2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20 #include <linux/kvm_host.h>
21 #include <linux/uaccess.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_host.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_coproc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/cputype.h>
28 #include <trace/events/kvm.h>
30 #include "../vfp/vfpinstr.h"
36 /******************************************************************************
37 * Co-processor emulation
38 *****************************************************************************/
40 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
41 static u32 cache_levels
;
43 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
46 int kvm_handle_cp10_id(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
48 kvm_inject_undefined(vcpu
);
52 int kvm_handle_cp_0_13_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
55 * We can get here, if the host has been built without VFPv3 support,
56 * but the guest attempted a floating point operation.
58 kvm_inject_undefined(vcpu
);
62 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
64 kvm_inject_undefined(vcpu
);
68 int kvm_handle_cp14_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
70 kvm_inject_undefined(vcpu
);
74 /* See note at ARM ARM B1.14.4 */
75 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
76 const struct coproc_params
*p
,
77 const struct coproc_reg
*r
)
83 return read_from_write_only(vcpu
, p
);
87 cpumask_setall(&vcpu
->arch
.require_dcache_flush
);
88 cpumask_clear_cpu(cpu
, &vcpu
->arch
.require_dcache_flush
);
90 /* If we were already preempted, take the long way around */
91 if (cpu
!= vcpu
->arch
.last_pcpu
) {
96 val
= *vcpu_reg(vcpu
, p
->Rt1
);
99 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
100 case 14: /* DCCISW */
101 asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val
));
105 asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val
));
116 * We could trap ID_DFR0 and tell the guest we don't support performance
117 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
118 * NAKed, so it will read the PMCR anyway.
120 * Therefore we tell the guest we have 0 counters. Unfortunately, we
121 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
122 * all PM registers, which doesn't crash the guest kernel at least.
124 static bool pm_fake(struct kvm_vcpu
*vcpu
,
125 const struct coproc_params
*p
,
126 const struct coproc_reg
*r
)
129 return ignore_write(vcpu
, p
);
131 return read_zero(vcpu
, p
);
134 #define access_pmcr pm_fake
135 #define access_pmcntenset pm_fake
136 #define access_pmcntenclr pm_fake
137 #define access_pmovsr pm_fake
138 #define access_pmselr pm_fake
139 #define access_pmceid0 pm_fake
140 #define access_pmceid1 pm_fake
141 #define access_pmccntr pm_fake
142 #define access_pmxevtyper pm_fake
143 #define access_pmxevcntr pm_fake
144 #define access_pmuserenr pm_fake
145 #define access_pmintenset pm_fake
146 #define access_pmintenclr pm_fake
148 /* Architected CP15 registers.
149 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2
151 static const struct coproc_reg cp15_regs
[] = {
152 /* CSSELR: swapped by interrupt.S. */
153 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32
,
154 NULL
, reset_unknown
, c0_CSSELR
},
156 /* TTBR0/TTBR1: swapped by interrupt.S. */
157 { CRm( 2), Op1( 0), is64
, NULL
, reset_unknown64
, c2_TTBR0
},
158 { CRm( 2), Op1( 1), is64
, NULL
, reset_unknown64
, c2_TTBR1
},
160 /* TTBCR: swapped by interrupt.S. */
161 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32
,
162 NULL
, reset_val
, c2_TTBCR
, 0x00000000 },
164 /* DACR: swapped by interrupt.S. */
165 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32
,
166 NULL
, reset_unknown
, c3_DACR
},
168 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
169 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32
,
170 NULL
, reset_unknown
, c5_DFSR
},
171 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32
,
172 NULL
, reset_unknown
, c5_IFSR
},
173 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32
,
174 NULL
, reset_unknown
, c5_ADFSR
},
175 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32
,
176 NULL
, reset_unknown
, c5_AIFSR
},
178 /* DFAR/IFAR: swapped by interrupt.S. */
179 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32
,
180 NULL
, reset_unknown
, c6_DFAR
},
181 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32
,
182 NULL
, reset_unknown
, c6_IFAR
},
184 * DC{C,I,CI}SW operations:
186 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32
, access_dcsw
},
187 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32
, access_dcsw
},
188 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32
, access_dcsw
},
190 * Dummy performance monitor implementation.
