2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
61 #include "tests/btrfs-tests.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
67 static const struct super_operations btrfs_super_ops
;
68 static struct file_system_type btrfs_fs_type
;
70 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
);
72 const char *btrfs_decode_error(int errno
)
74 char *errstr
= "unknown";
78 errstr
= "IO failure";
81 errstr
= "Out of memory";
84 errstr
= "Readonly filesystem";
87 errstr
= "Object already exists";
90 errstr
= "No space left";
93 errstr
= "No such entry";
100 /* btrfs handle error by forcing the filesystem readonly */
101 static void btrfs_handle_error(struct btrfs_fs_info
*fs_info
)
103 struct super_block
*sb
= fs_info
->sb
;
105 if (sb
->s_flags
& MS_RDONLY
)
108 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
109 sb
->s_flags
|= MS_RDONLY
;
110 btrfs_info(fs_info
, "forced readonly");
112 * Note that a running device replace operation is not
113 * canceled here although there is no way to update
114 * the progress. It would add the risk of a deadlock,
115 * therefore the canceling is omitted. The only penalty
116 * is that some I/O remains active until the procedure
117 * completes. The next time when the filesystem is
118 * mounted writeable again, the device replace
119 * operation continues.
125 * __btrfs_handle_fs_error decodes expected errors from the caller and
126 * invokes the approciate error response.
129 void __btrfs_handle_fs_error(struct btrfs_fs_info
*fs_info
, const char *function
,
130 unsigned int line
, int errno
, const char *fmt
, ...)
132 struct super_block
*sb
= fs_info
->sb
;
138 * Special case: if the error is EROFS, and we're already
139 * under MS_RDONLY, then it is safe here.
141 if (errno
== -EROFS
&& (sb
->s_flags
& MS_RDONLY
))
145 errstr
= btrfs_decode_error(errno
);
147 struct va_format vaf
;
154 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
155 sb
->s_id
, function
, line
, errno
, errstr
, &vaf
);
158 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
159 sb
->s_id
, function
, line
, errno
, errstr
);
164 * Today we only save the error info to memory. Long term we'll
165 * also send it down to the disk
167 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
169 /* Don't go through full error handling during mount */
170 if (sb
->s_flags
& MS_BORN
)
171 btrfs_handle_error(fs_info
);
175 static const char * const logtypes
[] = {
188 * Use one ratelimit state per log level so that a flood of less important
189 * messages doesn't cause more important ones to be dropped.
191 static struct ratelimit_state printk_limits
[] = {
192 RATELIMIT_STATE_INIT(printk_limits
[0], DEFAULT_RATELIMIT_INTERVAL
, 100),
193 RATELIMIT_STATE_INIT(printk_limits
[1], DEFAULT_RATELIMIT_INTERVAL
, 100),
194 RATELIMIT_STATE_INIT(printk_limits
[2], DEFAULT_RATELIMIT_INTERVAL
, 100),
195 RATELIMIT_STATE_INIT(printk_limits
[3], DEFAULT_RATELIMIT_INTERVAL
, 100),
196 RATELIMIT_STATE_INIT(printk_limits
[4], DEFAULT_RATELIMIT_INTERVAL
, 100),
197 RATELIMIT_STATE_INIT(printk_limits
[5], DEFAULT_RATELIMIT_INTERVAL
, 100),
198 RATELIMIT_STATE_INIT(printk_limits
[6], DEFAULT_RATELIMIT_INTERVAL
, 100),
199 RATELIMIT_STATE_INIT(printk_limits
[7], DEFAULT_RATELIMIT_INTERVAL
, 100),
202 void btrfs_printk(const struct btrfs_fs_info
*fs_info
, const char *fmt
, ...)
204 struct super_block
*sb
= fs_info
->sb
;
206 struct va_format vaf
;
208 const char *type
= logtypes
[4];
210 struct ratelimit_state
*ratelimit
;
214 kern_level
= printk_get_level(fmt
);
216 size_t size
= printk_skip_level(fmt
) - fmt
;
217 memcpy(lvl
, fmt
, size
);
220 type
= logtypes
[kern_level
- '0'];
221 ratelimit
= &printk_limits
[kern_level
- '0'];
224 /* Default to debug output */
225 ratelimit
= &printk_limits
[7];
231 if (__ratelimit(ratelimit
))
232 printk("%sBTRFS %s (device %s): %pV\n", lvl
, type
, sb
->s_id
, &vaf
);
239 * We only mark the transaction aborted and then set the file system read-only.
240 * This will prevent new transactions from starting or trying to join this
243 * This means that error recovery at the call site is limited to freeing
244 * any local memory allocations and passing the error code up without
245 * further cleanup. The transaction should complete as it normally would
246 * in the call path but will return -EIO.
248 * We'll complete the cleanup in btrfs_end_transaction and
249 * btrfs_commit_transaction.
252 void __btrfs_abort_transaction(struct btrfs_trans_handle
*trans
,
253 const char *function
,
254 unsigned int line
, int errno
)
256 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
258 trans
->aborted
= errno
;
259 /* Nothing used. The other threads that have joined this
260 * transaction may be able to continue. */
261 if (!trans
->dirty
&& list_empty(&trans
->new_bgs
)) {
264 errstr
= btrfs_decode_error(errno
);
266 "%s:%d: Aborting unused transaction(%s).",
267 function
, line
, errstr
);
270 ACCESS_ONCE(trans
->transaction
->aborted
) = errno
;
271 /* Wake up anybody who may be waiting on this transaction */
272 wake_up(&fs_info
->transaction_wait
);
273 wake_up(&fs_info
->transaction_blocked_wait
);
274 __btrfs_handle_fs_error(fs_info
, function
, line
, errno
, NULL
);
277 * __btrfs_panic decodes unexpected, fatal errors from the caller,
278 * issues an alert, and either panics or BUGs, depending on mount options.
281 void __btrfs_panic(struct btrfs_fs_info
*fs_info
, const char *function
,
282 unsigned int line
, int errno
, const char *fmt
, ...)
284 char *s_id
= "<unknown>";
286 struct va_format vaf
= { .fmt
= fmt
};
290 s_id
= fs_info
->sb
->s_id
;
295 errstr
= btrfs_decode_error(errno
);
296 if (fs_info
&& (fs_info
->mount_opt
& BTRFS_MOUNT_PANIC_ON_FATAL_ERROR
))
297 panic(KERN_CRIT
"BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
298 s_id
, function
, line
, &vaf
, errno
, errstr
);
300 btrfs_crit(fs_info
, "panic in %s:%d: %pV (errno=%d %s)",
301 function
, line
, &vaf
, errno
, errstr
);
303 /* Caller calls BUG() */
306 static void btrfs_put_super(struct super_block
*sb
)
308 close_ctree(btrfs_sb(sb
)->tree_root
);
312 Opt_degraded
, Opt_subvol
, Opt_subvolid
, Opt_device
, Opt_nodatasum
,
313 Opt_nodatacow
, Opt_max_inline
, Opt_alloc_start
, Opt_nobarrier
, Opt_ssd
,
314 Opt_nossd
, Opt_ssd_spread
, Opt_thread_pool
, Opt_noacl
, Opt_compress
,
315 Opt_compress_type
, Opt_compress_force
, Opt_compress_force_type
,
316 Opt_notreelog
, Opt_ratio
, Opt_flushoncommit
, Opt_discard
,
317 Opt_space_cache
, Opt_space_cache_version
, Opt_clear_cache
,
318 Opt_user_subvol_rm_allowed
