Merge tag 'regmap-fix-v4.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath10k / pci.c
blob0457e315d336c52ef99f06cf2c5ec2ebb01ac046
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
24 #include "core.h"
25 #include "debug.h"
27 #include "targaddrs.h"
28 #include "bmi.h"
30 #include "hif.h"
31 #include "htc.h"
33 #include "ce.h"
34 #include "pci.h"
36 enum ath10k_pci_reset_mode {
37 ATH10K_PCI_RESET_AUTO = 0,
38 ATH10K_PCI_RESET_WARM_ONLY = 1,
41 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
42 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
44 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
45 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
47 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
48 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
50 /* how long wait to wait for target to initialise, in ms */
51 #define ATH10K_PCI_TARGET_WAIT 3000
52 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
54 static const struct pci_device_id ath10k_pci_id_table[] = {
55 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
56 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
57 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
58 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
59 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
60 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
61 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
62 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
63 {0}
66 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
67 /* QCA988X pre 2.0 chips are not supported because they need some nasty
68 * hacks. ath10k doesn't have them and these devices crash horribly
69 * because of that.
71 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
73 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
74 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
75 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
76 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
79 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
80 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
81 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
82 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
85 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
87 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
89 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
91 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
92 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
94 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
97 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
98 static int ath10k_pci_cold_reset(struct ath10k *ar);
99 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
100 static int ath10k_pci_init_irq(struct ath10k *ar);
101 static int ath10k_pci_deinit_irq(struct ath10k *ar);
102 static int ath10k_pci_request_irq(struct ath10k *ar);
103 static void ath10k_pci_free_irq(struct ath10k *ar);
104 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
105 struct ath10k_ce_pipe *rx_pipe,
106 struct bmi_xfer *xfer);
107 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
108 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
109 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
111 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
112 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
115 static struct ce_attr host_ce_config_wlan[] = {
116 /* CE0: host->target HTC control and raw streams */
118 .flags = CE_ATTR_FLAGS,
119 .src_nentries = 16,
120 .src_sz_max = 256,
121 .dest_nentries = 0,
122 .send_cb = ath10k_pci_htc_tx_cb,
125 /* CE1: target->host HTT + HTC control */
127 .flags = CE_ATTR_FLAGS,
128 .src_nentries = 0,
129 .src_sz_max = 2048,
130 .dest_nentries = 512,
131 .recv_cb = ath10k_pci_htt_htc_rx_cb,
134 /* CE2: target->host WMI */
136 .flags = CE_ATTR_FLAGS,
137 .src_nentries = 0,
138 .src_sz_max = 2048,
139 .dest_nentries = 128,
140 .recv_cb = ath10k_pci_htc_rx_cb,
143 /* CE3: host->target WMI */
145 .flags = CE_ATTR_FLAGS,
146 .src_nentries = 32,
147 .src_sz_max = 2048,
148 .dest_nentries = 0,
149 .send_cb = ath10k_pci_htc_tx_cb,
152 /* CE4: host->target HTT */
154 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
155 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
156 .src_sz_max = 256,
157 .dest_nentries = 0,
158 .send_cb = ath10k_pci_htt_tx_cb,
161 /* CE5: target->host HTT (HIF->HTT) */
163 .flags = CE_ATTR_FLAGS,
164 .src_nentries = 0,
165 .src_sz_max = 512,
166 .dest_nentries = 512,
167 .recv_cb = ath10k_pci_htt_rx_cb,
170 /* CE6: target autonomous hif_memcpy */
172 .flags = CE_ATTR_FLAGS,
173 .src_nentries = 0,
174 .src_sz_max = 0,
175 .dest_nentries = 0,
178 /* CE7: ce_diag, the Diagnostic Window */
180 .flags = CE_ATTR_FLAGS,
181 .src_nentries = 2,
182 .src_sz_max = DIAG_TRANSFER_LIMIT,
183 .dest_nentries = 2,
186 /* CE8: target->host pktlog */
188 .flags = CE_ATTR_FLAGS,
189 .src_nentries = 0,
190 .src_sz_max = 2048,
191 .dest_nentries = 128,
192 .recv_cb = ath10k_pci_pktlog_rx_cb,
195 /* CE9 target autonomous qcache memcpy */
197 .flags = CE_ATTR_FLAGS,
198 .src_nentries = 0,
199 .src_sz_max = 0,
200 .dest_nentries = 0,
203 /* CE10: target autonomous hif memcpy */
205 .flags = CE_ATTR_FLAGS,
206 .src_nentries = 0,
207 .src_sz_max = 0,
208 .dest_nentries = 0,
211 /* CE11: target autonomous hif memcpy */
213 .flags = CE_ATTR_FLAGS,
214 .src_nentries = 0,
215 .src_sz_max = 0,
216 .dest_nentries = 0,
220 /* Target firmware's Copy Engine configuration. */
221 static struct ce_pipe_config target_ce_config_wlan[] = {
222 /* CE0: host->target HTC control and raw streams */
224 .pipenum = __cpu_to_le32(0),
225 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
226 .nentries = __cpu_to_le32(32),
227 .nbytes_max = __cpu_to_le32(256),
228 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
229 .reserved = __cpu_to_le32(0),
232 /* CE1: target->host HTT + HTC control */
234 .pipenum = __cpu_to_le32(1),
235 .pipedir = __cpu_to_le32(PIPEDIR_IN),
236 .nentries = __cpu_to_le32(32),
237 .nbytes_max = __cpu_to_le32(2048),
238 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
239 .reserved = __cpu_to_le32(0),
242 /* CE2: target->host WMI */
244 .pipenum = __cpu_to_le32(2),
245 .pipedir = __cpu_to_le32(PIPEDIR_IN),
246 .nentries = __cpu_to_le32(64),
247 .nbytes_max = __cpu_to_le32(2048),
248 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
249 .reserved = __cpu_to_le32(0),
252 /* CE3: host->target WMI */
254 .pipenum = __cpu_to_le32(3),
255 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
256 .nentries = __cpu_to_le32(32),
257 .nbytes_max = __cpu_to_le32(2048),
258 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
259 .reserved = __cpu_to_le32(0),
262 /* CE4: host->target HTT */
264 .pipenum = __cpu_to_le32(4),
265 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
266 .nentries = __cpu_to_le32(256),
267 .nbytes_max = __cpu_to_le32(256),
268 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
269 .reserved = __cpu_to_le32(0),
272 /* NB: 50% of src nentries, since tx has 2 frags */
274 /* CE5: target->host HTT (HIF->HTT) */
276 .pipenum = __cpu_to_le32(5),
277 .pipedir = __cpu_to_le32(PIPEDIR_IN),
278 .nentries = __cpu_to_le32(32),
279 .nbytes_max = __cpu_to_le32(512),
280 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
281 .reserved = __cpu_to_le32(0),
284 /* CE6: Reserved for target autonomous hif_memcpy */
286 .pipenum = __cpu_to_le32(6),
287 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
288 .nentries = __cpu_to_le32(32),
289 .nbytes_max = __cpu_to_le32(4096),
290 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
291 .reserved = __cpu_to_le32(0),
294 /* CE7 used only by Host */
296 .pipenum = __cpu_to_le32(7),
297 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
298 .nentries = __cpu_to_le32(0),
299 .nbytes_max = __cpu_to_le32(0),
300 .flags = __cpu_to_le32(0),
301 .reserved = __cpu_to_le32(0),
304 /* CE8 target->host packtlog */
306 .pipenum = __cpu_to_le32(8),
307 .pipedir = __cpu_to_le32(PIPEDIR_IN),
308 .nentries = __cpu_to_le32(64),
309 .nbytes_max = __cpu_to_le32(2048),
310 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
311 .reserved = __cpu_to_le32(0),
314 /* CE9 target autonomous qcache memcpy */
316 .pipenum = __cpu_to_le32(9),
317 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
318 .nentries = __cpu_to_le32(32),
319 .nbytes_max = __cpu_to_le32(2048),
320 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
321 .reserved = __cpu_to_le32(0),
324 /* It not necessary to send target wlan configuration for CE10 & CE11
325 * as these CEs are not actively used in target.
330 * Map from service/endpoint to Copy Engine.
331 * This table is derived from the CE_PCI TABLE, above.
332 * It is passed to the Target at startup for use by firmware.
