->rxd
.entries
);
809 efx_for_each_channel_tx_queue(tx_queue
, channel
)
810 next_buffer_table
= max(next_buffer_table
,
811 tx_queue
->txd
.index
+
812 tx_queue
->txd
.entries
);
815 efx_device_detach_sync(efx
);
817 efx_soft_disable_interrupts(efx
);
819 /* Clone channels (where possible) */
820 memset(other_channel
, 0, sizeof(other_channel
));
821 for (i
= 0; i
< efx
->n_channels
; i
++) {
822 channel
= efx
->channel
[i
];
823 if (channel
->type
->copy
)
824 channel
= channel
->type
->copy(channel
);
829 other_channel
[i
] = channel
;
832 /* Swap entry counts and channel pointers */
833 old_rxq_entries
= efx
->rxq_entries
;
834 old_txq_entries
= efx
->txq_entries
;
835 efx
->rxq_entries
= rxq_entries
;
836 efx
->txq_entries
= txq_entries
;
837 for (i
= 0; i
< efx
->n_channels
; i
++) {
838 channel
= efx
->channel
[i
];
839 efx
->channel
[i
] = other_channel
[i
];
840 other_channel
[i
] = channel
;
843 /* Restart buffer table allocation */
844 efx
->next_buffer_table
= next_buffer_table
;
846 for (i
= 0; i
< efx
->n_channels
; i
++) {
847 channel
= efx
->channel
[i
];
848 if (!channel
->type
->copy
)
850 rc
= efx_probe_channel(channel
);
853 efx_init_napi_channel(efx
->channel
[i
]);
857 /* Destroy unused channel structures */
858 for (i
= 0; i
< efx
->n_channels
; i
++) {
859 channel
= other_channel
[i
];
860 if (channel
&& channel
->type
->copy
) {
861 efx_fini_napi_channel(channel
);
862 efx_remove_channel(channel
);
867 rc2
= efx_soft_enable_interrupts(efx
);
870 netif_err(efx
, drv
, efx
->net_dev
,
871 "unable to restart interrupts on channel reallocation\n");
872 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
875 netif_device_attach(efx
->net_dev
);
881 efx
->rxq_entries
= old_rxq_entries
;
882 efx
->txq_entries
= old_txq_entries
;
883 for (i
= 0; i
< efx
->n_channels
; i
++) {
884 channel
= efx
->channel
[i
];
885 efx
->channel
[i
] = other_channel
[i
];
886 other_channel
[i
] = channel
;
891 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
)
893 mod_timer(&rx_queue
->slow_fill
, jiffies
+ msecs_to_jiffies(100));
896 static const struct efx_channel_type efx_default_channel_type
= {
897 .pre_probe
= efx_channel_dummy_op_int
,
898 .post_remove
= efx_channel_dummy_op_void
,
899 .get_name
= efx_get_channel_name
,
900 .copy
= efx_copy_channel
,
901 .keep_eventq
= false,
904 int efx_channel_dummy_op_int(struct efx_channel
*channel
)
909 void efx_channel_dummy_op_void(struct efx_channel
*channel
)
913 /**************************************************************************
917 **************************************************************************/
919 /* This ensures that the kernel is kept informed (via
920 * netif_carrier_on/off) of the link status, and also maintains the
921 * link status's stop on the port's TX queue.
923 void efx_link_status_changed(struct efx_nic
*efx
)
925 struct efx_link_state
*link_state
= &efx
->link_state
;
927 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
928 * that no events are triggered between unregister_netdev() and the
929 * driver unloading. A more general condition is that NETDEV_CHANGE
930 * can only be generated between NETDEV_UP and NETDEV_DOWN */
931 if (!netif_running(efx
->net_dev
))
934 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
935 efx
->n_link_state_changes
++;
938 netif_carrier_on(efx
->net_dev
);
940 netif_carrier_off(efx
->net_dev
);
943 /* Status message for kernel log */
945 netif_info(efx
, link
, efx
->net_dev
,
946 "link up at %uMbps %s-duplex (MTU %d)\n",
947 link_state
->speed
, link_state
->fd
? "full" : "half",
950 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
953 void efx_link_set_advertising(struct efx_nic
*efx
, u32 advertising
)
955 efx
->link_advertising
= advertising
;
957 if (advertising
& ADVERTISED_Pause
)
958 efx
->wanted_fc
|= (EFX_FC_TX
| EFX_FC_RX
);
960 efx
->wanted_fc
&= ~(EFX_FC_TX
| EFX_FC_RX
);
961 if (advertising
& ADVERTISED_Asym_Pause
)
962 efx
->wanted_fc
^= EFX_FC_TX
;
966 void efx_link_set_wanted_fc(struct efx_nic
*efx
, u8 wanted_fc
)
968 efx
->wanted_fc
= wanted_fc
;
969 if (efx
->link_advertising
) {
970 if (wanted_fc
& EFX_FC_RX
)
971 efx
->link_advertising
|= (ADVERTISED_Pause
|
972 ADVERTISED_Asym_Pause
);
974 efx
->link_advertising
&= ~(ADVERTISED_Pause
|
975 ADVERTISED_Asym_Pause
);
976 if (wanted_fc
& EFX_FC_TX
)
977 efx
->link_advertising
^= ADVERTISED_Asym_Pause
;
981 static void efx_fini_port(struct efx_nic
*efx
);
983 /* We assume that efx->type->reconfigure_mac will always try to sync RX
984 * filters and therefore needs to read-lock the filter table against freeing
986 void efx_mac_reconfigure(struct efx_nic
*efx
)
988 down_read(&efx
->filter_sem
);
989 efx
->type
->reconfigure_mac(efx
);
990 up_read(&efx
->filter_sem
);
993 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
994 * the MAC appropriately. All other PHY configuration changes are pushed
995 * through phy_op->set_settings(), and pushed asynchronously to the MAC
996 * through efx_monitor().
998 * Callers must hold the mac_lock
1000 int __efx_reconfigure_port(struct efx_nic
*efx
)
1002 enum efx_phy_mode phy_mode
;
1005 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
1007 /* Disable PHY transmit in mac level loopbacks */
1008 phy_mode
= efx
->phy_mode
;
1009 if (LOOPBACK_INTERNAL(efx
))
1010 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
1012 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
1014 rc
= efx
->type
->reconfigure_port(efx
);
1017 efx
->phy_mode
= phy_mode
;
1022 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1024 int efx_reconfigure_port(struct efx_nic
*efx
)
1028 EFX_ASSERT_RESET_SERIALISED(efx
);
1030 mutex_lock(&efx
->mac_lock
);
1031 rc
= __efx_reconfigure_port(efx
);
1032 mutex_unlock(&efx
->mac_lock
);
1037 /* Asynchronous work item for changing MAC promiscuity and multicast
1038 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1040 static void efx_mac_work(struct work_struct
*data
)
1042 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
1044 mutex_lock(&efx
->mac_lock
);
1045 if (efx
->port_enabled
)
1046 efx_mac_reconfigure(efx
);
1047 mutex_unlock(&efx
->mac_lock
);
1050 static int efx_probe_port(struct efx_nic
*efx
)
1054 netif_dbg(efx
, probe
, efx
->net_dev
, "create port\n");
1057 efx
->phy_mode
= PHY_MODE_SPECIAL
;
1059 /* Connect up MAC/PHY operations table */
1060 rc
= efx
->type
->probe_port(efx
);
1064 /* Initialise MAC address to permanent address */
1065 ether_addr_copy(efx
->net_dev
->dev_addr
, efx
->net_dev
->perm_addr
);
1070 static int efx_init_port(struct efx_nic
*efx
)
1074 netif_dbg(efx
, drv
, efx
->net_dev
, "init port\n");
1076 mutex_lock(&efx
->mac_lock
);
1078 rc
= efx
->phy_op
->init(efx
);
1082 efx
->port_initialized
= true;
1084 /* Reconfigure the MAC before creating dma queues (required for
1085 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1086 efx_mac_reconfigure(efx
);
1088 /* Ensure the PHY advertises the correct flow control settings */
1089 rc
= efx
->phy_op
->reconfigure(efx
);
1090 if (rc
&& rc
!= -EPERM
)
1093 mutex_unlock(&efx
->mac_lock
);
1097 efx
->phy_op
->fini(efx
);
1099 mutex_unlock(&efx
->mac_lock
);
1103 static void efx_start_port(struct efx_nic
*efx
)
1105 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
1106 BUG_ON(efx
->port_enabled
);
1108 mutex_lock(&efx
->mac_lock
);
1109 efx
->port_enabled
= true;
1111 /* Ensure MAC ingress/egress is enabled */
1112 efx_mac_reconfigure(efx
);
1114 mutex_unlock(&efx
->mac_lock
);
1117 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1118 * and the async self-test, wait for them to finish and prevent them
1119 * being scheduled again. This doesn't cover online resets, which
1120 * should only be cancelled when removing the device.
