2 * FarSync WAN driver for Linux (2.6.x kernel version)
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
31 #include <linux/hdlc.h>
33 #include <asm/uaccess.h>
40 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
41 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
42 MODULE_LICENSE("GPL");
44 /* Driver configuration and global parameters
45 * ==========================================
48 /* Number of ports (per card) and cards supported
50 #define FST_MAX_PORTS 4
51 #define FST_MAX_CARDS 32
53 /* Default parameters for the link
55 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
57 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
58 * of frames on the way down to the card
59 * so that we can keep the card busy
60 * and maximise throughput
62 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
64 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
65 * control from network layer */
66 #define FST_MAX_MTU 8000 /* Huge but possible */
67 #define FST_DEF_MTU 1500 /* Common sane value */
69 #define FST_TX_TIMEOUT (2*HZ)
72 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
74 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
78 * Modules parameters and associated variables
80 static int fst_txq_low
= FST_LOW_WATER_MARK
;
81 static int fst_txq_high
= FST_HIGH_WATER_MARK
;
82 static int fst_max_reads
= 7;
83 static int fst_excluded_cards
= 0;
84 static int fst_excluded_list
[FST_MAX_CARDS
];
86 module_param(fst_txq_low
, int, 0);
87 module_param(fst_txq_high
, int, 0);
88 module_param(fst_max_reads
, int, 0);
89 module_param(fst_excluded_cards
, int, 0);
90 module_param_array(fst_excluded_list
, int, NULL
, 0);
92 /* Card shared memory layout
93 * =========================
97 /* This information is derived in part from the FarSite FarSync Smc.h
98 * file. Unfortunately various name clashes and the non-portability of the
99 * bit field declarations in that file have meant that I have chosen to
100 * recreate the information here.
102 * The SMC (Shared Memory Configuration) has a version number that is
103 * incremented every time there is a significant change. This number can
104 * be used to check that we have not got out of step with the firmware
105 * contained in the .CDE files.
107 #define SMC_VERSION 24
109 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
111 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
112 * configuration structure */
113 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
116 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
117 #define LEN_RX_BUFFER 8192
119 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
120 #define LEN_SMALL_RX_BUFFER 256
122 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
123 #define NUM_RX_BUFFER 8
125 /* Interrupt retry time in milliseconds */
126 #define INT_RETRY_TIME 2
128 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
129 * of buffer descriptors. The structure is almost identical to that used
130 * in the LANCE Ethernet controllers. Details available as PDF from the
131 * AMD web site: http://www.amd.com/products/epd/processors/\
132 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
134 struct txdesc
{ /* Transmit descriptor */
135 volatile u16 ladr
; /* Low order address of packet. This is a
136 * linear address in the Am186 memory space
138 volatile u8 hadr
; /* High order address. Low 4 bits only, high 4
141 volatile u8 bits
; /* Status and config */
142 volatile u16 bcnt
; /* 2s complement of packet size in low 15 bits.
143 * Transmit terminal count interrupt enable in
146 u16 unused
; /* Not used in Tx */
149 struct rxdesc
{ /* Receive descriptor */
150 volatile u16 ladr
; /* Low order address of packet */
151 volatile u8 hadr
; /* High order address */
152 volatile u8 bits
; /* Status and config */
153 volatile u16 bcnt
; /* 2s complement of buffer size in low 15 bits.
154 * Receive terminal count interrupt enable in
157 volatile u16 mcnt
; /* Message byte count (15 bits) */
160 /* Convert a length into the 15 bit 2's complement */
161 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
162 /* Since we need to set the high bit to enable the completion interrupt this
163 * can be made a lot simpler
165 #define cnv_bcnt(len) (-(len))
167 /* Status and config bits for the above */
168 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
169 #define TX_STP 0x02 /* Tx: start of packet */
170 #define TX_ENP 0x01 /* Tx: end of packet */
171 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
172 #define RX_FRAM 0x20 /* Rx: framing error */
173 #define RX_OFLO 0x10 /* Rx: overflow error */
174 #define RX_CRC 0x08 /* Rx: CRC error */
175 #define RX_HBUF 0x04 /* Rx: buffer error */
176 #define RX_STP 0x02 /* Rx: start of packet */
177 #define RX_ENP 0x01 /* Rx: end of packet */
179 /* Interrupts from the card are caused by various events which are presented
180 * in a circular buffer as several events may be processed on one physical int
182 #define MAX_CIRBUFF 32
185 u8 rdindex
; /* read, then increment and wrap */
186 u8 wrindex
; /* write, then increment and wrap */
187 u8 evntbuff
[MAX_CIRBUFF
];
190 /* Interrupt event codes.
191 * Where appropriate the two low order bits indicate the port number
193 #define CTLA_CHG 0x18 /* Control signal changed */
194 #define CTLB_CHG 0x19
195 #define CTLC_CHG 0x1A
196 #define CTLD_CHG 0x1B
198 #define INIT_CPLT 0x20 /* Initialisation complete */
199 #define INIT_FAIL 0x21 /* Initialisation failed */
201 #define ABTA_SENT 0x24 /* Abort sent */
202 #define ABTB_SENT 0x25
203 #define ABTC_SENT 0x26
204 #define ABTD_SENT 0x27
206 #define TXA_UNDF 0x28 /* Transmission underflow */
207 #define TXB_UNDF 0x29
208 #define TXC_UNDF 0x2A
209 #define TXD_UNDF 0x2B
214 #define TE1_ALMA 0x30
216 /* Port physical configuration. See farsync.h for field values */
218 u16 lineInterface
; /* Physical interface type */
219 u8 x25op
; /* Unused at present */
220 u8 internalClock
; /* 1 => internal clock, 0 => external */
221 u8 transparentMode
; /* 1 => on, 0 => off */
222 u8 invertClock
; /* 0 => normal, 1 => inverted */
223 u8 padBytes
[6]; /* Padding */
224 u32 lineSpeed
; /* Speed in bps */
227 /* TE1 port physical configuration */
251 u32 receiveBufferDelay
;
252 u32 framingErrorCount
;
253 u32 codeViolationCount
;
258 u8 receiveRemoteAlarm
;
259 u8 alarmIndicationSignal
;
263 /* Finally sling all the above together into the shared memory structure.
264 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
265 * evolving under NT for some time so I guess we're stuck with it.
266 * The structure starts at offset SMC_BASE.
267 * See farsync.h for some field values.
270 /* DMA descriptor rings */
271 struct rxdesc rxDescrRing
[FST_MAX_PORTS
][NUM_RX_BUFFER
];
272 struct txdesc txDescrRing
[FST_MAX_PORTS
][NUM_TX_BUFFER
];
274 /* Obsolete small buffers */
275 u8 smallRxBuffer
[FST_MAX_PORTS
][NUM_RX_BUFFER
][LEN_SMALL_RX_BUFFER
];
276 u8 smallTxBuffer
[FST_MAX_PORTS
][NUM_TX_BUFFER
][LEN_SMALL_TX_BUFFER
];
278 u8 taskStatus
; /* 0x00 => initialising, 0x01 => running,
282 u8 interruptHandshake
; /* Set to 0x01 by adapter to signal interrupt,
283 * set to 0xEE by host to acknowledge interrupt
286 u16 smcVersion
; /* Must match SMC_VERSION */
288 u32 smcFirmwareVersion
; /* 0xIIVVRRBB where II = product ID, VV = major
289 * version, RR = revision and BB = build
292 u16 txa_done
; /* Obsolete completion flags */
301 u16 mailbox
[4]; /* Diagnostics mailbox. Not used */
303 struct cirbuff interruptEvent
; /* interrupt causes */
305 u32 v24IpSts
[FST_MAX_PORTS
]; /* V.24 control input status */
306 u32 v24OpSts
[FST_MAX_PORTS
]; /* V.24 control output status */
308 struct port_cfg portConfig
[FST_MAX_PORTS
];
310 u16 clockStatus
[FST_MAX_PORTS
]; /* lsb: 0=> present, 1=> absent */
312 u16 cableStatus
; /* lsb: 0=> present, 1=> absent */
314 u16 txDescrIndex
[FST_MAX_PORTS
]; /* transmit descriptor ring index */
315 u16 rxDescrIndex
[FST_MAX_PORTS
]; /* receive descriptor ring index */
317 u16 portMailbox
[FST_MAX_PORTS
][2]; /* command, modifier */
318 u16 cardMailbox
[4]; /* Not used */
320 /* Number of times the card thinks the host has
321 * missed an interrupt by not acknowledging
322 * within 2mS (I guess NT has problems)
324 u32 interruptRetryCount
;
326 /* Driver private data used as an ID. We'll not
327 * use this as I'd rather keep such things
328 * in main memory rather than on the PCI bus
330 u32 portHandle
[FST_MAX_PORTS
];
332 /* Count of Tx underflows for stats */
333 u32 transmitBufferUnderflow
[FST_MAX_PORTS
];
335 /* Debounced V.24 control input status */
336 u32 v24DebouncedSts
[FST_MAX_PORTS
];
338 /* Adapter debounce timers. Don't touch */
339 u32 ctsTimer
[FST_MAX_PORTS
];
340 u32 ctsTimerRun
[FST_MAX_PORTS
];
341 u32 dcdTimer
[FST_MAX_PORTS
];
342 u32 dcdTimerRun
[FST_MAX_PORTS
];
344 u32 numberOfPorts
; /* Number of ports detected at startup */
348 u16 cardMode
; /* Bit-mask to enable features:
349 * Bit 0: 1 enables LED identify mode
352 u16 portScheduleOffset
;
354 struct su_config suConfig
; /* TE1 Bits */
355 struct su_status suStatus
;
357 u32 endOfSmcSignature