334 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
336 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
337 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
338 __cpu_to_le32(3),
341 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
342 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
343 __cpu_to_le32(2),
346 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
347 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
348 __cpu_to_le32(3),
351 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
352 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
353 __cpu_to_le32(2),
356 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
357 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
358 __cpu_to_le32(3),
361 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
362 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
363 __cpu_to_le32(2),
366 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
367 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
368 __cpu_to_le32(3),
371 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
372 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
373 __cpu_to_le32(2),
376 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
377 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
378 __cpu_to_le32(3),
381 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
382 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
383 __cpu_to_le32(2),
386 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
387 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
388 __cpu_to_le32(0),
391 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
392 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
393 __cpu_to_le32(1),
395 { /* not used */
396 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
397 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
398 __cpu_to_le32(0),
400 { /* not used */
401 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
402 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
403 __cpu_to_le32(1),
406 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
407 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
408 __cpu_to_le32(4),
411 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
412 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
413 __cpu_to_le32(5),
416 /* (Additions here) */
418 { /* must be last */
419 __cpu_to_le32(0),
420 __cpu_to_le32(0),
421 __cpu_to_le32(0),
425 static bool ath10k_pci_is_awake(struct ath10k *ar)
427 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
428 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
429 RTC_STATE_ADDRESS);
431 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
434 static void __ath10k_pci_wake(struct ath10k *ar)
436 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
438 lockdep_assert_held(&ar_pci->ps_lock);
440 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
441 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
443 iowrite32(PCIE_SOC_WAKE_V_MASK,
444 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
445 PCIE_SOC_WAKE_ADDRESS);
448 static void __ath10k_pci_sleep(struct ath10k *ar)
450 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
452 lockdep_assert_held(&ar_pci->ps_lock);
454 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
455 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
457 iowrite32(PCIE_SOC_WAKE_RESET,
458 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
459 PCIE_SOC_WAKE_ADDRESS);
460 ar_pci->ps_awake = false;
463 static int ath10k_pci_wake_wait(struct ath10k *ar)
465 int tot_delay = 0;
466 int curr_delay = 5;
468 while (tot_delay < PCIE_WAKE_TIMEOUT) {
469 if (ath10k_pci_is_awake(ar)) {
470 if (tot_delay > PCIE_WAKE_LATE_US)
471 ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
472 tot_delay / 1000);
473 return 0;
476 udelay(curr_delay);
477 tot_delay += curr_delay;
479 if (curr_delay < 50)
480 curr_delay += 5;
483 return -ETIMEDOUT;
486 static int ath10k_pci_force_wake(struct ath10k *ar)
488 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
489 unsigned long flags;
490 int ret = 0;
492 if (ar_pci->pci_ps)
493 return ret;
495 spin_lock_irqsave(&ar_pci->ps_lock, flags);
497 if (!ar_pci->ps_awake) {
498 iowrite32(PCIE_SOC_WAKE_V_MASK,
499 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
500 PCIE_SOC_WAKE_ADDRESS);
502 ret = ath10k_pci_wake_wait(ar);
503 if (ret == 0)
504 ar_pci->ps_awake = true;
507 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
509 return ret;
512 static void ath10k_pci_force_sleep(struct ath10k *ar)
514 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
515 unsigned long flags;
517 spin_lock_irqsave(&ar_pci->ps_lock, flags);
519 iowrite32(PCIE_SOC_WAKE_RESET,
520 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
521 PCIE_SOC_WAKE_ADDRESS);
522 ar_pci->ps_awake = false;
524 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
527 static int ath10k_pci_wake(struct ath10k *ar)
529 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
530 unsigned long flags;
531 int ret = 0;
533 if (ar_pci->pci_ps == 0)
534 return ret;
536 spin_lock_irqsave(&ar_pci->ps_lock, flags);
538 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
539 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
541 /* This function can be called very frequently. To avoid excessive
542 * CPU stalls for MMIO reads use a cache var to hold the device state.
544 if (!ar_pci->ps_awake) {
545 __ath10k_pci_wake(ar);
547 ret = ath10k_pci_wake_wait(ar);
548 if (ret == 0)
549 ar_pci->ps_awake = true;
552 if (ret == 0) {
553 ar_pci->ps_wake_refcount++;
554 WARN_ON(ar_pci->ps_wake_refcount == 0);
557 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
559 return ret;
562 static void ath10k_pci_sleep(struct ath10k *ar)
564 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
565 unsigned long flags;
567 if (ar_pci->pci_ps == 0)
568 return;
570 spin_lock_irqsave(&ar_pci->ps_lock, flags);
572 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
573 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
575 if (WARN_ON(ar_pci->ps_wake_refcount == 0))
576 goto skip;
578 ar_pci->ps_wake_refcount--;
580 mod_timer(&ar_pci->ps_timer, jiffies +
581 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
583 skip:
584 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
587 static void ath10k_pci_ps_timer(unsigned long ptr)
589 struct ath10k *ar = (void *)ptr;
590 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
591 unsigned long flags;
593 spin_lock_irqsave(&ar_pci->ps_lock, flags);
595 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
596 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
598 if (ar_pci->ps_wake_refcount > 0)
599 goto skip;
601 __ath10k_pci_sleep(ar);
603 skip:
604 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
607 static void ath10k_pci_sleep_sync(struct ath10k *ar)
609 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
610 unsigned long flags;
612 if (ar_pci->pci_ps == 0) {
613 ath10k_pci_force_sleep(ar);
614 return;
617 del_timer_sync(&ar_pci->ps_timer);
619 spin_lock_irqsave(&ar_pci->ps_lock, flags);
620 WARN_ON(ar_pci->ps_wake_refcount > 0);
621 __ath10k_pci_sleep(ar);
622 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
625 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
627 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
628 int ret;
630 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
631 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
632 offset, offset + sizeof(value), ar_pci->mem_len);
633 return;
636 ret = ath10k_pci_wake(ar);
637 if (ret) {
638 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
639 value, offset, ret);
640 return;
643 iowrite32(value, ar_pci->mem + offset);
644 ath10k_pci_sleep(ar);
647 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
649 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
650 u32 val;
651 int ret;
653 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
654 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
655 offset, offset + sizeof(val), ar_pci->mem_len);
656 return 0;
659 ret = ath10k_pci_wake(ar);
660 if (ret) {
661 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
662 offset, ret);
663 return 0xffffffff;
666 val = ioread32(ar_pci->mem + offset);
667 ath10k_pci_sleep(ar);
669 return val;
672 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
674 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
676 ar_pci->bus_ops->write32(ar, offset, value);
679 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
681 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
683 return ar_pci->bus_ops->read32(ar, offset);
686 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
688 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
691 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
693 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
696 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
698 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
701 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
703 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
706 bool ath10k_pci_irq_pending(struct ath10k *ar)
708 u32 cause;
710 /* Check if the shared legacy irq is for us */
711 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
712 PCIE_INTR_CAUSE_ADDRESS);
713 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
714 return true;
716 return false;
719 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
721 /* IMPORTANT: INTR_CLR register has to be set after
722 * INTR_ENABLE is set to 0, otherwise interrupt can not be
723 * really cleared. */
724 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
726 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
727 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
729 /* IMPORTANT: this extra read transaction is required to
730 * flush the posted write buffer. */
731 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
732 PCIE_INTR_ENABLE_ADDRESS);
735 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
737 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
738 PCIE_INTR_ENABLE_ADDRESS,
739 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
741 /* IMPORTANT: this extra read transaction is required to
742 * flush the posted write buffer. */
743 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
744 PCIE_INTR_ENABLE_ADDRESS);
747 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
749 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
751 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
752 return "msi";
754 return "legacy";
757 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
759 struct ath10k *ar = pipe->hif_ce_state;
760 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
761 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
762 struct sk_buff *skb;
763 dma_addr_t paddr;
764 int ret;
766 skb = dev_alloc_skb(pipe->buf_sz);
767 if (!skb)
768 return -ENOMEM;
770 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
772 paddr = dma_map_single(ar->dev, skb->data,
773 skb->len + skb_tailroom(skb),
774 DMA_FROM_DEVICE);
775 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
776 ath10k_warn(ar, "failed to dma map pci rx buf\n");
777 dev_kfree_skb_any(skb);
778 return -EIO;
781 ATH10K_SKB_RXCB(skb)->paddr = paddr;
783 spin_lock_bh(&ar_pci->ce_lock);
784 ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
785 spin_unlock_bh(&ar_pci->ce_lock);
786 if (ret) {
787 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
788 DMA_FROM_DEVICE);
789 dev_kfree_skb_any(skb);
790 return ret;
793 return 0;
796 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
798 struct ath10k *ar = pipe->hif_ce_state;
799 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
800 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
801 int ret, num;
803 if (pipe->buf_sz == 0)
804 return;
806 if (!ce_pipe->dest_ring)
807 return;
809 spin_lock_bh(&ar_pci->ce_lock);
810 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
811 spin_unlock_bh(&ar_pci->ce_lock);
813 while (num >= 0) {
814 ret = __ath10k_pci_rx_post_buf(pipe);
815 if (ret) {
816 if (ret == -ENOSPC)
817 break;
818 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
819 mod_timer(&ar_pci->rx_post_retry, jiffies +
820 ATH10K_PCI_RX_POST_RETRY_MS);
821 break;
823 num--;
827 void ath10k_pci_rx_post(struct ath10k *ar)
829 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
830 int i;
832 for (i = 0; i < CE_COUNT; i++)
833 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
836 void ath10k_pci_rx_replenish_retry(unsigned long ptr)
838 struct ath10k *ar = (void *)ptr;
840 ath10k_pci_rx_post(ar);
843 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
845 u32 val = 0;
847 switch (ar->hw_rev) {
848 case ATH10K_HW_QCA988X:
849 case ATH10K_HW_QCA9887:
850 case ATH10K_HW_QCA6174:
851 case ATH10K_HW_QCA9377:
852 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
853 CORE_CTRL_ADDRESS) &
854 0x7ff) << 21;
855 break;
856 case ATH10K_HW_QCA9888:
857 case ATH10K_HW_QCA99X0:
858 case ATH10K_HW_QCA9984:
859 case ATH10K_HW_QCA4019:
860 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
861 break;
864 val |= 0x100000 | (addr & 0xfffff);
865 return val;
869 * Diagnostic read/write access is provided for startup/config/debug usage.
870 * Caller must guarantee proper alignment, when applicable, and single user
871 * at any moment.
873 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
874 int nbytes)
876 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
877 int ret = 0;
878 u32 *buf;
879 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
880 struct ath10k_ce_pipe *ce_diag;
881 /* Host buffer address in CE space */
882 u32 ce_data;
883 dma_addr_t ce_data_base = 0;
884 void *data_buf = NULL;
885 int i;
887 spin_lock_bh(&ar_pci->ce_lock);
889 ce_diag = ar_pci->ce_diag;
892 * Allocate a temporary bounce buffer to hold caller's data
893 * to be DMA'ed from Target. This guarantees
894 * 1) 4-byte alignment
895 * 2) Buffer in DMA-able space
897 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
899 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
900 alloc_nbytes,
901 &ce_data_base,
902 GFP_ATOMIC);
904 if (!data_buf) {
905 ret = -ENOMEM;
906 goto done;
908 memset(data_buf, 0, alloc_nbytes);
910 remaining_bytes = nbytes;
911 ce_data = ce_data_base;
912 while (remaining_bytes) {
913 nbytes = min_t(unsigned int, remaining_bytes,
914 DIAG_TRANSFER_LIMIT);
916 ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
917 if (ret != 0)
918 goto done;
920 /* Request CE to send from Target(!) address to Host buffer */
922 * The address supplied by the caller is in the
923 * Target CPU virtual address space.