1122 static void efx_stop_port(struct efx_nic
*efx
)
1124 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
1126 EFX_ASSERT_RESET_SERIALISED(efx
);
1128 mutex_lock(&efx
->mac_lock
);
1129 efx
->port_enabled
= false;
1130 mutex_unlock(&efx
->mac_lock
);
1132 /* Serialise against efx_set_multicast_list() */
1133 netif_addr_lock_bh(efx
->net_dev
);
1134 netif_addr_unlock_bh(efx
->net_dev
);
1136 cancel_delayed_work_sync(&efx
->monitor_work
);
1137 efx_selftest_async_cancel(efx
);
1138 cancel_work_sync(&efx
->mac_work
);
1141 static void efx_fini_port(struct efx_nic
*efx
)
1143 netif_dbg(efx
, drv
, efx
->net_dev
, "shut down port\n");
1145 if (!efx
->port_initialized
)
1148 efx
->phy_op
->fini(efx
);
1149 efx
->port_initialized
= false;
1151 efx
->link_state
.up
= false;
1152 efx_link_status_changed(efx
);
1155 static void efx_remove_port(struct efx_nic
*efx
)
1157 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying port\n");
1159 efx
->type
->remove_port(efx
);
1162 /**************************************************************************
1166 **************************************************************************/
1168 static LIST_HEAD(efx_primary_list
);
1169 static LIST_HEAD(efx_unassociated_list
);
1171 static bool efx_same_controller(struct efx_nic
*left
, struct efx_nic
*right
)
1173 return left
->type
== right
->type
&&
1174 left
->vpd_sn
&& right
->vpd_sn
&&
1175 !strcmp(left
->vpd_sn
, right
->vpd_sn
);
1178 static void efx_associate(struct efx_nic
*efx
)
1180 struct efx_nic
*other
, *next
;
1182 if (efx
->primary
== efx
) {
1183 /* Adding primary function; look for secondaries */
1185 netif_dbg(efx
, probe
, efx
->net_dev
, "adding to primary list\n");
1186 list_add_tail(&efx
->node
, &efx_primary_list
);
1188 list_for_each_entry_safe(other
, next
, &efx_unassociated_list
,
1190 if (efx_same_controller(efx
, other
)) {
1191 list_del(&other
->node
);
1192 netif_dbg(other
, probe
, other
->net_dev
,
1193 "moving to secondary list of %s %s\n",
1194 pci_name(efx
->pci_dev
),
1195 efx
->net_dev
->name
);
1196 list_add_tail(&other
->node
,
1197 &efx
->secondary_list
);
1198 other
->primary
= efx
;
1202 /* Adding secondary function; look for primary */
1204 list_for_each_entry(other
, &efx_primary_list
, node
) {
1205 if (efx_same_controller(efx
, other
)) {
1206 netif_dbg(efx
, probe
, efx
->net_dev
,
1207 "adding to secondary list of %s %s\n",
1208 pci_name(other
->pci_dev
),
1209 other
->net_dev
->name
);
1210 list_add_tail(&efx
->node
,
1211 &other
->secondary_list
);
1212 efx
->primary
= other
;
1217 netif_dbg(efx
, probe
, efx
->net_dev
,
1218 "adding to unassociated list\n");
1219 list_add_tail(&efx
->node
, &efx_unassociated_list
);
1223 static void efx_dissociate(struct efx_nic
*efx
)
1225 struct efx_nic
*other
, *next
;
1227 list_del(&efx
->node
);
1228 efx
->primary
= NULL
;
1230 list_for_each_entry_safe(other
, next
, &efx
->secondary_list
, node
) {
1231 list_del(&other
->node
);
1232 netif_dbg(other
, probe
, other
->net_dev
,
1233 "moving to unassociated list\n");
1234 list_add_tail(&other
->node
, &efx_unassociated_list
);
1235 other
->primary
= NULL
;
1239 /* This configures the PCI device to enable I/O and DMA. */
1240 static int efx_init_io(struct efx_nic
*efx
)
1242 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1243 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
1244 unsigned int mem_map_size
= efx
->type
->mem_map_size(efx
);
1247 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
1249 bar
= efx
->type
->mem_bar
;
1251 rc
= pci_enable_device(pci_dev
);
1253 netif_err(efx
, probe
, efx
->net_dev
,
1254 "failed to enable PCI device\n");
1258 pci_set_master(pci_dev
);
1260 /* Set the PCI DMA mask. Try all possibilities from our
1261 * genuine mask down to 32 bits, because some architectures
1262 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1263 * masks event though they reject 46 bit masks.
1265 while (dma_mask
> 0x7fffffffUL
) {
1266 rc
= dma_set_mask_and_coherent(&pci_dev
->dev
, dma_mask
);
1272 netif_err(efx
, probe
, efx
->net_dev
,
1273 "could not find a suitable DMA mask\n");
1276 netif_dbg(efx
, probe
, efx
->net_dev
,
1277 "using DMA mask %llx\n", (unsigned long long) dma_mask
);
1279 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, bar
);
1280 rc
= pci_request_region(pci_dev
, bar
, "sfc");
1282 netif_err(efx
, probe
, efx
->net_dev
,
1283 "request for memory BAR failed\n");
1287 efx
->membase
= ioremap_nocache(efx
->membase_phys
, mem_map_size
);
1288 if (!efx
->membase
) {
1289 netif_err(efx
, probe
, efx
->net_dev
,
1290 "could not map memory BAR at %llx+%x\n",
1291 (unsigned long long)efx
->membase_phys
, mem_map_size
);
1295 netif_dbg(efx
, probe
, efx
->net_dev
,
1296 "memory BAR at %llx+%x (virtual %p)\n",
1297 (unsigned long long)efx
->membase_phys
, mem_map_size
,
1303 pci_release_region(efx
->pci_dev
, bar
);
1305 efx
->membase_phys
= 0;
1307 pci_disable_device(efx
->pci_dev
);
1312 static void efx_fini_io(struct efx_nic
*efx
)
1316 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1319 iounmap(efx
->membase
);
1320 efx
->membase
= NULL
;
1323 if (efx
->membase_phys
) {
1324 bar
= efx
->type
->mem_bar
;
1325 pci_release_region(efx
->pci_dev
, bar
);
1326 efx
->membase_phys
= 0;
1329 /* Don't disable bus-mastering if VFs are assigned */
1330 if (!pci_vfs_assigned(efx
->pci_dev
))
1331 pci_disable_device(efx
->pci_dev
);
1334 void efx_set_default_rx_indir_table(struct efx_nic
*efx
)
1338 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); i
++)
1339 efx
->rx_indir_table
[i
] =
1340 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
1343 static unsigned int efx_wanted_parallelism(struct efx_nic
*efx
)
1345 cpumask_var_t thread_mask
;
1352 if (unlikely(!zalloc_cpumask_var(&thread_mask
, GFP_KERNEL
))) {
1353 netif_warn(efx
, probe
, efx
->net_dev
,
1354 "RSS disabled due to allocation failure\n");
1359 for_each_online_cpu(cpu
) {
1360 if (!cpumask_test_cpu(cpu
, thread_mask
)) {
1362 cpumask_or(thread_mask
, thread_mask
,
1363 topology_sibling_cpumask(cpu
));
1367 free_cpumask_var(thread_mask
);
1370 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1371 * table entries that are inaccessible to VFs
1373 #ifdef CONFIG_SFC_SRIOV
1374 if (efx
->type
->sriov_wanted
) {
1375 if (efx
->type
->sriov_wanted(efx
) && efx_vf_size(efx
) > 1 &&
1376 count
> efx_vf_size(efx
)) {
1377 netif_warn(efx
, probe
, efx
->net_dev
,
1378 "Reducing number of RSS channels from %u to %u for "
1379 "VF support. Increase vf-msix-limit to use more "
1380 "channels on the PF.\n",
1381 count
, efx_vf_size(efx
));
1382 count
= efx_vf_size(efx
);
1390 /* Probe the number and type of interrupts we are able to obtain, and
1391 * the resulting numbers of channels and RX queues.
1393 static int efx_probe_interrupts(struct efx_nic
*efx
)
1395 unsigned int extra_channels
= 0;
1399 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++)
1400 if (efx
->extra_channel_type
[i
])
1403 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
1404 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
1405 unsigned int n_channels
;
1407 n_channels
= efx_wanted_parallelism(efx
);
1408 if (efx_separate_tx_channels
)
1410 n_channels
+= extra_channels
;
1411 n_channels
= min(n_channels
, efx
->max_channels
);
1413 for (i
= 0; i
< n_channels
; i
++)
1414 xentries
[i
].entry
= i
;
1415 rc
= pci_enable_msix_range(efx
->pci_dev
,
1416 xentries
, 1, n_channels
);
1418 /* Fall back to single channel MSI */
1419 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
1420 netif_err(efx
, drv
, efx
->net_dev
,
1421 "could not enable MSI-X\n");
1422 } else if (rc
< n_channels
) {
1423 netif_err(efx
, drv
, efx
->net_dev
,
1424 "WARNING: Insufficient MSI-X vectors"
1425 " available (%d < %u).\n", rc
, n_channels
);
1426 netif_err(efx
, drv
, efx
->net_dev
,
1427 "WARNING: Performance may be reduced.\n");
1432 efx
->n_channels
= n_channels
;
1433 if (n_channels
> extra_channels
)
1434 n_channels
-= extra_channels
;
1435 if (efx_separate_tx_channels
) {
1436 efx
->n_tx_channels
= min(max(n_channels
/ 2,
1438 efx
->max_tx_channels
);
1439 efx
->n_rx_channels
= max(n_channels
-
1443 efx
->n_tx_channels
= min(n_channels
,
1444 efx
->max_tx_channels
);
1445 efx
->n_rx_channels
= n_channels
;
1447 for (i
= 0; i
< efx
->n_channels
; i
++)
1448 efx_get_channel(efx
, i
)->irq
=
1453 /* Try single interrupt MSI */
1454 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
1455 efx
->n_channels
= 1;
1456 efx
->n_rx_channels
= 1;
1457 efx
->n_tx_channels
= 1;
1458 rc
= pci_enable_msi(efx
->pci_dev
);
1460 efx_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
1462 netif_err(efx
, drv
, efx
->net_dev
,
1463 "could not enable MSI\n");
1464 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
1468 /* Assume legacy interrupts */
1469 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
1470 efx
->n_channels
= 1 + (efx_separate_tx_channels
? 1 : 0);
1471 efx
->n_rx_channels
= 1;
1472 efx
->n_tx_channels
= 1;
1473 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1476 /* Assign extra channels if possible */
1477 j
= efx
->n_channels
;
1478 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++) {
1479 if (!efx
->extra_channel_type
[i
])
1481 if (efx
->interrupt_mode
!= EFX_INT_MODE_MSIX
||
1482 efx
->n_channels
<= extra_channels
) {
1483 efx
->extra_channel_type
[i
]->handle_no_channel(efx
);
1486 efx_get_channel(efx
, j
)->type
=
1487 efx
->extra_channel_type
[i
];
1491 /* RSS might be usable on VFs even if it is disabled on the PF */
1492 #ifdef CONFIG_SFC_SRIOV
1493 if (efx
->type
->sriov_wanted
) {
1494 efx
->rss_spread
= ((efx
->n_rx_channels
> 1 ||
1495 !efx
->type
->sriov_wanted(efx
)) ?