, Opt_enospc_debug
, Opt_subvolrootid
,
319 Opt_defrag
, Opt_inode_cache
, Opt_no_space_cache
, Opt_recovery
,
320 Opt_skip_balance
, Opt_check_integrity
,
321 Opt_check_integrity_including_extent_data
,
322 Opt_check_integrity_print_mask
, Opt_fatal_errors
, Opt_rescan_uuid_tree
,
323 Opt_commit_interval
, Opt_barrier
, Opt_nodefrag
, Opt_nodiscard
,
324 Opt_noenospc_debug
, Opt_noflushoncommit
, Opt_acl
, Opt_datacow
,
325 Opt_datasum
, Opt_treelog
, Opt_noinode_cache
, Opt_usebackuproot
,
326 Opt_nologreplay
, Opt_norecovery
,
327 #ifdef CONFIG_BTRFS_DEBUG
328 Opt_fragment_data
, Opt_fragment_metadata
, Opt_fragment_all
,
333 static const match_table_t tokens
= {
334 {Opt_degraded
, "degraded"},
335 {Opt_subvol
, "subvol=%s"},
336 {Opt_subvolid
, "subvolid=%s"},
337 {Opt_device
, "device=%s"},
338 {Opt_nodatasum
, "nodatasum"},
339 {Opt_datasum
, "datasum"},
340 {Opt_nodatacow
, "nodatacow"},
341 {Opt_datacow
, "datacow"},
342 {Opt_nobarrier
, "nobarrier"},
343 {Opt_barrier
, "barrier"},
344 {Opt_max_inline
, "max_inline=%s"},
345 {Opt_alloc_start
, "alloc_start=%s"},
346 {Opt_thread_pool
, "thread_pool=%d"},
347 {Opt_compress
, "compress"},
348 {Opt_compress_type
, "compress=%s"},
349 {Opt_compress_force
, "compress-force"},
350 {Opt_compress_force_type
, "compress-force=%s"},
352 {Opt_ssd_spread
, "ssd_spread"},
353 {Opt_nossd
, "nossd"},
355 {Opt_noacl
, "noacl"},
356 {Opt_notreelog
, "notreelog"},
357 {Opt_treelog
, "treelog"},
358 {Opt_nologreplay
, "nologreplay"},
359 {Opt_norecovery
, "norecovery"},
360 {Opt_flushoncommit
, "flushoncommit"},
361 {Opt_noflushoncommit
, "noflushoncommit"},
362 {Opt_ratio
, "metadata_ratio=%d"},
363 {Opt_discard
, "discard"},
364 {Opt_nodiscard
, "nodiscard"},
365 {Opt_space_cache
, "space_cache"},
366 {Opt_space_cache_version
, "space_cache=%s"},
367 {Opt_clear_cache
, "clear_cache"},
368 {Opt_user_subvol_rm_allowed
, "user_subvol_rm_allowed"},
369 {Opt_enospc_debug
, "enospc_debug"},
370 {Opt_noenospc_debug
, "noenospc_debug"},
371 {Opt_subvolrootid
, "subvolrootid=%d"},
372 {Opt_defrag
, "autodefrag"},
373 {Opt_nodefrag
, "noautodefrag"},
374 {Opt_inode_cache
, "inode_cache"},
375 {Opt_noinode_cache
, "noinode_cache"},
376 {Opt_no_space_cache
, "nospace_cache"},
377 {Opt_recovery
, "recovery"}, /* deprecated */
378 {Opt_usebackuproot
, "usebackuproot"},
379 {Opt_skip_balance
, "skip_balance"},
380 {Opt_check_integrity
, "check_int"},
381 {Opt_check_integrity_including_extent_data
, "check_int_data"},
382 {Opt_check_integrity_print_mask
, "check_int_print_mask=%d"},
383 {Opt_rescan_uuid_tree
, "rescan_uuid_tree"},
384 {Opt_fatal_errors
, "fatal_errors=%s"},
385 {Opt_commit_interval
, "commit=%d"},
386 #ifdef CONFIG_BTRFS_DEBUG
387 {Opt_fragment_data
, "fragment=data"},
388 {Opt_fragment_metadata
, "fragment=metadata"},
389 {Opt_fragment_all
, "fragment=all"},
395 * Regular mount options parser. Everything that is needed only when
396 * reading in a new superblock is parsed here.
397 * XXX JDM: This needs to be cleaned up for remount.
399 int btrfs_parse_options(struct btrfs_root
*root
, char *options
,
400 unsigned long new_flags
)
402 struct btrfs_fs_info
*info
= root
->fs_info
;
403 substring_t args
[MAX_OPT_ARGS
];
404 char *p
, *num
, *orig
= NULL
;
409 bool compress_force
= false;
410 enum btrfs_compression_type saved_compress_type
;
411 bool saved_compress_force
;
414 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
415 if (btrfs_fs_compat_ro(root
->fs_info
, FREE_SPACE_TREE
))
416 btrfs_set_opt(info
->mount_opt
, FREE_SPACE_TREE
);
418 btrfs_set_opt(info
->mount_opt
, SPACE_CACHE
);
421 * Even the options are empty, we still need to do extra check
428 * strsep changes the string, duplicate it because parse_options
431 options
= kstrdup(options
, GFP_NOFS
);
437 while ((p
= strsep(&options
, ",")) != NULL
) {
442 token
= match_token(p
, tokens
, args
);
445 btrfs_info(root
->fs_info
, "allowing degraded mounts");
446 btrfs_set_opt(info
->mount_opt
, DEGRADED
);
450 case Opt_subvolrootid
:
453 * These are parsed by btrfs_parse_early_options
454 * and can be happily ignored here.
458 btrfs_set_and_info(info
, NODATASUM
,
459 "setting nodatasum");
462 if (btrfs_test_opt(info
, NODATASUM
)) {
463 if (btrfs_test_opt(info
, NODATACOW
))
464 btrfs_info(root
->fs_info
,
465 "setting datasum, datacow enabled");
467 btrfs_info(root
->fs_info
,
470 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
471 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
474 if (!btrfs_test_opt(info
, NODATACOW
)) {
475 if (!btrfs_test_opt(info
, COMPRESS
) ||
476 !btrfs_test_opt(info
, FORCE_COMPRESS
)) {
477 btrfs_info(root
->fs_info
,
478 "setting nodatacow, compression disabled");
480 btrfs_info(root
->fs_info
,
481 "setting nodatacow");
484 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
485 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
486 btrfs_set_opt(info
->mount_opt
, NODATACOW
);
487 btrfs_set_opt(info
->mount_opt
, NODATASUM
);
490 btrfs_clear_and_info(info
, NODATACOW
,
493 case Opt_compress_force
:
494 case Opt_compress_force_type
:
495 compress_force
= true;
498 case Opt_compress_type
:
499 saved_compress_type
= btrfs_test_opt(info
,
501 info
->compress_type
: BTRFS_COMPRESS_NONE
;
502 saved_compress_force
=
503 btrfs_test_opt(info
, FORCE_COMPRESS
);
504 if (token
== Opt_compress
||
505 token
== Opt_compress_force
||
506 strcmp(args
[0].from
, "zlib") == 0) {
507 compress_type
= "zlib";
508 info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
509 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
510 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
511 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
513 } else if (strcmp(args
[0].from
, "lzo") == 0) {
514 compress_type
= "lzo";
515 info
->compress_type
= BTRFS_COMPRESS_LZO
;
516 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
517 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
518 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
519 btrfs_set_fs_incompat(info
, COMPRESS_LZO
);
521 } else if (strncmp(args
[0].from
, "no", 2) == 0) {
522 compress_type
= "no";
523 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
524 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
525 compress_force
= false;
532 if (compress_force
) {
533 btrfs_set_opt(info
->mount_opt
, FORCE_COMPRESS
);
536 * If we remount from compress-force=xxx to
537 * compress=xxx, we need clear FORCE_COMPRESS
538 * flag, otherwise, there is no way for users
539 * to disable forcible compression separately.