925 * In order to use this address with the diagnostic CE,
926 * convert it from Target CPU virtual address space
927 * to CE address space
929 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
931 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
933 if (ret)
934 goto done;
936 i = 0;
937 while (ath10k_ce_completed_send_next_nolock(ce_diag,
938 NULL) != 0) {
939 mdelay(1);
940 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
941 ret = -EBUSY;
942 goto done;
946 i = 0;
947 while (ath10k_ce_completed_recv_next_nolock(ce_diag,
948 (void **)&buf,
949 &completed_nbytes)
950 != 0) {
951 mdelay(1);
953 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
954 ret = -EBUSY;
955 goto done;
959 if (nbytes != completed_nbytes) {
960 ret = -EIO;
961 goto done;
964 if (*buf != ce_data) {
965 ret = -EIO;
966 goto done;
969 remaining_bytes -= nbytes;
971 if (ret) {
972 ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
973 address, ret);
974 break;
976 memcpy(data, data_buf, nbytes);
978 address += nbytes;
979 data += nbytes;
982 done:
984 if (data_buf)
985 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
986 ce_data_base);
988 spin_unlock_bh(&ar_pci->ce_lock);
990 return ret;
993 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
995 __le32 val = 0;
996 int ret;
998 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
999 *value = __le32_to_cpu(val);
1001 return ret;
1004 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1005 u32 src, u32 len)
1007 u32 host_addr, addr;
1008 int ret;
1010 host_addr = host_interest_item_address(src);
1012 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1013 if (ret != 0) {
1014 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1015 src, ret);
1016 return ret;
1019 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1020 if (ret != 0) {
1021 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1022 addr, len, ret);
1023 return ret;
1026 return 0;
1029 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \
1030 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1032 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1033 const void *data, int nbytes)
1035 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1036 int ret = 0;
1037 u32 *buf;
1038 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1039 struct ath10k_ce_pipe *ce_diag;
1040 void *data_buf = NULL;
1041 u32 ce_data; /* Host buffer address in CE space */
1042 dma_addr_t ce_data_base = 0;
1043 int i;
1045 spin_lock_bh(&ar_pci->ce_lock);
1047 ce_diag = ar_pci->ce_diag;
1050 * Allocate a temporary bounce buffer to hold caller's data
1051 * to be DMA'ed to Target. This guarantees
1052 * 1) 4-byte alignment
1053 * 2) Buffer in DMA-able space
1055 orig_nbytes = nbytes;
1056 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1057 orig_nbytes,
1058 &ce_data_base,
1059 GFP_ATOMIC);
1060 if (!data_buf) {
1061 ret = -ENOMEM;
1062 goto done;
1065 /* Copy caller's data to allocated DMA buf */
1066 memcpy(data_buf, data, orig_nbytes);
1069 * The address supplied by the caller is in the
1070 * Target CPU virtual address space.
1072 * In order to use this address with the diagnostic CE,
1073 * convert it from
1074 * Target CPU virtual address space
1075 * to
1076 * CE address space
1078 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1080 remaining_bytes = orig_nbytes;
1081 ce_data = ce_data_base;
1082 while (remaining_bytes) {
1083 /* FIXME: check cast */
1084 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1086 /* Set up to receive directly into Target(!) address */
1087 ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address);
1088 if (ret != 0)
1089 goto done;
1092 * Request CE to send caller-supplied data that
1093 * was copied to bounce buffer to Target(!) address.
1095 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1096 nbytes, 0, 0);
1097 if (ret != 0)
1098 goto done;
1100 i = 0;
1101 while (ath10k_ce_completed_send_next_nolock(ce_diag,
1102 NULL) != 0) {
1103 mdelay(1);
1105 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1106 ret = -EBUSY;
1107 goto done;
1111 i = 0;
1112 while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1113 (void **)&buf,
1114 &completed_nbytes)
1115 != 0) {
1116 mdelay(1);
1118 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1119 ret = -EBUSY;
1120 goto done;
1124 if (nbytes != completed_nbytes) {
1125 ret = -EIO;
1126 goto done;
1129 if (*buf != address) {
1130 ret = -EIO;
1131 goto done;
1134 remaining_bytes -= nbytes;
1135 address += nbytes;
1136 ce_data += nbytes;
1139 done:
1140 if (data_buf) {
1141 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1142 ce_data_base);
1145 if (ret != 0)
1146 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1147 address, ret);
1149 spin_unlock_bh(&ar_pci->ce_lock);
1151 return ret;
1154 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1156 __le32 val = __cpu_to_le32(value);
1158 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1161 /* Called by lower (CE) layer when a send to Target completes. */
1162 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1164 struct ath10k *ar = ce_state->ar;
1165 struct sk_buff_head list;
1166 struct sk_buff *skb;
1168 __skb_queue_head_init(&list);
1169 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1170 /* no need to call tx completion for NULL pointers */
1171 if (skb == NULL)
1172 continue;
1174 __skb_queue_tail(&list, skb);
1177 while ((skb = __skb_dequeue(&list)))
1178 ath10k_htc_tx_completion_handler(ar, skb);
1181 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1182 void (*callback)(struct ath10k *ar,
1183 struct sk_buff *skb))
1185 struct ath10k *ar = ce_state->ar;
1186 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1187 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1188 struct sk_buff *skb;
1189 struct sk_buff_head list;
1190 void *transfer_context;
1191 unsigned int nbytes, max_nbytes;
1193 __skb_queue_head_init(&list);
1194 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1195 &nbytes) == 0) {
1196 skb = transfer_context;
1197 max_nbytes = skb->len + skb_tailroom(skb);
1198 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1199 max_nbytes, DMA_FROM_DEVICE);
1201 if (unlikely(max_nbytes < nbytes)) {
1202 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1203 nbytes, max_nbytes);
1204 dev_kfree_skb_any(skb);
1205 continue;
1208 skb_put(skb, nbytes);
1209 __skb_queue_tail(&list, skb);
1212 while ((skb = __skb_dequeue(&list))) {
1213 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1214 ce_state->id, skb->len);
1215 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1216 skb->data, skb->len);
1218 callback(ar, skb);
1221 ath10k_pci_rx_post_pipe(pipe_info);
1224 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1225 void (*callback)(struct ath10k *ar,
1226 struct sk_buff *skb))
1228 struct ath10k *ar = ce_state->ar;
1229 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1230 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1231 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1232 struct sk_buff *skb;
1233 struct sk_buff_head list;
1234 void *transfer_context;
1235 unsigned int nbytes, max_nbytes, nentries;
1236 int orig_len;
1238 /* No need to aquire ce_lock for CE5, since this is the only place CE5
1239 * is processed other than init and deinit. Before releasing CE5
1240 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1242 __skb_queue_head_init(&list);
1243 while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1244 &nbytes) == 0) {
1245 skb = transfer_context;
1246 max_nbytes = skb->len + skb_tailroom(skb);
1248 if (unlikely(max_nbytes < nbytes)) {
1249 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1250 nbytes, max_nbytes);
1251 continue;
1254 dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1255 max_nbytes, DMA_FROM_DEVICE);
1256 skb_put(skb, nbytes);
1257 __skb_queue_tail(&list, skb);
1260 nentries = skb_queue_len(&list);
1261 while ((skb = __skb_dequeue(&list))) {
1262 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1263 ce_state->id, skb->len);
1264 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1265 skb->data, skb->len);
1267 orig_len = skb->len;
1268 callback(ar, skb);
1269 skb_push(skb, orig_len - skb->len);
1270 skb_reset_tail_pointer(skb);
1271 skb_trim(skb, 0);
1273 /*let device gain the buffer again*/
1274 dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1275 skb->len + skb_tailroom(skb),
1276 DMA_FROM_DEVICE);
1278 ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1281 /* Called by lower (CE) layer when data is received from the Target. */
1282 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1284 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1287 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1289 /* CE4 polling needs to be done whenever CE pipe which transports
1290 * HTT Rx (target->host) is processed.
1292 ath10k_ce_per_engine_service(ce_state->ar, 4);
1294 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1297 /* Called by lower (CE) layer when data is received from the Target.
1298 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1300 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1302 ath10k_pci_process_rx_cb(ce_state,
1303 ath10k_htt_rx_pktlog_completion_handler);
1306 /* Called by lower (CE) layer when a send to HTT Target completes. */
1307 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1309 struct ath10k *ar = ce_state->ar;
1310 struct sk_buff *skb;
1312 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1313 /* no need to call tx completion for NULL pointers */
1314 if (!skb)
1315 continue;
1317 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1318 skb->len, DMA_TO_DEVICE);
1319 ath10k_htt_hif_tx_complete(ar, skb);
1323 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1325 skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1326 ath10k_htt_t2h_msg_handler(ar, skb);
1329 /* Called by lower (CE) layer when HTT data is received from the Target. */
1330 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1332 /* CE4 polling needs to be done whenever CE pipe which transports
1333 * HTT Rx (target->host) is processed.