1496 efx
->n_rx_channels
: efx_vf_size(efx
));
1500 efx
->rss_spread
= efx
->n_rx_channels
;
1505 static int efx_soft_enable_interrupts(struct efx_nic
*efx
)
1507 struct efx_channel
*channel
, *end_channel
;
1510 BUG_ON(efx
->state
== STATE_DISABLED
);
1512 efx
->irq_soft_enabled
= true;
1515 efx_for_each_channel(channel
, efx
) {
1516 if (!channel
->type
->keep_eventq
) {
1517 rc
= efx_init_eventq(channel
);
1521 efx_start_eventq(channel
);
1524 efx_mcdi_mode_event(efx
);
1528 end_channel
= channel
;
1529 efx_for_each_channel(channel
, efx
) {
1530 if (channel
== end_channel
)
1532 efx_stop_eventq(channel
);
1533 if (!channel
->type
->keep_eventq
)
1534 efx_fini_eventq(channel
);
1540 static void efx_soft_disable_interrupts(struct efx_nic
*efx
)
1542 struct efx_channel
*channel
;
1544 if (efx
->state
== STATE_DISABLED
)
1547 efx_mcdi_mode_poll(efx
);
1549 efx
->irq_soft_enabled
= false;
1552 if (efx
->legacy_irq
)
1553 synchronize_irq(efx
->legacy_irq
);
1555 efx_for_each_channel(channel
, efx
) {
1557 synchronize_irq(channel
->irq
);
1559 efx_stop_eventq(channel
);
1560 if (!channel
->type
->keep_eventq
)
1561 efx_fini_eventq(channel
);
1564 /* Flush the asynchronous MCDI request queue */
1565 efx_mcdi_flush_async(efx
);
1568 static int efx_enable_interrupts(struct efx_nic
*efx
)
1570 struct efx_channel
*channel
, *end_channel
;
1573 BUG_ON(efx
->state
== STATE_DISABLED
);
1575 if (efx
->eeh_disabled_legacy_irq
) {
1576 enable_irq(efx
->legacy_irq
);
1577 efx
->eeh_disabled_legacy_irq
= false;
1580 efx
->type
->irq_enable_master(efx
);
1582 efx_for_each_channel(channel
, efx
) {
1583 if (channel
->type
->keep_eventq
) {
1584 rc
= efx_init_eventq(channel
);
1590 rc
= efx_soft_enable_interrupts(efx
);
1597 end_channel
= channel
;
1598 efx_for_each_channel(channel
, efx
) {
1599 if (channel
== end_channel
)
1601 if (channel
->type
->keep_eventq
)
1602 efx_fini_eventq(channel
);
1605 efx
->type
->irq_disable_non_ev(efx
);
1610 static void efx_disable_interrupts(struct efx_nic
*efx
)
1612 struct efx_channel
*channel
;
1614 efx_soft_disable_interrupts(efx
);
1616 efx_for_each_channel(channel
, efx
) {
1617 if (channel
->type
->keep_eventq
)
1618 efx_fini_eventq(channel
);
1621 efx
->type
->irq_disable_non_ev(efx
);
1624 static void efx_remove_interrupts(struct efx_nic
*efx
)
1626 struct efx_channel
*channel
;
1628 /* Remove MSI/MSI-X interrupts */
1629 efx_for_each_channel(channel
, efx
)
1631 pci_disable_msi(efx
->pci_dev
);
1632 pci_disable_msix(efx
->pci_dev
);
1634 /* Remove legacy interrupt */
1635 efx
->legacy_irq
= 0;
1638 static void efx_set_channels(struct efx_nic
*efx
)
1640 struct efx_channel
*channel
;
1641 struct efx_tx_queue
*tx_queue
;
1643 efx
->tx_channel_offset
=
1644 efx_separate_tx_channels
?
1645 efx
->n_channels
- efx
->n_tx_channels
: 0;
1647 /* We need to mark which channels really have RX and TX
1648 * queues, and adjust the TX queue numbers if we have separate
1649 * RX-only and TX-only channels.
1651 efx_for_each_channel(channel
, efx
) {
1652 if (channel
->channel
< efx
->n_rx_channels
)
1653 channel
->rx_queue
.core_index
= channel
->channel
;
1655 channel
->rx_queue
.core_index
= -1;
1657 efx_for_each_channel_tx_queue(tx_queue
, channel
)
1658 tx_queue
->queue
-= (efx
->tx_channel_offset
*
1663 static int efx_probe_nic(struct efx_nic
*efx
)
1667 netif_dbg(efx
, probe
, efx
->net_dev
, "creating NIC\n");
1669 /* Carry out hardware-type specific initialisation */
1670 rc
= efx
->type
->probe(efx
);
1675 if (!efx
->max_channels
|| !efx
->max_tx_channels
) {
1676 netif_err(efx
, drv
, efx
->net_dev
,
1677 "Insufficient resources to allocate"
1683 /* Determine the number of channels and queues by trying
1684 * to hook in MSI-X interrupts.
1686 rc
= efx_probe_interrupts(efx
);
1690 efx_set_channels(efx
);
1692 /* dimension_resources can fail with EAGAIN */
1693 rc
= efx
->type
->dimension_resources(efx
);
1694 if (rc
!= 0 && rc
!= -EAGAIN
)
1698 /* try again with new max_channels */
1699 efx_remove_interrupts(efx
);
1701 } while (rc
== -EAGAIN
);
1703 if (efx
->n_channels
> 1)
1704 netdev_rss_key_fill(&efx
->rx_hash_key
,
1705 sizeof(efx
->rx_hash_key
));
1706 efx_set_default_rx_indir_table(efx
);
1708 netif_set_real_num_tx_queues(efx
->net_dev
, efx
->n_tx_channels
);
1709 netif_set_real_num_rx_queues(efx
->net_dev
, efx
->n_rx_channels
);
1711 /* Initialise the interrupt moderation settings */
1712 efx
->irq_mod_step_us
= DIV_ROUND_UP(efx
->timer_quantum_ns
, 1000);
1713 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true,
1719 efx_remove_interrupts(efx
);
1721 efx
->type
->remove(efx
);
1725 static void efx_remove_nic(struct efx_nic
*efx
)
1727 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying NIC\n");
1729 efx_remove_interrupts(efx
);
1730 efx
->type
->remove(efx
);
1733 static int efx_probe_filters(struct efx_nic
*efx
)
1737 spin_lock_init(&efx
->filter_lock
);
1738 init_rwsem(&efx
->filter_sem
);
1739 mutex_lock(&efx
->mac_lock
);
1740 down_write(&efx
->filter_sem
);
1741 rc
= efx
->type
->filter_table_probe(efx
);
1745 #ifdef CONFIG_RFS_ACCEL
1746 if (efx
->type
->offload_features
& NETIF_F_NTUPLE
) {
1747 struct efx_channel
*channel
;
1750 efx_for_each_channel(channel
, efx
) {
1751 channel
->rps_flow_id
=
1752 kcalloc(efx
->type
->max_rx_ip_filters
,
1753 sizeof(*channel
->rps_flow_id
),
1755 if (!channel
->rps_flow_id
)
1759 i
< efx
->type
->max_rx_ip_filters
;
1761 channel
->rps_flow_id
[i
] =
1762 RPS_FLOW_ID_INVALID
;
1766 efx_for_each_channel(channel
, efx
)
1767 kfree(channel
->rps_flow_id
);
1768 efx
->type
->filter_table_remove(efx
);
1773 efx
->rps_expire_index
= efx
->rps_expire_channel
= 0;
1777 up_write(&efx
->filter_sem
);
1778 mutex_unlock(&efx
->mac_lock
);
1782 static void efx_remove_filters(struct efx_nic
*efx
)
1784 #ifdef CONFIG_RFS_ACCEL
1785 struct efx_channel
*channel
;
1787 efx_for_each_channel(channel
, efx
)
1788 kfree(channel
->rps_flow_id
);
1790 down_write(&efx
->filter_sem
);
1791 efx
->type
->filter_table_remove(efx
);
1792 up_write(&efx
->filter_sem
);
1795 static void efx_restore_filters(struct efx_nic
*efx
)
1797 down_read(&efx
->filter_sem
);
1798 efx
->type
->filter_table_restore(efx
);
1799 up_read(&efx
->filter_sem
);
1802 /**************************************************************************
1804 * NIC startup/shutdown
1806 *************************************************************************/
1808 static int efx_probe_all(struct efx_nic
*efx
)
1812 rc
= efx_probe_nic(efx
);
1814 netif_err(efx
, probe
, efx
->net_dev
, "failed to create NIC\n");
1818 rc
= efx_probe_port(efx
);
1820 netif_err(efx
, probe
, efx
->net_dev
, "failed to create port\n");
1824 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_RXQ_MIN_ENT
);
1825 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_TXQ_MIN_ENT(efx
))) {
1829 efx
->rxq_entries
= efx
->txq_entries
= EFX_DEFAULT_DMAQ_SIZE
;
1831 #ifdef CONFIG_SFC_SRIOV
1832 rc
= efx
->type
->vswitching_probe(efx
);
1833 if (rc
) /* not fatal; the PF will still work fine */
1834 netif_warn(efx
, probe
, efx
->net_dev
,
1835 "failed to setup vswitching rc=%d;"
1836 " VFs may not function\n", rc
);
1839 rc
= efx_probe_filters(efx
);
1841 netif_err(efx
, probe
, efx
->net_dev
,
1842 "failed to create filter tables\n");
1846 rc
= efx_probe_channels(efx
);
1853 efx_remove_filters(efx
);
1855 #ifdef CONFIG_SFC_SRIOV
1856 efx
->type
->vswitching_remove(efx
);
1859 efx_remove_port(efx
);
1861 efx_remove_nic(efx
);
1866 /* If the interface is supposed to be running but is not, start
1867 * the hardware and software data path, regular activity for the port
1868 * (MAC statistics, link polling, etc.) and schedule the port to be
1869 * reconfigured. Interrupts must already be enabled. This function
1870 * is safe to call multiple times, so long as the NIC is not disabled.
1871 * Requires the RTNL lock.