541 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
543 if ((btrfs_test_opt(info
, COMPRESS
) &&
544 (info
->compress_type
!= saved_compress_type
||
545 compress_force
!= saved_compress_force
)) ||
546 (!btrfs_test_opt(info
, COMPRESS
) &&
548 btrfs_info(root
->fs_info
,
550 (compress_force
) ? "force" : "use",
553 compress_force
= false;
556 btrfs_set_and_info(info
, SSD
,
557 "use ssd allocation scheme");
560 btrfs_set_and_info(info
, SSD_SPREAD
,
561 "use spread ssd allocation scheme");
562 btrfs_set_opt(info
->mount_opt
, SSD
);
565 btrfs_set_and_info(info
, NOSSD
,
566 "not using ssd allocation scheme");
567 btrfs_clear_opt(info
->mount_opt
, SSD
);
570 btrfs_clear_and_info(info
, NOBARRIER
,
571 "turning on barriers");
574 btrfs_set_and_info(info
, NOBARRIER
,
575 "turning off barriers");
577 case Opt_thread_pool
:
578 ret
= match_int(&args
[0], &intarg
);
581 } else if (intarg
> 0) {
582 info
->thread_pool_size
= intarg
;
589 num
= match_strdup(&args
[0]);
591 info
->max_inline
= memparse(num
, NULL
);
594 if (info
->max_inline
) {
595 info
->max_inline
= min_t(u64
,
599 btrfs_info(root
->fs_info
, "max_inline at %llu",
606 case Opt_alloc_start
:
607 num
= match_strdup(&args
[0]);
609 mutex_lock(&info
->chunk_mutex
);
610 info
->alloc_start
= memparse(num
, NULL
);
611 mutex_unlock(&info
->chunk_mutex
);
613 btrfs_info(root
->fs_info
,
614 "allocations start at %llu",
622 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
623 root
->fs_info
->sb
->s_flags
|= MS_POSIXACL
;
626 btrfs_err(root
->fs_info
,
627 "support for ACL not compiled in!");
632 root
->fs_info
->sb
->s_flags
&= ~MS_POSIXACL
;
635 btrfs_set_and_info(info
, NOTREELOG
,
636 "disabling tree log");
639 btrfs_clear_and_info(info
, NOTREELOG
,
640 "enabling tree log");
643 case Opt_nologreplay
:
644 btrfs_set_and_info(info
, NOLOGREPLAY
,
645 "disabling log replay at mount time");
647 case Opt_flushoncommit
:
648 btrfs_set_and_info(info
, FLUSHONCOMMIT
,
649 "turning on flush-on-commit");
651 case Opt_noflushoncommit
:
652 btrfs_clear_and_info(info
, FLUSHONCOMMIT
,
653 "turning off flush-on-commit");
656 ret
= match_int(&args
[0], &intarg
);
659 } else if (intarg
>= 0) {
660 info
->metadata_ratio
= intarg
;
661 btrfs_info(root
->fs_info
, "metadata ratio %d",
662 info
->metadata_ratio
);
669 btrfs_set_and_info(info
, DISCARD
,
670 "turning on discard");
673 btrfs_clear_and_info(info
, DISCARD
,
674 "turning off discard");
676 case Opt_space_cache
:
677 case Opt_space_cache_version
:
678 if (token
== Opt_space_cache
||
679 strcmp(args
[0].from
, "v1") == 0) {
680 btrfs_clear_opt(root
->fs_info
->mount_opt
,
682 btrfs_set_and_info(info
, SPACE_CACHE
,
683 "enabling disk space caching");
684 } else if (strcmp(args
[0].from
, "v2") == 0) {
685 btrfs_clear_opt(root
->fs_info
->mount_opt
,
687 btrfs_set_and_info(info
,
689 "enabling free space tree");
695 case Opt_rescan_uuid_tree
:
696 btrfs_set_opt(info
->mount_opt
, RESCAN_UUID_TREE
);
698 case Opt_no_space_cache
:
699 if (btrfs_test_opt(info
, SPACE_CACHE
)) {
700 btrfs_clear_and_info(info
,
702 "disabling disk space caching");
704 if (btrfs_test_opt(info
, FREE_SPACE_TREE
)) {
705 btrfs_clear_and_info(info
,
707 "disabling free space tree");
710 case Opt_inode_cache
:
711 btrfs_set_pending_and_info(info
, INODE_MAP_CACHE
,
712 "enabling inode map caching");
714 case Opt_noinode_cache
:
715 btrfs_clear_pending_and_info(info
, INODE_MAP_CACHE
,
716 "disabling inode map caching");
718 case Opt_clear_cache
:
719 btrfs_set_and_info(info
, CLEAR_CACHE
,
720 "force clearing of disk cache");
722 case Opt_user_subvol_rm_allowed
:
723 btrfs_set_opt(info
->mount_opt
, USER_SUBVOL_RM_ALLOWED
);
725 case Opt_enospc_debug
:
726 btrfs_set_opt(info
->mount_opt
, ENOSPC_DEBUG
);
728 case Opt_noenospc_debug
:
729 btrfs_clear_opt(info
->mount_opt
, ENOSPC_DEBUG
);
732 btrfs_set_and_info(info
, AUTO_DEFRAG
,
733 "enabling auto defrag");
736 btrfs_clear_and_info(info
, AUTO_DEFRAG
,
737 "disabling auto defrag");
740 btrfs_warn(root
->fs_info
,
741 "'recovery' is deprecated, use 'usebackuproot' instead");
742 case Opt_usebackuproot
:
743 btrfs_info(root
->fs_info
,
744 "trying to use backup root at mount time");
745 btrfs_set_opt(info
->mount_opt
, USEBACKUPROOT
);
747 case Opt_skip_balance
:
748 btrfs_set_opt(info
->mount_opt
, SKIP_BALANCE
);
750 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
751 case Opt_check_integrity_including_extent_data
:
752 btrfs_info(root
->fs_info
,
753 "enabling check integrity including extent data");
754 btrfs_set_opt(info
->mount_opt
,
755 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
);
756 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
758 case Opt_check_integrity
:
759 btrfs_info(root
->fs_info
, "enabling check integrity");
760 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
762 case Opt_check_integrity_print_mask
:
763 ret
= match_int(&args
[0], &intarg
);
766 } else if (intarg
>= 0) {
767 info
->check_integrity_print_mask
= intarg
;
768 btrfs_info(root
->fs_info
,
769 "check_integrity_print_mask 0x%x",
770 info
->check_integrity_print_mask
);
777 case Opt_check_integrity_including_extent_data
:
778 case Opt_check_integrity
:
779 case Opt_check_integrity_print_mask
:
780 btrfs_err(root
->fs_info
,
781 "support for check_integrity* not compiled in!");
785 case Opt_fatal_errors
:
786 if (strcmp(args
[0].from
, "panic") == 0)
787 btrfs_set_opt(info
->mount_opt
,
788 PANIC_ON_FATAL_ERROR
);
789 else if (strcmp(args
[0].from
, "bug") == 0)
790 btrfs_clear_opt(info
->mount_opt
,
791 PANIC_ON_FATAL_ERROR
);
797 case Opt_commit_interval
:
799 ret
= match_int(&args
[0], &intarg
);
801 btrfs_err(root
->fs_info
,
802 "invalid commit interval");
808 btrfs_warn(root
->fs_info
,
809 "excessive commit interval %d",
812 info
->commit_interval
= intarg
;
814 btrfs_info(root
->fs_info
,
815 "using default commit interval %ds",
816 BTRFS_DEFAULT_COMMIT_INTERVAL
);
817 info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
820 #ifdef CONFIG_BTRFS_DEBUG
821 case Opt_fragment_all
:
822 btrfs_info(root
->fs_info
, "fragmenting all space");
823 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
824 btrfs_set_opt(info
->mount_opt
, FRAGMENT_METADATA
);
826 case Opt_fragment_metadata
:
827 btrfs_info(root
->fs_info
, "fragmenting metadata");
828 btrfs_set_opt(info
->mount_opt
,
831 case Opt_fragment_data
:
832 btrfs_info(root
->fs_info
, "fragmenting data");
833 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
837 btrfs_info(root
->fs_info
,
838 "unrecognized mount option '%s'", p
);
847 * Extra check for current option against current flag
849 if (btrfs_test_opt(info
, NOLOGREPLAY
) && !(new_flags
& MS_RDONLY
)) {
850 btrfs_err(root
->fs_info
,
851 "nologreplay must be used with ro mount option");
855 if (btrfs_fs_compat_ro(root
->fs_info
, FREE_SPACE_TREE
) &&
856 !btrfs_test_opt(info
, FREE_SPACE_TREE
) &&
857 !btrfs_test_opt(info
, CLEAR_CACHE
)) {
858 btrfs_err(root
->fs_info
, "cannot disable free space tree");
862 if (!ret
&& btrfs_test_opt(info
, SPACE_CACHE
))
863 btrfs_info(root
->fs_info
, "disk space caching is enabled");
864 if (!ret
&& btrfs_test_opt(info
, FREE_SPACE_TREE
))
865 btrfs_info(root
->fs_info
, "using free space tree");
871 * Parse mount options that are required early in the mount process.
873 * All other options will be parsed on much later in the mount process and
874 * only when we need to allocate a new super block.
876 static int btrfs_parse_early_options(const char *options
, fmode_t flags
,
877 void *holder
, char **subvol_name
, u64
*subvol_objectid
,
878 struct btrfs_fs_devices
**fs_devices
)
880 substring_t args
[MAX_OPT_ARGS
];
881 char *device_name
, *opts
, *orig
, *p
;
889 * strsep changes the string, duplicate it because parse_options
892 opts
= kstrdup(options
, GFP_KERNEL
);
897 while ((p
= strsep(&opts
, ",")) != NULL
) {
902 token
= match_token(p
, tokens
, args
);
906 *subvol_name
= match_strdup(&args
[0]);
913 num
= match_strdup(&args
[0]);
915 *subvol_objectid
= memparse(num
, NULL
);
917 /* we want the original fs_tree */
918 if (!*subvol_objectid
)
920 BTRFS_FS_TREE_OBJECTID
;
926 case Opt_subvolrootid
:
927 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
930 device_name
= match_strdup(&args
[0]);
935 error
= btrfs_scan_one_device(device_name
,
936 flags
, holder
, fs_devices
);
951 static char *get_subvol_name_from_objectid(struct btrfs_fs_info
*fs_info
,
954 struct btrfs_root
*root
= fs_info
->tree_root
;
955 struct btrfs_root
*fs_root
;
956 struct btrfs_root_ref
*root_ref
;
957 struct btrfs_inode_ref
*inode_ref
;
958 struct btrfs_key key
;
959 struct btrfs_path
*path
= NULL
;
960 char *name
= NULL
, *ptr
;
965 path
= btrfs_alloc_path();
970 path
->leave_spinning
= 1;
972 name
= kmalloc(PATH_MAX
, GFP_NOFS
);
977 ptr
= name
+ PATH_MAX
- 1;
981 * Walk up the subvolume trees in the tree of tree roots by root
982 * backrefs until we hit the top-level subvolume.