1335 ath10k_ce_per_engine_service(ce_state->ar, 4);
1337 ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1340 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1341 struct ath10k_hif_sg_item *items, int n_items)
1343 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1344 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1345 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1346 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1347 unsigned int nentries_mask;
1348 unsigned int sw_index;
1349 unsigned int write_index;
1350 int err, i = 0;
1352 spin_lock_bh(&ar_pci->ce_lock);
1354 nentries_mask = src_ring->nentries_mask;
1355 sw_index = src_ring->sw_index;
1356 write_index = src_ring->write_index;
1358 if (unlikely(CE_RING_DELTA(nentries_mask,
1359 write_index, sw_index - 1) < n_items)) {
1360 err = -ENOBUFS;
1361 goto err;
1364 for (i = 0; i < n_items - 1; i++) {
1365 ath10k_dbg(ar, ATH10K_DBG_PCI,
1366 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1367 i, items[i].paddr, items[i].len, n_items);
1368 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1369 items[i].vaddr, items[i].len);
1371 err = ath10k_ce_send_nolock(ce_pipe,
1372 items[i].transfer_context,
1373 items[i].paddr,
1374 items[i].len,
1375 items[i].transfer_id,
1376 CE_SEND_FLAG_GATHER);
1377 if (err)
1378 goto err;
1381 /* `i` is equal to `n_items -1` after for() */
1383 ath10k_dbg(ar, ATH10K_DBG_PCI,
1384 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1385 i, items[i].paddr, items[i].len, n_items);
1386 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1387 items[i].vaddr, items[i].len);
1389 err = ath10k_ce_send_nolock(ce_pipe,
1390 items[i].transfer_context,
1391 items[i].paddr,
1392 items[i].len,
1393 items[i].transfer_id,
1395 if (err)
1396 goto err;
1398 spin_unlock_bh(&ar_pci->ce_lock);
1399 return 0;
1401 err:
1402 for (; i > 0; i--)
1403 __ath10k_ce_send_revert(ce_pipe);
1405 spin_unlock_bh(&ar_pci->ce_lock);
1406 return err;
1409 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1410 size_t buf_len)
1412 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1415 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1417 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1419 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1421 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1424 static void ath10k_pci_dump_registers(struct ath10k *ar,
1425 struct ath10k_fw_crash_data *crash_data)
1427 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1428 int i, ret;
1430 lockdep_assert_held(&ar->data_lock);
1432 ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1433 hi_failure_state,
1434 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1435 if (ret) {
1436 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1437 return;
1440 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1442 ath10k_err(ar, "firmware register dump:\n");
1443 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1444 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1446 __le32_to_cpu(reg_dump_values[i]),
1447 __le32_to_cpu(reg_dump_values[i + 1]),
1448 __le32_to_cpu(reg_dump_values[i + 2]),
1449 __le32_to_cpu(reg_dump_values[i + 3]));
1451 if (!crash_data)
1452 return;
1454 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1455 crash_data->registers[i] = reg_dump_values[i];
1458 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1460 struct ath10k_fw_crash_data *crash_data;
1461 char uuid[50];
1463 spin_lock_bh(&ar->data_lock);
1465 ar->stats.fw_crash_counter++;
1467 crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1469 if (crash_data)
1470 scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1471 else
1472 scnprintf(uuid, sizeof(uuid), "n/a");
1474 ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1475 ath10k_print_driver_info(ar);
1476 ath10k_pci_dump_registers(ar, crash_data);
1478 spin_unlock_bh(&ar->data_lock);
1480 queue_work(ar->workqueue, &ar->restart_work);
1483 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1484 int force)
1486 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1488 if (!force) {
1489 int resources;
1491 * Decide whether to actually poll for completions, or just
1492 * wait for a later chance.
1493 * If there seem to be plenty of resources left, then just wait
1494 * since checking involves reading a CE register, which is a
1495 * relatively expensive operation.
1497 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1500 * If at least 50% of the total resources are still available,
1501 * don't bother checking again yet.
1503 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1504 return;
1506 ath10k_ce_per_engine_service(ar, pipe);
1509 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1511 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1513 del_timer_sync(&ar_pci->rx_post_retry);
1516 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1517 u8 *ul_pipe, u8 *dl_pipe)
1519 const struct service_to_pipe *entry;
1520 bool ul_set = false, dl_set = false;
1521 int i;
1523 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1525 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1526 entry = &target_service_to_ce_map_wlan[i];
1528 if (__le32_to_cpu(entry->service_id) != service_id)
1529 continue;
1531 switch (__le32_to_cpu(entry->pipedir)) {
1532 case PIPEDIR_NONE:
1533 break;
1534 case PIPEDIR_IN:
1535 WARN_ON(dl_set);
1536 *dl_pipe = __le32_to_cpu(entry->pipenum);
1537 dl_set = true;
1538 break;
1539 case PIPEDIR_OUT:
1540 WARN_ON(ul_set);
1541 *ul_pipe = __le32_to_cpu(entry->pipenum);
1542 ul_set = true;
1543 break;
1544 case PIPEDIR_INOUT:
1545 WARN_ON(dl_set);
1546 WARN_ON(ul_set);
1547 *dl_pipe = __le32_to_cpu(entry->pipenum);
1548 *ul_pipe = __le32_to_cpu(entry->pipenum);
1549 dl_set = true;
1550 ul_set = true;
1551 break;
1555 if (WARN_ON(!ul_set || !dl_set))
1556 return -ENOENT;
1558 return 0;
1561 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1562 u8 *ul_pipe, u8 *dl_pipe)
1564 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1566 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1567 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1568 ul_pipe, dl_pipe);
1571 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1573 u32 val;
1575 switch (ar->hw_rev) {
1576 case ATH10K_HW_QCA988X:
1577 case ATH10K_HW_QCA9887:
1578 case ATH10K_HW_QCA6174:
1579 case ATH10K_HW_QCA9377:
1580 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1581 CORE_CTRL_ADDRESS);
1582 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1583 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1584 CORE_CTRL_ADDRESS, val);
1585 break;
1586 case ATH10K_HW_QCA99X0:
1587 case ATH10K_HW_QCA9984:
1588 case ATH10K_HW_QCA9888:
1589 case ATH10K_HW_QCA4019:
1590 /* TODO: Find appropriate register configuration for QCA99X0
1591 * to mask irq/MSI.
1593 break;
1597 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1599 u32 val;
1601 switch (ar->hw_rev) {
1602 case ATH10K_HW_QCA988X:
1603 case ATH10K_HW_QCA9887:
1604 case ATH10K_HW_QCA6174:
1605 case ATH10K_HW_QCA9377:
1606 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1607 CORE_CTRL_ADDRESS);
1608 val |= CORE_CTRL_PCIE_REG_31_MASK;
1609 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1610 CORE_CTRL_ADDRESS, val);
1611 break;
1612 case ATH10K_HW_QCA99X0:
1613 case ATH10K_HW_QCA9984:
1614 case ATH10K_HW_QCA9888:
1615 case ATH10K_HW_QCA4019:
1616 /* TODO: Find appropriate register configuration for QCA99X0
1617 * to unmask irq/MSI.
1619 break;
1623 static void ath10k_pci_irq_disable(struct ath10k *ar)
1625 ath10k_ce_disable_interrupts(ar);
1626 ath10k_pci_disable_and_clear_legacy_irq(ar);
1627 ath10k_pci_irq_msi_fw_mask(ar);
1630 static void ath10k_pci_irq_sync(struct ath10k *ar)
1632 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1634 synchronize_irq(ar_pci->pdev->irq);
1637 static void ath10k_pci_irq_enable(struct ath10k *ar)
1639 ath10k_ce_enable_interrupts(ar);
1640 ath10k_pci_enable_legacy_irq(ar);
1641 ath10k_pci_irq_msi_fw_unmask(ar);
1644 static int ath10k_pci_hif_start(struct ath10k *ar)
1646 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1648 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1650 ath10k_pci_irq_enable(ar);
1651 ath10k_pci_rx_post(ar);
1653 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1654 ar_pci->link_ctl);
1656 return 0;
1659 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1661 struct ath10k *ar;
1662 struct ath10k_ce_pipe *ce_pipe;
1663 struct ath10k_ce_ring *ce_ring;
1664 struct sk_buff *skb;
1665 int i;
1667 ar = pci_pipe->hif_ce_state;
1668 ce_pipe = pci_pipe->ce_hdl;
1669 ce_ring = ce_pipe->dest_ring;
1671 if (!ce_ring)
1672 return;
1674 if (!pci_pipe->buf_sz)
1675 return;
1677 for (i = 0; i < ce_ring->nentries; i++) {
1678 skb = ce_ring->per_transfer_context[i];
1679 if (!skb)
1680 continue;
1682 ce_ring->per_transfer_context[i] = NULL;
1684 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1685 skb->len + skb_tailroom(skb),
1686 DMA_FROM_DEVICE);
1687 dev_kfree_skb_any(skb);
1691 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1693 struct ath10k *ar;
1694 struct ath10k_ce_pipe *ce_pipe;
1695 struct ath10k_ce_ring *ce_ring;
1696 struct sk_buff *skb;
1697 int i;
1699 ar = pci_pipe->hif_ce_state;
1700 ce_pipe = pci_pipe->ce_hdl;
1701 ce_ring = ce_pipe->src_ring;
1703 if (!ce_ring)
1704 return;
1706 if (!pci_pipe->buf_sz)
1707 return;
1709 for (i = 0; i < ce_ring->nentries; i++) {
1710 skb = ce_ring->per_transfer_context[i];
1711 if (!skb)
1712 continue;
1714 ce_ring->per_transfer_context[i] = NULL;
1716 ath10k_htc_tx_completion_handler(ar, skb);
1721 * Cleanup residual buffers for device shutdown:
1722 * buffers that were enqueued for receive
1723 * buffers that were to be sent
1724 * Note: Buffers that had completed but which were
1725 * not yet processed are on a completion queue. They
1726 * are handled when the completion thread shuts down.
1728 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1730 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1731 int pipe_num;
1733 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1734 struct ath10k_pci_pipe *pipe_info;
1736 pipe_info = &ar_pci->pipe_info[pipe_num];
1737 ath10k_pci_rx_pipe_cleanup(pipe_info);
1738 ath10k_pci_tx_pipe_cleanup(pipe_info);
1742 void ath10k_pci_ce_deinit(struct ath10k *ar)
1744 int i;
1746 for (i = 0; i < CE_COUNT; i++)
1747 ath10k_ce_deinit_pipe(ar, i);
1750 void ath10k_pci_flush(struct ath10k *ar)
1752 ath10k_pci_rx_retry_sync(ar);
1753 ath10k_pci_buffer_cleanup(ar);
1756 static void ath10k_pci_hif_stop(struct ath10k *ar)
1758 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1759 unsigned long flags;
1761 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1763 /* Most likely the device has HTT Rx ring configured. The only way to
1764 * prevent the device from accessing (and possible corrupting) host
1765 * memory is to reset the chip now.