1873 static void efx_start_all(struct efx_nic
*efx
)
1875 EFX_ASSERT_RESET_SERIALISED(efx
);
1876 BUG_ON(efx
->state
== STATE_DISABLED
);
1878 /* Check that it is appropriate to restart the interface. All
1879 * of these flags are safe to read under just the rtnl lock */
1880 if (efx
->port_enabled
|| !netif_running(efx
->net_dev
) ||
1884 efx_start_port(efx
);
1885 efx_start_datapath(efx
);
1887 /* Start the hardware monitor if there is one */
1888 if (efx
->type
->monitor
!= NULL
)
1889 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1890 efx_monitor_interval
);
1892 /* If link state detection is normally event-driven, we have
1893 * to poll now because we could have missed a change
1895 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1896 mutex_lock(&efx
->mac_lock
);
1897 if (efx
->phy_op
->poll(efx
))
1898 efx_link_status_changed(efx
);
1899 mutex_unlock(&efx
->mac_lock
);
1902 efx
->type
->start_stats(efx
);
1903 efx
->type
->pull_stats(efx
);
1904 spin_lock_bh(&efx
->stats_lock
);
1905 efx
->type
->update_stats(efx
, NULL
, NULL
);
1906 spin_unlock_bh(&efx
->stats_lock
);
1909 /* Quiesce the hardware and software data path, and regular activity
1910 * for the port without bringing the link down. Safe to call multiple
1911 * times with the NIC in almost any state, but interrupts should be
1912 * enabled. Requires the RTNL lock.
1914 static void efx_stop_all(struct efx_nic
*efx
)
1916 EFX_ASSERT_RESET_SERIALISED(efx
);
1918 /* port_enabled can be read safely under the rtnl lock */
1919 if (!efx
->port_enabled
)
1922 /* update stats before we go down so we can accurately count
1925 efx
->type
->pull_stats(efx
);
1926 spin_lock_bh(&efx
->stats_lock
);
1927 efx
->type
->update_stats(efx
, NULL
, NULL
);
1928 spin_unlock_bh(&efx
->stats_lock
);
1929 efx
->type
->stop_stats(efx
);
1932 /* Stop the kernel transmit interface. This is only valid if
1933 * the device is stopped or detached; otherwise the watchdog
1934 * may fire immediately.
1936 WARN_ON(netif_running(efx
->net_dev
) &&
1937 netif_device_present(efx
->net_dev
));
1938 netif_tx_disable(efx
->net_dev
);
1940 efx_stop_datapath(efx
);
1943 static void efx_remove_all(struct efx_nic
*efx
)
1945 efx_remove_channels(efx
);
1946 efx_remove_filters(efx
);
1947 #ifdef CONFIG_SFC_SRIOV
1948 efx
->type
->vswitching_remove(efx
);
1950 efx_remove_port(efx
);
1951 efx_remove_nic(efx
);
1954 /**************************************************************************
1956 * Interrupt moderation
1958 **************************************************************************/
1959 unsigned int efx_usecs_to_ticks(struct efx_nic
*efx
, unsigned int usecs
)
1963 if (usecs
* 1000 < efx
->timer_quantum_ns
)
1964 return 1; /* never round down to 0 */
1965 return usecs
* 1000 / efx
->timer_quantum_ns
;
1968 unsigned int efx_ticks_to_usecs(struct efx_nic
*efx
, unsigned int ticks
)
1970 /* We must round up when converting ticks to microseconds
1971 * because we round down when converting the other way.
1973 return DIV_ROUND_UP(ticks
* efx
->timer_quantum_ns
, 1000);
1976 /* Set interrupt moderation parameters */
1977 int efx_init_irq_moderation(struct efx_nic
*efx
, unsigned int tx_usecs
,
1978 unsigned int rx_usecs
, bool rx_adaptive
,
1979 bool rx_may_override_tx
)
1981 struct efx_channel
*channel
;
1982 unsigned int timer_max_us
;
1984 EFX_ASSERT_RESET_SERIALISED(efx
);
1986 timer_max_us
= efx
->timer_max_ns
/ 1000;
1988 if (tx_usecs
> timer_max_us
|| rx_usecs
> timer_max_us
)
1991 if (tx_usecs
!= rx_usecs
&& efx
->tx_channel_offset
== 0 &&
1992 !rx_may_override_tx
) {
1993 netif_err(efx
, drv
, efx
->net_dev
, "Channels are shared. "
1994 "RX and TX IRQ moderation must be equal\n");
1998 efx
->irq_rx_adaptive
= rx_adaptive
;
1999 efx
->irq_rx_moderation_us
= rx_usecs
;
2000 efx_for_each_channel(channel
, efx
) {
2001 if (efx_channel_has_rx_queue(channel
))
2002 channel
->irq_moderation_us
= rx_usecs
;
2003 else if (efx_channel_has_tx_queues(channel
))
2004 channel
->irq_moderation_us
= tx_usecs
;
2010 void efx_get_irq_moderation(struct efx_nic
*efx
, unsigned int *tx_usecs
,
2011 unsigned int *rx_usecs
, bool *rx_adaptive
)
2013 *rx_adaptive
= efx
->irq_rx_adaptive
;
2014 *rx_usecs
= efx
->irq_rx_moderation_us
;
2016 /* If channels are shared between RX and TX, so is IRQ
2017 * moderation. Otherwise, IRQ moderation is the same for all
2018 * TX channels and is not adaptive.
2020 if (efx
->tx_channel_offset
== 0) {
2021 *tx_usecs
= *rx_usecs
;
2023 struct efx_channel
*tx_channel
;
2025 tx_channel
= efx
->channel
[efx
->tx_channel_offset
];
2026 *tx_usecs
= tx_channel
->irq_moderation_us
;
2030 /**************************************************************************
2034 **************************************************************************/
2036 /* Run periodically off the general workqueue */
2037 static void efx_monitor(struct work_struct
*data
)
2039 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
2042 netif_vdbg(efx
, timer
, efx
->net_dev
,
2043 "hardware monitor executing on CPU %d\n",
2044 raw_smp_processor_id());
2045 BUG_ON(efx
->type
->monitor
== NULL
);
2047 /* If the mac_lock is already held then it is likely a port
2048 * reconfiguration is already in place, which will likely do
2049 * most of the work of monitor() anyway. */
2050 if (mutex_trylock(&efx
->mac_lock
)) {
2051 if (efx
->port_enabled
)
2052 efx
->type
->monitor(efx
);
2053 mutex_unlock(&efx
->mac_lock
);
2056 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
2057 efx_monitor_interval
);
2060 /**************************************************************************
2064 *************************************************************************/
2067 * Context: process, rtnl_lock() held.
2069 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
2071 struct efx_nic
*efx
= netdev_priv(net_dev
);
2072 struct mii_ioctl_data
*data
= if_mii(ifr
);
2074 if (cmd
== SIOCSHWTSTAMP
)
2075 return efx_ptp_set_ts_config(efx
, ifr
);
2076 if (cmd
== SIOCGHWTSTAMP
)
2077 return efx_ptp_get_ts_config(efx
, ifr
);
2079 /* Convert phy_id from older PRTAD/DEVAD format */
2080 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
2081 (data
->phy_id
& 0xfc00) == 0x0400)
2082 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
2084 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
2087 /**************************************************************************
2091 **************************************************************************/
2093 static void efx_init_napi_channel(struct efx_channel
*channel
)
2095 struct efx_nic
*efx
= channel
->efx
;
2097 channel
->napi_dev
= efx
->net_dev
;
2098 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
2099 efx_poll
, napi_weight
);
2100 efx_channel_busy_poll_init(channel
);
2103 static void efx_init_napi(struct efx_nic
*efx
)
2105 struct efx_channel
*channel
;
2107 efx_for_each_channel(channel
, efx
)
2108 efx_init_napi_channel(channel
);
2111 static void efx_fini_napi_channel(struct efx_channel
*channel
)
2113 if (channel
->napi_dev
) {
2114 netif_napi_del(&channel
->napi_str
);
2115 napi_hash_del(&channel
->napi_str
);
2117 channel
->napi_dev
= NULL
;
2120 static void efx_fini_napi(struct efx_nic
*efx
)
2122 struct efx_channel
*channel
;
2124 efx_for_each_channel(channel
, efx
)
2125 efx_fini_napi_channel(channel
);
2128 /**************************************************************************
2130 * Kernel netpoll interface
2132 *************************************************************************/
2134 #ifdef CONFIG_NET_POLL_CONTROLLER
2136 /* Although in the common case interrupts will be disabled, this is not
2137 * guaranteed. However, all our work happens inside the NAPI callback,
2138 * so no locking is required.
2140 static void efx_netpoll(struct net_device
*net_dev
)
2142 struct efx_nic
*efx
= netdev_priv(net_dev
);
2143 struct efx_channel
*channel
;
2145 efx_for_each_channel(channel
, efx
)
2146 efx_schedule_channel(channel
);
2151 #ifdef CONFIG_NET_RX_BUSY_POLL
2152 static int efx_busy_poll(struct napi_struct
*napi
)
2154 struct efx_channel
*channel
=
2155 container_of(napi
, struct efx_channel
, napi_str
);
2156 struct efx_nic
*efx
= channel
->efx
;
2158 int old_rx_packets
, rx_packets
;
2160 if (!netif_running(efx
->net_dev
))
2161 return LL_FLUSH_FAILED
;
2163 if (!efx_channel_try_lock_poll(channel
))
2164 return LL_FLUSH_BUSY
;
2166 old_rx_packets
= channel
->rx_queue
.rx_packets
;
2167 efx_process_channel(channel
, budget
);
2169 rx_packets
= channel
->rx_queue
.rx_packets
- old_rx_packets
;
2171 /* There is no race condition with NAPI here.
2172 * NAPI will automatically be rescheduled if it yielded during busy
2173 * polling, because it was not able to take the lock and thus returned
2176 efx_channel_unlock_poll(channel
);
2182 /**************************************************************************
2184 * Kernel net device interface
2186 *************************************************************************/
2188 /* Context: process, rtnl_lock() held. */
2189 int efx_net_open(struct net_device
*net_dev
)
2191 struct efx_nic
*efx
= netdev_priv(net_dev
);
2194 netif_dbg(efx
, ifup
, efx
->net_dev
, "opening device on CPU %d\n",
2195 raw_smp_processor_id());
2197 rc
= efx_check_disabled(efx
);
2200 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
2202 if (efx_mcdi_poll_reboot(efx
) && efx_reset(efx
, RESET_TYPE_ALL
))
2205 /* Notify the kernel of the link state polled during driver load,
2206 * before the monitor starts running */
2207 efx_link_status_changed(efx
);
2210 efx_selftest_async_start(efx
);
2214 /* Context: process, rtnl_lock() held.