984 while (subvol_objectid
!= BTRFS_FS_TREE_OBJECTID
) {
985 key
.objectid
= subvol_objectid
;
986 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
987 key
.offset
= (u64
)-1;
989 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
992 } else if (ret
> 0) {
993 ret
= btrfs_previous_item(root
, path
, subvol_objectid
,
994 BTRFS_ROOT_BACKREF_KEY
);
997 } else if (ret
> 0) {
1003 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1004 subvol_objectid
= key
.offset
;
1006 root_ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1007 struct btrfs_root_ref
);
1008 len
= btrfs_root_ref_name_len(path
->nodes
[0], root_ref
);
1011 ret
= -ENAMETOOLONG
;
1014 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1015 (unsigned long)(root_ref
+ 1), len
);
1017 dirid
= btrfs_root_ref_dirid(path
->nodes
[0], root_ref
);
1018 btrfs_release_path(path
);
1020 key
.objectid
= subvol_objectid
;
1021 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1022 key
.offset
= (u64
)-1;
1023 fs_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
1024 if (IS_ERR(fs_root
)) {
1025 ret
= PTR_ERR(fs_root
);
1030 * Walk up the filesystem tree by inode refs until we hit the
1033 while (dirid
!= BTRFS_FIRST_FREE_OBJECTID
) {
1034 key
.objectid
= dirid
;
1035 key
.type
= BTRFS_INODE_REF_KEY
;
1036 key
.offset
= (u64
)-1;
1038 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
1041 } else if (ret
> 0) {
1042 ret
= btrfs_previous_item(fs_root
, path
, dirid
,
1043 BTRFS_INODE_REF_KEY
);
1046 } else if (ret
> 0) {
1052 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1055 inode_ref
= btrfs_item_ptr(path
->nodes
[0],
1057 struct btrfs_inode_ref
);
1058 len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1062 ret
= -ENAMETOOLONG
;
1065 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1066 (unsigned long)(inode_ref
+ 1), len
);
1068 btrfs_release_path(path
);
1072 btrfs_free_path(path
);
1073 if (ptr
== name
+ PATH_MAX
- 1) {
1077 memmove(name
, ptr
, name
+ PATH_MAX
- ptr
);
1082 btrfs_free_path(path
);
1084 return ERR_PTR(ret
);
1087 static int get_default_subvol_objectid(struct btrfs_fs_info
*fs_info
, u64
*objectid
)
1089 struct btrfs_root
*root
= fs_info
->tree_root
;
1090 struct btrfs_dir_item
*di
;
1091 struct btrfs_path
*path
;
1092 struct btrfs_key location
;
1095 path
= btrfs_alloc_path();
1098 path
->leave_spinning
= 1;
1101 * Find the "default" dir item which points to the root item that we
1102 * will mount by default if we haven't been given a specific subvolume
1105 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
1106 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir_id
, "default", 7, 0);
1108 btrfs_free_path(path
);
1113 * Ok the default dir item isn't there. This is weird since
1114 * it's always been there, but don't freak out, just try and
1115 * mount the top-level subvolume.
1117 btrfs_free_path(path
);
1118 *objectid
= BTRFS_FS_TREE_OBJECTID
;
1122 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
1123 btrfs_free_path(path
);
1124 *objectid
= location
.objectid
;
1128 static int btrfs_fill_super(struct super_block
*sb
,
1129 struct btrfs_fs_devices
*fs_devices
,
1130 void *data
, int silent
)
1132 struct inode
*inode
;
1133 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1134 struct btrfs_key key
;
1137 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1138 sb
->s_magic
= BTRFS_SUPER_MAGIC
;
1139 sb
->s_op
= &btrfs_super_ops
;
1140 sb
->s_d_op
= &btrfs_dentry_operations
;
1141 sb
->s_export_op
= &btrfs_export_ops
;
1142 sb
->s_xattr
= btrfs_xattr_handlers
;
1143 sb
->s_time_gran
= 1;
1144 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1145 sb
->s_flags
|= MS_POSIXACL
;
1147 sb
->s_flags
|= MS_I_VERSION
;
1148 sb
->s_iflags
|= SB_I_CGROUPWB
;
1149 err
= open_ctree(sb
, fs_devices
, (char *)data
);
1151 btrfs_err(fs_info
, "open_ctree failed");
1155 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
1156 key
.type
= BTRFS_INODE_ITEM_KEY
;
1158 inode
= btrfs_iget(sb
, &key
, fs_info
->fs_root
, NULL
);
1159 if (IS_ERR(inode
)) {
1160 err
= PTR_ERR(inode
);
1164 sb
->s_root
= d_make_root(inode
);
1170 save_mount_options(sb
, data
);
1171 cleancache_init_fs(sb
);
1172 sb
->s_flags
|= MS_ACTIVE
;
1176 close_ctree(fs_info
->tree_root
);
1180 int btrfs_sync_fs(struct super_block
*sb
, int wait
)
1182 struct btrfs_trans_handle
*trans
;
1183 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1184 struct btrfs_root
*root
= fs_info
->tree_root
;
1186 trace_btrfs_sync_fs(fs_info
, wait
);
1189 filemap_flush(fs_info
->btree_inode
->i_mapping
);
1193 btrfs_wait_ordered_roots(fs_info
, -1, 0, (u64
)-1);
1195 trans
= btrfs_attach_transaction_barrier(root
);
1196 if (IS_ERR(trans
)) {
1197 /* no transaction, don't bother */
1198 if (PTR_ERR(trans
) == -ENOENT
) {
1200 * Exit unless we have some pending changes
1201 * that need to go through commit
1203 if (fs_info
->pending_changes
== 0)
1206 * A non-blocking test if the fs is frozen. We must not
1207 * start a new transaction here otherwise a deadlock
1208 * happens. The pending operations are delayed to the
1209 * next commit after thawing.
1211 if (__sb_start_write(sb
, SB_FREEZE_WRITE
, false))
1212 __sb_end_write(sb
, SB_FREEZE_WRITE
);
1215 trans
= btrfs_start_transaction(root
, 0);
1218 return PTR_ERR(trans
);
1220 return btrfs_commit_transaction(trans
, root
);
1223 static int btrfs_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1225 struct btrfs_fs_info
*info
= btrfs_sb(dentry
->d_sb
);
1226 struct btrfs_root
*root
= info
->tree_root
;
1227 char *compress_type
;
1229 if (btrfs_test_opt(info
, DEGRADED
))
1230 seq_puts(seq
, ",degraded");
1231 if (btrfs_test_opt(info
, NODATASUM
))
1232 seq_puts(seq
, ",nodatasum");
1233 if (btrfs_test_opt(info
, NODATACOW
))
1234 seq_puts(seq
, ",nodatacow");
1235 if (btrfs_test_opt(info
, NOBARRIER
))
1236 seq_puts(seq
, ",nobarrier");
1237 if (info
->max_inline
!= BTRFS_DEFAULT_MAX_INLINE
)
1238 seq_printf(seq
, ",max_inline=%llu", info
->max_inline
);
1239 if (info
->alloc_start
!= 0)
1240 seq_printf(seq
, ",alloc_start=%llu", info
->alloc_start
);
1241 if (info
->thread_pool_size
!= min_t(unsigned long,
1242 num_online_cpus() + 2, 8))
1243 seq_printf(seq
, ",thread_pool=%d", info
->thread_pool_size
);
1244 if (btrfs_test_opt(info
, COMPRESS
)) {
1245 if (info
->compress_type
== BTRFS_COMPRESS_ZLIB
)
1246 compress_type
= "zlib";
1248 compress_type
= "lzo";
1249 if (btrfs_test_opt(info
, FORCE_COMPRESS
))
1250 seq_printf(seq
, ",compress-force=%s", compress_type
);
1252 seq_printf(seq
, ",compress=%s", compress_type
);
1254 if (btrfs_test_opt(info
, NOSSD
))
1255 seq_puts(seq
, ",nossd");
1256 if (btrfs_test_opt(info
, SSD_SPREAD
))
1257 seq_puts(seq
, ",ssd_spread");
1258 else if (btrfs_test_opt(info
, SSD
))
1259 seq_puts(seq
, ",ssd");
1260 if (btrfs_test_opt(info
, NOTREELOG
))
1261 seq_puts(seq
, ",notreelog");
1262 if (btrfs_test_opt(info
, NOLOGREPLAY
))
1263 seq_puts(seq
, ",nologreplay");
1264 if (btrfs_test_opt(info
, FLUSHONCOMMIT
))
1265 seq_puts(seq
, ",flushoncommit");
1266 if (btrfs_test_opt(info
, DISCARD
))
1267 seq_puts(seq
, ",discard");
1268 if (!(root
->fs_info
->sb
->s_flags
& MS_POSIXACL
))
1269 seq_puts(seq
, ",noacl");
1270 if (btrfs_test_opt(info
, SPACE_CACHE
))
1271 seq_puts(seq
, ",space_cache");
1272 else if (btrfs_test_opt(info
, FREE_SPACE_TREE
))
1273 seq_puts(seq
, ",space_cache=v2");
1275 seq_puts(seq
, ",nospace_cache");
1276 if (btrfs_test_opt(info
, RESCAN_UUID_TREE
))