1767 * There's also no known way of masking MSI interrupts on the device.
1768 * For ranged MSI the CE-related interrupts can be masked. However
1769 * regardless how many MSI interrupts are assigned the first one
1770 * is always used for firmware indications (crashes) and cannot be
1771 * masked. To prevent the device from asserting the interrupt reset it
1772 * before proceeding with cleanup.
1774 ath10k_pci_safe_chip_reset(ar);
1776 ath10k_pci_irq_disable(ar);
1777 ath10k_pci_irq_sync(ar);
1778 ath10k_pci_flush(ar);
1779 napi_synchronize(&ar->napi);
1780 napi_disable(&ar->napi);
1782 spin_lock_irqsave(&ar_pci->ps_lock, flags);
1783 WARN_ON(ar_pci->ps_wake_refcount > 0);
1784 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1787 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1788 void *req, u32 req_len,
1789 void *resp, u32 *resp_len)
1791 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1792 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1793 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1794 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1795 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1796 dma_addr_t req_paddr = 0;
1797 dma_addr_t resp_paddr = 0;
1798 struct bmi_xfer xfer = {};
1799 void *treq, *tresp = NULL;
1800 int ret = 0;
1802 might_sleep();
1804 if (resp && !resp_len)
1805 return -EINVAL;
1807 if (resp && resp_len && *resp_len == 0)
1808 return -EINVAL;
1810 treq = kmemdup(req, req_len, GFP_KERNEL);
1811 if (!treq)
1812 return -ENOMEM;
1814 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1815 ret = dma_mapping_error(ar->dev, req_paddr);
1816 if (ret) {
1817 ret = -EIO;
1818 goto err_dma;
1821 if (resp && resp_len) {
1822 tresp = kzalloc(*resp_len, GFP_KERNEL);
1823 if (!tresp) {
1824 ret = -ENOMEM;
1825 goto err_req;
1828 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1829 DMA_FROM_DEVICE);
1830 ret = dma_mapping_error(ar->dev, resp_paddr);
1831 if (ret) {
1832 ret = -EIO;
1833 goto err_req;
1836 xfer.wait_for_resp = true;
1837 xfer.resp_len = 0;
1839 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1842 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1843 if (ret)
1844 goto err_resp;
1846 ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1847 if (ret) {
1848 u32 unused_buffer;
1849 unsigned int unused_nbytes;
1850 unsigned int unused_id;
1852 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1853 &unused_nbytes, &unused_id);
1854 } else {
1855 /* non-zero means we did not time out */
1856 ret = 0;
1859 err_resp:
1860 if (resp) {
1861 u32 unused_buffer;
1863 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1864 dma_unmap_single(ar->dev, resp_paddr,
1865 *resp_len, DMA_FROM_DEVICE);
1867 err_req:
1868 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1870 if (ret == 0 && resp_len) {
1871 *resp_len = min(*resp_len, xfer.resp_len);
1872 memcpy(resp, tresp, xfer.resp_len);
1874 err_dma:
1875 kfree(treq);
1876 kfree(tresp);
1878 return ret;
1881 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1883 struct bmi_xfer *xfer;
1885 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1886 return;
1888 xfer->tx_done = true;
1891 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1893 struct ath10k *ar = ce_state->ar;
1894 struct bmi_xfer *xfer;
1895 unsigned int nbytes;
1897 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
1898 &nbytes))
1899 return;
1901 if (WARN_ON_ONCE(!xfer))
1902 return;
1904 if (!xfer->wait_for_resp) {
1905 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1906 return;
1909 xfer->resp_len = nbytes;
1910 xfer->rx_done = true;
1913 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1914 struct ath10k_ce_pipe *rx_pipe,
1915 struct bmi_xfer *xfer)
1917 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1919 while (time_before_eq(jiffies, timeout)) {
1920 ath10k_pci_bmi_send_done(tx_pipe);
1921 ath10k_pci_bmi_recv_data(rx_pipe);
1923 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1924 return 0;
1926 schedule();
1929 return -ETIMEDOUT;
1933 * Send an interrupt to the device to wake up the Target CPU
1934 * so it has an opportunity to notice any changed state.
1936 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1938 u32 addr, val;
1940 addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1941 val = ath10k_pci_read32(ar, addr);
1942 val |= CORE_CTRL_CPU_INTR_MASK;
1943 ath10k_pci_write32(ar, addr, val);
1945 return 0;
1948 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1950 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1952 switch (ar_pci->pdev->device) {
1953 case QCA988X_2_0_DEVICE_ID:
1954 case QCA99X0_2_0_DEVICE_ID:
1955 case QCA9888_2_0_DEVICE_ID:
1956 case QCA9984_1_0_DEVICE_ID:
1957 case QCA9887_1_0_DEVICE_ID:
1958 return 1;
1959 case QCA6164_2_1_DEVICE_ID:
1960 case QCA6174_2_1_DEVICE_ID:
1961 switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1962 case QCA6174_HW_1_0_CHIP_ID_REV:
1963 case QCA6174_HW_1_1_CHIP_ID_REV:
1964 case QCA6174_HW_2_1_CHIP_ID_REV:
1965 case QCA6174_HW_2_2_CHIP_ID_REV:
1966 return 3;
1967 case QCA6174_HW_1_3_CHIP_ID_REV:
1968 return 2;
1969 case QCA6174_HW_3_0_CHIP_ID_REV:
1970 case QCA6174_HW_3_1_CHIP_ID_REV:
1971 case QCA6174_HW_3_2_CHIP_ID_REV:
1972 return 9;
1974 break;
1975 case QCA9377_1_0_DEVICE_ID:
1976 return 2;
1979 ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1980 return 1;
1983 static int ath10k_bus_get_num_banks(struct ath10k *ar)
1985 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1987 return ar_pci->bus_ops->get_num_banks(ar);
1990 int ath10k_pci_init_config(struct ath10k *ar)
1992 u32 interconnect_targ_addr;
1993 u32 pcie_state_targ_addr = 0;
1994 u32 pipe_cfg_targ_addr = 0;
1995 u32 svc_to_pipe_map = 0;
1996 u32 pcie_config_flags = 0;
1997 u32 ealloc_value;
1998 u32 ealloc_targ_addr;
1999 u32 flag2_value;
2000 u32 flag2_targ_addr;
2001 int ret = 0;
2003 /* Download to Target the CE Config and the service-to-CE map */
2004 interconnect_targ_addr =
2005 host_interest_item_address(HI_ITEM(hi_interconnect_state));
2007 /* Supply Target-side CE configuration */
2008 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2009 &pcie_state_targ_addr);
2010 if (ret != 0) {
2011 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2012 return ret;
2015 if (pcie_state_targ_addr == 0) {
2016 ret = -EIO;
2017 ath10k_err(ar, "Invalid pcie state addr\n");
2018 return ret;
2021 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2022 offsetof(struct pcie_state,
2023 pipe_cfg_addr)),
2024 &pipe_cfg_targ_addr);
2025 if (ret != 0) {
2026 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2027 return ret;
2030 if (pipe_cfg_targ_addr == 0) {
2031 ret = -EIO;
2032 ath10k_err(ar, "Invalid pipe cfg addr\n");
2033 return ret;
2036 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2037 target_ce_config_wlan,
2038 sizeof(struct ce_pipe_config) *
2039 NUM_TARGET_CE_CONFIG_WLAN);
2041 if (ret != 0) {
2042 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2043 return ret;
2046 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2047 offsetof(struct pcie_state,
2048 svc_to_pipe_map)),
2049 &svc_to_pipe_map);
2050 if (ret != 0) {
2051 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2052 return ret;
2055 if (svc_to_pipe_map == 0) {
2056 ret = -EIO;
2057 ath10k_err(ar, "Invalid svc_to_pipe map\n");
2058 return ret;
2061 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2062 target_service_to_ce_map_wlan,
2063 sizeof(target_service_to_ce_map_wlan));
2064 if (ret != 0) {
2065 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2066 return ret;
2069 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2070 offsetof(struct pcie_state,
2071 config_flags)),
2072 &pcie_config_flags);
2073 if (ret != 0) {
2074 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2075 return ret;
2078 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2080 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2081 offsetof(struct pcie_state,
2082 config_flags)),
2083 pcie_config_flags);
2084 if (ret != 0) {
2085 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2086 return ret;
2089 /* configure early allocation */
2090 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2092 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2093 if (ret != 0) {
2094 ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
2095 return ret;
2098 /* first bank is switched to IRAM */
2099 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2100 HI_EARLY_ALLOC_MAGIC_MASK);
2101 ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2102 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2103 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2105 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2106 if (ret != 0) {
2107 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2108 return ret;
2111 /* Tell Target to proceed with initialization */
2112 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2114 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2115 if (ret != 0) {
2116 ath10k_err(ar, "Failed to get option val: %d\n", ret);
2117 return ret;
2120 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2122 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2123 if (ret != 0) {
2124 ath10k_err(ar, "Failed to set option val: %d\n", ret);
2125 return ret;
2128 return 0;
2131 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2133 struct ce_attr *attr;
2134 struct ce_pipe_config *config;
2136 /* For QCA6174 we're overriding the Copy Engine 5 configuration,
2137 * since it is currently used for other feature.