192 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32
, access_pmcr
},
193 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32
, access_pmcntenset
},
194 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32
, access_pmcntenclr
},
195 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32
, access_pmovsr
},
196 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32
, access_pmselr
},
197 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32
, access_pmceid0
},
198 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32
, access_pmceid1
},
199 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32
, access_pmccntr
},
200 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32
, access_pmxevtyper
},
201 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32
, access_pmxevcntr
},
202 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32
, access_pmuserenr
},
203 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32
, access_pmintenset
},
204 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32
, access_pmintenclr
},
206 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
207 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32
,
208 NULL
, reset_unknown
, c10_PRRR
},
209 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32
,
210 NULL
, reset_unknown
, c10_NMRR
},
212 /* VBAR: swapped by interrupt.S. */
213 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32
,
214 NULL
, reset_val
, c12_VBAR
, 0x00000000 },
216 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
217 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32
,
218 NULL
, reset_val
, c13_CID
, 0x00000000 },
219 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32
,
220 NULL
, reset_unknown
, c13_TID_URW
},
221 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32
,
222 NULL
, reset_unknown
, c13_TID_URO
},
223 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32
,
224 NULL
, reset_unknown
, c13_TID_PRIV
},
226 /* CNTKCTL: swapped by interrupt.S. */
227 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32
,
228 NULL
, reset_val
, c14_CNTKCTL
, 0x00000000 },
231 /* Target specific emulation tables */
232 static struct kvm_coproc_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
234 void kvm_register_target_coproc_table(struct kvm_coproc_target_table
*table
)
236 target_tables
[table
->target
] = table
;
239 /* Get specific register table for this target. */
240 static const struct coproc_reg
*get_target_table(unsigned target
, size_t *num
)
242 struct kvm_coproc_target_table
*table
;
244 table
= target_tables
[target
];
249 static const struct coproc_reg
*find_reg(const struct coproc_params
*params
,
250 const struct coproc_reg table
[],
255 for (i
= 0; i
< num
; i
++) {
256 const struct coproc_reg
*r
= &table
[i
];
258 if (params
->is_64bit
!= r
->is_64
)
260 if (params
->CRn
!= r
->CRn
)
262 if (params
->CRm
!= r
->CRm
)
264 if (params
->Op1
!= r
->Op1
)
266 if (params
->Op2
!= r
->Op2
)
274 static int emulate_cp15(struct kvm_vcpu
*vcpu
,
275 const struct coproc_params
*params
)
278 const struct coproc_reg
*table
, *r
;
280 trace_kvm_emulate_cp15_imp(params
->Op1
, params
->Rt1
, params
->CRn
,
281 params
->CRm
, params
->Op2
, params
->is_write
);
283 table
= get_target_table(vcpu
->arch
.target
, &num
);
285 /* Search target-specific then generic table. */
286 r
= find_reg(params
, table
, num
);
288 r
= find_reg(params
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
291 /* If we don't have an accessor, we should never get here! */
294 if (likely(r
->access(vcpu
, params
, r
))) {
295 /* Skip instruction, since it was emulated */
296 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
299 /* If access function fails, it should complain. */
301 kvm_err("Unsupported guest CP15 access at: %08lx\n",
303 print_cp_instr(params
);
305 kvm_inject_undefined(vcpu
);
310 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
311 * @vcpu: The VCPU pointer
312 * @run: The kvm_run struct
314 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
316 struct coproc_params params
;
318 params
.CRm
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
319 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
320 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
321 params
.is_64bit
= true;
323 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 16) & 0xf;
325 params
.Rt2
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
328 return emulate_cp15(vcpu
, ¶ms
);
331 static void reset_coproc_regs(struct kvm_vcpu
*vcpu
,
332 const struct coproc_reg
*table
, size_t num
)
336 for (i
= 0; i
< num
; i
++)
338 table
[i
].reset(vcpu
, &table
[i
]);