1277 seq_puts(seq
, ",rescan_uuid_tree");
1278 if (btrfs_test_opt(info
, CLEAR_CACHE
))
1279 seq_puts(seq
, ",clear_cache");
1280 if (btrfs_test_opt(info
, USER_SUBVOL_RM_ALLOWED
))
1281 seq_puts(seq
, ",user_subvol_rm_allowed");
1282 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
1283 seq_puts(seq
, ",enospc_debug");
1284 if (btrfs_test_opt(info
, AUTO_DEFRAG
))
1285 seq_puts(seq
, ",autodefrag");
1286 if (btrfs_test_opt(info
, INODE_MAP_CACHE
))
1287 seq_puts(seq
, ",inode_cache");
1288 if (btrfs_test_opt(info
, SKIP_BALANCE
))
1289 seq_puts(seq
, ",skip_balance");
1290 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1291 if (btrfs_test_opt(info
, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
))
1292 seq_puts(seq
, ",check_int_data");
1293 else if (btrfs_test_opt(info
, CHECK_INTEGRITY
))
1294 seq_puts(seq
, ",check_int");
1295 if (info
->check_integrity_print_mask
)
1296 seq_printf(seq
, ",check_int_print_mask=%d",
1297 info
->check_integrity_print_mask
);
1299 if (info
->metadata_ratio
)
1300 seq_printf(seq
, ",metadata_ratio=%d",
1301 info
->metadata_ratio
);
1302 if (btrfs_test_opt(info
, PANIC_ON_FATAL_ERROR
))
1303 seq_puts(seq
, ",fatal_errors=panic");
1304 if (info
->commit_interval
!= BTRFS_DEFAULT_COMMIT_INTERVAL
)
1305 seq_printf(seq
, ",commit=%d", info
->commit_interval
);
1306 #ifdef CONFIG_BTRFS_DEBUG
1307 if (btrfs_test_opt(info
, FRAGMENT_DATA
))
1308 seq_puts(seq
, ",fragment=data");
1309 if (btrfs_test_opt(info
, FRAGMENT_METADATA
))
1310 seq_puts(seq
, ",fragment=metadata");
1312 seq_printf(seq
, ",subvolid=%llu",
1313 BTRFS_I(d_inode(dentry
))->root
->root_key
.objectid
);
1314 seq_puts(seq
, ",subvol=");
1315 seq_dentry(seq
, dentry
, " \t\n\\");
1319 static int btrfs_test_super(struct super_block
*s
, void *data
)
1321 struct btrfs_fs_info
*p
= data
;
1322 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1324 return fs_info
->fs_devices
== p
->fs_devices
;
1327 static int btrfs_set_super(struct super_block
*s
, void *data
)
1329 int err
= set_anon_super(s
, data
);
1331 s
->s_fs_info
= data
;
1336 * subvolumes are identified by ino 256
1338 static inline int is_subvolume_inode(struct inode
*inode
)
1340 if (inode
&& inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
1346 * This will add subvolid=0 to the argument string while removing any subvol=
1347 * and subvolid= arguments to make sure we get the top-level root for path
1348 * walking to the subvol we want.
1350 static char *setup_root_args(char *args
)
1352 char *buf
, *dst
, *sep
;
1355 return kstrdup("subvolid=0", GFP_NOFS
);
1357 /* The worst case is that we add ",subvolid=0" to the end. */
1358 buf
= dst
= kmalloc(strlen(args
) + strlen(",subvolid=0") + 1, GFP_NOFS
);
1363 sep
= strchrnul(args
, ',');
1364 if (!strstarts(args
, "subvol=") &&
1365 !strstarts(args
, "subvolid=")) {
1366 memcpy(dst
, args
, sep
- args
);
1375 strcpy(dst
, "subvolid=0");
1380 static struct dentry
*mount_subvol(const char *subvol_name
, u64 subvol_objectid
,
1381 int flags
, const char *device_name
,
1384 struct dentry
*root
;
1385 struct vfsmount
*mnt
= NULL
;
1389 newargs
= setup_root_args(data
);
1391 root
= ERR_PTR(-ENOMEM
);
1395 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
, device_name
, newargs
);
1396 if (PTR_ERR_OR_ZERO(mnt
) == -EBUSY
) {
1397 if (flags
& MS_RDONLY
) {
1398 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
& ~MS_RDONLY
,
1399 device_name
, newargs
);
1401 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
| MS_RDONLY
,
1402 device_name
, newargs
);
1404 root
= ERR_CAST(mnt
);
1409 down_write(&mnt
->mnt_sb
->s_umount
);
1410 ret
= btrfs_remount(mnt
->mnt_sb
, &flags
, NULL
);
1411 up_write(&mnt
->mnt_sb
->s_umount
);
1413 root
= ERR_PTR(ret
);
1419 root
= ERR_CAST(mnt
);
1425 if (!subvol_objectid
) {
1426 ret
= get_default_subvol_objectid(btrfs_sb(mnt
->mnt_sb
),
1429 root
= ERR_PTR(ret
);
1433 subvol_name
= get_subvol_name_from_objectid(btrfs_sb(mnt
->mnt_sb
),
1435 if (IS_ERR(subvol_name
)) {
1436 root
= ERR_CAST(subvol_name
);
1443 root
= mount_subtree(mnt
, subvol_name
);
1444 /* mount_subtree() drops our reference on the vfsmount. */
1447 if (!IS_ERR(root
)) {
1448 struct super_block
*s
= root
->d_sb
;
1449 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1450 struct inode
*root_inode
= d_inode(root
);
1451 u64 root_objectid
= BTRFS_I(root_inode
)->root
->root_key
.objectid
;
1454 if (!is_subvolume_inode(root_inode
)) {
1455 btrfs_err(fs_info
, "'%s' is not a valid subvolume",
1459 if (subvol_objectid
&& root_objectid
!= subvol_objectid
) {
1461 * This will also catch a race condition where a
1462 * subvolume which was passed by ID is renamed and
1463 * another subvolume is renamed over the old location.
1466 "subvol '%s' does not match subvolid %llu",
1467 subvol_name
, subvol_objectid
);
1472 root
= ERR_PTR(ret
);
1473 deactivate_locked_super(s
);
1484 static int parse_security_options(char *orig_opts
,
1485 struct security_mnt_opts
*sec_opts
)
1487 char *secdata
= NULL
;
1490 secdata
= alloc_secdata();
1493 ret
= security_sb_copy_data(orig_opts
, secdata
);
1495 free_secdata(secdata
);
1498 ret
= security_sb_parse_opts_str(secdata
, sec_opts
);
1499 free_secdata(secdata
);
1503 static int setup_security_options(struct btrfs_fs_info
*fs_info
,
1504 struct super_block
*sb
,
1505 struct security_mnt_opts
*sec_opts
)
1510 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1513 ret
= security_sb_set_mnt_opts(sb
, sec_opts
, 0, NULL
);
1517 #ifdef CONFIG_SECURITY
1518 if (!fs_info
->security_opts
.num_mnt_opts
) {
1519 /* first time security setup, copy sec_opts to fs_info */
1520 memcpy(&fs_info
->security_opts
, sec_opts
, sizeof(*sec_opts
));
1523 * Since SELinux (the only one supporting security_mnt_opts)
1524 * does NOT support changing context during remount/mount of
1525 * the same sb, this must be the same or part of the same
1526 * security options, just free it.
1528 security_free_mnt_opts(sec_opts
);
1535 * Find a superblock for the given device / mount point.
1537 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1538 * for multiple device setup. Make sure to keep it in sync.
1540 static struct dentry
*btrfs_mount(struct file_system_type
*fs_type
, int flags
,
1541 const char *device_name
, void *data
)
1543 struct block_device
*bdev
= NULL
;
1544 struct super_block
*s
;
1545 struct btrfs_fs_devices
*fs_devices
= NULL
;
1546 struct btrfs_fs_info
*fs_info
= NULL
;
1547 struct security_mnt_opts new_sec_opts
;
1548 fmode_t mode
= FMODE_READ
;
1549 char *subvol_name
= NULL
;
1550 u64 subvol_objectid
= 0;
1553 if (!(flags
& MS_RDONLY
))
1554 mode
|= FMODE_WRITE
;
1556 error
= btrfs_parse_early_options(data
, mode
, fs_type
,
1557 &subvol_name
, &subvol_objectid
,
1561 return ERR_PTR(error
);
1564 if (subvol_name
|| subvol_objectid
!= BTRFS_FS_TREE_OBJECTID
) {
1565 /* mount_subvol() will free subvol_name. */
1566 return mount_subvol(subvol_name
, subvol_objectid
, flags
,
1570 security_init_mnt_opts(&new_sec_opts
);
1572 error
= parse_security_options(data
, &new_sec_opts
);
1574 return ERR_PTR(error
);
1577 error
= btrfs_scan_one_device(device_name
, mode
, fs_type
, &fs_devices
);
1579 goto error_sec_opts
;
1582 * Setup a dummy root and fs_info for test/set super. This is because
1583 * we don't actually fill this stuff out until open_ctree, but we need
1584 * it for searching for existing supers, so this lets us do that and
1585 * then open_ctree will properly initialize everything later.