2140 /* Override Host's Copy Engine 5 configuration */
2141 attr = &host_ce_config_wlan[5];
2142 attr->src_sz_max = 0;
2143 attr->dest_nentries = 0;
2145 /* Override Target firmware's Copy Engine configuration */
2146 config = &target_ce_config_wlan[5];
2147 config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2148 config->nbytes_max = __cpu_to_le32(2048);
2150 /* Map from service/endpoint to Copy Engine */
2151 target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2154 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2156 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2157 struct ath10k_pci_pipe *pipe;
2158 int i, ret;
2160 for (i = 0; i < CE_COUNT; i++) {
2161 pipe = &ar_pci->pipe_info[i];
2162 pipe->ce_hdl = &ar_pci->ce_states[i];
2163 pipe->pipe_num = i;
2164 pipe->hif_ce_state = ar;
2166 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2167 if (ret) {
2168 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2169 i, ret);
2170 return ret;
2173 /* Last CE is Diagnostic Window */
2174 if (i == CE_DIAG_PIPE) {
2175 ar_pci->ce_diag = pipe->ce_hdl;
2176 continue;
2179 pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2182 return 0;
2185 void ath10k_pci_free_pipes(struct ath10k *ar)
2187 int i;
2189 for (i = 0; i < CE_COUNT; i++)
2190 ath10k_ce_free_pipe(ar, i);
2193 int ath10k_pci_init_pipes(struct ath10k *ar)
2195 int i, ret;
2197 for (i = 0; i < CE_COUNT; i++) {
2198 ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2199 if (ret) {
2200 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2201 i, ret);
2202 return ret;
2206 return 0;
2209 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2211 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2212 FW_IND_EVENT_PENDING;
2215 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2217 u32 val;
2219 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2220 val &= ~FW_IND_EVENT_PENDING;
2221 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2224 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2226 u32 val;
2228 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2229 return (val == 0xffffffff);
2232 /* this function effectively clears target memory controller assert line */
2233 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2235 u32 val;
2237 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2238 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2239 val | SOC_RESET_CONTROL_SI0_RST_MASK);
2240 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2242 msleep(10);
2244 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2245 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2246 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2247 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2249 msleep(10);
2252 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2254 u32 val;
2256 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2258 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2259 SOC_RESET_CONTROL_ADDRESS);
2260 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2261 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2264 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2266 u32 val;
2268 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2269 SOC_RESET_CONTROL_ADDRESS);
2271 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2272 val | SOC_RESET_CONTROL_CE_RST_MASK);
2273 msleep(10);
2274 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2275 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2278 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2280 u32 val;
2282 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2283 SOC_LF_TIMER_CONTROL0_ADDRESS);
2284 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2285 SOC_LF_TIMER_CONTROL0_ADDRESS,
2286 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2289 static int ath10k_pci_warm_reset(struct ath10k *ar)
2291 int ret;
2293 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2295 spin_lock_bh(&ar->data_lock);
2296 ar->stats.fw_warm_reset_counter++;
2297 spin_unlock_bh(&ar->data_lock);
2299 ath10k_pci_irq_disable(ar);
2301 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
2302 * were to access copy engine while host performs copy engine reset
2303 * then it is possible for the device to confuse pci-e controller to
2304 * the point of bringing host system to a complete stop (i.e. hang).
2306 ath10k_pci_warm_reset_si0(ar);
2307 ath10k_pci_warm_reset_cpu(ar);
2308 ath10k_pci_init_pipes(ar);
2309 ath10k_pci_wait_for_target_init(ar);
2311 ath10k_pci_warm_reset_clear_lf(ar);
2312 ath10k_pci_warm_reset_ce(ar);
2313 ath10k_pci_warm_reset_cpu(ar);
2314 ath10k_pci_init_pipes(ar);
2316 ret = ath10k_pci_wait_for_target_init(ar);
2317 if (ret) {
2318 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2319 return ret;
2322 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2324 return 0;
2327 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2329 ath10k_pci_irq_disable(ar);
2330 return ath10k_pci_qca99x0_chip_reset(ar);
2333 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2335 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2337 if (!ar_pci->pci_soft_reset)
2338 return -ENOTSUPP;
2340 return ar_pci->pci_soft_reset(ar);
2343 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2345 int i, ret;
2346 u32 val;
2348 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2350 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2351 * It is thus preferred to use warm reset which is safer but may not be
2352 * able to recover the device from all possible fail scenarios.
2354 * Warm reset doesn't always work on first try so attempt it a few
2355 * times before giving up.
2357 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2358 ret = ath10k_pci_warm_reset(ar);
2359 if (ret) {
2360 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2361 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2362 ret);
2363 continue;
2366 /* FIXME: Sometimes copy engine doesn't recover after warm
2367 * reset. In most cases this needs cold reset. In some of these
2368 * cases the device is in such a state that a cold reset may
2369 * lock up the host.
2371 * Reading any host interest register via copy engine is
2372 * sufficient to verify if device is capable of booting
2373 * firmware blob.
2375 ret = ath10k_pci_init_pipes(ar);
2376 if (ret) {
2377 ath10k_warn(ar, "failed to init copy engine: %d\n",
2378 ret);
2379 continue;
2382 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2383 &val);
2384 if (ret) {
2385 ath10k_warn(ar, "failed to poke copy engine: %d\n",
2386 ret);
2387 continue;
2390 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2391 return 0;
2394 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2395 ath10k_warn(ar, "refusing cold reset as requested\n");
2396 return -EPERM;
2399 ret = ath10k_pci_cold_reset(ar);
2400 if (ret) {
2401 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2402 return ret;
2405 ret = ath10k_pci_wait_for_target_init(ar);
2406 if (ret) {
2407 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2408 ret);
2409 return ret;
2412 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2414 return 0;
2417 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2419 int ret;
2421 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2423 /* FIXME: QCA6174 requires cold + warm reset to work. */
2425 ret = ath10k_pci_cold_reset(ar);
2426 if (ret) {
2427 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2428 return ret;
2431 ret = ath10k_pci_wait_for_target_init(ar);
2432 if (ret) {
2433 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2434 ret);
2435 return ret;
2438 ret = ath10k_pci_warm_reset(ar);
2439 if (ret) {
2440 ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2441 return ret;
2444 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2446 return 0;
2449 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2451 int ret;
2453 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2455 ret = ath10k_pci_cold_reset(ar);
2456 if (ret) {
2457 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2458 return ret;
2461 ret = ath10k_pci_wait_for_target_init(ar);
2462 if (ret) {
2463 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2464 ret);
2465 return ret;
2468 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2470 return 0;
2473 static int ath10k_pci_chip_reset(struct ath10k *ar)
2475 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2477 if (WARN_ON(!ar_pci->pci_hard_reset))
2478 return -ENOTSUPP;
2480 return ar_pci->pci_hard_reset(ar);
2483 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2485 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2486 int ret;
2488 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2490 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2491 &ar_pci->link_ctl);
2492 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2493 ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2496 * Bring the target up cleanly.
2498 * The target may be in an undefined state with an AUX-powered Target
2499 * and a Host in WoW mode. If the Host crashes, loses power, or is
2500 * restarted (without unloading the driver) then the Target is left
2501 * (aux) powered and running. On a subsequent driver load, the Target
2502 * is in an unexpected state. We try to catch that here in order to
2503 * reset the Target and retry the probe.
2505 ret = ath10k_pci_chip_reset(ar);
2506 if (ret) {
2507 if (ath10k_pci_has_fw_crashed(ar)) {
2508 ath10k_warn(ar, "firmware crashed during chip reset\n");
2509 ath10k_pci_fw_crashed_clear(ar);
2510 ath10k_pci_fw_crashed_dump(ar);
2513 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2514 goto err_sleep;
2517 ret = ath10k_pci_init_pipes(ar);
2518 if (ret) {
2519 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2520 goto err_sleep;
2523 ret = ath10k_pci_init_config(ar);
2524 if (ret) {
2525 ath10k_err(ar, "failed to setup init config: %d\n", ret);
2526 goto err_ce;
2529 ret = ath10k_pci_wake_target_cpu(ar);
2530 if (ret) {
2531 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2532 goto err_ce;
2534 napi_enable(&ar->napi);
2536 return 0;
2538 err_ce:
2539 ath10k_pci_ce_deinit(ar);
2541 err_sleep:
2542 return ret;
2545 void ath10k_pci_hif_power_down(struct ath10k *ar)
2547 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2549 /* Currently hif_power_up performs effectively a reset and hif_stop
2550 * resets the chip as well so there's no point in resetting here.
2554 #ifdef CONFIG_PM
2556 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2558 /* The grace timer can still be counting down and ar->ps_awake be true.
2559 * It is known that the device may be asleep after resuming regardless
2560 * of the SoC powersave state before suspending. Hence make sure the
2561 * device is asleep before proceeding.
2563 ath10k_pci_sleep_sync(ar);
2565 return 0;
2568 static int ath10k_pci_hif_resume(struct ath10k *ar)
2570 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2571 struct pci_dev *pdev = ar_pci->pdev;
2572 u32 val;
2573 int ret = 0;
2575 ret = ath10k_pci_force_wake(ar);
2576 if (ret) {
2577 ath10k_err(ar, "failed to wake up target: %d\n", ret);
2578 return ret;
2581 /* Suspend/Resume resets the PCI configuration space, so we have to
2582 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2583 * from interfering with C3 CPU state. pci_restore_state won't help
2584 * here since it only restores the first 64 bytes pci config header.