; /* endOfSmcSignature MUST be the last member of
358 * the structure and marks the end of shared
359 * memory. Adapter code initializes it as
364 /* endOfSmcSignature value */
365 #define END_SIG 0x12345678
367 /* Mailbox values. (portMailbox) */
368 #define NOP 0 /* No operation */
369 #define ACK 1 /* Positive acknowledgement to PC driver */
370 #define NAK 2 /* Negative acknowledgement to PC driver */
371 #define STARTPORT 3 /* Start an HDLC port */
372 #define STOPPORT 4 /* Stop an HDLC port */
373 #define ABORTTX 5 /* Abort the transmitter for a port */
374 #define SETV24O 6 /* Set V24 outputs */
376 /* PLX Chip Register Offsets */
377 #define CNTRL_9052 0x50 /* Control Register */
378 #define CNTRL_9054 0x6c /* Control Register */
380 #define INTCSR_9052 0x4c /* Interrupt control/status register */
381 #define INTCSR_9054 0x68 /* Interrupt control/status register */
383 /* 9054 DMA Registers */
385 * Note that we will be using DMA Channel 0 for copying rx data
386 * and Channel 1 for copying tx data
388 #define DMAMODE0 0x80
389 #define DMAPADR0 0x84
390 #define DMALADR0 0x88
393 #define DMAMODE1 0x94
394 #define DMAPADR1 0x98
395 #define DMALADR1 0x9c
404 #define DMAMARBR 0xac
406 #define FST_MIN_DMA_LEN 64
407 #define FST_RX_DMA_INT 0x01
408 #define FST_TX_DMA_INT 0x02
409 #define FST_CARD_INT 0x04
411 /* Larger buffers are positioned in memory at offset BFM_BASE */
413 u8 txBuffer
[FST_MAX_PORTS
][NUM_TX_BUFFER
][LEN_TX_BUFFER
];
414 u8 rxBuffer
[FST_MAX_PORTS
][NUM_RX_BUFFER
][LEN_RX_BUFFER
];
417 /* Calculate offset of a buffer object within the shared memory window */
418 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
422 /* Device driver private information
423 * =================================
425 /* Per port (line or channel) information
427 struct fst_port_info
{
428 struct net_device
*dev
; /* Device struct - must be first */
429 struct fst_card_info
*card
; /* Card we're associated with */
430 int index
; /* Port index on the card */
431 int hwif
; /* Line hardware (lineInterface copy) */
432 int run
; /* Port is running */
433 int mode
; /* Normal or FarSync raw */
434 int rxpos
; /* Next Rx buffer to use */
435 int txpos
; /* Next Tx buffer to use */
436 int txipos
; /* Next Tx buffer to check for free */
437 int start
; /* Indication of start/stop to network */
439 * A sixteen entry transmit queue
441 int txqs
; /* index to get next buffer to tx */
442 int txqe
; /* index to queue next packet */
443 struct sk_buff
*txq
[FST_TXQ_DEPTH
]; /* The queue */
447 /* Per card information
449 struct fst_card_info
{
450 char __iomem
*mem
; /* Card memory mapped to kernel space */
451 char __iomem
*ctlmem
; /* Control memory for PCI cards */
452 unsigned int phys_mem
; /* Physical memory window address */
453 unsigned int phys_ctlmem
; /* Physical control memory address */
454 unsigned int irq
; /* Interrupt request line number */
455 unsigned int nports
; /* Number of serial ports */
456 unsigned int type
; /* Type index of card */
457 unsigned int state
; /* State of card */
458 spinlock_t card_lock
; /* Lock for SMP access */
459 unsigned short pci_conf
; /* PCI card config in I/O space */
461 struct fst_port_info ports
[FST_MAX_PORTS
];
462 struct pci_dev
*device
; /* Information about the pci device */
463 int card_no
; /* Inst of the card on the system */
464 int family
; /* TxP or TxU */
465 int dmarx_in_progress
;
466 int dmatx_in_progress
;
467 unsigned long int_count
;
468 unsigned long int_time_ave
;
469 void *rx_dma_handle_host
;
470 dma_addr_t rx_dma_handle_card
;
471 void *tx_dma_handle_host
;
472 dma_addr_t tx_dma_handle_card
;
473 struct sk_buff
*dma_skb_rx
;
474 struct fst_port_info
*dma_port_rx
;
475 struct fst_port_info
*dma_port_tx
;
482 /* Convert an HDLC device pointer into a port info pointer and similar */
483 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
484 #define port_to_dev(P) ((P)->dev)
488 * Shared memory window access macros
490 * We have a nice memory based structure above, which could be directly
491 * mapped on i386 but might not work on other architectures unless we use
492 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
493 * physical offsets so we have to convert. The only saving grace is that
494 * this should all collapse back to a simple indirection eventually.
496 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
498 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
499 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
500 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
502 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
503 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
504 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
511 static int fst_debug_mask
= { FST_DEBUG
};
513 /* Most common debug activity is to print something if the corresponding bit
514 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
515 * support variable numbers of macro parameters. The inverted if prevents us
516 * eating someone else's else clause.
518 #define dbg(F, fmt, args...) \
520 if (fst_debug_mask & (F)) \
521 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
524 #define dbg(F, fmt, args...) \
527 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
532 * PCI ID lookup table
534 static const struct pci_device_id fst_pci_dev_id
[] = {
535 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T2P
, PCI_ANY_ID
,
536 PCI_ANY_ID
, 0, 0, FST_TYPE_T2P
},
538 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T4P
, PCI_ANY_ID
,
539 PCI_ANY_ID
, 0, 0, FST_TYPE_T4P
},
541 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T1U
, PCI_ANY_ID
,
542 PCI_ANY_ID
, 0, 0, FST_TYPE_T1U
},
544 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T2U
, PCI_ANY_ID
,
545 PCI_ANY_ID
, 0, 0, FST_TYPE_T2U
},
547 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T4U
, PCI_ANY_ID
,
548 PCI_ANY_ID
, 0, 0, FST_TYPE_T4U
},
550 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_TE1
, PCI_ANY_ID
,
551 PCI_ANY_ID
, 0, 0, FST_TYPE_TE1
},
553 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_TE1C
, PCI_ANY_ID
,
554 PCI_ANY_ID
, 0, 0, FST_TYPE_TE1
},
558 MODULE_DEVICE_TABLE(pci
, fst_pci_dev_id
);
561 * Device Driver Work Queues
563 * So that we don't spend too much time processing events in the
564 * Interrupt Service routine, we will declare a work queue per Card
565 * and make the ISR schedule a task in the queue for later execution.
566 * In the 2.4 Kernel we used to use the immediate queue for BH's
567 * Now that they are gone, tasklets seem to be much better than work
571 static void do_bottom_half_tx(struct fst_card_info
*card
);
572 static void do_bottom_half_rx(struct fst_card_info
*card
);
573 static void fst_process_tx_work_q(unsigned long work_q
);
574 static void fst_process_int_work_q(unsigned long work_q
);
576 static DECLARE_TASKLET(fst_tx_task
, fst_process_tx_work_q
, 0);
577 static DECLARE_TASKLET(fst_int_task
, fst_process_int_work_q
, 0);
579 static struct fst_card_info
*fst_card_array
[FST_MAX_CARDS
];
580 static spinlock_t fst_work_q_lock
;
581 static u64 fst_work_txq
;
582 static u64 fst_work_intq
;
585 fst_q_work_item(u64
* queue
, int card_index
)
591 * Grab the queue exclusively
593 spin_lock_irqsave(&fst_work_q_lock
, flags
);
596 * Making an entry in the queue is simply a matter of setting
597 * a bit for the card indicating that there is work to do in the
598 * bottom half for the card. Note the limitation of 64 cards.
599 * That ought to be enough
601 mask
= (u64
)1 << card_index
;
603 spin_unlock_irqrestore(&fst_work_q_lock
, flags
);
607 fst_process_tx_work_q(unsigned long /*void **/work_q
)
614 * Grab the queue exclusively
616 dbg(DBG_TX
, "fst_process_tx_work_q\n");
617 spin_lock_irqsave(&fst_work_q_lock
, flags
);
618 work_txq
= fst_work_txq
;
620 spin_unlock_irqrestore(&fst_work_q_lock
, flags
);
623 * Call the bottom half for each card with work waiting
625 for (i
= 0; i
< FST_MAX_CARDS
; i
++) {
626 if (work_txq
& 0x01) {
627 if (fst_card_array
[i
] != NULL
) {
628 dbg(DBG_TX
, "Calling tx bh for card %d\n", i
);
629 do_bottom_half_tx(fst_card_array
[i
]);
632 work_txq
= work_txq
>> 1;
637 fst_process_int_work_q(unsigned long /*void **/work_q
)
644 * Grab the queue exclusively
646 dbg(DBG_INTR
, "fst_process_int_work_q\n");
647 spin_lock_irqsave(&fst_work_q_lock
, flags
);
648 work_intq
= fst_work_intq
;
650 spin_unlock_irqrestore(&fst_work_q_lock
, flags
);
653 * Call the bottom half for each card with work waiting
655 for (i
= 0; i
< FST_MAX_CARDS
; i
++) {
656 if (work_intq
& 0x01) {
657 if (fst_card_array
[i
] != NULL
) {
659 "Calling rx & tx bh for card %d\n", i
);
660 do_bottom_half_rx(fst_card_array
[i
]);
661 do_bottom_half_tx(fst_card_array
[i
]);
664 work_intq
= work_intq
>> 1;
668 /* Card control functions
669 * ======================
671 /* Place the processor in reset state
673 * Used to be a simple write to card control space but a glitch in the latest
674 * AMD Am186CH processor means that we now have to do it by asserting and de-
675 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
676 * at offset 9052_CNTRL. Note the updates for the TXU.