1587 fs_info
= kzalloc(sizeof(struct btrfs_fs_info
), GFP_NOFS
);
1590 goto error_sec_opts
;
1593 fs_info
->fs_devices
= fs_devices
;
1595 fs_info
->super_copy
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_NOFS
);
1596 fs_info
->super_for_commit
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_NOFS
);
1597 security_init_mnt_opts(&fs_info
->security_opts
);
1598 if (!fs_info
->super_copy
|| !fs_info
->super_for_commit
) {
1603 error
= btrfs_open_devices(fs_devices
, mode
, fs_type
);
1607 if (!(flags
& MS_RDONLY
) && fs_devices
->rw_devices
== 0) {
1609 goto error_close_devices
;
1612 bdev
= fs_devices
->latest_bdev
;
1613 s
= sget(fs_type
, btrfs_test_super
, btrfs_set_super
, flags
| MS_NOSEC
,
1617 goto error_close_devices
;
1621 btrfs_close_devices(fs_devices
);
1622 free_fs_info(fs_info
);
1623 if ((flags
^ s
->s_flags
) & MS_RDONLY
)
1626 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1627 btrfs_sb(s
)->bdev_holder
= fs_type
;
1628 error
= btrfs_fill_super(s
, fs_devices
, data
,
1629 flags
& MS_SILENT
? 1 : 0);
1632 deactivate_locked_super(s
);
1633 goto error_sec_opts
;
1636 fs_info
= btrfs_sb(s
);
1637 error
= setup_security_options(fs_info
, s
, &new_sec_opts
);
1639 deactivate_locked_super(s
);
1640 goto error_sec_opts
;
1643 return dget(s
->s_root
);
1645 error_close_devices
:
1646 btrfs_close_devices(fs_devices
);
1648 free_fs_info(fs_info
);
1650 security_free_mnt_opts(&new_sec_opts
);
1651 return ERR_PTR(error
);
1654 static void btrfs_resize_thread_pool(struct btrfs_fs_info
*fs_info
,
1655 int new_pool_size
, int old_pool_size
)
1657 if (new_pool_size
== old_pool_size
)
1660 fs_info
->thread_pool_size
= new_pool_size
;
1662 btrfs_info(fs_info
, "resize thread pool %d -> %d",
1663 old_pool_size
, new_pool_size
);
1665 btrfs_workqueue_set_max(fs_info
->workers
, new_pool_size
);
1666 btrfs_workqueue_set_max(fs_info
->delalloc_workers
, new_pool_size
);
1667 btrfs_workqueue_set_max(fs_info
->submit_workers
, new_pool_size
);
1668 btrfs_workqueue_set_max(fs_info
->caching_workers
, new_pool_size
);
1669 btrfs_workqueue_set_max(fs_info
->endio_workers
, new_pool_size
);
1670 btrfs_workqueue_set_max(fs_info
->endio_meta_workers
, new_pool_size
);
1671 btrfs_workqueue_set_max(fs_info
->endio_meta_write_workers
,
1673 btrfs_workqueue_set_max(fs_info
->endio_write_workers
, new_pool_size
);
1674 btrfs_workqueue_set_max(fs_info
->endio_freespace_worker
, new_pool_size
);
1675 btrfs_workqueue_set_max(fs_info
->delayed_workers
, new_pool_size
);
1676 btrfs_workqueue_set_max(fs_info
->readahead_workers
, new_pool_size
);
1677 btrfs_workqueue_set_max(fs_info
->scrub_wr_completion_workers
,
1681 static inline void btrfs_remount_prepare(struct btrfs_fs_info
*fs_info
)
1683 set_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1686 static inline void btrfs_remount_begin(struct btrfs_fs_info
*fs_info
,
1687 unsigned long old_opts
, int flags
)
1689 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1690 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) ||
1691 (flags
& MS_RDONLY
))) {
1692 /* wait for any defraggers to finish */
1693 wait_event(fs_info
->transaction_wait
,
1694 (atomic_read(&fs_info
->defrag_running
) == 0));
1695 if (flags
& MS_RDONLY
)
1696 sync_filesystem(fs_info
->sb
);
1700 static inline void btrfs_remount_cleanup(struct btrfs_fs_info
*fs_info
,
1701 unsigned long old_opts
)
1704 * We need to cleanup all defragable inodes if the autodefragment is
1705 * close or the filesystem is read only.
1707 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1708 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) ||
1709 (fs_info
->sb
->s_flags
& MS_RDONLY
))) {
1710 btrfs_cleanup_defrag_inodes(fs_info
);
1713 clear_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1716 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
)
1718 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1719 struct btrfs_root
*root
= fs_info
->tree_root
;
1720 unsigned old_flags
= sb
->s_flags
;
1721 unsigned long old_opts
= fs_info
->mount_opt
;
1722 unsigned long old_compress_type
= fs_info
->compress_type
;
1723 u64 old_max_inline
= fs_info
->max_inline
;
1724 u64 old_alloc_start
= fs_info
->alloc_start
;
1725 int old_thread_pool_size
= fs_info
->thread_pool_size
;
1726 unsigned int old_metadata_ratio
= fs_info
->metadata_ratio
;
1729 sync_filesystem(sb
);
1730 btrfs_remount_prepare(fs_info
);
1733 struct security_mnt_opts new_sec_opts
;
1735 security_init_mnt_opts(&new_sec_opts
);
1736 ret
= parse_security_options(data
, &new_sec_opts
);
1739 ret
= setup_security_options(fs_info
, sb
,
1742 security_free_mnt_opts(&new_sec_opts
);
1747 ret
= btrfs_parse_options(root
, data
, *flags
);
1753 btrfs_remount_begin(fs_info
, old_opts
, *flags
);
1754 btrfs_resize_thread_pool(fs_info
,
1755 fs_info
->thread_pool_size
, old_thread_pool_size
);
1757 if ((*flags
& MS_RDONLY
) == (sb
->s_flags
& MS_RDONLY
))
1760 if (*flags
& MS_RDONLY
) {
1762 * this also happens on 'umount -rf' or on shutdown, when
1763 * the filesystem is busy.
1765 cancel_work_sync(&fs_info
->async_reclaim_work
);
1767 /* wait for the uuid_scan task to finish */
1768 down(&fs_info
->uuid_tree_rescan_sem
);
1769 /* avoid complains from lockdep et al. */
1770 up(&fs_info
->uuid_tree_rescan_sem
);
1772 sb
->s_flags
|= MS_RDONLY
;
1775 * Setting MS_RDONLY will put the cleaner thread to
1776 * sleep at the next loop if it's already active.
1777 * If it's already asleep, we'll leave unused block
1778 * groups on disk until we're mounted read-write again
1779 * unless we clean them up here.