342 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
343 * @vcpu: The VCPU pointer
344 * @run: The kvm_run struct
346 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
348 struct coproc_params params
;
350 params
.CRm
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
351 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
352 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
353 params
.is_64bit
= false;
355 params
.CRn
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
356 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 14) & 0x7;
357 params
.Op2
= (kvm_vcpu_get_hsr(vcpu
) >> 17) & 0x7;
360 return emulate_cp15(vcpu
, ¶ms
);
363 /******************************************************************************
365 *****************************************************************************/
367 static bool index_to_params(u64 id
, struct coproc_params
*params
)
369 switch (id
& KVM_REG_SIZE_MASK
) {
370 case KVM_REG_SIZE_U32
:
371 /* Any unused index bits means it's not valid. */
372 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
373 | KVM_REG_ARM_COPROC_MASK
374 | KVM_REG_ARM_32_CRN_MASK
375 | KVM_REG_ARM_CRM_MASK
376 | KVM_REG_ARM_OPC1_MASK
377 | KVM_REG_ARM_32_OPC2_MASK
))
380 params
->is_64bit
= false;
381 params
->CRn
= ((id
& KVM_REG_ARM_32_CRN_MASK
)
382 >> KVM_REG_ARM_32_CRN_SHIFT
);
383 params
->CRm
= ((id
& KVM_REG_ARM_CRM_MASK
)
384 >> KVM_REG_ARM_CRM_SHIFT
);
385 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
386 >> KVM_REG_ARM_OPC1_SHIFT
);
387 params
->Op2
= ((id
& KVM_REG_ARM_32_OPC2_MASK
)
388 >> KVM_REG_ARM_32_OPC2_SHIFT
);
390 case KVM_REG_SIZE_U64
:
391 /* Any unused index bits means it's not valid. */
392 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
393 | KVM_REG_ARM_COPROC_MASK
394 | KVM_REG_ARM_CRM_MASK
395 | KVM_REG_ARM_OPC1_MASK
))
397 params
->is_64bit
= true;
398 params
->CRm
= ((id
& KVM_REG_ARM_CRM_MASK
)
399 >> KVM_REG_ARM_CRM_SHIFT
);
400 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
401 >> KVM_REG_ARM_OPC1_SHIFT
);
410 /* Decode an index value, and find the cp15 coproc_reg entry. */
411 static const struct coproc_reg
*index_to_coproc_reg(struct kvm_vcpu
*vcpu
,
415 const struct coproc_reg
*table
, *r
;
416 struct coproc_params params
;
418 /* We only do cp15 for now. */
419 if ((id
& KVM_REG_ARM_COPROC_MASK
) >> KVM_REG_ARM_COPROC_SHIFT
!= 15)
422 if (!index_to_params(id
, ¶ms
))
425 table
= get_target_table(vcpu
->arch
.target
, &num
);
426 r
= find_reg(¶ms
, table
, num
);
428 r
= find_reg(¶ms
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
430 /* Not saved in the cp15 array? */
438 * These are the invariant cp15 registers: we let the guest see the host
439 * versions of these, so they're part of the guest state.
441 * A future CPU may provide a mechanism to present different values to
442 * the guest, or a future kvm may trap them.
444 /* Unfortunately, there's no register-argument for mrc, so generate. */
445 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
446 static void get_##name(struct kvm_vcpu *v, \
447 const struct coproc_reg *r) \
451 asm volatile("mrc p15, " __stringify(op1) \
452 ", %0, c" __stringify(crn) \
453 ", c" __stringify(crm) \
454 ", " __stringify(op2) "\n" : "=r" (val)); \
455 ((struct coproc_reg *)r)->val = val; \
458 FUNCTION_FOR32(0, 0, 0, 0, MIDR
)
459 FUNCTION_FOR32(0, 0, 0, 1, CTR
)
460 FUNCTION_FOR32(0, 0, 0, 2, TCMTR
)
461 FUNCTION_FOR32(0, 0, 0, 3, TLBTR
)
462 FUNCTION_FOR32(0, 0, 0, 6, REVIDR
)
463 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0
)
464 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1
)
465 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0
)
466 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0
)
467 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0
)
468 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1
)
469 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2
)
470 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3
)
471 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0
)
472 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1
)
473 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2
)
474 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3
)
475 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4
)
476 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5
)
477 FUNCTION_FOR32(0, 0, 1, 1, CLIDR
)
478 FUNCTION_FOR32(0, 0, 1, 7, AIDR
)
480 /* ->val is filled in by kvm_invariant_coproc_table_init() */
481 static struct coproc_reg invariant_cp15
[] = {
482 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32
, NULL
, get_MIDR
},