679 fst_cpureset(struct fst_card_info
*card
)
681 unsigned char interrupt_line_register
;
684 if (card
->family
== FST_FAMILY_TXU
) {
685 if (pci_read_config_byte
686 (card
->device
, PCI_INTERRUPT_LINE
, &interrupt_line_register
)) {
688 "Error in reading interrupt line register\n");
691 * Assert PLX software reset and Am186 hardware reset
692 * and then deassert the PLX software reset but 186 still in reset
694 outw(0x440f, card
->pci_conf
+ CNTRL_9054
+ 2);
695 outw(0x040f, card
->pci_conf
+ CNTRL_9054
+ 2);
697 * We are delaying here to allow the 9054 to reset itself
699 usleep_range(10, 20);
700 outw(0x240f, card
->pci_conf
+ CNTRL_9054
+ 2);
702 * We are delaying here to allow the 9054 to reload its eeprom
704 usleep_range(10, 20);
705 outw(0x040f, card
->pci_conf
+ CNTRL_9054
+ 2);
707 if (pci_write_config_byte
708 (card
->device
, PCI_INTERRUPT_LINE
, interrupt_line_register
)) {
710 "Error in writing interrupt line register\n");
714 regval
= inl(card
->pci_conf
+ CNTRL_9052
);
716 outl(regval
| 0x40000000, card
->pci_conf
+ CNTRL_9052
);
717 outl(regval
& ~0x40000000, card
->pci_conf
+ CNTRL_9052
);
721 /* Release the processor from reset
724 fst_cpurelease(struct fst_card_info
*card
)
726 if (card
->family
== FST_FAMILY_TXU
) {
728 * Force posted writes to complete
730 (void) readb(card
->mem
);
733 * Release LRESET DO = 1
734 * Then release Local Hold, DO = 1
736 outw(0x040e, card
->pci_conf
+ CNTRL_9054
+ 2);
737 outw(0x040f, card
->pci_conf
+ CNTRL_9054
+ 2);
739 (void) readb(card
->ctlmem
);
743 /* Clear the cards interrupt flag
746 fst_clear_intr(struct fst_card_info
*card
)
748 if (card
->family
== FST_FAMILY_TXU
) {
749 (void) readb(card
->ctlmem
);
751 /* Poke the appropriate PLX chip register (same as enabling interrupts)
753 outw(0x0543, card
->pci_conf
+ INTCSR_9052
);
757 /* Enable card interrupts
760 fst_enable_intr(struct fst_card_info
*card
)
762 if (card
->family
== FST_FAMILY_TXU
) {
763 outl(0x0f0c0900, card
->pci_conf
+ INTCSR_9054
);
765 outw(0x0543, card
->pci_conf
+ INTCSR_9052
);
769 /* Disable card interrupts
772 fst_disable_intr(struct fst_card_info
*card
)
774 if (card
->family
== FST_FAMILY_TXU
) {
775 outl(0x00000000, card
->pci_conf
+ INTCSR_9054
);
777 outw(0x0000, card
->pci_conf
+ INTCSR_9052
);
781 /* Process the result of trying to pass a received frame up the stack
784 fst_process_rx_status(int rx_status
, char *name
)
796 dbg(DBG_ASS
, "%s: Received packet dropped\n", name
);
802 /* Initilaise DMA for PLX 9054
805 fst_init_dma(struct fst_card_info
*card
)
808 * This is only required for the PLX 9054
810 if (card
->family
== FST_FAMILY_TXU
) {
811 pci_set_master(card
->device
);
812 outl(0x00020441, card
->pci_conf
+ DMAMODE0
);
813 outl(0x00020441, card
->pci_conf
+ DMAMODE1
);
814 outl(0x0, card
->pci_conf
+ DMATHR
);
818 /* Tx dma complete interrupt
821 fst_tx_dma_complete(struct fst_card_info
*card
, struct fst_port_info
*port
,
824 struct net_device
*dev
= port_to_dev(port
);
827 * Everything is now set, just tell the card to go
829 dbg(DBG_TX
, "fst_tx_dma_complete\n");
830 FST_WRB(card
, txDescrRing
[port
->index
][txpos
].bits
,
831 DMA_OWN
| TX_STP
| TX_ENP
);
832 dev
->stats
.tx_packets
++;
833 dev
->stats
.tx_bytes
+= len
;
834 netif_trans_update(dev
);
838 * Mark it for our own raw sockets interface
840 static __be16
farsync_type_trans(struct sk_buff
*skb
, struct net_device
*dev
)
843 skb_reset_mac_header(skb
);
844 skb
->pkt_type
= PACKET_HOST
;
845 return htons(ETH_P_CUST
);
848 /* Rx dma complete interrupt
851 fst_rx_dma_complete(struct fst_card_info
*card
, struct fst_port_info
*port
,
852 int len
, struct sk_buff
*skb
, int rxp
)
854 struct net_device
*dev
= port_to_dev(port
);
858 dbg(DBG_TX
, "fst_rx_dma_complete\n");
860 memcpy(skb_put(skb
, len
), card
->rx_dma_handle_host
, len
);
862 /* Reset buffer descriptor */
863 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
866 dev
->stats
.rx_packets
++;
867 dev
->stats
.rx_bytes
+= len
;
870 dbg(DBG_RX
, "Pushing the frame up the stack\n");
871 if (port
->mode
== FST_RAW
)
872 skb
->protocol
= farsync_type_trans(skb
, dev
);
874 skb
->protocol
= hdlc_type_trans(skb
, dev
);
875 rx_status
= netif_rx(skb
);
876 fst_process_rx_status(rx_status
, port_to_dev(port
)->name
);
877 if (rx_status
== NET_RX_DROP
)
878 dev
->stats
.rx_dropped
++;
882 * Receive a frame through the DMA
885 fst_rx_dma(struct fst_card_info
*card
, dma_addr_t dma
, u32 mem
, int len
)
888 * This routine will setup the DMA and start it
891 dbg(DBG_RX
, "In fst_rx_dma %x %x %d\n", (u32
)dma
, mem
, len
);
892 if (card
->dmarx_in_progress
) {
893 dbg(DBG_ASS
, "In fst_rx_dma while dma in progress\n");
896 outl(dma
, card
->pci_conf
+ DMAPADR0
); /* Copy to here */
897 outl(mem
, card
->pci_conf
+ DMALADR0
); /* from here */
898 outl(len
, card
->pci_conf
+ DMASIZ0
); /* for this length */
899 outl(0x00000000c, card
->pci_conf
+ DMADPR0
); /* In this direction */
902 * We use the dmarx_in_progress flag to flag the channel as busy
904 card
->dmarx_in_progress
= 1;
905 outb(0x03, card
->pci_conf
+ DMACSR0
); /* Start the transfer */
909 * Send a frame through the DMA
912 fst_tx_dma(struct fst_card_info
*card
, dma_addr_t dma
, u32 mem
, int len
)
915 * This routine will setup the DMA and start it.
918 dbg(DBG_TX
, "In fst_tx_dma %x %x %d\n", (u32
)dma
, mem
, len
);
919 if (card
->dmatx_in_progress
) {
920 dbg(DBG_ASS
, "In fst_tx_dma while dma in progress\n");
923 outl(dma
, card
->pci_conf
+ DMAPADR1
); /* Copy from here */
924 outl(mem
, card
->pci_conf
+ DMALADR1
); /* to here */
925 outl(len
, card
->pci_conf
+ DMASIZ1
); /* for this length */
926 outl(0x000000004, card
->pci_conf
+ DMADPR1
); /* In this direction */
929 * We use the dmatx_in_progress to flag the channel as busy
931 card
->dmatx_in_progress
= 1;
932 outb(0x03, card
->pci_conf
+ DMACSR1
); /* Start the transfer */
935 /* Issue a Mailbox command for a port.
936 * Note we issue them on a fire and forget basis, not expecting to see an
937 * error and not waiting for completion.
940 fst_issue_cmd(struct fst_port_info
*port
, unsigned short cmd
)
942 struct fst_card_info
*card
;
943 unsigned short mbval
;
948 spin_lock_irqsave(&card
->card_lock
, flags
);
949 mbval
= FST_RDW(card
, portMailbox
[port
->index
][0]);
952 /* Wait for any previous command to complete */
953 while (mbval
> NAK
) {
954 spin_unlock_irqrestore(&card
->card_lock
, flags
);
955 schedule_timeout_uninterruptible(1);
956 spin_lock_irqsave(&card
->card_lock
, flags
);
958 if (++safety
> 2000) {
959 pr_err("Mailbox safety timeout\n");
963 mbval
= FST_RDW(card
, portMailbox
[port
->index
][0]);
966 dbg(DBG_CMD
, "Mailbox clear after %d jiffies\n", safety
);
969 dbg(DBG_CMD
, "issue_cmd: previous command was NAK'd\n");
972 FST_WRW(card
, portMailbox
[port
->index
][0], cmd
);
974 if (cmd
== ABORTTX
|| cmd
== STARTPORT
) {
980 spin_unlock_irqrestore(&card
->card_lock
, flags
);
983 /* Port output signals control
986 fst_op_raise(struct fst_port_info
*port
, unsigned int outputs
)
988 outputs
|= FST_RDL(port
->card
, v24OpSts
[port
->index
]);
989 FST_WRL(port
->card
, v24OpSts
[port
->index
], outputs
);
992 fst_issue_cmd(port
, SETV24O
);
996 fst_op_lower(struct fst_port_info
*port
, unsigned int outputs
)
998 outputs
= ~outputs
& FST_RDL(port
->card
, v24OpSts
[port
->index
]);
999 FST_WRL(port
->card
, v24OpSts
[port
->index
], outputs
);
1002 fst_issue_cmd(port
, SETV24O
);
1006 * Setup port Rx buffers
1009 fst_rx_config(struct fst_port_info
*port
)
1013 unsigned int offset
;
1014 unsigned long flags
;
1015 struct fst_card_info
*card
;
1019 spin_lock_irqsave(&card
->card_lock
, flags
);
1020 for (i
= 0; i
< NUM_RX_BUFFER
; i
++) {
1021 offset
= BUF_OFFSET(rxBuffer
[pi
][i
][0]);
1023 FST_WRW(card
, rxDescrRing
[pi
][i
].ladr
, (u16
) offset
);
1024 FST_WRB(card
, rxDescrRing
[pi
][i
].hadr
, (u8
) (offset
>> 16));
1025 FST_WRW(card
, rxDescrRing
[pi
][i
].bcnt
, cnv_bcnt(LEN_RX_BUFFER
));
1026 FST_WRW(card
, rxDescrRing
[pi
][i
].mcnt
, LEN_RX_BUFFER
);
1027 FST_WRB(card
, rxDescrRing
[pi
][i
].bits
, DMA_OWN
);
1030 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1034 * Setup port Tx buffers
1037 fst_tx_config(struct fst_port_info
*port
)
1041 unsigned int offset
;
1042 unsigned long flags
;
1043 struct fst_card_info
*card