2215 * Note that the kernel will ignore our return code; this method
2216 * should really be a void.
2218 int efx_net_stop(struct net_device
*net_dev
)
2220 struct efx_nic
*efx
= netdev_priv(net_dev
);
2222 netif_dbg(efx
, ifdown
, efx
->net_dev
, "closing on CPU %d\n",
2223 raw_smp_processor_id());
2225 /* Stop the device and flush all the channels */
2231 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2232 static struct rtnl_link_stats64
*efx_net_stats(struct net_device
*net_dev
,
2233 struct rtnl_link_stats64
*stats
)
2235 struct efx_nic
*efx
= netdev_priv(net_dev
);
2237 spin_lock_bh(&efx
->stats_lock
);
2238 efx
->type
->update_stats(efx
, NULL
, stats
);
2239 spin_unlock_bh(&efx
->stats_lock
);
2244 /* Context: netif_tx_lock held, BHs disabled. */
2245 static void efx_watchdog(struct net_device
*net_dev
)
2247 struct efx_nic
*efx
= netdev_priv(net_dev
);
2249 netif_err(efx
, tx_err
, efx
->net_dev
,
2250 "TX stuck with port_enabled=%d: resetting channels\n",
2253 efx_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
2257 /* Context: process, rtnl_lock() held. */
2258 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
2260 struct efx_nic
*efx
= netdev_priv(net_dev
);
2263 rc
= efx_check_disabled(efx
);
2266 if (new_mtu
> EFX_MAX_MTU
) {
2267 netif_err(efx
, drv
, efx
->net_dev
,
2268 "Requested MTU of %d too big (max: %d)\n",
2269 new_mtu
, EFX_MAX_MTU
);
2272 if (new_mtu
< EFX_MIN_MTU
) {
2273 netif_err(efx
, drv
, efx
->net_dev
,
2274 "Requested MTU of %d too small (min: %d)\n",
2275 new_mtu
, EFX_MIN_MTU
);
2279 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
2281 efx_device_detach_sync(efx
);
2284 mutex_lock(&efx
->mac_lock
);
2285 net_dev
->mtu
= new_mtu
;
2286 efx_mac_reconfigure(efx
);
2287 mutex_unlock(&efx
->mac_lock
);
2290 netif_device_attach(efx
->net_dev
);
2294 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
2296 struct efx_nic
*efx
= netdev_priv(net_dev
);
2297 struct sockaddr
*addr
= data
;
2298 u8
*new_addr
= addr
->sa_data
;
2302 if (!is_valid_ether_addr(new_addr
)) {
2303 netif_err(efx
, drv
, efx
->net_dev
,
2304 "invalid ethernet MAC address requested: %pM\n",
2306 return -EADDRNOTAVAIL
;
2309 /* save old address */
2310 ether_addr_copy(old_addr
, net_dev
->dev_addr
);
2311 ether_addr_copy(net_dev
->dev_addr
, new_addr
);
2312 if (efx
->type
->set_mac_address
) {
2313 rc
= efx
->type
->set_mac_address(efx
);
2315 ether_addr_copy(net_dev
->dev_addr
, old_addr
);
2320 /* Reconfigure the MAC */
2321 mutex_lock(&efx
->mac_lock
);
2322 efx_mac_reconfigure(efx
);
2323 mutex_unlock(&efx
->mac_lock
);
2328 /* Context: netif_addr_lock held, BHs disabled. */
2329 static void efx_set_rx_mode(struct net_device
*net_dev
)
2331 struct efx_nic
*efx
= netdev_priv(net_dev
);
2333 if (efx
->port_enabled
)
2334 queue_work(efx
->workqueue
, &efx
->mac_work
);
2335 /* Otherwise efx_start_port() will do this */
2338 static int efx_set_features(struct net_device
*net_dev
, netdev_features_t data
)
2340 struct efx_nic
*efx
= netdev_priv(net_dev
);
2343 /* If disabling RX n-tuple filtering, clear existing filters */
2344 if (net_dev
->features
& ~data
& NETIF_F_NTUPLE
) {
2345 rc
= efx
->type
->filter_clear_rx(efx
, EFX_FILTER_PRI_MANUAL
);
2350 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2351 if ((net_dev
->features
^ data
) & NETIF_F_HW_VLAN_CTAG_FILTER
) {
2352 /* efx_set_rx_mode() will schedule MAC work to update filters
2353 * when a new features are finally set in net_dev.
2355 efx_set_rx_mode(net_dev
);
2361 static int efx_vlan_rx_add_vid(struct net_device
*net_dev
, __be16 proto
, u16 vid
)
2363 struct efx_nic
*efx
= netdev_priv(net_dev
);
2365 if (efx
->type
->vlan_rx_add_vid
)
2366 return efx
->type
->vlan_rx_add_vid(efx
, proto
, vid
);
2371 static int efx_vlan_rx_kill_vid(struct net_device
*net_dev
, __be16 proto
, u16 vid
)
2373 struct efx_nic
*efx
= netdev_priv(net_dev
);
2375 if (efx
->type
->vlan_rx_kill_vid
)
2376 return efx
->type
->vlan_rx_kill_vid(efx
, proto
, vid
);
2381 static const struct net_device_ops efx_netdev_ops
= {
2382 .ndo_open
= efx_net_open
,
2383 .ndo_stop
= efx_net_stop
,
2384 .ndo_get_stats64
= efx_net_stats
,
2385 .ndo_tx_timeout
= efx_watchdog
,
2386 .ndo_start_xmit
= efx_hard_start_xmit
,
2387 .ndo_validate_addr
= eth_validate_addr
,
2388 .ndo_do_ioctl
= efx_ioctl
,
2389 .ndo_change_mtu
= efx_change_mtu
,
2390 .ndo_set_mac_address
= efx_set_mac_address
,
2391 .ndo_set_rx_mode
= efx_set_rx_mode
,
2392 .ndo_set_features
= efx_set_features
,
2393 .ndo_vlan_rx_add_vid
= efx_vlan_rx_add_vid
,
2394 .ndo_vlan_rx_kill_vid
= efx_vlan_rx_kill_vid
,
2395 #ifdef CONFIG_SFC_SRIOV
2396 .ndo_set_vf_mac
= efx_sriov_set_vf_mac
,
2397 .ndo_set_vf_vlan
= efx_sriov_set_vf_vlan
,
2398 .ndo_set_vf_spoofchk
= efx_sriov_set_vf_spoofchk
,
2399 .ndo_get_vf_config
= efx_sriov_get_vf_config
,
2400 .ndo_set_vf_link_state
= efx_sriov_set_vf_link_state
,
2401 .ndo_get_phys_port_id
= efx_sriov_get_phys_port_id
,
2403 #ifdef CONFIG_NET_POLL_CONTROLLER
2404 .ndo_poll_controller
= efx_netpoll
,
2406 .ndo_setup_tc
= efx_setup_tc
,
2407 #ifdef CONFIG_NET_RX_BUSY_POLL
2408 .ndo_busy_poll
= efx_busy_poll
,
2410 #ifdef CONFIG_RFS_ACCEL
2411 .ndo_rx_flow_steer
= efx_filter_rfs
,
2415 static void efx_update_name(struct efx_nic
*efx
)
2417 strcpy(efx
->name
, efx
->net_dev
->name
);
2418 efx_mtd_rename(efx
);
2419 efx_set_channel_names(efx
);
2422 static int efx_netdev_event(struct notifier_block
*this,
2423 unsigned long event
, void *ptr
)
2425 struct net_device
*net_dev
= netdev_notifier_info_to_dev(ptr
);
2427 if ((net_dev
->netdev_ops
== &efx_netdev_ops
) &&
2428 event
== NETDEV_CHANGENAME
)
2429 efx_update_name(netdev_priv(net_dev
));
2434 static struct notifier_block efx_netdev_notifier
= {
2435 .notifier_call
= efx_netdev_event
,
2439 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2441 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2442 return sprintf(buf
, "%d\n", efx
->phy_type
);
2444 static DEVICE_ATTR(phy_type
, 0444, show_phy_type
, NULL
);
2446 #ifdef CONFIG_SFC_MCDI_LOGGING
2447 static ssize_t
show_mcdi_log(struct device
*dev
, struct device_attribute
*attr
,
2450 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2451 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
2453 return scnprintf(buf
, PAGE_SIZE
, "%d\n", mcdi
->logging_enabled
);
2455 static ssize_t
set_mcdi_log(struct device
*dev
, struct device_attribute
*attr
,
2456 const char *buf
, size_t count
)
2458 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2459 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
2460 bool enable
= count
> 0 && *buf
!= '0';
2462 mcdi
->logging_enabled
= enable
;
2465 static DEVICE_ATTR(mcdi_logging
, 0644, show_mcdi_log
, set_mcdi_log
);
2468 static int efx_register_netdev(struct efx_nic
*efx
)
2470 struct net_device
*net_dev
= efx
->net_dev
;
2471 struct efx_channel
*channel
;
2474 net_dev
->watchdog_timeo
= 5 * HZ
;
2475 net_dev
->irq
= efx
->pci_dev
->irq
;
2476 net_dev
->netdev_ops
= &efx_netdev_ops
;
2477 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
)
2478 net_dev
->priv_flags
|= IFF_UNICAST_FLT
;
2479 net_dev
->ethtool_ops
= &efx_ethtool_ops
;
2480 net_dev
->gso_max_segs
= EFX_TSO_MAX_SEGS
;
2484 /* Enable resets to be scheduled and check whether any were
2485 * already requested. If so, the NIC is probably hosed so we
2488 efx
->state
= STATE_READY
;
2489 smp_mb(); /* ensure we change state before checking reset_pending */
2490 if (efx
->reset_pending
) {
2491 netif_err(efx
, probe
, efx
->net_dev
,
2492 "aborting probe due to scheduled reset\n");
2497 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
2500 efx_update_name(efx
);
2502 /* Always start with carrier off; PHY events will detect the link */
2503 netif_carrier_off(net_dev
);
2505 rc
= register_netdevice(net_dev
);
2509 efx_for_each_channel(channel
, efx
) {
2510 struct efx_tx_queue
*tx_queue
;
2511 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2512 efx_init_tx_queue_core_txq(tx_queue