483 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32
, NULL
, get_CTR
},
484 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32
, NULL
, get_TCMTR
},
485 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32
, NULL
, get_TLBTR
},
486 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32
, NULL
, get_REVIDR
},
488 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32
, NULL
, get_ID_PFR0
},
489 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32
, NULL
, get_ID_PFR1
},
490 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32
, NULL
, get_ID_DFR0
},
491 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32
, NULL
, get_ID_AFR0
},
492 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32
, NULL
, get_ID_MMFR0
},
493 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32
, NULL
, get_ID_MMFR1
},
494 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32
, NULL
, get_ID_MMFR2
},
495 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32
, NULL
, get_ID_MMFR3
},
497 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32
, NULL
, get_ID_ISAR0
},
498 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32
, NULL
, get_ID_ISAR1
},
499 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32
, NULL
, get_ID_ISAR2
},
500 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32
, NULL
, get_ID_ISAR3
},
501 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32
, NULL
, get_ID_ISAR4
},
502 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32
, NULL
, get_ID_ISAR5
},
504 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32
, NULL
, get_CLIDR
},
505 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32
, NULL
, get_AIDR
},
508 static int reg_from_user(void *val
, const void __user
*uaddr
, u64 id
)
510 /* This Just Works because we are little endian. */
511 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
516 static int reg_to_user(void __user
*uaddr
, const void *val
, u64 id
)
518 /* This Just Works because we are little endian. */
519 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
524 static int get_invariant_cp15(u64 id
, void __user
*uaddr
)
526 struct coproc_params params
;
527 const struct coproc_reg
*r
;
529 if (!index_to_params(id
, ¶ms
))
532 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
536 return reg_to_user(uaddr
, &r
->val
, id
);
539 static int set_invariant_cp15(u64 id
, void __user
*uaddr
)
541 struct coproc_params params
;
542 const struct coproc_reg
*r
;
544 u64 val
= 0; /* Make sure high bits are 0 for 32-bit regs */
546 if (!index_to_params(id
, ¶ms
))
548 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
552 err
= reg_from_user(&val
, uaddr
, id
);
556 /* This is what we mean by invariant: you can't change it. */
563 static bool is_valid_cache(u32 val
)
567 if (val
>= CSSELR_MAX
)
570 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
572 ctype
= (cache_levels
>> (level
* 3)) & 7;
575 case 0: /* No cache */
577 case 1: /* Instruction cache only */
579 case 2: /* Data cache only */
580 case 4: /* Unified cache */
582 case 3: /* Separate instruction and data caches */
584 default: /* Reserved: we can't know instruction or data. */
589 /* Which cache CCSIDR represents depends on CSSELR value. */
590 static u32
get_ccsidr(u32 csselr
)
594 /* Make sure noone else changes CSSELR during this! */
596 /* Put value into CSSELR */
597 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr
));
599 /* Read result out of CCSIDR */
600 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr
));
606 static int demux_c15_get(u64 id
, void __user
*uaddr
)
609 u32 __user
*uval
= uaddr
;
611 /* Fail if we have unknown bits set. */
612 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
613 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
616 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
617 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
618 if (KVM_REG_SIZE(id
) != 4)
620 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
621 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
622 if (!is_valid_cache(val
))
625 return put_user(get_ccsidr(val
), uval
);
631 static int demux_c15_set(u64 id
, void __user
*uaddr
)
634 u32 __user
*uval
= uaddr
;
636 /* Fail if we have unknown bits set. */
637 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
638 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
641 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
642 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
643 if (KVM_REG_SIZE(id
) != 4)
645 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
646 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
647 if (!is_valid_cache(val
))
650 if (get_user(newval