;
1047 spin_lock_irqsave(&card
->card_lock
, flags
);
1048 for (i
= 0; i
< NUM_TX_BUFFER
; i
++) {
1049 offset
= BUF_OFFSET(txBuffer
[pi
][i
][0]);
1051 FST_WRW(card
, txDescrRing
[pi
][i
].ladr
, (u16
) offset
);
1052 FST_WRB(card
, txDescrRing
[pi
][i
].hadr
, (u8
) (offset
>> 16));
1053 FST_WRW(card
, txDescrRing
[pi
][i
].bcnt
, 0);
1054 FST_WRB(card
, txDescrRing
[pi
][i
].bits
, 0);
1059 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1062 /* TE1 Alarm change interrupt event
1065 fst_intr_te1_alarm(struct fst_card_info
*card
, struct fst_port_info
*port
)
1071 los
= FST_RDB(card
, suStatus
.lossOfSignal
);
1072 rra
= FST_RDB(card
, suStatus
.receiveRemoteAlarm
);
1073 ais
= FST_RDB(card
, suStatus
.alarmIndicationSignal
);
1079 if (netif_carrier_ok(port_to_dev(port
))) {
1080 dbg(DBG_INTR
, "Net carrier off\n");
1081 netif_carrier_off(port_to_dev(port
));
1087 if (!netif_carrier_ok(port_to_dev(port
))) {
1088 dbg(DBG_INTR
, "Net carrier on\n");
1089 netif_carrier_on(port_to_dev(port
));
1094 dbg(DBG_INTR
, "Assert LOS Alarm\n");
1096 dbg(DBG_INTR
, "De-assert LOS Alarm\n");
1098 dbg(DBG_INTR
, "Assert RRA Alarm\n");
1100 dbg(DBG_INTR
, "De-assert RRA Alarm\n");
1103 dbg(DBG_INTR
, "Assert AIS Alarm\n");
1105 dbg(DBG_INTR
, "De-assert AIS Alarm\n");
1108 /* Control signal change interrupt event
1111 fst_intr_ctlchg(struct fst_card_info
*card
, struct fst_port_info
*port
)
1115 signals
= FST_RDL(card
, v24DebouncedSts
[port
->index
]);
1117 if (signals
& (((port
->hwif
== X21
) || (port
->hwif
== X21D
))
1118 ? IPSTS_INDICATE
: IPSTS_DCD
)) {
1119 if (!netif_carrier_ok(port_to_dev(port
))) {
1120 dbg(DBG_INTR
, "DCD active\n");
1121 netif_carrier_on(port_to_dev(port
));
1124 if (netif_carrier_ok(port_to_dev(port
))) {
1125 dbg(DBG_INTR
, "DCD lost\n");
1126 netif_carrier_off(port_to_dev(port
));
1134 fst_log_rx_error(struct fst_card_info
*card
, struct fst_port_info
*port
,
1135 unsigned char dmabits
, int rxp
, unsigned short len
)
1137 struct net_device
*dev
= port_to_dev(port
);
1140 * Increment the appropriate error counter
1142 dev
->stats
.rx_errors
++;
1143 if (dmabits
& RX_OFLO
) {
1144 dev
->stats
.rx_fifo_errors
++;
1145 dbg(DBG_ASS
, "Rx fifo error on card %d port %d buffer %d\n",
1146 card
->card_no
, port
->index
, rxp
);
1148 if (dmabits
& RX_CRC
) {
1149 dev
->stats
.rx_crc_errors
++;
1150 dbg(DBG_ASS
, "Rx crc error on card %d port %d\n",
1151 card
->card_no
, port
->index
);
1153 if (dmabits
& RX_FRAM
) {
1154 dev
->stats
.rx_frame_errors
++;
1155 dbg(DBG_ASS
, "Rx frame error on card %d port %d\n",
1156 card
->card_no
, port
->index
);
1158 if (dmabits
== (RX_STP
| RX_ENP
)) {
1159 dev
->stats
.rx_length_errors
++;
1160 dbg(DBG_ASS
, "Rx length error (%d) on card %d port %d\n",
1161 len
, card
->card_no
, port
->index
);
1165 /* Rx Error Recovery
1168 fst_recover_rx_error(struct fst_card_info
*card
, struct fst_port_info
*port
,
1169 unsigned char dmabits
, int rxp
, unsigned short len
)
1176 * Discard buffer descriptors until we see the start of the
1177 * next frame. Note that for long frames this could be in
1178 * a subsequent interrupt.
1181 while ((dmabits
& (DMA_OWN
| RX_STP
)) == 0) {
1182 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1183 rxp
= (rxp
+1) % NUM_RX_BUFFER
;
1184 if (++i
> NUM_RX_BUFFER
) {
1185 dbg(DBG_ASS
, "intr_rx: Discarding more bufs"
1189 dmabits
= FST_RDB(card
, rxDescrRing
[pi
][rxp
].bits
);
1190 dbg(DBG_ASS
, "DMA Bits of next buffer was %x\n", dmabits
);
1192 dbg(DBG_ASS
, "There were %d subsequent buffers in error\n", i
);
1194 /* Discard the terminal buffer */
1195 if (!(dmabits
& DMA_OWN
)) {
1196 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1197 rxp
= (rxp
+1) % NUM_RX_BUFFER
;
1204 /* Rx complete interrupt
1207 fst_intr_rx(struct fst_card_info
*card
, struct fst_port_info
*port
)
1209 unsigned char dmabits
;
1214 struct sk_buff
*skb
;
1215 struct net_device
*dev
= port_to_dev(port
);
1217 /* Check we have a buffer to process */
1220 dmabits
= FST_RDB(card
, rxDescrRing
[pi
][rxp
].bits
);
1221 if (dmabits
& DMA_OWN
) {
1222 dbg(DBG_RX
| DBG_INTR
, "intr_rx: No buffer port %d pos %d\n",
1226 if (card
->dmarx_in_progress
) {
1230 /* Get buffer length */
1231 len
= FST_RDW(card
, rxDescrRing
[pi
][rxp
].mcnt
);
1232 /* Discard the CRC */
1236 * This seems to happen on the TE1 interface sometimes
1237 * so throw the frame away and log the event.
1239 pr_err("Frame received with 0 length. Card %d Port %d\n",
1240 card
->card_no
, port
->index
);
1241 /* Return descriptor to card */
1242 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1244 rxp
= (rxp
+1) % NUM_RX_BUFFER
;
1249 /* Check buffer length and for other errors. We insist on one packet
1250 * in one buffer. This simplifies things greatly and since we've
1251 * allocated 8K it shouldn't be a real world limitation
1253 dbg(DBG_RX
, "intr_rx: %d,%d: flags %x len %d\n", pi
, rxp
, dmabits
, len
);
1254 if (dmabits
!= (RX_STP
| RX_ENP
) || len
> LEN_RX_BUFFER
- 2) {
1255 fst_log_rx_error(card
, port
, dmabits
, rxp
, len
);
1256 fst_recover_rx_error(card
, port
, dmabits
, rxp
, len
);
1261 if ((skb
= dev_alloc_skb(len
)) == NULL
) {
1262 dbg(DBG_RX
, "intr_rx: can't allocate buffer\n");
1264 dev
->stats
.rx_dropped
++;
1266 /* Return descriptor to card */
1267 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1269 rxp
= (rxp
+1) % NUM_RX_BUFFER
;
1275 * We know the length we need to receive, len.
1276 * It's not worth using the DMA for reads of less than
1280 if ((len
< FST_MIN_DMA_LEN
) || (card
->family
== FST_FAMILY_TXP
)) {
1281 memcpy_fromio(skb_put(skb
, len
),
1282 card
->mem
+ BUF_OFFSET(rxBuffer
[pi
][rxp
][0]),
1285 /* Reset buffer descriptor */
1286 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1289 dev
->stats
.rx_packets
++;
1290 dev
->stats
.rx_bytes
+= len
;
1293 dbg(DBG_RX
, "Pushing frame up the stack\n");
1294 if (port
->mode
== FST_RAW
)
1295 skb
->protocol
= farsync_type_trans(skb
, dev
);
1297 skb
->protocol
= hdlc_type_trans(skb
, dev
);
1298 rx_status
= netif_rx(skb
);
1299 fst_process_rx_status(rx_status
, port_to_dev(port
)->name
);
1300 if (rx_status
== NET_RX_DROP
)
1301 dev
->stats
.rx_dropped
++;
1303 card
->dma_skb_rx
= skb
;
1304 card
->dma_port_rx
= port
;
1305 card
->dma_len_rx
= len
;
1306 card
->dma_rxpos
= rxp
;
1307 fst_rx_dma(card
, card
->rx_dma_handle_card
,
1308 BUF_OFFSET(rxBuffer
[pi
][rxp
][0]), len
);
1310 if (rxp
!= port
->rxpos
) {
1311 dbg(DBG_ASS
, "About to increment rxpos by more than 1\n");
1312 dbg(DBG_ASS
, "rxp = %d rxpos = %d\n", rxp
, port
->rxpos
);
1314 rxp
= (rxp
+1) % NUM_RX_BUFFER
;
1319 * The bottom halfs to the ISR
1324 do_bottom_half_tx(struct fst_card_info
*card
)
1326 struct fst_port_info
*port
;
1329 struct sk_buff
*skb
;
1330 unsigned long flags
;
1331 struct net_device
*dev
;
1334 * Find a free buffer for the transmit
1335 * Step through each port on this card
1338 dbg(DBG_TX
, "do_bottom_half_tx\n");
1339 for (pi
= 0, port
= card
->ports
; pi
< card
->nports
; pi
++, port
++) {
1343 dev
= port_to_dev(port
);
1344 while (!(FST_RDB(card
, txDescrRing
[pi
][port
->txpos
].bits
) &
1346 !(card
->dmatx_in_progress
)) {
1348 * There doesn't seem to be a txdone event per-se
1349 * We seem to have to deduce it, by checking the DMA_OWN
1350 * bit on the next buffer we think we can use
1352 spin_lock_irqsave(&card
->card_lock
, flags
);
1353 if ((txq_length
= port
->txqe
- port
->txqs
) < 0) {
1355 * This is the case where one has wrapped and the
1356 * maths gives us a negative number
1358 txq_length
= txq_length
+ FST_TXQ_DEPTH
;
1360 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1361 if (txq_length
> 0) {
1363 * There is something to send
1365 spin_lock_irqsave(&card
->card_lock
, flags
);
1366 skb
= port
->txq
[port
->txqs
];
1368 if (port
->txqs
== FST_TXQ_DEPTH
) {
1371 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1373 * copy the data and set the required indicators on the
1376 FST_WRW(card
, txDescrRing
[pi
][port
->txpos
].bcnt
,
1377 cnv_bcnt(skb
->len
));
1378 if ((skb
->len
< FST_MIN_DMA_LEN
) ||
1379 (card
->family
== FST_FAMILY_TXP
)) {
1380 /* Enqueue the packet with normal io */
1381 memcpy_toio(card
->mem
+
1382 BUF_OFFSET(txBuffer
[pi
]
1385 skb
->data
, skb
->len
);
1387 txDescrRing
[pi
][port
->txpos
].