1781 btrfs_delete_unused_bgs(fs_info
);
1783 btrfs_dev_replace_suspend_for_unmount(fs_info
);
1784 btrfs_scrub_cancel(fs_info
);
1785 btrfs_pause_balance(fs_info
);
1787 ret
= btrfs_commit_super(root
);
1791 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
1793 "Remounting read-write after error is not allowed");
1797 if (fs_info
->fs_devices
->rw_devices
== 0) {
1802 if (fs_info
->fs_devices
->missing_devices
>
1803 fs_info
->num_tolerated_disk_barrier_failures
&&
1804 !(*flags
& MS_RDONLY
)) {
1806 "too many missing devices, writeable remount is not allowed");
1811 if (btrfs_super_log_root(fs_info
->super_copy
) != 0) {
1816 ret
= btrfs_cleanup_fs_roots(fs_info
);
1820 /* recover relocation */
1821 mutex_lock(&fs_info
->cleaner_mutex
);
1822 ret
= btrfs_recover_relocation(root
);
1823 mutex_unlock(&fs_info
->cleaner_mutex
);
1827 ret
= btrfs_resume_balance_async(fs_info
);
1831 ret
= btrfs_resume_dev_replace_async(fs_info
);
1833 btrfs_warn(fs_info
, "failed to resume dev_replace");
1837 if (!fs_info
->uuid_root
) {
1838 btrfs_info(fs_info
, "creating UUID tree");
1839 ret
= btrfs_create_uuid_tree(fs_info
);
1842 "failed to create the UUID tree %d",
1847 sb
->s_flags
&= ~MS_RDONLY
;
1849 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
1852 wake_up_process(fs_info
->transaction_kthread
);
1853 btrfs_remount_cleanup(fs_info
, old_opts
);
1857 /* We've hit an error - don't reset MS_RDONLY */
1858 if (sb
->s_flags
& MS_RDONLY
)
1859 old_flags
|= MS_RDONLY
;
1860 sb
->s_flags
= old_flags
;
1861 fs_info
->mount_opt
= old_opts
;
1862 fs_info
->compress_type
= old_compress_type
;
1863 fs_info
->max_inline
= old_max_inline
;
1864 mutex_lock(&fs_info
->chunk_mutex
);
1865 fs_info
->alloc_start
= old_alloc_start
;
1866 mutex_unlock(&fs_info
->chunk_mutex
);
1867 btrfs_resize_thread_pool(fs_info
,
1868 old_thread_pool_size
, fs_info
->thread_pool_size
);
1869 fs_info
->metadata_ratio
= old_metadata_ratio
;
1870 btrfs_remount_cleanup(fs_info
, old_opts
);
1874 /* Used to sort the devices by max_avail(descending sort) */
1875 static int btrfs_cmp_device_free_bytes(const void *dev_info1
,
1876 const void *dev_info2
)
1878 if (((struct btrfs_device_info
*)dev_info1
)->max_avail
>
1879 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1881 else if (((struct btrfs_device_info
*)dev_info1
)->max_avail
<
1882 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1889 * sort the devices by max_avail, in which max free extent size of each device
1890 * is stored.(Descending Sort)
1892 static inline void btrfs_descending_sort_devices(
1893 struct btrfs_device_info
*devices
,
1896 sort(devices
, nr_devices
, sizeof(struct btrfs_device_info
),
1897 btrfs_cmp_device_free_bytes
, NULL
);
1901 * The helper to calc the free space on the devices that can be used to store
1904 static int btrfs_calc_avail_data_space(struct btrfs_root
*root
, u64
*free_bytes
)
1906 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1907 struct btrfs_device_info
*devices_info
;
1908 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
1909 struct btrfs_device
*device
;
1914 u64 min_stripe_size
;
1915 int min_stripes
= 1, num_stripes
= 1;
1916 int i
= 0, nr_devices
;
1920 * We aren't under the device list lock, so this is racy-ish, but good
1921 * enough for our purposes.
1923 nr_devices
= fs_info
->fs_devices
->open_devices
;
1926 nr_devices
= fs_info
->fs_devices
->open_devices
;
1934 devices_info
= kmalloc_array(nr_devices
, sizeof(*devices_info
),
1939 /* calc min stripe number for data space allocation */
1940 type
= btrfs_get_alloc_profile(root
, 1);
1941 if (type
& BTRFS_BLOCK_GROUP_RAID0
) {
1943 num_stripes
= nr_devices
;
1944 } else if (type
& BTRFS_BLOCK_GROUP_RAID1
) {
1947 } else if (type
& BTRFS_BLOCK_GROUP_RAID10
) {
1952 if (type
& BTRFS_BLOCK_GROUP_DUP
)
1953 min_stripe_size
= 2 * BTRFS_STRIPE_LEN
;
1955 min_stripe_size
= BTRFS_STRIPE_LEN
;
1957 if (fs_info
->alloc_start
)
1958 mutex_lock(&fs_devices
->device_list_mutex
);
1960 list_for_each_entry_rcu(device
, &fs_devices
->devices
, dev_list
) {
1961 if (!device
->in_fs_metadata
|| !device
->bdev
||
1962 device
->is_tgtdev_for_dev_replace
)
1965 if (i
>= nr_devices
)
1968 avail_space
= device
->total_bytes
- device
->bytes_used
;
1970 /* align with stripe_len */
1971 avail_space
= div_u64(avail_space
, BTRFS_STRIPE_LEN
);
1972 avail_space
*= BTRFS_STRIPE_LEN
;
1975 * In order to avoid overwriting the superblock on the drive,
1976 * btrfs starts at an offset of at least 1MB when doing chunk
1981 /* user can set the offset in fs_info->alloc_start. */
1982 if (fs_info
->alloc_start
&&
1983 fs_info
->alloc_start
+ BTRFS_STRIPE_LEN
<=
1984 device
->total_bytes
) {
1986 skip_space
= max(fs_info
->alloc_start
, skip_space
);
1989 * btrfs can not use the free space in
1990 * [0, skip_space - 1], we must subtract it from the
1991 * total. In order to implement it, we account the used
1992 * space in this range first.
1994 ret
= btrfs_account_dev_extents_size(device
, 0,
1998 kfree(devices_info
);
1999 mutex_unlock(&fs_devices
->device_list_mutex
);
2005 /* calc the free space in [0, skip_space - 1] */
2006 skip_space
-= used_space
;
2010 * we can use the free space in [0, skip_space - 1], subtract
2011 * it from the total.
2013 if (avail_space
&& avail_space
>= skip_space
)
2014 avail_space
-= skip_space
;
2018 if (avail_space
< min_stripe_size
)
2021 devices_info
[i
].dev
= device
;
2022 devices_info
[i
].max_avail
= avail_space
;
2027 if (fs_info
->alloc_start
)
2028 mutex_unlock(&fs_devices
->device_list_mutex
);
2032 btrfs_descending_sort_devices(devices_info
, nr_devices
);
2036 while (nr_devices
>= min_stripes
) {
2037 if (num_stripes
> nr_devices
)
2038 num_stripes
= nr_devices
;
2040 if (devices_info
[i
].max_avail
>= min_stripe_size
) {
2044 avail_space
+= devices_info
[i
].max_avail
* num_stripes
;
2045 alloc_size
= devices_info
[i
].max_avail
;
2046 for (j
= i
+ 1 - num_stripes
; j
<= i
; j
++)
2047 devices_info
[j
].max_avail
-= alloc_size
;
2053 kfree(devices_info
);
2054 *free_bytes
= avail_space
;
2059 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2061 * If there's a redundant raid level at DATA block groups, use the respective
2062 * multiplier to scale the sizes.
2064 * Unused device space usage is based on simulating the chunk allocator
2065 * algorithm that respects the device sizes, order of allocations and the
2066 * 'alloc_start' value, this is a close approximation of the actual use but
2067 * there are other factors that may change the result (like a new metadata
2070 * If metadata is exhausted, f_bavail will be 0.
2072 static int btrfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2074 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
2075 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2076 struct list_head
*head
= &fs_info
->space_info
;
2077 struct btrfs_space_info
*found
;
2079 u64 total_free_data
= 0;
2080 u64 total_free_meta
= 0;
2081 int bits
= dentry
->d_sb
->s_blocksize_bits
;
2082 __be32
*fsid
= (__be32
*)fs_info
->fsid
;
2083 unsigned factor
= 1;
2084 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
2090 * holding chunk_mutex to avoid allocating new chunks, holding
2091 * device_list_mutex to avoid the device being removed
2094 list_for_each_entry_rcu(found
, head
, list
) {
2095 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
) {
2098 total_free_data
+= found
->disk_total
- found
->disk_used
;
2100 btrfs_account_ro_block_groups_free_space(found
);
2102 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
2103 if (!list_empty(&found
->block_groups
[i
])) {
2105 case BTRFS_RAID_DUP
:
2106 case BTRFS_RAID_RAID1
:
2107 case BTRFS_RAID_RAID10
:
2115 * Metadata in mixed block goup profiles are accounted in data
2117 if (!mixed
&& found
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2118 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
)
2121 total_free_meta
+= found
->disk_total
-
2125 total_used
+= found
->disk_used
;
2130 buf
->f_blocks
= div_u64(btrfs_super_total_bytes(disk_super
), factor
);
2131 buf
->f_blocks
>>= bits
;
2132 buf
->f_bfree
= buf
->f_blocks
- (div_u64(total_used
, factor
) >> bits
);
2134 /* Account global block reserve as used, it's in logical size already */
2135 spin_lock(&block_rsv
->lock
);
2136 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2137 if (buf
->f_bfree
>= block_rsv
->size
>> bits
)
2138 buf
->f_bfree
-= block_rsv
->size
>> bits
;
2141 spin_unlock(&block_rsv
->lock
);
2143 buf
->f_bavail
= div_u64(total_free_data
, factor
);
2144 ret
= btrfs_calc_avail_data_space(fs_info
->tree_root
, &total_free_data
);
2147 buf
->f_bavail
+= div_u64(total_free_data
, factor
);
2148 buf
->f_bavail
= buf
->f_bavail
>> bits
;
2151 * We calculate the remaining metadata space minus global reserve. If
2152 * this is (supposedly) smaller than zero, there's no space. But this
2153 * does not hold in practice, the exhausted state happens where's still
2154 * some positive delta. So we apply some guesswork and compare the
2155 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2157 * We probably cannot calculate the exact threshold value because this
2158 * depends on the internal reservations requested by various
2159 * operations, so some operations that consume a few metadata will
2160 * succeed even if the Avail is zero. But this is better than the other
2163 thresh
= 4 * 1024 * 1024;
2165 if (!mixed
&& total_free_meta
- thresh
< block_rsv
->size
)
2168 buf
->f_type
= BTRFS_SUPER_MAGIC
;
2169 buf
->f_bsize
= dentry
->d_sb
->s_blocksize
;
2170 buf
->f_namelen
= BTRFS_NAME_LEN
;
2172 /* We treat it as constant endianness (it doesn't matter _which_)
2173 because we want the fsid to come out the same whether mounted
2174 on a big-endian or little-endian host */
2175 buf
->f_fsid
.val
[0] = be32_to_cpu(fsid
[0]) ^ be32_to_cpu(fsid
[2]);
2176 buf
->f_fsid
.val
[1] = be32_to_cpu(fsid
[1]) ^ be32_to_cpu(fsid
[3]);
2177 /* Mask in the root object ID too, to disambiguate subvols */
2178 buf
->f_fsid
.val
[0] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
>> 32;
2179 buf
->f_fsid
.val
[1] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
;
2184 static void btrfs_kill_super(struct super_block
*sb
)
2186 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2187 kill_anon_super(sb
);
2188 free_fs_info(fs_info
);
2191 static struct file_system_type btrfs_fs_type
= {
2192 .owner
= THIS_MODULE
,
2194 .mount
= btrfs_mount
,
2195 .kill_sb
= btrfs_kill_super
,
2196 .fs_flags
= FS_REQUIRES_DEV
| FS_BINARY_MOUNTDATA
,
2198 MODULE_ALIAS_FS("btrfs");
2200 static int btrfs_control_open(struct inode
*inode
, struct file
*file
)
2203 * The control file's private_data is used to hold the
2204 * transaction when it is started and is used to keep
2205 * track of whether a transaction is already in progress.