);
2519 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2521 netif_err(efx
, drv
, efx
->net_dev
,
2522 "failed to init net dev attributes\n");
2523 goto fail_registered
;
2525 #ifdef CONFIG_SFC_MCDI_LOGGING
2526 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_mcdi_logging
);
2528 netif_err(efx
, drv
, efx
->net_dev
,
2529 "failed to init net dev attributes\n");
2530 goto fail_attr_mcdi_logging
;
2536 #ifdef CONFIG_SFC_MCDI_LOGGING
2537 fail_attr_mcdi_logging
:
2538 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2542 efx_dissociate(efx
);
2543 unregister_netdevice(net_dev
);
2545 efx
->state
= STATE_UNINIT
;
2547 netif_err(efx
, drv
, efx
->net_dev
, "could not register net dev\n");
2551 static void efx_unregister_netdev(struct efx_nic
*efx
)
2556 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
2558 if (efx_dev_registered(efx
)) {
2559 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
2560 #ifdef CONFIG_SFC_MCDI_LOGGING
2561 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_mcdi_logging
);
2563 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2564 unregister_netdev(efx
->net_dev
);
2568 /**************************************************************************
2570 * Device reset and suspend
2572 **************************************************************************/
2574 /* Tears down the entire software state and most of the hardware state
2576 void efx_reset_down(struct efx_nic
*efx
, enum reset_type method
)
2578 EFX_ASSERT_RESET_SERIALISED(efx
);
2580 if (method
== RESET_TYPE_MCDI_TIMEOUT
)
2581 efx
->type
->prepare_flr(efx
);
2584 efx_disable_interrupts(efx
);
2586 mutex_lock(&efx
->mac_lock
);
2587 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2588 method
!= RESET_TYPE_DATAPATH
)
2589 efx
->phy_op
->fini(efx
);
2590 efx
->type
->fini(efx
);
2593 /* This function will always ensure that the locks acquired in
2594 * efx_reset_down() are released. A failure return code indicates
2595 * that we were unable to reinitialise the hardware, and the
2596 * driver should be disabled. If ok is false, then the rx and tx
2597 * engines are not restarted, pending a RESET_DISABLE. */
2598 int efx_reset_up(struct efx_nic
*efx
, enum reset_type method
, bool ok
)
2602 EFX_ASSERT_RESET_SERIALISED(efx
);
2604 if (method
== RESET_TYPE_MCDI_TIMEOUT
)
2605 efx
->type
->finish_flr(efx
);
2607 /* Ensure that SRAM is initialised even if we're disabling the device */
2608 rc
= efx
->type
->init(efx
);
2610 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
2617 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2618 method
!= RESET_TYPE_DATAPATH
) {
2619 rc
= efx
->phy_op
->init(efx
);
2622 rc
= efx
->phy_op
->reconfigure(efx
);
2623 if (rc
&& rc
!= -EPERM
)
2624 netif_err(efx
, drv
, efx
->net_dev
,
2625 "could not restore PHY settings\n");
2628 rc
= efx_enable_interrupts(efx
);
2632 #ifdef CONFIG_SFC_SRIOV
2633 rc
= efx
->type
->vswitching_restore(efx
);
2634 if (rc
) /* not fatal; the PF will still work fine */
2635 netif_warn(efx
, probe
, efx
->net_dev
,
2636 "failed to restore vswitching rc=%d;"
2637 " VFs may not function\n", rc
);
2640 down_read(&efx
->filter_sem
);
2641 efx_restore_filters(efx
);
2642 up_read(&efx
->filter_sem
);
2643 if (efx
->type
->sriov_reset
)
2644 efx
->type
->sriov_reset(efx
);
2646 mutex_unlock(&efx
->mac_lock
);
2653 efx
->port_initialized
= false;
2655 mutex_unlock(&efx
->mac_lock
);
2660 /* Reset the NIC using the specified method. Note that the reset may
2661 * fail, in which case the card will be left in an unusable state.
2663 * Caller must hold the rtnl_lock.
2665 int efx_reset(struct efx_nic
*efx
, enum reset_type method
)
2670 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
2671 RESET_TYPE(method
));
2673 efx_device_detach_sync(efx
);
2674 efx_reset_down(efx
, method
);
2676 rc
= efx
->type
->reset(efx
, method
);
2678 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
2682 /* Clear flags for the scopes we covered. We assume the NIC and
2683 * driver are now quiescent so that there is no race here.
2685 if (method
< RESET_TYPE_MAX_METHOD
)
2686 efx
->reset_pending
&= -(1 << (method
+ 1));
2687 else /* it doesn't fit into the well-ordered scope hierarchy */
2688 __clear_bit(method
, &efx
->reset_pending
);
2690 /* Reinitialise bus-mastering, which may have been turned off before
2691 * the reset was scheduled. This is still appropriate, even in the
2692 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2693 * can respond to requests. */
2694 pci_set_master(efx
->pci_dev
);
2697 /* Leave device stopped if necessary */
2699 method
== RESET_TYPE_DISABLE
||
2700 method
== RESET_TYPE_RECOVER_OR_DISABLE
;
2701 rc2
= efx_reset_up(efx
, method
, !disabled
);
2709 dev_close(efx
->net_dev
);
2710 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
2711 efx
->state
= STATE_DISABLED
;
2713 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
2714 netif_device_attach(efx
->net_dev
);
2719 /* Try recovery mechanisms.
2720 * For now only EEH is supported.
2721 * Returns 0 if the recovery mechanisms are unsuccessful.
2722 * Returns a non-zero value otherwise.
2724 int efx_try_recovery(struct efx_nic
*efx
)
2727 /* A PCI error can occur and not be seen by EEH because nothing
2728 * happens on the PCI bus. In this case the driver may fail and
2729 * schedule a 'recover or reset', leading to this recovery handler.
2730 * Manually call the eeh failure check function.
2732 struct eeh_dev
*eehdev
= pci_dev_to_eeh_dev(efx
->pci_dev
);
2733 if (eeh_dev_check_failure(eehdev
)) {
2734 /* The EEH mechanisms will handle the error and reset the
2735 * device if necessary.
2743 static void efx_wait_for_bist_end(struct efx_nic
*efx
)
2747 for (i
= 0; i
< BIST_WAIT_DELAY_COUNT
; ++i
) {
2748 if (efx_mcdi_poll_reboot(efx
))
2750 msleep(BIST_WAIT_DELAY_MS
);
2753 netif_err(efx
, drv
, efx
->net_dev
, "Warning: No MC reboot after BIST mode\n");
2755 /* Either way unset the BIST flag. If we found no reboot we probably
2756 * won't recover, but we should try.
2758 efx
->mc_bist_for_other_fn
= false;
2761 /* The worker thread exists so that code that cannot sleep can
2762 * schedule a reset for later.
2764 static void efx_reset_work(struct work_struct
*data
)
2766 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, reset_work
);
2767 unsigned long pending
;
2768 enum reset_type method
;
2770 pending
= ACCESS_ONCE(efx
->reset_pending
);
2771 method
= fls(pending
) - 1;
2773 if (method
== RESET_TYPE_MC_BIST
)
2774 efx_wait_for_bist_end(efx
);
2776 if ((method
== RESET_TYPE_RECOVER_OR_DISABLE
||
2777 method
== RESET_TYPE_RECOVER_OR_ALL
) &&
2778 efx_try_recovery(efx
))
2786 /* We checked the state in efx_schedule_reset() but it may
2787 * have changed by now. Now that we have the RTNL lock,
2788 * it cannot change again.
2790 if (efx
->state
== STATE_READY
)
2791 (void)efx_reset(efx
, method
);
2796 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
2798 enum reset_type method
;
2800 if (efx
->state
== STATE_RECOVERY
) {
2801 netif_dbg(efx
, drv
, efx
->net_dev
,
2802 "recovering: skip scheduling %s reset\n",
2808 case RESET_TYPE_INVISIBLE
:
2809 case RESET_TYPE_ALL
:
2810 case RESET_TYPE_RECOVER_OR_ALL
:
2811 case RESET_TYPE_WORLD
:
2812 case RESET_TYPE_DISABLE
:
2813 case RESET_TYPE_RECOVER_OR_DISABLE
:
2814 case RESET_TYPE_DATAPATH
:
2815 case RESET_TYPE_MC_BIST
:
2816 case RESET_TYPE_MCDI_TIMEOUT
:
2818 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
2819 RESET_TYPE(method
));
2822 method
= efx
->type
->map_reset_reason(type
);
2823 netif_dbg(efx
, drv
, efx
->net_dev
,
2824 "scheduling %s reset for %s\n",
2825 RESET_TYPE(method
), RESET_TYPE(type
));
2829 set_bit(method
, &efx
->reset_pending
);
2830 smp_mb(); /* ensure we change reset_pending before checking state */
2832 /* If we're not READY then just leave the flags set as the cue
2833 * to abort probing or reschedule the reset later.