1389 DMA_OWN
| TX_STP
| TX_ENP
);
1390 dev
->stats
.tx_packets
++;
1391 dev
->stats
.tx_bytes
+= skb
->len
;
1392 netif_trans_update(dev
);
1394 /* Or do it through dma */
1395 memcpy(card
->tx_dma_handle_host
,
1396 skb
->data
, skb
->len
);
1397 card
->dma_port_tx
= port
;
1398 card
->dma_len_tx
= skb
->len
;
1399 card
->dma_txpos
= port
->txpos
;
1401 card
->tx_dma_handle_card
,
1402 BUF_OFFSET(txBuffer
[pi
]
1406 if (++port
->txpos
>= NUM_TX_BUFFER
)
1409 * If we have flow control on, can we now release it?
1412 if (txq_length
< fst_txq_low
) {
1413 netif_wake_queue(port_to_dev
1421 * Nothing to send so break out of the while loop
1430 do_bottom_half_rx(struct fst_card_info
*card
)
1432 struct fst_port_info
*port
;
1436 /* Check for rx completions on all ports on this card */
1437 dbg(DBG_RX
, "do_bottom_half_rx\n");
1438 for (pi
= 0, port
= card
->ports
; pi
< card
->nports
; pi
++, port
++) {
1442 while (!(FST_RDB(card
, rxDescrRing
[pi
][port
->rxpos
].bits
)
1443 & DMA_OWN
) && !(card
->dmarx_in_progress
)) {
1444 if (rx_count
> fst_max_reads
) {
1446 * Don't spend forever in receive processing
1447 * Schedule another event
1449 fst_q_work_item(&fst_work_intq
, card
->card_no
);
1450 tasklet_schedule(&fst_int_task
);
1451 break; /* Leave the loop */
1453 fst_intr_rx(card
, port
);
1460 * The interrupt service routine
1461 * Dev_id is our fst_card_info pointer
1464 fst_intr(int dummy
, void *dev_id
)
1466 struct fst_card_info
*card
= dev_id
;
1467 struct fst_port_info
*port
;
1468 int rdidx
; /* Event buffer indices */
1470 int event
; /* Actual event for processing */
1471 unsigned int dma_intcsr
= 0;
1472 unsigned int do_card_interrupt
;
1473 unsigned int int_retry_count
;
1476 * Check to see if the interrupt was for this card
1478 * Note that the call to clear the interrupt is important
1480 dbg(DBG_INTR
, "intr: %d %p\n", card
->irq
, card
);
1481 if (card
->state
!= FST_RUNNING
) {
1482 pr_err("Interrupt received for card %d in a non running state (%d)\n",
1483 card
->card_no
, card
->state
);
1486 * It is possible to really be running, i.e. we have re-loaded
1488 * Clear and reprime the interrupt source
1490 fst_clear_intr(card
);
1494 /* Clear and reprime the interrupt source */
1495 fst_clear_intr(card
);
1498 * Is the interrupt for this card (handshake == 1)
1500 do_card_interrupt
= 0;
1501 if (FST_RDB(card
, interruptHandshake
) == 1) {
1502 do_card_interrupt
+= FST_CARD_INT
;
1503 /* Set the software acknowledge */
1504 FST_WRB(card
, interruptHandshake
, 0xEE);
1506 if (card
->family
== FST_FAMILY_TXU
) {
1508 * Is it a DMA Interrupt
1510 dma_intcsr
= inl(card
->pci_conf
+ INTCSR_9054
);
1511 if (dma_intcsr
& 0x00200000) {
1513 * DMA Channel 0 (Rx transfer complete)
1515 dbg(DBG_RX
, "DMA Rx xfer complete\n");
1516 outb(0x8, card
->pci_conf
+ DMACSR0
);
1517 fst_rx_dma_complete(card
, card
->dma_port_rx
,
1518 card
->dma_len_rx
, card
->dma_skb_rx
,
1520 card
->dmarx_in_progress
= 0;
1521 do_card_interrupt
+= FST_RX_DMA_INT
;
1523 if (dma_intcsr
& 0x00400000) {
1525 * DMA Channel 1 (Tx transfer complete)
1527 dbg(DBG_TX
, "DMA Tx xfer complete\n");
1528 outb(0x8, card
->pci_conf
+ DMACSR1
);
1529 fst_tx_dma_complete(card
, card
->dma_port_tx
,
1530 card
->dma_len_tx
, card
->dma_txpos
);
1531 card
->dmatx_in_progress
= 0;
1532 do_card_interrupt
+= FST_TX_DMA_INT
;
1537 * Have we been missing Interrupts
1539 int_retry_count
= FST_RDL(card
, interruptRetryCount
);
1540 if (int_retry_count
) {
1541 dbg(DBG_ASS
, "Card %d int_retry_count is %d\n",
1542 card
->card_no
, int_retry_count
);
1543 FST_WRL(card
, interruptRetryCount
, 0);
1546 if (!do_card_interrupt
) {
1550 /* Scehdule the bottom half of the ISR */
1551 fst_q_work_item(&fst_work_intq
, card
->card_no
);
1552 tasklet_schedule(&fst_int_task
);
1554 /* Drain the event queue */
1555 rdidx
= FST_RDB(card
, interruptEvent
.rdindex
) & 0x1f;
1556 wridx
= FST_RDB(card
, interruptEvent
.wrindex
) & 0x1f;
1557 while (rdidx
!= wridx
) {
1558 event
= FST_RDB(card
, interruptEvent
.evntbuff
[rdidx
]);
1559 port
= &card
->ports
[event
& 0x03];
1561 dbg(DBG_INTR
, "Processing Interrupt event: %x\n", event
);
1565 dbg(DBG_INTR
, "TE1 Alarm intr\n");
1567 fst_intr_te1_alarm(card
, port
);
1575 fst_intr_ctlchg(card
, port
);
1582 dbg(DBG_TX
, "Abort complete port %d\n", port
->index
);
1589 /* Difficult to see how we'd get this given that we
1590 * always load up the entire packet for DMA.
1592 dbg(DBG_TX
, "Tx underflow port %d\n", port
->index
);
1593 port_to_dev(port
)->stats
.tx_errors
++;
1594 port_to_dev(port
)->stats
.tx_fifo_errors
++;
1595 dbg(DBG_ASS
, "Tx underflow on card %d port %d\n",
1596 card
->card_no
, port
->index
);
1600 dbg(DBG_INIT
, "Card init OK intr\n");
1604 dbg(DBG_INIT
, "Card init FAILED intr\n");
1605 card
->state
= FST_IFAILED
;
1609 pr_err("intr: unknown card event %d. ignored\n", event
);
1613 /* Bump and wrap the index */
1614 if (++rdidx
>= MAX_CIRBUFF
)
1617 FST_WRB(card
, interruptEvent
.rdindex
, rdidx
);
1621 /* Check that the shared memory configuration is one that we can handle
1622 * and that some basic parameters are correct
1625 check_started_ok(struct fst_card_info
*card
)
1629 /* Check structure version and end marker */
1630 if (FST_RDW(card
, smcVersion
) != SMC_VERSION
) {
1631 pr_err("Bad shared memory version %d expected %d\n",
1632 FST_RDW(card
, smcVersion
), SMC_VERSION
);
1633 card
->state
= FST_BADVERSION
;
1636 if (FST_RDL(card
, endOfSmcSignature
) != END_SIG
) {
1637 pr_err("Missing shared memory signature\n");
1638 card
->state
= FST_BADVERSION
;
1641 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1642 if ((i
= FST_RDB(card
, taskStatus
)) == 0x01) {
1643 card
->state
= FST_RUNNING
;
1644 } else if (i
== 0xFF) {
1645 pr_err("Firmware initialisation failed. Card halted\n");
1646 card
->state
= FST_HALTED
;
1648 } else if (i
!= 0x00) {
1649 pr_err("Unknown firmware status 0x%x\n", i
);
1650 card
->state
= FST_HALTED
;
1654 /* Finally check the number of ports reported by firmware against the
1655 * number we assumed at card detection. Should never happen with
1656 * existing firmware etc so we just report it for the moment.
1658 if (FST_RDL(card
, numberOfPorts
) != card
->nports
) {
1659 pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n",
1661 FST_RDL(card
, numberOfPorts
), card
->nports
);
1666 set_conf_from_info(struct fst_card_info
*card
, struct fst_port_info
*port
,
1667 struct fstioc_info
*info
)
1670 unsigned char my_framing
;
1672 /* Set things according to the user set valid flags
1673 * Several of the old options have been invalidated/replaced by the
1674 * generic hdlc package.