, uval
))
653 /* This is also invariant: you can't change it. */
654 if (newval
!= get_ccsidr(val
))
663 static const int vfp_sysregs
[] = { KVM_REG_ARM_VFP_FPEXC
,
664 KVM_REG_ARM_VFP_FPSCR
,
665 KVM_REG_ARM_VFP_FPINST
,
666 KVM_REG_ARM_VFP_FPINST2
,
667 KVM_REG_ARM_VFP_MVFR0
,
668 KVM_REG_ARM_VFP_MVFR1
,
669 KVM_REG_ARM_VFP_FPSID
};
671 static unsigned int num_fp_regs(void)
673 if (((fmrx(MVFR0
) & MVFR0_A_SIMD_MASK
) >> MVFR0_A_SIMD_BIT
) == 2)
679 static unsigned int num_vfp_regs(void)
681 /* Normal FP regs + control regs. */
682 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs
);
685 static int copy_vfp_regids(u64 __user
*uindices
)
688 const u64 u32reg
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
;
689 const u64 u64reg
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
691 for (i
= 0; i
< num_fp_regs(); i
++) {
692 if (put_user((u64reg
| KVM_REG_ARM_VFP_BASE_REG
) + i
,
698 for (i
= 0; i
< ARRAY_SIZE(vfp_sysregs
); i
++) {
699 if (put_user(u32reg
| vfp_sysregs
[i
], uindices
))
704 return num_vfp_regs();
707 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
709 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
712 /* Fail if we have unknown bits set. */
713 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
714 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
717 if (vfpid
< num_fp_regs()) {
718 if (KVM_REG_SIZE(id
) != 8)
720 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpregs
[vfpid
],
724 /* FP control registers are all 32 bit. */
725 if (KVM_REG_SIZE(id
) != 4)
729 case KVM_REG_ARM_VFP_FPEXC
:
730 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpexc
, id
);
731 case KVM_REG_ARM_VFP_FPSCR
:
732 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpscr
, id
);
733 case KVM_REG_ARM_VFP_FPINST
:
734 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpinst
, id
);
735 case KVM_REG_ARM_VFP_FPINST2
:
736 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpinst2
, id
);
737 case KVM_REG_ARM_VFP_MVFR0
:
739 return reg_to_user(uaddr
, &val
, id
);
740 case KVM_REG_ARM_VFP_MVFR1
:
742 return reg_to_user(uaddr
, &val
, id
);
743 case KVM_REG_ARM_VFP_FPSID
:
745 return reg_to_user(uaddr
, &val
, id
);
751 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
753 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
756 /* Fail if we have unknown bits set. */
757 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
758 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
761 if (vfpid
< num_fp_regs()) {
762 if (KVM_REG_SIZE(id
) != 8)
764 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpregs
[vfpid
],
768 /* FP control registers are all 32 bit. */
769 if (KVM_REG_SIZE(id
) != 4)
773 case KVM_REG_ARM_VFP_FPEXC
:
774 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpexc
, uaddr
, id
);
775 case KVM_REG_ARM_VFP_FPSCR
:
776 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpscr
, uaddr
, id
);
777 case KVM_REG_ARM_VFP_FPINST
:
778 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpinst
, uaddr
, id
);
779 case KVM_REG_ARM_VFP_FPINST2
:
780 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpinst2
, uaddr
, id
);
781 /* These are invariant. */
782 case KVM_REG_ARM_VFP_MVFR0
:
783 if (reg_from_user(&val
, uaddr
, id
))
785 if (val
!= fmrx(MVFR0
))
788 case KVM_REG_ARM_VFP_MVFR1
:
789 if (reg_from_user(&val
, uaddr
, id
))
791 if (val
!= fmrx(MVFR1
))
794 case KVM_REG_ARM_VFP_FPSID
:
795 if (reg_from_user(&val
, uaddr
, id
))
797 if (val
!= fmrx(FPSID
))
804 #else /* !CONFIG_VFPv3 */
805 static unsigned int num_vfp_regs(void)
810 static int copy_vfp_regids(u64 __user
*uindices
)
815 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
820 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
824 #endif /* !CONFIG_VFPv3 */
826 int kvm_arm_coproc_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
828 const struct coproc_reg
*r
;
829 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
831 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
832 return demux_c15_get(reg
->id
, uaddr
);
834 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
835 return vfp_get_reg(vcpu
, reg
->id
, uaddr
);
837 r
= index_to_coproc_reg(vcpu
, reg
->id
);
839 return get_invariant_cp15(reg
->id
, uaddr
);
841 /* Note: copies two regs if size is 64 bit. */
842 return reg_to_user(uaddr
, &vcpu
->arch
.cp15
[r
->reg
], reg
->id
);
845 int kvm_arm_coproc_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
847 const struct coproc_reg
*r
;
848 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
850 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
851 return demux_c15_set(reg
->id
, uaddr
);