2586 pci_read_config_dword(pdev, 0x40, &val);
2587 if ((val & 0x0000ff00) != 0)
2588 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2590 return ret;
2592 #endif
2594 static bool ath10k_pci_validate_cal(void *data, size_t size)
2596 __le16 *cal_words = data;
2597 u16 checksum = 0;
2598 size_t i;
2600 if (size % 2 != 0)
2601 return false;
2603 for (i = 0; i < size / 2; i++)
2604 checksum ^= le16_to_cpu(cal_words[i]);
2606 return checksum == 0xffff;
2609 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2611 /* Enable SI clock */
2612 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2614 /* Configure GPIOs for I2C operation */
2615 ath10k_pci_write32(ar,
2616 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2617 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2618 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2619 GPIO_PIN0_CONFIG) |
2620 SM(1, GPIO_PIN0_PAD_PULL));
2622 ath10k_pci_write32(ar,
2623 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2624 4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2625 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2626 SM(1, GPIO_PIN0_PAD_PULL));
2628 ath10k_pci_write32(ar,
2629 GPIO_BASE_ADDRESS +
2630 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2631 1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2633 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2634 ath10k_pci_write32(ar,
2635 SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2636 SM(1, SI_CONFIG_ERR_INT) |
2637 SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2638 SM(1, SI_CONFIG_I2C) |
2639 SM(1, SI_CONFIG_POS_SAMPLE) |
2640 SM(1, SI_CONFIG_INACTIVE_DATA) |
2641 SM(1, SI_CONFIG_INACTIVE_CLK) |
2642 SM(8, SI_CONFIG_DIVIDER));
2645 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2647 u32 reg;
2648 int wait_limit;
2650 /* set device select byte and for the read operation */
2651 reg = QCA9887_EEPROM_SELECT_READ |
2652 SM(addr, QCA9887_EEPROM_ADDR_LO) |
2653 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2654 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2656 /* write transmit data, transfer length, and START bit */
2657 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2658 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2659 SM(4, SI_CS_TX_CNT));
2661 /* wait max 1 sec */
2662 wait_limit = 100000;
2664 /* wait for SI_CS_DONE_INT */
2665 do {
2666 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2667 if (MS(reg, SI_CS_DONE_INT))
2668 break;
2670 wait_limit--;
2671 udelay(10);
2672 } while (wait_limit > 0);
2674 if (!MS(reg, SI_CS_DONE_INT)) {
2675 ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2676 addr);
2677 return -ETIMEDOUT;
2680 /* clear SI_CS_DONE_INT */
2681 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2683 if (MS(reg, SI_CS_DONE_ERR)) {
2684 ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2685 return -EIO;
2688 /* extract receive data */
2689 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2690 *out = reg;
2692 return 0;
2695 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2696 size_t *data_len)
2698 u8 *caldata = NULL;
2699 size_t calsize, i;
2700 int ret;
2702 if (!QCA_REV_9887(ar))
2703 return -EOPNOTSUPP;
2705 calsize = ar->hw_params.cal_data_len;
2706 caldata = kmalloc(calsize, GFP_KERNEL);
2707 if (!caldata)
2708 return -ENOMEM;
2710 ath10k_pci_enable_eeprom(ar);
2712 for (i = 0; i < calsize; i++) {
2713 ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2714 if (ret)
2715 goto err_free;
2718 if (!ath10k_pci_validate_cal(caldata, calsize))
2719 goto err_free;
2721 *data = caldata;
2722 *data_len = calsize;
2724 return 0;
2726 err_free:
2727 kfree(caldata);
2729 return -EINVAL;
2732 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2733 .tx_sg = ath10k_pci_hif_tx_sg,
2734 .diag_read = ath10k_pci_hif_diag_read,
2735 .diag_write = ath10k_pci_diag_write_mem,
2736 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
2737 .start = ath10k_pci_hif_start,
2738 .stop = ath10k_pci_hif_stop,
2739 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
2740 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
2741 .send_complete_check = ath10k_pci_hif_send_complete_check,
2742 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
2743 .power_up = ath10k_pci_hif_power_up,
2744 .power_down = ath10k_pci_hif_power_down,
2745 .read32 = ath10k_pci_read32,
2746 .write32 = ath10k_pci_write32,
2747 #ifdef CONFIG_PM
2748 .suspend = ath10k_pci_hif_suspend,
2749 .resume = ath10k_pci_hif_resume,
2750 #endif
2751 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom,
2755 * Top-level interrupt handler for all PCI interrupts from a Target.
2756 * When a block of MSI interrupts is allocated, this top-level handler
2757 * is not used; instead, we directly call the correct sub-handler.
2759 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2761 struct ath10k *ar = arg;
2762 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2763 int ret;
2765 if (ath10k_pci_has_device_gone(ar))
2766 return IRQ_NONE;
2768 ret = ath10k_pci_force_wake(ar);
2769 if (ret) {
2770 ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2771 return IRQ_NONE;
2774 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
2775 !ath10k_pci_irq_pending(ar))
2776 return IRQ_NONE;
2778 ath10k_pci_disable_and_clear_legacy_irq(ar);
2779 ath10k_pci_irq_msi_fw_mask(ar);
2780 napi_schedule(&ar->napi);
2782 return IRQ_HANDLED;
2785 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
2787 struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2788 int done = 0;
2790 if (ath10k_pci_has_fw_crashed(ar)) {
2791 ath10k_pci_fw_crashed_clear(ar);
2792 ath10k_pci_fw_crashed_dump(ar);
2793 napi_complete(ctx);
2794 return done;
2797 ath10k_ce_per_engine_service_any(ar);
2799 done = ath10k_htt_txrx_compl_task(ar, budget);
2801 if (done < budget) {
2802 napi_complete(ctx);
2803 /* In case of MSI, it is possible that interrupts are received
2804 * while NAPI poll is inprogress. So pending interrupts that are
2805 * received after processing all copy engine pipes by NAPI poll
2806 * will not be handled again. This is causing failure to
2807 * complete boot sequence in x86 platform. So before enabling
2808 * interrupts safer to check for pending interrupts for
2809 * immediate servicing.
2811 if (CE_INTERRUPT_SUMMARY(ar)) {
2812 napi_reschedule(ctx);
2813 goto out;
2815 ath10k_pci_enable_legacy_irq(ar);
2816 ath10k_pci_irq_msi_fw_unmask(ar);
2819 out:
2820 return done;
2823 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2825 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2826 int ret;
2828 ret = request_irq(ar_pci->pdev->irq,
2829 ath10k_pci_interrupt_handler,
2830 IRQF_SHARED, "ath10k_pci", ar);
2831 if (ret) {
2832 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2833 ar_pci->pdev->irq, ret);
2834 return ret;
2837 return 0;
2840 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2842 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2843 int ret;
2845 ret = request_irq(ar_pci->pdev->irq,
2846 ath10k_pci_interrupt_handler,
2847 IRQF_SHARED, "ath10k_pci", ar);
2848 if (ret) {
2849 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2850 ar_pci->pdev->irq, ret);
2851 return ret;
2854 return 0;
2857 static int ath10k_pci_request_irq(struct ath10k *ar)
2859 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2861 switch (ar_pci->oper_irq_mode) {
2862 case ATH10K_PCI_IRQ_LEGACY:
2863 return ath10k_pci_request_irq_legacy(ar);
2864 case ATH10K_PCI_IRQ_MSI:
2865 return ath10k_pci_request_irq_msi(ar);
2866 default:
2867 return -EINVAL;
2871 static void ath10k_pci_free_irq(struct ath10k *ar)
2873 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2875 free_irq(ar_pci->pdev->irq, ar);
2878 void ath10k_pci_init_napi(struct ath10k *ar)
2880 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
2881 ATH10K_NAPI_BUDGET);
2884 static int ath10k_pci_init_irq(struct ath10k *ar)
2886 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2887 int ret;
2889 ath10k_pci_init_napi(ar);
2891 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2892 ath10k_info(ar, "limiting irq mode to: %d\n",
2893 ath10k_pci_irq_mode);
2895 /* Try MSI */
2896 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2897 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
2898 ret = pci_enable_msi(ar_pci->pdev);
2899 if (ret == 0)
2900 return 0;
2902 /* fall-through */
2905 /* Try legacy irq
2907 * A potential race occurs here: The CORE_BASE write
2908 * depends on target correctly decoding AXI address but
2909 * host won't know when target writes BAR to CORE_CTRL.
2910 * This write might get lost if target has NOT written BAR.
2911 * For now, fix the race by repeating the write in below
2912 * synchronization checking. */
2913 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
2915 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2916 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2918 return 0;
2921 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2923 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2927 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2929 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2931 switch (ar_pci->oper_irq_mode) {
2932 case ATH10K_PCI_IRQ_LEGACY:
2933 ath10k_pci_deinit_irq_legacy(ar);
2934 break;
2935 default:
2936 pci_disable_msi(ar_pci->pdev);
2937 break;
2940 return 0;
2943 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2945 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2946 unsigned long timeout;
2947 u32 val;
2949 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2951 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2953 do {
2954 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2956 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2957 val);
2959 /* target should never return this */
2960 if (val == 0xffffffff)
2961 continue;
2963 /* the device has crashed so don't bother trying anymore */
2964 if (val & FW_IND_EVENT_PENDING)
2965 break;
2967 if (val & FW_IND_INITIALIZED)
2968 break;
2970 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
2971 /* Fix potential race by repeating CORE_BASE writes */
2972 ath10k_pci_enable_legacy_irq(ar);
2974 mdelay(10);
2975 } while (time_before(jiffies, timeout));
2977 ath10k_pci_disable_and_clear_legacy_irq(ar);
2978 ath10k_pci_irq_msi_fw_mask(ar);
2980 if (val == 0xffffffff) {
2981 ath10k_err(ar, "failed to read device register, device is gone\n");
2982 return -EIO;
2985 if (val & FW_IND_EVENT_PENDING) {
2986 ath10k_warn(ar, "device has crashed during init\n");
2987 return -ECOMM;
2990 if (!(val & FW_IND_INITIALIZED)) {
2991 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2992 val);
2993 return -ETIMEDOUT;
2996 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2997 return 0;
3000 static int ath10k_pci_cold_reset(struct ath10k *ar)
3002 u32 val;
3004 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3006 spin_lock_bh(&ar->data_lock);
3008 ar->stats.fw_cold_reset_counter++;
3010 spin_unlock_bh(&ar->data_lock);
3012 /* Put Target, including PCIe, into RESET. */
3013 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3014 val |= 1;
3015 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3017 /* After writing into SOC_GLOBAL_RESET to put device into
3018 * reset and pulling out of reset pcie may not be stable
3019 * for any immediate pcie register access and cause bus error,
3020 * add delay before any pcie access request to fix this issue.