1677 if (info
->valid
& FSTVAL_PROTO
) {
1678 if (info
->proto
== FST_RAW
)
1679 port
->mode
= FST_RAW
;
1681 port
->mode
= FST_GEN_HDLC
;
1684 if (info
->valid
& FSTVAL_CABLE
)
1687 if (info
->valid
& FSTVAL_SPEED
)
1690 if (info
->valid
& FSTVAL_PHASE
)
1691 FST_WRB(card
, portConfig
[port
->index
].invertClock
,
1693 if (info
->valid
& FSTVAL_MODE
)
1694 FST_WRW(card
, cardMode
, info
->cardMode
);
1695 if (info
->valid
& FSTVAL_TE1
) {
1696 FST_WRL(card
, suConfig
.dataRate
, info
->lineSpeed
);
1697 FST_WRB(card
, suConfig
.clocking
, info
->clockSource
);
1698 my_framing
= FRAMING_E1
;
1699 if (info
->framing
== E1
)
1700 my_framing
= FRAMING_E1
;
1701 if (info
->framing
== T1
)
1702 my_framing
= FRAMING_T1
;
1703 if (info
->framing
== J1
)
1704 my_framing
= FRAMING_J1
;
1705 FST_WRB(card
, suConfig
.framing
, my_framing
);
1706 FST_WRB(card
, suConfig
.structure
, info
->structure
);
1707 FST_WRB(card
, suConfig
.interface
, info
->interface
);
1708 FST_WRB(card
, suConfig
.coding
, info
->coding
);
1709 FST_WRB(card
, suConfig
.lineBuildOut
, info
->lineBuildOut
);
1710 FST_WRB(card
, suConfig
.equalizer
, info
->equalizer
);
1711 FST_WRB(card
, suConfig
.transparentMode
, info
->transparentMode
);
1712 FST_WRB(card
, suConfig
.loopMode
, info
->loopMode
);
1713 FST_WRB(card
, suConfig
.range
, info
->range
);
1714 FST_WRB(card
, suConfig
.txBufferMode
, info
->txBufferMode
);
1715 FST_WRB(card
, suConfig
.rxBufferMode
, info
->rxBufferMode
);
1716 FST_WRB(card
, suConfig
.startingSlot
, info
->startingSlot
);
1717 FST_WRB(card
, suConfig
.losThreshold
, info
->losThreshold
);
1719 FST_WRB(card
, suConfig
.enableIdleCode
, 1);
1721 FST_WRB(card
, suConfig
.enableIdleCode
, 0);
1722 FST_WRB(card
, suConfig
.idleCode
, info
->idleCode
);
1724 if (info
->valid
& FSTVAL_TE1
) {
1725 printk("Setting TE1 data\n");
1726 printk("Line Speed = %d\n", info
->lineSpeed
);
1727 printk("Start slot = %d\n", info
->startingSlot
);
1728 printk("Clock source = %d\n", info
->clockSource
);
1729 printk("Framing = %d\n", my_framing
);
1730 printk("Structure = %d\n", info
->structure
);
1731 printk("interface = %d\n", info
->interface
);
1732 printk("Coding = %d\n", info
->coding
);
1733 printk("Line build out = %d\n", info
->lineBuildOut
);
1734 printk("Equaliser = %d\n", info
->equalizer
);
1735 printk("Transparent mode = %d\n",
1736 info
->transparentMode
);
1737 printk("Loop mode = %d\n", info
->loopMode
);
1738 printk("Range = %d\n", info
->range
);
1739 printk("Tx Buffer mode = %d\n", info
->txBufferMode
);
1740 printk("Rx Buffer mode = %d\n", info
->rxBufferMode
);
1741 printk("LOS Threshold = %d\n", info
->losThreshold
);
1742 printk("Idle Code = %d\n", info
->idleCode
);
1747 if (info
->valid
& FSTVAL_DEBUG
) {
1748 fst_debug_mask
= info
->debug
;
1756 gather_conf_info(struct fst_card_info
*card
, struct fst_port_info
*port
,
1757 struct fstioc_info
*info
)
1761 memset(info
, 0, sizeof (struct fstioc_info
));
1764 info
->kernelVersion
= LINUX_VERSION_CODE
;
1765 info
->nports
= card
->nports
;
1766 info
->type
= card
->type
;
1767 info
->state
= card
->state
;
1768 info
->proto
= FST_GEN_HDLC
;
1771 info
->debug
= fst_debug_mask
;
1774 /* Only mark information as valid if card is running.
1775 * Copy the data anyway in case it is useful for diagnostics
1777 info
->valid
= ((card
->state
== FST_RUNNING
) ? FSTVAL_ALL
: FSTVAL_CARD
)
1783 info
->lineInterface
= FST_RDW(card
, portConfig
[i
].lineInterface
);
1784 info
->internalClock
= FST_RDB(card
, portConfig
[i
].internalClock
);
1785 info
->lineSpeed
= FST_RDL(card
, portConfig
[i
].lineSpeed
);
1786 info
->invertClock
= FST_RDB(card
, portConfig
[i
].invertClock
);
1787 info
->v24IpSts
= FST_RDL(card
, v24IpSts
[i
]);
1788 info
->v24OpSts
= FST_RDL(card
, v24OpSts
[i
]);
1789 info
->clockStatus
= FST_RDW(card
, clockStatus
[i
]);
1790 info
->cableStatus
= FST_RDW(card
, cableStatus
);
1791 info
->cardMode
= FST_RDW(card
, cardMode
);
1792 info
->smcFirmwareVersion
= FST_RDL(card
, smcFirmwareVersion
);
1795 * The T2U can report cable presence for both A or B
1796 * in bits 0 and 1 of cableStatus. See which port we are and
1799 if (card
->family
== FST_FAMILY_TXU
) {
1800 if (port
->index
== 0) {
1804 info
->cableStatus
= info
->cableStatus
& 1;
1809 info
->cableStatus
= info
->cableStatus
>> 1;
1810 info
->cableStatus
= info
->cableStatus
& 1;
1814 * Some additional bits if we are TE1
1816 if (card
->type
== FST_TYPE_TE1
) {
1817 info
->lineSpeed
= FST_RDL(card
, suConfig
.dataRate
);
1818 info
->clockSource
= FST_RDB(card
, suConfig
.clocking
);
1819 info
->framing
= FST_RDB(card
, suConfig
.framing
);
1820 info
->structure
= FST_RDB(card
, suConfig
.structure
);
1821 info
->interface
= FST_RDB(card
, suConfig
.interface
);
1822 info
->coding
= FST_RDB(card
, suConfig
.coding
);
1823 info
->lineBuildOut
= FST_RDB(card
, suConfig
.lineBuildOut
);
1824 info
->equalizer
= FST_RDB(card
, suConfig
.equalizer
);
1825 info
->loopMode
= FST_RDB(card
, suConfig
.loopMode
);
1826 info
->range
= FST_RDB(card
, suConfig
.range
);
1827 info
->txBufferMode
= FST_RDB(card
, suConfig
.txBufferMode
);
1828 info
->rxBufferMode
= FST_RDB(card
, suConfig
.rxBufferMode
);
1829 info
->startingSlot
= FST_RDB(card
, suConfig
.startingSlot
);
1830 info
->losThreshold
= FST_RDB(card
, suConfig
.losThreshold
);
1831 if (FST_RDB(card
, suConfig
.enableIdleCode
))
1832 info
->idleCode
= FST_RDB(card
, suConfig
.idleCode
);
1835 info
->receiveBufferDelay
=
1836 FST_RDL(card
, suStatus
.receiveBufferDelay
);
1837 info
->framingErrorCount
=
1838 FST_RDL(card
, suStatus
.framingErrorCount
);
1839 info
->codeViolationCount
=
1840 FST_RDL(card
, suStatus
.codeViolationCount
);
1841 info
->crcErrorCount
= FST_RDL(card
, suStatus
.crcErrorCount
);
1842 info
->lineAttenuation
= FST_RDL(card
, suStatus
.lineAttenuation
);
1843 info
->lossOfSignal
= FST_RDB(card
, suStatus
.lossOfSignal
);
1844 info
->receiveRemoteAlarm
=
1845 FST_RDB(card
, suStatus
.receiveRemoteAlarm
);
1846 info
->alarmIndicationSignal
=
1847 FST_RDB(card
, suStatus
.alarmIndicationSignal
);
1852 fst_set_iface(struct fst_card_info
*card
, struct fst_port_info
*port
,
1855 sync_serial_settings sync
;
1858 if (ifr
->ifr_settings
.size
!= sizeof (sync
)) {
1863 (&sync
, ifr
->ifr_settings
.ifs_ifsu
.sync
, sizeof (sync
))) {
1872 switch (ifr
->ifr_settings
.type
) {
1874 FST_WRW(card
, portConfig
[i
].lineInterface
, V35
);
1879 FST_WRW(card
, portConfig
[i
].lineInterface
, V24
);
1884 FST_WRW(card
, portConfig
[i
].lineInterface
, X21
);
1889 FST_WRW(card
, portConfig
[i
].lineInterface
, X21D
);
1894 FST_WRW(card
, portConfig
[i
].lineInterface
, T1
);
1899 FST_WRW(card
, portConfig
[i
].lineInterface
, E1
);
1903 case IF_IFACE_SYNC_SERIAL
:
1910 switch (sync
.clock_type
) {
1912 FST_WRB(card
, portConfig
[i
].internalClock
, EXTCLK
);
1916 FST_WRB(card
, portConfig
[i
].internalClock
, INTCLK
);
1922 FST_WRL(card
, portConfig
[i
].lineSpeed
, sync
.clock_rate
);
1927 fst_get_iface(struct fst_card_info
*card
, struct fst_port_info
*port
,
1930 sync_serial_settings sync
;
1933 /* First check what line type is set, we'll default to reporting X.21
1934 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1937 switch (port
->hwif
) {
1939 ifr
->ifr_settings
.type
= IF_IFACE_E1
;
1942 ifr
->ifr_settings
.type
= IF_IFACE_T1
;
1945 ifr
->ifr_settings
.type
= IF_IFACE_V35
;
1948 ifr
->ifr_settings
.type
= IF_IFACE_V24
;
1951 ifr
->ifr_settings
.type
= IF_IFACE_X21D
;
1955 ifr
->ifr_settings
.type
= IF_IFACE_X21
;
1958 if (ifr
->ifr_settings
.size
== 0) {
1959 return 0; /* only type requested */
1961 if (ifr
->ifr_settings
.size
< sizeof (sync
)) {
1966 memset(&sync
, 0, sizeof(sync
));
1967 sync
.clock_rate
= FST_RDL(card
, portConfig
[i
].lineSpeed
);
1968 /* Lucky card and linux use same encoding here */
1969 sync
.clock_type
= FST_RDB(card
, portConfig
[i
].internalClock
) ==
1970 INTCLK
? CLOCK_INT
: CLOCK_EXT
;
1973 if (copy_to_user(ifr
->ifr_settings
.ifs_ifsu
.sync
, &sync
, sizeof (sync