853 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
854 return vfp_set_reg(vcpu
, reg
->id
, uaddr
);
856 r
= index_to_coproc_reg(vcpu
, reg
->id
);
858 return set_invariant_cp15(reg
->id
, uaddr
);
860 /* Note: copies two regs if size is 64 bit */
861 return reg_from_user(&vcpu
->arch
.cp15
[r
->reg
], uaddr
, reg
->id
);
864 static unsigned int num_demux_regs(void)
866 unsigned int i
, count
= 0;
868 for (i
= 0; i
< CSSELR_MAX
; i
++)
869 if (is_valid_cache(i
))
875 static int write_demux_regids(u64 __user
*uindices
)
877 u64 val
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
880 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
881 for (i
= 0; i
< CSSELR_MAX
; i
++) {
882 if (!is_valid_cache(i
))
884 if (put_user(val
| i
, uindices
))
891 static u64
cp15_to_index(const struct coproc_reg
*reg
)
893 u64 val
= KVM_REG_ARM
| (15 << KVM_REG_ARM_COPROC_SHIFT
);
895 val
|= KVM_REG_SIZE_U64
;
896 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
897 val
|= (reg
->CRm
<< KVM_REG_ARM_CRM_SHIFT
);
899 val
|= KVM_REG_SIZE_U32
;
900 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
901 val
|= (reg
->Op2
<< KVM_REG_ARM_32_OPC2_SHIFT
);
902 val
|= (reg
->CRm
<< KVM_REG_ARM_CRM_SHIFT
);
903 val
|= (reg
->CRn
<< KVM_REG_ARM_32_CRN_SHIFT
);
908 static bool copy_reg_to_user(const struct coproc_reg
*reg
, u64 __user
**uind
)
913 if (put_user(cp15_to_index(reg
), *uind
))
920 /* Assumed ordered tables, see kvm_coproc_table_init. */
921 static int walk_cp15(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
923 const struct coproc_reg
*i1
, *i2
, *end1
, *end2
;
924 unsigned int total
= 0;
927 /* We check for duplicates here, to allow arch-specific overrides. */
928 i1
= get_target_table(vcpu
->arch
.target
, &num
);
931 end2
= cp15_regs
+ ARRAY_SIZE(cp15_regs
);
933 BUG_ON(i1
== end1
|| i2
== end2
);
935 /* Walk carefully, as both tables may refer to the same register. */
937 int cmp
= cmp_reg(i1
, i2
);
938 /* target-specific overrides generic entry. */
940 /* Ignore registers we trap but don't save. */
942 if (!copy_reg_to_user(i1
, &uind
))
947 /* Ignore registers we trap but don't save. */
949 if (!copy_reg_to_user(i2
, &uind
))
955 if (cmp
<= 0 && ++i1
== end1
)
957 if (cmp
>= 0 && ++i2
== end2
)
963 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu
*vcpu
)
965 return ARRAY_SIZE(invariant_cp15
)
968 + walk_cp15(vcpu
, (u64 __user
*)NULL
);
971 int kvm_arm_copy_coproc_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
976 /* Then give them all the invariant registers' indices. */
977 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++) {
978 if (put_user(cp15_to_index(&invariant_cp15
[i
]), uindices
))
983 err
= walk_cp15(vcpu
, uindices
);
988 err
= copy_vfp_regids(uindices
);
993 return write_demux_regids(uindices
);
996 void kvm_coproc_table_init(void)
1000 /* Make sure tables are unique and in order. */
1001 for (i
= 1; i
< ARRAY_SIZE(cp15_regs
); i
++)
1002 BUG_ON(cmp_reg(&cp15_regs
[i
-1], &cp15_regs
[i
]) >= 0);
1004 /* We abuse the reset function to overwrite the table itself. */
1005 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++)
1006 invariant_cp15
[i
].reset(NULL
, &invariant_cp15
[i
]);
1009 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1011 * If software reads the Cache Type fields from Ctype1
1012 * upwards, once it has seen a value of 0b000, no caches
1013 * exist at further-out levels of the hierarchy. So, for
1014 * example, if Ctype3 is the first Cache Type field with a
1015 * value of 0b000, the values of Ctype4 to Ctype7 must be
1018 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels
));
1019 for (i
= 0; i
< 7; i
++)
1020 if (((cache_levels
>> (i
*3)) & 7) == 0)
1022 /* Clear all higher bits. */
1023 cache_levels
&= (1 << (i
*3))-1;
1027 * kvm_reset_coprocs - sets cp15 registers to reset value
1028 * @vcpu: The VCPU pointer
1030 * This function finds the right table above and sets the registers on the
1031 * virtual CPU struct to their architecturally defined reset values.
1033 void kvm_reset_coprocs(struct kvm_vcpu
*vcpu
)
1036 const struct coproc_reg
*table
;
1038 /* Catch someone adding a register without putting in reset entry. */
1039 memset(vcpu
->arch
.cp15
, 0x42, sizeof(vcpu
->arch
.cp15
));
1041 /* Generic chip reset first (so target could override). */
1042 reset_coproc_regs(vcpu
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
1044 table
= get_target_table(vcpu
->arch
.target
, &num
);
1045 reset_coproc_regs(vcpu
, table
, num
);
1047 for (num
= 1; num
< NR_CP15_REGS
; num
++)
1048 if (vcpu
->arch
.cp15
[num
] == 0x42424242)
1049 panic("Didn't reset vcpu->arch.cp15[%zi]", num
);