3022 msleep(20);
3024 /* Pull Target, including PCIe, out of RESET. */
3025 val &= ~1;
3026 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3028 msleep(20);
3030 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3032 return 0;
3035 static int ath10k_pci_claim(struct ath10k *ar)
3037 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3038 struct pci_dev *pdev = ar_pci->pdev;
3039 int ret;
3041 pci_set_drvdata(pdev, ar);
3043 ret = pci_enable_device(pdev);
3044 if (ret) {
3045 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3046 return ret;
3049 ret = pci_request_region(pdev, BAR_NUM, "ath");
3050 if (ret) {
3051 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3052 ret);
3053 goto err_device;
3056 /* Target expects 32 bit DMA. Enforce it. */
3057 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3058 if (ret) {
3059 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3060 goto err_region;
3063 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3064 if (ret) {
3065 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3066 ret);
3067 goto err_region;
3070 pci_set_master(pdev);
3072 /* Arrange for access to Target SoC registers. */
3073 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3074 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3075 if (!ar_pci->mem) {
3076 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3077 ret = -EIO;
3078 goto err_master;
3081 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3082 return 0;
3084 err_master:
3085 pci_clear_master(pdev);
3087 err_region:
3088 pci_release_region(pdev, BAR_NUM);
3090 err_device:
3091 pci_disable_device(pdev);
3093 return ret;
3096 static void ath10k_pci_release(struct ath10k *ar)
3098 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3099 struct pci_dev *pdev = ar_pci->pdev;
3101 pci_iounmap(pdev, ar_pci->mem);
3102 pci_release_region(pdev, BAR_NUM);
3103 pci_clear_master(pdev);
3104 pci_disable_device(pdev);
3107 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3109 const struct ath10k_pci_supp_chip *supp_chip;
3110 int i;
3111 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3113 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3114 supp_chip = &ath10k_pci_supp_chips[i];
3116 if (supp_chip->dev_id == dev_id &&
3117 supp_chip->rev_id == rev_id)
3118 return true;
3121 return false;
3124 int ath10k_pci_setup_resource(struct ath10k *ar)
3126 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3127 int ret;
3129 spin_lock_init(&ar_pci->ce_lock);
3130 spin_lock_init(&ar_pci->ps_lock);
3132 setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3133 (unsigned long)ar);
3135 if (QCA_REV_6174(ar))
3136 ath10k_pci_override_ce_config(ar);
3138 ret = ath10k_pci_alloc_pipes(ar);
3139 if (ret) {
3140 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3141 ret);
3142 return ret;
3145 return 0;
3148 void ath10k_pci_release_resource(struct ath10k *ar)
3150 ath10k_pci_rx_retry_sync(ar);
3151 netif_napi_del(&ar->napi);
3152 ath10k_pci_ce_deinit(ar);
3153 ath10k_pci_free_pipes(ar);
3156 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3157 .read32 = ath10k_bus_pci_read32,
3158 .write32 = ath10k_bus_pci_write32,
3159 .get_num_banks = ath10k_pci_get_num_banks,
3162 static int ath10k_pci_probe(struct pci_dev *pdev,
3163 const struct pci_device_id *pci_dev)
3165 int ret = 0;
3166 struct ath10k *ar;
3167 struct ath10k_pci *ar_pci;
3168 enum ath10k_hw_rev hw_rev;
3169 u32 chip_id;
3170 bool pci_ps;
3171 int (*pci_soft_reset)(struct ath10k *ar);
3172 int (*pci_hard_reset)(struct ath10k *ar);
3174 switch (pci_dev->device) {
3175 case QCA988X_2_0_DEVICE_ID:
3176 hw_rev = ATH10K_HW_QCA988X;
3177 pci_ps = false;
3178 pci_soft_reset = ath10k_pci_warm_reset;
3179 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3180 break;
3181 case QCA9887_1_0_DEVICE_ID:
3182 hw_rev = ATH10K_HW_QCA9887;
3183 pci_ps = false;
3184 pci_soft_reset = ath10k_pci_warm_reset;
3185 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3186 break;
3187 case QCA6164_2_1_DEVICE_ID:
3188 case QCA6174_2_1_DEVICE_ID:
3189 hw_rev = ATH10K_HW_QCA6174;
3190 pci_ps = true;
3191 pci_soft_reset = ath10k_pci_warm_reset;
3192 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3193 break;
3194 case QCA99X0_2_0_DEVICE_ID:
3195 hw_rev = ATH10K_HW_QCA99X0;
3196 pci_ps = false;
3197 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3198 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3199 break;
3200 case QCA9984_1_0_DEVICE_ID:
3201 hw_rev = ATH10K_HW_QCA9984;
3202 pci_ps = false;
3203 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3204 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3205 break;
3206 case QCA9888_2_0_DEVICE_ID:
3207 hw_rev = ATH10K_HW_QCA9888;
3208 pci_ps = false;
3209 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3210 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3211 break;
3212 case QCA9377_1_0_DEVICE_ID:
3213 hw_rev = ATH10K_HW_QCA9377;
3214 pci_ps = true;
3215 pci_soft_reset = NULL;
3216 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3217 break;
3218 default:
3219 WARN_ON(1);
3220 return -ENOTSUPP;
3223 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3224 hw_rev, &ath10k_pci_hif_ops);
3225 if (!ar) {
3226 dev_err(&pdev->dev, "failed to allocate core\n");
3227 return -ENOMEM;
3230 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3231 pdev->vendor, pdev->device,
3232 pdev->subsystem_vendor, pdev->subsystem_device);
3234 ar_pci = ath10k_pci_priv(ar);
3235 ar_pci->pdev = pdev;
3236 ar_pci->dev = &pdev->dev;
3237 ar_pci->ar = ar;
3238 ar->dev_id = pci_dev->device;
3239 ar_pci->pci_ps = pci_ps;
3240 ar_pci->bus_ops = &ath10k_pci_bus_ops;
3241 ar_pci->pci_soft_reset = pci_soft_reset;
3242 ar_pci->pci_hard_reset = pci_hard_reset;
3244 ar->id.vendor = pdev->vendor;
3245 ar->id.device = pdev->device;
3246 ar->id.subsystem_vendor = pdev->subsystem_vendor;
3247 ar->id.subsystem_device = pdev->subsystem_device;
3249 setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3250 (unsigned long)ar);
3252 ret = ath10k_pci_setup_resource(ar);
3253 if (ret) {
3254 ath10k_err(ar, "failed to setup resource: %d\n", ret);
3255 goto err_core_destroy;
3258 ret = ath10k_pci_claim(ar);
3259 if (ret) {
3260 ath10k_err(ar, "failed to claim device: %d\n", ret);
3261 goto err_free_pipes;
3264 ret = ath10k_pci_force_wake(ar);
3265 if (ret) {
3266 ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3267 goto err_sleep;
3270 ath10k_pci_ce_deinit(ar);
3271 ath10k_pci_irq_disable(ar);
3273 ret = ath10k_pci_init_irq(ar);
3274 if (ret) {
3275 ath10k_err(ar, "failed to init irqs: %d\n", ret);
3276 goto err_sleep;
3279 ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3280 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3281 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3283 ret = ath10k_pci_request_irq(ar);
3284 if (ret) {
3285 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3286 goto err_deinit_irq;
3289 ret = ath10k_pci_chip_reset(ar);
3290 if (ret) {
3291 ath10k_err(ar, "failed to reset chip: %d\n", ret);
3292 goto err_free_irq;
3295 chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3296 if (chip_id == 0xffffffff) {
3297 ath10k_err(ar, "failed to get chip id\n");
3298 goto err_free_irq;
3301 if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3302 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3303 pdev->device, chip_id);
3304 goto err_free_irq;
3307 ret = ath10k_core_register(ar, chip_id);
3308 if (ret) {
3309 ath10k_err(ar, "failed to register driver core: %d\n", ret);
3310 goto err_free_irq;
3313 return 0;
3315 err_free_irq:
3316 ath10k_pci_free_irq(ar);
3317 ath10k_pci_rx_retry_sync(ar);
3319 err_deinit_irq:
3320 ath10k_pci_deinit_irq(ar);
3322 err_sleep:
3323 ath10k_pci_sleep_sync(ar);
3324 ath10k_pci_release(ar);
3326 err_free_pipes:
3327 ath10k_pci_free_pipes(ar);
3329 err_core_destroy:
3330 ath10k_core_destroy(ar);
3332 return ret;
3335 static void ath10k_pci_remove(struct pci_dev *pdev)
3337 struct ath10k *ar = pci_get_drvdata(pdev);
3338 struct ath10k_pci *ar_pci;
3340 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3342 if (!ar)
3343 return;
3345 ar_pci = ath10k_pci_priv(ar);
3347 if (!ar_pci)
3348 return;
3350 ath10k_core_unregister(ar);
3351 ath10k_pci_free_irq(ar);
3352 ath10k_pci_deinit_irq(ar);
3353 ath10k_pci_release_resource(ar);
3354 ath10k_pci_sleep_sync(ar);
3355 ath10k_pci_release(ar);
3356 ath10k_core_destroy(ar);
3359 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3361 static struct pci_driver ath10k_pci_driver = {
3362 .name = "ath10k_pci",
3363 .id_table = ath10k_pci_id_table,
3364 .probe = ath10k_pci_probe,
3365 .remove = ath10k_pci_remove,
3368 static int __init ath10k_pci_init(void)
3370 int ret;
3372 ret = pci_register_driver(&ath10k_pci_driver);
3373 if (ret)
3374 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3375 ret);
3377 ret = ath10k_ahb_init();
3378 if (ret)
3379 printk(KERN_ERR "ahb init failed: %d\n", ret);
3381 return ret;
3383 module_init(ath10k_pci_init);
3385 static void __exit ath10k_pci_exit(void)
3387 pci_unregister_driver(&ath10k_pci_driver);
3388 ath10k_ahb_exit();
3391 module_exit(ath10k_pci_exit);
3393 MODULE_AUTHOR("Qualcomm Atheros");
3394 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3395 MODULE_LICENSE("Dual BSD/GPL");
3397 /* QCA988x 2.0 firmware files */
3398 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3399 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3400 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3401 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3402 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3403 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3405 /* QCA9887 1.0 firmware files */
3406 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3407 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3408 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3410 /* QCA6174 2.1 firmware files */
3411 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3412 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3413 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3414 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3416 /* QCA6174 3.1 firmware files */
3417 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3418 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3419 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3420 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3422 /* QCA9377 1.0 firmware files */
3423 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3424 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);