))) {
1977 ifr
->ifr_settings
.size
= sizeof (sync
);
1982 fst_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1984 struct fst_card_info
*card
;
1985 struct fst_port_info
*port
;
1986 struct fstioc_write wrthdr
;
1987 struct fstioc_info info
;
1988 unsigned long flags
;
1991 dbg(DBG_IOCTL
, "ioctl: %x, %p\n", cmd
, ifr
->ifr_data
);
1993 port
= dev_to_port(dev
);
1996 if (!capable(CAP_NET_ADMIN
))
2002 card
->state
= FST_RESET
;
2006 fst_cpurelease(card
);
2007 card
->state
= FST_STARTING
;
2010 case FSTWRITE
: /* Code write (download) */
2012 /* First copy in the header with the length and offset of data
2015 if (ifr
->ifr_data
== NULL
) {
2018 if (copy_from_user(&wrthdr
, ifr
->ifr_data
,
2019 sizeof (struct fstioc_write
))) {
2023 /* Sanity check the parameters. We don't support partial writes
2024 * when going over the top
2026 if (wrthdr
.size
> FST_MEMSIZE
|| wrthdr
.offset
> FST_MEMSIZE
||
2027 wrthdr
.size
+ wrthdr
.offset
> FST_MEMSIZE
) {
2031 /* Now copy the data to the card. */
2033 buf
= memdup_user(ifr
->ifr_data
+ sizeof(struct fstioc_write
),
2036 return PTR_ERR(buf
);
2038 memcpy_toio(card
->mem
+ wrthdr
.offset
, buf
, wrthdr
.size
);
2041 /* Writes to the memory of a card in the reset state constitute
2044 if (card
->state
== FST_RESET
) {
2045 card
->state
= FST_DOWNLOAD
;
2051 /* If card has just been started check the shared memory config
2052 * version and marker
2054 if (card
->state
== FST_STARTING
) {
2055 check_started_ok(card
);
2057 /* If everything checked out enable card interrupts */
2058 if (card
->state
== FST_RUNNING
) {
2059 spin_lock_irqsave(&card
->card_lock
, flags
);
2060 fst_enable_intr(card
);
2061 FST_WRB(card
, interruptHandshake
, 0xEE);
2062 spin_unlock_irqrestore(&card
->card_lock
, flags
);
2066 if (ifr
->ifr_data
== NULL
) {
2070 gather_conf_info(card
, port
, &info
);
2072 if (copy_to_user(ifr
->ifr_data
, &info
, sizeof (info
))) {
2080 * Most of the settings have been moved to the generic ioctls
2081 * this just covers debug and board ident now
2084 if (card
->state
!= FST_RUNNING
) {
2085 pr_err("Attempt to configure card %d in non-running state (%d)\n",
2086 card
->card_no
, card
->state
);
2089 if (copy_from_user(&info
, ifr
->ifr_data
, sizeof (info
))) {
2093 return set_conf_from_info(card
, port
, &info
);
2096 switch (ifr
->ifr_settings
.type
) {
2098 return fst_get_iface(card
, port
, ifr
);
2100 case IF_IFACE_SYNC_SERIAL
:
2107 return fst_set_iface(card
, port
, ifr
);
2110 port
->mode
= FST_RAW
;
2114 if (port
->mode
== FST_RAW
) {
2115 ifr
->ifr_settings
.type
= IF_PROTO_RAW
;
2118 return hdlc_ioctl(dev
, ifr
, cmd
);
2121 port
->mode
= FST_GEN_HDLC
;
2122 dbg(DBG_IOCTL
, "Passing this type to hdlc %x\n",
2123 ifr
->ifr_settings
.type
);
2124 return hdlc_ioctl(dev
, ifr
, cmd
);
2128 /* Not one of ours. Pass through to HDLC package */
2129 return hdlc_ioctl(dev
, ifr
, cmd
);
2134 fst_openport(struct fst_port_info
*port
)
2139 /* Only init things if card is actually running. This allows open to
2140 * succeed for downloads etc.
2142 if (port
->card
->state
== FST_RUNNING
) {
2144 dbg(DBG_OPEN
, "open: found port already running\n");
2146 fst_issue_cmd(port
, STOPPORT
);
2150 fst_rx_config(port
);
2151 fst_tx_config(port
);
2152 fst_op_raise(port
, OPSTS_RTS
| OPSTS_DTR
);
2154 fst_issue_cmd(port
, STARTPORT
);
2157 signals
= FST_RDL(port
->card
, v24DebouncedSts
[port
->index
]);
2158 if (signals
& (((port
->hwif
== X21
) || (port
->hwif
== X21D
))
2159 ? IPSTS_INDICATE
: IPSTS_DCD
))
2160 netif_carrier_on(port_to_dev(port
));
2162 netif_carrier_off(port_to_dev(port
));
2164 txq_length
= port
->txqe
- port
->txqs
;
2172 fst_closeport(struct fst_port_info
*port
)
2174 if (port
->card
->state
== FST_RUNNING
) {
2177 fst_op_lower(port
, OPSTS_RTS
| OPSTS_DTR
);
2179 fst_issue_cmd(port
, STOPPORT
);
2181 dbg(DBG_OPEN
, "close: port not running\n");
2187 fst_open(struct net_device
*dev
)
2190 struct fst_port_info
*port
;
2192 port
= dev_to_port(dev
);
2193 if (!try_module_get(THIS_MODULE
))
2196 if (port
->mode
!= FST_RAW
) {
2197 err
= hdlc_open(dev
);
2199 module_put(THIS_MODULE
);
2205 netif_wake_queue(dev
);
2210 fst_close(struct net_device
*dev
)
2212 struct fst_port_info
*port
;
2213 struct fst_card_info
*card
;
2214 unsigned char tx_dma_done
;
2215 unsigned char rx_dma_done
;
2217 port
= dev_to_port(dev
);
2220 tx_dma_done
= inb(card
->pci_conf
+ DMACSR1
);
2221 rx_dma_done
= inb(card
->pci_conf
+ DMACSR0
);
2223 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2224 card
->dmatx_in_progress
, tx_dma_done
, card
->dmarx_in_progress
,
2227 netif_stop_queue(dev
);
2228 fst_closeport(dev_to_port(dev
));
2229 if (port
->mode
!= FST_RAW
) {
2232 module_put(THIS_MODULE
);
2237 fst_attach(struct net_device
*dev
, unsigned short encoding
, unsigned short parity
)
2240 * Setting currently fixed in FarSync card so we check and forget
2242 if (encoding
!= ENCODING_NRZ
|| parity
!= PARITY_CRC16_PR1_CCITT
)
2248 fst_tx_timeout(struct net_device
*dev
)
2250 struct fst_port_info
*port
;
2251 struct fst_card_info
*card
;
2253 port
= dev_to_port(dev
);
2255 dev
->stats
.tx_errors
++;
2256 dev
->stats
.tx_aborted_errors
++;
2257 dbg(DBG_ASS
, "Tx timeout card %d port %d\n",
2258 card
->card_no
, port
->index
);
2259 fst_issue_cmd(port
, ABORTTX
);
2261 netif_trans_update(dev
);
2262 netif_wake_queue(dev
);
2267 fst_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2269 struct fst_card_info
*card
;
2270 struct fst_port_info
*port
;
2271 unsigned long flags
;
2274 port
= dev_to_port(dev
);
2276 dbg(DBG_TX
, "fst_start_xmit: length = %d\n", skb
->len
);
2278 /* Drop packet with error if we don't have carrier */
2279 if (!netif_carrier_ok(dev
)) {
2281 dev
->stats
.tx_errors
++;
2282 dev
->stats
.tx_carrier_errors
++;
2284 "Tried to transmit but no carrier on card %d port %d\n",
2285 card
->card_no
, port
->index
);
2286 return NETDEV_TX_OK
;
2289 /* Drop it if it's too big! MTU failure ? */
2290 if (skb
->len
> LEN_TX_BUFFER
) {
2291 dbg(DBG_ASS
, "Packet too large %d vs %d\n", skb
->len
,
2294 dev
->stats
.tx_errors
++;
2295 return NETDEV_TX_OK
;
2299 * We are always going to queue the packet
2300 * so that the bottom half is the only place we tx from
2301 * Check there is room in the port txq
2303 spin_lock_irqsave(&card
->card_lock
, flags
);
2304 if ((txq_length
= port
->txqe
- port
->txqs
) < 0) {
2306 * This is the case where the next free has wrapped but the
2309 txq_length
= txq_length
+ FST_TXQ_DEPTH
;
2311 spin_unlock_irqrestore(&card
->card_lock
, flags
);
2312 if (txq_length
> fst_txq_high
) {
2314 * We have got enough buffers in the pipeline. Ask the network
2315 * layer to stop sending frames down
2317 netif_stop_queue(dev
);
2318 port
->start
= 1; /* I'm using this to signal stop sent up */
2321 if (txq_length
== FST_TXQ_DEPTH
- 1) {
2323 * This shouldn't have happened but such is life
2326 dev
->stats
.tx_errors
++;
2327 dbg(DBG_ASS
, "Tx queue overflow card %d port %d\n",
2328 card
->card_no
, port
->index
);
2329 return NETDEV_TX_OK
;
2335 spin_lock_irqsave(&card
->card_lock
, flags
);
2336 port
->txq
[port
->txqe
] = skb
;
2338 if (port
->txqe
== FST_TXQ_DEPTH
)
2340 spin_unlock_irqrestore(&card
->card_lock
, flags
);
2342 /* Scehdule the bottom half which now does transmit processing */
2343 fst_q_work_item(&fst_work_txq
, card
->card_no
);
2344 tasklet_schedule(&fst_tx_task
);
2346 return NETDEV_TX_OK
;
2350 * Card setup having checked hardware resources.
2351 * Should be pretty bizarre if we get an error here (kernel memory
2352 * exhaustion is one possibility). If we do see a problem we report it
2353 * via a printk and leave the corresponding interface and all that follow
2356 static char *type_strings
[] = {
2357 "no hardware", /* Should never be seen */
2367 fst_init_card(struct fst_card_info
*card
)
2372 /* We're working on a number of ports based on the card ID. If the
2373 * firmware detects something different later (should never happen)
2374 * we'll have to revise it in some way then.