2207 file
->private_data
= NULL
;
2212 * used by btrfsctl to scan devices when no FS is mounted
2214 static long btrfs_control_ioctl(struct file
*file
, unsigned int cmd
,
2217 struct btrfs_ioctl_vol_args
*vol
;
2218 struct btrfs_fs_devices
*fs_devices
;
2221 if (!capable(CAP_SYS_ADMIN
))
2224 vol
= memdup_user((void __user
*)arg
, sizeof(*vol
));
2226 return PTR_ERR(vol
);
2229 case BTRFS_IOC_SCAN_DEV
:
2230 ret
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2231 &btrfs_fs_type
, &fs_devices
);
2233 case BTRFS_IOC_DEVICES_READY
:
2234 ret
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2235 &btrfs_fs_type
, &fs_devices
);
2238 ret
= !(fs_devices
->num_devices
== fs_devices
->total_devices
);
2240 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
2241 ret
= btrfs_ioctl_get_supported_features((void __user
*)arg
);
2249 static int btrfs_freeze(struct super_block
*sb
)
2251 struct btrfs_trans_handle
*trans
;
2252 struct btrfs_root
*root
= btrfs_sb(sb
)->tree_root
;
2254 root
->fs_info
->fs_frozen
= 1;
2256 * We don't need a barrier here, we'll wait for any transaction that
2257 * could be in progress on other threads (and do delayed iputs that
2258 * we want to avoid on a frozen filesystem), or do the commit
2261 trans
= btrfs_attach_transaction_barrier(root
);
2262 if (IS_ERR(trans
)) {
2263 /* no transaction, don't bother */
2264 if (PTR_ERR(trans
) == -ENOENT
)
2266 return PTR_ERR(trans
);
2268 return btrfs_commit_transaction(trans
, root
);
2271 static int btrfs_unfreeze(struct super_block
*sb
)
2273 struct btrfs_root
*root
= btrfs_sb(sb
)->tree_root
;
2275 root
->fs_info
->fs_frozen
= 0;
2279 static int btrfs_show_devname(struct seq_file
*m
, struct dentry
*root
)
2281 struct btrfs_fs_info
*fs_info
= btrfs_sb(root
->d_sb
);
2282 struct btrfs_fs_devices
*cur_devices
;
2283 struct btrfs_device
*dev
, *first_dev
= NULL
;
2284 struct list_head
*head
;
2285 struct rcu_string
*name
;
2287 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2288 cur_devices
= fs_info
->fs_devices
;
2289 while (cur_devices
) {
2290 head
= &cur_devices
->devices
;
2291 list_for_each_entry(dev
, head
, dev_list
) {
2296 if (!first_dev
|| dev
->devid
< first_dev
->devid
)
2299 cur_devices
= cur_devices
->seed
;
2304 name
= rcu_dereference(first_dev
->name
);
2305 seq_escape(m
, name
->str
, " \t\n\\");
2310 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2314 static const struct super_operations btrfs_super_ops
= {
2315 .drop_inode
= btrfs_drop_inode
,
2316 .evict_inode
= btrfs_evict_inode
,
2317 .put_super
= btrfs_put_super
,
2318 .sync_fs
= btrfs_sync_fs
,
2319 .show_options
= btrfs_show_options
,
2320 .show_devname
= btrfs_show_devname
,
2321 .write_inode
= btrfs_write_inode
,
2322 .alloc_inode
= btrfs_alloc_inode
,
2323 .destroy_inode
= btrfs_destroy_inode
,
2324 .statfs
= btrfs_statfs
,
2325 .remount_fs
= btrfs_remount
,
2326 .freeze_fs
= btrfs_freeze
,
2327 .unfreeze_fs
= btrfs_unfreeze
,
2330 static const struct file_operations btrfs_ctl_fops
= {
2331 .open
= btrfs_control_open
,
2332 .unlocked_ioctl
= btrfs_control_ioctl
,
2333 .compat_ioctl
= btrfs_control_ioctl
,
2334 .owner
= THIS_MODULE
,
2335 .llseek
= noop_llseek
,
2338 static struct miscdevice btrfs_misc
= {
2339 .minor
= BTRFS_MINOR
,
2340 .name
= "btrfs-control",
2341 .fops
= &btrfs_ctl_fops
2344 MODULE_ALIAS_MISCDEV(BTRFS_MINOR
);
2345 MODULE_ALIAS("devname:btrfs-control");
2347 static int btrfs_interface_init(void)
2349 return misc_register(&btrfs_misc
);
2352 static void btrfs_interface_exit(void)
2354 misc_deregister(&btrfs_misc
);
2357 static void btrfs_print_mod_info(void)
2359 pr_info("Btrfs loaded, crc32c=%s"
2360 #ifdef CONFIG_BTRFS_DEBUG
2363 #ifdef CONFIG_BTRFS_ASSERT
2366 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2367 ", integrity-checker=on"
2370 btrfs_crc32c_impl());
2373 static int __init
init_btrfs_fs(void)
2377 err
= btrfs_hash_init();
2383 err
= btrfs_init_sysfs();
2387 btrfs_init_compress();
2389 err
= btrfs_init_cachep();
2393 err
= extent_io_init();
2397 err
= extent_map_init();
2399 goto free_extent_io
;
2401 err
= ordered_data_init();
2403 goto free_extent_map
;
2405 err
= btrfs_delayed_inode_init();
2407 goto free_ordered_data
;
2409 err
= btrfs_auto_defrag_init();
2411 goto free_delayed_inode
;
2413 err
= btrfs_delayed_ref_init();
2415 goto free_auto_defrag
;
2417 err
= btrfs_prelim_ref_init();
2419 goto free_delayed_ref
;
2421 err
= btrfs_end_io_wq_init();
2423 goto free_prelim_ref
;
2425 err
= btrfs_interface_init();
2427 goto free_end_io_wq
;
2429 btrfs_init_lockdep();
2431 btrfs_print_mod_info();
2433 err
= btrfs_run_sanity_tests();
2435 goto unregister_ioctl
;
2437 err
= register_filesystem(&btrfs_fs_type
);
2439 goto unregister_ioctl
;
2444 btrfs_interface_exit();
2446 btrfs_end_io_wq_exit();
2448 btrfs_prelim_ref_exit();
2450 btrfs_delayed_ref_exit();
2452 btrfs_auto_defrag_exit();
2454 btrfs_delayed_inode_exit();
2456 ordered_data_exit();
2462 btrfs_destroy_cachep();
2464 btrfs_exit_compress();
2471 static void __exit
exit_btrfs_fs(void)
2473 btrfs_destroy_cachep();
2474 btrfs_delayed_ref_exit();
2475 btrfs_auto_defrag_exit();
2476 btrfs_delayed_inode_exit();
2477 btrfs_prelim_ref_exit();
2478 ordered_data_exit();
2481 btrfs_interface_exit();
2482 btrfs_end_io_wq_exit();
2483 unregister_filesystem(&btrfs_fs_type
);
2485 btrfs_cleanup_fs_uuids();
2486 btrfs_exit_compress();
2490 late_initcall(init_btrfs_fs
);
2491 module_exit(exit_btrfs_fs
)
2493 MODULE_LICENSE("GPL");