2835 if (ACCESS_ONCE(efx
->state
) != STATE_READY
)
2838 /* efx_process_channel() will no longer read events once a
2839 * reset is scheduled. So switch back to poll'd MCDI completions. */
2840 efx_mcdi_mode_poll(efx
);
2842 queue_work(reset_workqueue
, &efx
->reset_work
);
2845 /**************************************************************************
2847 * List of NICs we support
2849 **************************************************************************/
2851 /* PCI device ID table */
2852 static const struct pci_device_id efx_pci_table
[] = {
2853 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2854 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0
),
2855 .driver_data
= (unsigned long) &falcon_a1_nic_type
},
2856 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2857 PCI_DEVICE_ID_SOLARFLARE_SFC4000B
),
2858 .driver_data
= (unsigned long) &falcon_b0_nic_type
},
2859 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0803), /* SFC9020 */
2860 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2861 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0813), /* SFL9021 */
2862 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2863 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0903), /* SFC9120 PF */
2864 .driver_data
= (unsigned long) &efx_hunt_a0_nic_type
},
2865 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x1903), /* SFC9120 VF */
2866 .driver_data
= (unsigned long) &efx_hunt_a0_vf_nic_type
},
2867 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0923), /* SFC9140 PF */
2868 .driver_data
= (unsigned long) &efx_hunt_a0_nic_type
},
2869 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x1923), /* SFC9140 VF */
2870 .driver_data
= (unsigned long) &efx_hunt_a0_vf_nic_type
},
2871 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0a03), /* SFC9220 PF */
2872 .driver_data
= (unsigned long) &efx_hunt_a0_nic_type
},
2873 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x1a03), /* SFC9220 VF */
2874 .driver_data
= (unsigned long) &efx_hunt_a0_vf_nic_type
},
2875 {0} /* end of list */
2878 /**************************************************************************
2880 * Dummy PHY/MAC operations
2882 * Can be used for some unimplemented operations
2883 * Needed so all function pointers are valid and do not have to be tested
2886 **************************************************************************/
2887 int efx_port_dummy_op_int(struct efx_nic
*efx
)
2891 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
2893 static bool efx_port_dummy_op_poll(struct efx_nic
*efx
)
2898 static const struct efx_phy_operations efx_dummy_phy_operations
= {
2899 .init
= efx_port_dummy_op_int
,
2900 .reconfigure
= efx_port_dummy_op_int
,
2901 .poll
= efx_port_dummy_op_poll
,
2902 .fini
= efx_port_dummy_op_void
,
2905 /**************************************************************************
2909 **************************************************************************/
2911 /* This zeroes out and then fills in the invariants in a struct
2912 * efx_nic (including all sub-structures).
2914 static int efx_init_struct(struct efx_nic
*efx
,
2915 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2919 /* Initialise common structures */
2920 INIT_LIST_HEAD(&efx
->node
);
2921 INIT_LIST_HEAD(&efx
->secondary_list
);
2922 spin_lock_init(&efx
->biu_lock
);
2923 #ifdef CONFIG_SFC_MTD
2924 INIT_LIST_HEAD(&efx
->mtd_list
);
2926 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
2927 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
2928 INIT_DELAYED_WORK(&efx
->selftest_work
, efx_selftest_async_work
);
2929 efx
->pci_dev
= pci_dev
;
2930 efx
->msg_enable
= debug
;
2931 efx
->state
= STATE_UNINIT
;
2932 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2934 efx
->net_dev
= net_dev
;
2935 efx
->rx_prefix_size
= efx
->type
->rx_prefix_size
;
2937 NET_IP_ALIGN
? (efx
->rx_prefix_size
+ NET_IP_ALIGN
) % 4 : 0;
2938 efx
->rx_packet_hash_offset
=
2939 efx
->type
->rx_hash_offset
- efx
->type
->rx_prefix_size
;
2940 efx
->rx_packet_ts_offset
=
2941 efx
->type
->rx_ts_offset
- efx
->type
->rx_prefix_size
;
2942 spin_lock_init(&efx
->stats_lock
);
2943 mutex_init(&efx
->mac_lock
);
2944 efx
->phy_op
= &efx_dummy_phy_operations
;
2945 efx
->mdio
.dev
= net_dev
;
2946 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
2947 init_waitqueue_head(&efx
->flush_wq
);
2949 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
2950 efx
->channel
[i
] = efx_alloc_channel(efx
, i
, NULL
);
2951 if (!efx
->channel
[i
])
2953 efx
->msi_context
[i
].efx
= efx
;
2954 efx
->msi_context
[i
].index
= i
;
2957 /* Higher numbered interrupt modes are less capable! */
2958 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2961 /* Would be good to use the net_dev name, but we're too early */
2962 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2964 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2965 if (!efx
->workqueue
)
2971 efx_fini_struct(efx
);
2975 static void efx_fini_struct(struct efx_nic
*efx
)
2979 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++)
2980 kfree(efx
->channel
[i
]);
2984 if (efx
->workqueue
) {
2985 destroy_workqueue(efx
->workqueue
);
2986 efx
->workqueue
= NULL
;
2990 void efx_update_sw_stats(struct efx_nic
*efx
, u64
*stats
)
2992 u64 n_rx_nodesc_trunc
= 0;
2993 struct efx_channel
*channel
;
2995 efx_for_each_channel(channel
, efx
)
2996 n_rx_nodesc_trunc
+= channel
->n_rx_nodesc_trunc
;
2997 stats
[GENERIC_STAT_rx_nodesc_trunc
] = n_rx_nodesc_trunc
;
2998 stats
[GENERIC_STAT_rx_noskb_drops
] = atomic_read(&efx
->n_rx_noskb_drops
);
3001 /**************************************************************************
3005 **************************************************************************/
3007 /* Main body of final NIC shutdown code
3008 * This is called only at module unload (or hotplug removal).
3010 static void efx_pci_remove_main(struct efx_nic
*efx
)
3012 /* Flush reset_work. It can no longer be scheduled since we
3015 BUG_ON(efx
->state
== STATE_READY
);
3016 cancel_work_sync(&efx
->reset_work
);
3018 efx_disable_interrupts(efx
);
3019 efx_nic_fini_interrupt(efx
);
3021 efx
->type
->fini(efx
);
3023 efx_remove_all(efx
);
3026 /* Final NIC shutdown
3027 * This is called only at module unload (or hotplug removal). A PF can call
3028 * this on its VFs to ensure they are unbound first.
3030 static void efx_pci_remove(struct pci_dev
*pci_dev
)
3032 struct efx_nic
*efx
;
3034 efx
= pci_get_drvdata(pci_dev
);
3038 /* Mark the NIC as fini, then stop the interface */
3040 efx_dissociate(efx
);
3041 dev_close(efx
->net_dev
);
3042 efx_disable_interrupts(efx
);
3043 efx
->state
= STATE_UNINIT
;
3046 if (efx
->type
->sriov_fini
)
3047 efx
->type
->sriov_fini(efx
);
3049 efx_unregister_netdev(efx
);
3051 efx_mtd_remove(efx
);
3053 efx_pci_remove_main(efx
);
3056 netif_dbg(efx
, drv
, efx
->net_dev
, "shutdown successful\n");
3058 efx_fini_struct(efx
);
3059 free_netdev(efx
->net_dev
);
3061 pci_disable_pcie_error_reporting(pci_dev
);
3064 /* NIC VPD information
3065 * Called during probe to display the part number of the
3066 * installed NIC. VPD is potentially very large but this should
3067 * always appear within the first 512 bytes.
3069 #define SFC_VPD_LEN 512
3070 static void efx_probe_vpd_strings(struct efx_nic
*efx
)
3072 struct pci_dev
*dev
= efx
->pci_dev
;
3073 char vpd_data
[SFC_VPD_LEN
];
3075 int ro_start
, ro_size
, i
, j
;
3077 /* Get the vpd data from the device */
3078 vpd_size
= pci_read_vpd(dev
, 0, sizeof(vpd_data
), vpd_data
);
3079 if (vpd_size
<= 0) {
3080 netif_err(efx
, drv
, efx
->net_dev
, "Unable to read VPD\n");
3084 /* Get the Read only section */
3085 ro_start
= pci_vpd_find_tag(vpd_data
, 0, vpd_size
, PCI_VPD_LRDT_RO_DATA
);
3087 netif_err(efx
, drv
, efx
->net_dev
, "VPD Read-only not found\n");
3091 ro_size
= pci_vpd_lrdt_size(&vpd_data
[ro_start
]);
3093 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
3094 if (i
+ j
> vpd_size
)
3097 /* Get the Part number */
3098 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "PN");
3100 netif_err(efx
, drv
, efx
->net_dev
, "Part number not found\n");
3104 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
3105 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
3106 if (i
+ j
> vpd_size
) {
3107 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete part number\n");
3111 netif_info(efx
, drv
, efx
->net_dev
,
3112 "Part Number : %.*s\n", j
, &vpd_data
[i
]);
3114 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
3116 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "SN");
3118 netif_err(efx
, drv
, efx
->net_dev
, "Serial number not found\n");
3122 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
3123 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
3124 if (i
+ j
> vpd_size
) {
3125 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete serial number\n");
3129 efx
->vpd_sn
= kmalloc(j
+ 1, GFP_KERNEL
);
3133 snprintf(efx
->vpd_sn
, j
+ 1, "%s", &vpd_data
[i
]);
3137 /* Main body of NIC initialisation
3138 * This is called at module load (or hotplug insertion, theoretically).
3140 static int efx_pci_probe_main(struct efx_nic
*efx
)
3144 /* Do start-of-day initialisation */
3145 rc
= efx_probe_all(efx
);
3151 rc
= efx
->type
->init(efx
);
3153 netif_err(efx
, probe
, efx
->net_dev
,
3154 "failed to initialise NIC\n");
3158 rc
= efx_init_port(efx
);
3160 netif_err(efx
, probe
, efx
->net_dev
,
3161 "failed to initialise port\n");
3165 rc
= efx_nic_init_interrupt(efx
);
3168 rc
= efx_enable_interrupts(efx
);
3175 efx_nic_fini_interrupt(efx
);
3179 efx
->type
->fini(efx
);
3182 efx_remove_all(efx
);
3187 /* NIC initialisation
3189 * This is called at module load (or hotplug insertion,
3190 * theoretically). It sets up PCI mappings, resets the NIC,
3191 * sets up and registers the network devices with the kernel and hooks
3192 * the interrupt service routine. It does not prepare the device for
3193 * transmission; this is left to the first time one of the network
3194 * interfaces is brought up (i.e. efx_net_open).