2376 for (i
= 0; i
< card
->nports
; i
++) {
2377 err
= register_hdlc_device(card
->ports
[i
].dev
);
2379 pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2382 unregister_hdlc_device(card
->ports
[i
].dev
);
2387 pr_info("%s-%s: %s IRQ%d, %d ports\n",
2388 port_to_dev(&card
->ports
[0])->name
,
2389 port_to_dev(&card
->ports
[card
->nports
- 1])->name
,
2390 type_strings
[card
->type
], card
->irq
, card
->nports
);
2394 static const struct net_device_ops fst_ops
= {
2395 .ndo_open
= fst_open
,
2396 .ndo_stop
= fst_close
,
2397 .ndo_change_mtu
= hdlc_change_mtu
,
2398 .ndo_start_xmit
= hdlc_start_xmit
,
2399 .ndo_do_ioctl
= fst_ioctl
,
2400 .ndo_tx_timeout
= fst_tx_timeout
,
2404 * Initialise card when detected.
2405 * Returns 0 to indicate success, or errno otherwise.
2408 fst_add_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2410 static int no_of_cards_added
= 0;
2411 struct fst_card_info
*card
;
2415 printk_once(KERN_INFO
2416 pr_fmt("FarSync WAN driver " FST_USER_VERSION
2417 " (c) 2001-2004 FarSite Communications Ltd.\n"));
2419 dbg(DBG_ASS
, "The value of debug mask is %x\n", fst_debug_mask
);
2422 * We are going to be clever and allow certain cards not to be
2423 * configured. An exclude list can be provided in /etc/modules.conf
2425 if (fst_excluded_cards
!= 0) {
2427 * There are cards to exclude
2430 for (i
= 0; i
< fst_excluded_cards
; i
++) {
2431 if ((pdev
->devfn
) >> 3 == fst_excluded_list
[i
]) {
2432 pr_info("FarSync PCI device %d not assigned\n",
2433 (pdev
->devfn
) >> 3);
2439 /* Allocate driver private data */
2440 card
= kzalloc(sizeof(struct fst_card_info
), GFP_KERNEL
);
2444 /* Try to enable the device */
2445 if ((err
= pci_enable_device(pdev
)) != 0) {
2446 pr_err("Failed to enable card. Err %d\n", -err
);
2450 if ((err
= pci_request_regions(pdev
, "FarSync")) !=0) {
2451 pr_err("Failed to allocate regions. Err %d\n", -err
);
2455 /* Get virtual addresses of memory regions */
2456 card
->pci_conf
= pci_resource_start(pdev
, 1);
2457 card
->phys_mem
= pci_resource_start(pdev
, 2);
2458 card
->phys_ctlmem
= pci_resource_start(pdev
, 3);
2459 if ((card
->mem
= ioremap(card
->phys_mem
, FST_MEMSIZE
)) == NULL
) {
2460 pr_err("Physical memory remap failed\n");
2462 goto ioremap_physmem_fail
;
2464 if ((card
->ctlmem
= ioremap(card
->phys_ctlmem
, 0x10)) == NULL
) {
2465 pr_err("Control memory remap failed\n");
2467 goto ioremap_ctlmem_fail
;
2469 dbg(DBG_PCI
, "kernel mem %p, ctlmem %p\n", card
->mem
, card
->ctlmem
);
2471 /* Register the interrupt handler */
2472 if (request_irq(pdev
->irq
, fst_intr
, IRQF_SHARED
, FST_DEV_NAME
, card
)) {
2473 pr_err("Unable to register interrupt %d\n", card
->irq
);
2478 /* Record info we need */
2479 card
->irq
= pdev
->irq
;
2480 card
->type
= ent
->driver_data
;
2481 card
->family
= ((ent
->driver_data
== FST_TYPE_T2P
) ||
2482 (ent
->driver_data
== FST_TYPE_T4P
))
2483 ? FST_FAMILY_TXP
: FST_FAMILY_TXU
;
2484 if ((ent
->driver_data
== FST_TYPE_T1U
) ||
2485 (ent
->driver_data
== FST_TYPE_TE1
))
2488 card
->nports
= ((ent
->driver_data
== FST_TYPE_T2P
) ||
2489 (ent
->driver_data
== FST_TYPE_T2U
)) ? 2 : 4;
2491 card
->state
= FST_UNINIT
;
2492 spin_lock_init ( &card
->card_lock
);
2494 for ( i
= 0 ; i
< card
->nports
; i
++ ) {
2495 struct net_device
*dev
= alloc_hdlcdev(&card
->ports
[i
]);
2499 free_netdev(card
->ports
[i
].dev
);
2500 pr_err("FarSync: out of memory\n");
2504 card
->ports
[i
].dev
= dev
;
2505 card
->ports
[i
].card
= card
;
2506 card
->ports
[i
].index
= i
;
2507 card
->ports
[i
].run
= 0;
2509 hdlc
= dev_to_hdlc(dev
);
2511 /* Fill in the net device info */
2512 /* Since this is a PCI setup this is purely
2513 * informational. Give them the buffer addresses
2514 * and basic card I/O.
2516 dev
->mem_start
= card
->phys_mem
2517 + BUF_OFFSET ( txBuffer
[i
][0][0]);
2518 dev
->mem_end
= card
->phys_mem
2519 + BUF_OFFSET ( txBuffer
[i
][NUM_TX_BUFFER
- 1][LEN_RX_BUFFER
- 1]);
2520 dev
->base_addr
= card
->pci_conf
;
2521 dev
->irq
= card
->irq
;
2523 dev
->netdev_ops
= &fst_ops
;
2524 dev
->tx_queue_len
= FST_TX_QUEUE_LEN
;
2525 dev
->watchdog_timeo
= FST_TX_TIMEOUT
;
2526 hdlc
->attach
= fst_attach
;
2527 hdlc
->xmit
= fst_start_xmit
;
2530 card
->device
= pdev
;
2532 dbg(DBG_PCI
, "type %d nports %d irq %d\n", card
->type
,
2533 card
->nports
, card
->irq
);
2534 dbg(DBG_PCI
, "conf %04x mem %08x ctlmem %08x\n",
2535 card
->pci_conf
, card
->phys_mem
, card
->phys_ctlmem
);
2537 /* Reset the card's processor */
2539 card
->state
= FST_RESET
;
2541 /* Initialise DMA (if required) */
2544 /* Record driver data for later use */
2545 pci_set_drvdata(pdev
, card
);
2547 /* Remainder of card setup */
2548 if (no_of_cards_added
>= FST_MAX_CARDS
) {
2549 pr_err("FarSync: too many cards\n");
2551 goto card_array_fail
;
2553 fst_card_array
[no_of_cards_added
] = card
;
2554 card
->card_no
= no_of_cards_added
++; /* Record instance and bump it */
2555 err
= fst_init_card(card
);
2557 goto init_card_fail
;
2558 if (card
->family
== FST_FAMILY_TXU
) {
2560 * Allocate a dma buffer for transmit and receives
2562 card
->rx_dma_handle_host
=
2563 pci_alloc_consistent(card
->device
, FST_MAX_MTU
,
2564 &card
->rx_dma_handle_card
);
2565 if (card
->rx_dma_handle_host
== NULL
) {
2566 pr_err("Could not allocate rx dma buffer\n");
2570 card
->tx_dma_handle_host
=
2571 pci_alloc_consistent(card
->device
, FST_MAX_MTU
,
2572 &card
->tx_dma_handle_card
);
2573 if (card
->tx_dma_handle_host
== NULL
) {
2574 pr_err("Could not allocate tx dma buffer\n");
2579 return 0; /* Success */
2582 pci_free_consistent(card
->device
, FST_MAX_MTU
,
2583 card
->rx_dma_handle_host
,
2584 card
->rx_dma_handle_card
);
2586 fst_disable_intr(card
);
2587 for (i
= 0 ; i
< card
->nports
; i
++)
2588 unregister_hdlc_device(card
->ports
[i
].dev
);
2590 fst_card_array
[card
->card_no
] = NULL
;
2592 for (i
= 0 ; i
< card
->nports
; i
++)
2593 free_netdev(card
->ports
[i
].dev
);
2595 free_irq(card
->irq
, card
);
2597 iounmap(card
->ctlmem
);
2598 ioremap_ctlmem_fail
:
2600 ioremap_physmem_fail
:
2601 pci_release_regions(pdev
);
2603 pci_disable_device(pdev
);
2610 * Cleanup and close down a card
2613 fst_remove_one(struct pci_dev
*pdev
)
2615 struct fst_card_info
*card
;
2618 card
= pci_get_drvdata(pdev
);
2620 for (i
= 0; i
< card
->nports
; i
++) {
2621 struct net_device
*dev
= port_to_dev(&card
->ports
[i
]);
2622 unregister_hdlc_device(dev
);
2625 fst_disable_intr(card
);
2626 free_irq(card
->irq
, card
);
2628 iounmap(card
->ctlmem
);
2630 pci_release_regions(pdev
);
2631 if (card
->family
== FST_FAMILY_TXU
) {
2635 pci_free_consistent(card
->device
, FST_MAX_MTU
,
2636 card
->rx_dma_handle_host
,
2637 card
->rx_dma_handle_card
);
2638 pci_free_consistent(card
->device
, FST_MAX_MTU
,
2639 card
->tx_dma_handle_host
,
2640 card
->tx_dma_handle_card
);
2642 fst_card_array
[card
->card_no
] = NULL
;
2645 static struct pci_driver fst_driver
= {
2647 .id_table
= fst_pci_dev_id
,
2648 .probe
= fst_add_one
,
2649 .remove
= fst_remove_one
,
2659 for (i
= 0; i
< FST_MAX_CARDS
; i
++)
2660 fst_card_array
[i
] = NULL
;
2661 spin_lock_init(&fst_work_q_lock
);
2662 return pci_register_driver(&fst_driver
);
2666 fst_cleanup_module(void)
2668 pr_info("FarSync WAN driver unloading\n");
2669 pci_unregister_driver(&fst_driver
);
2672 module_init(fst_init
);
2673 module_exit(fst_cleanup_module
);