3196 static int efx_pci_probe(struct pci_dev
*pci_dev
,
3197 const struct pci_device_id
*entry
)
3199 struct net_device
*net_dev
;
3200 struct efx_nic
*efx
;
3203 /* Allocate and initialise a struct net_device and struct efx_nic */
3204 net_dev
= alloc_etherdev_mqs(sizeof(*efx
), EFX_MAX_CORE_TX_QUEUES
,
3208 efx
= netdev_priv(net_dev
);
3209 efx
->type
= (const struct efx_nic_type
*) entry
->driver_data
;
3210 efx
->fixed_features
|= NETIF_F_HIGHDMA
;
3211 net_dev
->features
|= (efx
->type
->offload_features
| NETIF_F_SG
|
3212 NETIF_F_TSO
| NETIF_F_RXCSUM
);
3213 if (efx
->type
->offload_features
& (NETIF_F_IPV6_CSUM
| NETIF_F_HW_CSUM
))
3214 net_dev
->features
|= NETIF_F_TSO6
;
3215 /* Mask for features that also apply to VLAN devices */
3216 net_dev
->vlan_features
|= (NETIF_F_HW_CSUM
| NETIF_F_SG
|
3217 NETIF_F_HIGHDMA
| NETIF_F_ALL_TSO
|
3220 net_dev
->hw_features
= net_dev
->features
& ~efx
->fixed_features
;
3222 /* Disable VLAN filtering by default. It may be enforced if
3223 * the feature is fixed (i.e. VLAN filters are required to
3224 * receive VLAN tagged packets due to vPort restrictions).
3226 net_dev
->features
&= ~NETIF_F_HW_VLAN_CTAG_FILTER
;
3227 net_dev
->features
|= efx
->fixed_features
;
3229 pci_set_drvdata(pci_dev
, efx
);
3230 SET_NETDEV_DEV(net_dev
, &pci_dev
->dev
);
3231 rc
= efx_init_struct(efx
, pci_dev
, net_dev
);
3235 netif_info(efx
, probe
, efx
->net_dev
,
3236 "Solarflare NIC detected\n");
3238 if (!efx
->type
->is_vf
)
3239 efx_probe_vpd_strings(efx
);
3241 /* Set up basic I/O (BAR mappings etc) */
3242 rc
= efx_init_io(efx
);
3246 rc
= efx_pci_probe_main(efx
);
3250 rc
= efx_register_netdev(efx
);
3254 if (efx
->type
->sriov_init
) {
3255 rc
= efx
->type
->sriov_init(efx
);
3257 netif_err(efx
, probe
, efx
->net_dev
,
3258 "SR-IOV can't be enabled rc %d\n", rc
);
3261 netif_dbg(efx
, probe
, efx
->net_dev
, "initialisation successful\n");
3263 /* Try to create MTDs, but allow this to fail */
3265 rc
= efx_mtd_probe(efx
);
3267 if (rc
&& rc
!= -EPERM
)
3268 netif_warn(efx
, probe
, efx
->net_dev
,
3269 "failed to create MTDs (%d)\n", rc
);
3271 rc
= pci_enable_pcie_error_reporting(pci_dev
);
3272 if (rc
&& rc
!= -EINVAL
)
3273 netif_notice(efx
, probe
, efx
->net_dev
,
3274 "PCIE error reporting unavailable (%d).\n",
3280 efx_pci_remove_main(efx
);
3284 efx_fini_struct(efx
);
3287 netif_dbg(efx
, drv
, efx
->net_dev
, "initialisation failed. rc=%d\n", rc
);
3288 free_netdev(net_dev
);
3292 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3293 * enabled on success
3295 #ifdef CONFIG_SFC_SRIOV
3296 static int efx_pci_sriov_configure(struct pci_dev
*dev
, int num_vfs
)
3299 struct efx_nic
*efx
= pci_get_drvdata(dev
);
3301 if (efx
->type
->sriov_configure
) {
3302 rc
= efx
->type
->sriov_configure(efx
, num_vfs
);
3312 static int efx_pm_freeze(struct device
*dev
)
3314 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
3318 if (efx
->state
!= STATE_DISABLED
) {
3319 efx
->state
= STATE_UNINIT
;
3321 efx_device_detach_sync(efx
);
3324 efx_disable_interrupts(efx
);
3332 static int efx_pm_thaw(struct device
*dev
)
3335 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
3339 if (efx
->state
!= STATE_DISABLED
) {
3340 rc
= efx_enable_interrupts(efx
);
3344 mutex_lock(&efx
->mac_lock
);
3345 efx
->phy_op
->reconfigure(efx
);
3346 mutex_unlock(&efx
->mac_lock
);
3350 netif_device_attach(efx
->net_dev
);
3352 efx
->state
= STATE_READY
;
3354 efx
->type
->resume_wol(efx
);
3359 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3360 queue_work(reset_workqueue
, &efx
->reset_work
);
3370 static int efx_pm_poweroff(struct device
*dev
)
3372 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3373 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
3375 efx
->type
->fini(efx
);
3377 efx
->reset_pending
= 0;
3379 pci_save_state(pci_dev
);
3380 return pci_set_power_state(pci_dev
, PCI_D3hot
);
3383 /* Used for both resume and restore */
3384 static int efx_pm_resume(struct device
*dev
)
3386 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3387 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
3390 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
3393 pci_restore_state(pci_dev
);
3394 rc
= pci_enable_device(pci_dev
);
3397 pci_set_master(efx
->pci_dev
);
3398 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
3401 rc
= efx
->type
->init(efx
);
3404 rc
= efx_pm_thaw(dev
);
3408 static int efx_pm_suspend(struct device
*dev
)
3413 rc
= efx_pm_poweroff(dev
);
3419 static const struct dev_pm_ops efx_pm_ops
= {
3420 .suspend
= efx_pm_suspend
,
3421 .resume
= efx_pm_resume
,
3422 .freeze
= efx_pm_freeze
,
3423 .thaw
= efx_pm_thaw
,
3424 .poweroff
= efx_pm_poweroff
,
3425 .restore
= efx_pm_resume
,
3428 /* A PCI error affecting this device was detected.
3429 * At this point MMIO and DMA may be disabled.
3430 * Stop the software path and request a slot reset.
3432 static pci_ers_result_t
efx_io_error_detected(struct pci_dev
*pdev
,
3433 enum pci_channel_state state
)
3435 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3436 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
3438 if (state
== pci_channel_io_perm_failure
)
3439 return PCI_ERS_RESULT_DISCONNECT
;
3443 if (efx
->state
!= STATE_DISABLED
) {
3444 efx
->state
= STATE_RECOVERY
;
3445 efx
->reset_pending
= 0;
3447 efx_device_detach_sync(efx
);
3450 efx_disable_interrupts(efx
);
3452 status
= PCI_ERS_RESULT_NEED_RESET
;
3454 /* If the interface is disabled we don't want to do anything
3457 status
= PCI_ERS_RESULT_RECOVERED
;
3462 pci_disable_device(pdev
);
3467 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3468 static pci_ers_result_t
efx_io_slot_reset(struct pci_dev
*pdev
)
3470 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
3471 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3474 if (pci_enable_device(pdev
)) {
3475 netif_err(efx
, hw
, efx
->net_dev
,
3476 "Cannot re-enable PCI device after reset.\n");
3477 status
= PCI_ERS_RESULT_DISCONNECT
;
3480 rc
= pci_cleanup_aer_uncorrect_error_status(pdev
);
3482 netif_err(efx
, hw
, efx
->net_dev
,
3483 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc
);
3484 /* Non-fatal error. Continue. */
3490 /* Perform the actual reset and resume I/O operations. */
3491 static void efx_io_resume(struct pci_dev
*pdev
)
3493 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
3498 if (efx
->state
== STATE_DISABLED
)
3501 rc
= efx_reset(efx
, RESET_TYPE_ALL
);
3503 netif_err(efx
, hw
, efx
->net_dev
,
3504 "efx_reset failed after PCI error (%d)\n", rc
);
3506 efx
->state
= STATE_READY
;
3507 netif_dbg(efx
, hw
, efx
->net_dev
,
3508 "Done resetting and resuming IO after PCI error.\n");
3515 /* For simplicity and reliability, we always require a slot reset and try to
3516 * reset the hardware when a pci error affecting the device is detected.
3517 * We leave both the link_reset and mmio_enabled callback unimplemented:
3518 * with our request for slot reset the mmio_enabled callback will never be
3519 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3521 static const struct pci_error_handlers efx_err_handlers
= {
3522 .error_detected
= efx_io_error_detected
,
3523 .slot_reset
= efx_io_slot_reset
,
3524 .resume
= efx_io_resume
,
3527 static struct pci_driver efx_pci_driver
= {
3528 .name
= KBUILD_MODNAME
,
3529 .id_table
= efx_pci_table
,
3530 .probe
= efx_pci_probe
,
3531 .remove
= efx_pci_remove
,
3532 .driver
.pm
= &efx_pm_ops
,
3533 .err_handler
= &efx_err_handlers
,
3534 #ifdef CONFIG_SFC_SRIOV
3535 .sriov_configure
= efx_pci_sriov_configure
,
3539 /**************************************************************************
3541 * Kernel module interface
3543 *************************************************************************/
3545 module_param(interrupt_mode
, uint
, 0444);
3546 MODULE_PARM_DESC(interrupt_mode
,
3547 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3549 static int __init
efx_init_module(void)
3553 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
3555 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
3559 #ifdef CONFIG_SFC_SRIOV
3560 rc
= efx_init_sriov();
3565 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
3566 if (!reset_workqueue
) {
3571 rc
= pci_register_driver(&efx_pci_driver
);
3578 destroy_workqueue(reset_workqueue
);
3580 #ifdef CONFIG_SFC_SRIOV
3584 unregister_netdevice_notifier(&efx_netdev_notifier
);
3589 static void __exit
efx_exit_module(void)
3591 printk(KERN_INFO
"Solarflare NET driver unloading\n");
3593 pci_unregister_driver(&efx_pci_driver
);
3594 destroy_workqueue(reset_workqueue
);
3595 #ifdef CONFIG_SFC_SRIOV
3598 unregister_netdevice_notifier(&efx_netdev_notifier
);
3602 module_init(efx_init_module
);
3603 module_exit(efx_exit_module
);
3605 MODULE_AUTHOR("Solarflare Communications and "
3606 "Michael Brown <mbrown@fensystems.co.uk>");
3607 MODULE_DESCRIPTION("Solarflare network driver");
3608 MODULE_LICENSE("GPL");
3609 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);