2 * Copyright (C) 2009,2010,2011 Imagination Technologies Ltd.
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/atomic.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/bootmem.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cachepart.h>
29 #include <asm/core_reg.h>
31 #include <asm/global_lock.h>
32 #include <asm/metag_mem.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgtable.h>
35 #include <asm/pgalloc.h>
36 #include <asm/processor.h>
37 #include <asm/setup.h>
38 #include <asm/tlbflush.h>
39 #include <asm/hwthread.h>
40 #include <asm/traps.h>
42 #define SYSC_DCPART(n) (SYSC_DCPART0 + SYSC_xCPARTn_STRIDE * (n))
43 #define SYSC_ICPART(n) (SYSC_ICPART0 + SYSC_xCPARTn_STRIDE * (n))
45 DECLARE_PER_CPU(PTBI
, pTBI
);
47 void *secondary_data_stack
;
50 * structures for inter-processor calls
51 * - A collection of single bit ipi messages.
55 unsigned long ipi_count
;
59 static DEFINE_PER_CPU(struct ipi_data
, ipi_data
) = {
60 .lock
= __SPIN_LOCK_UNLOCKED(ipi_data
.lock
),
63 static DEFINE_SPINLOCK(boot_lock
);
66 * "thread" is assumed to be a valid Meta hardware thread ID.
68 int __cpuinit
boot_secondary(unsigned int thread
, struct task_struct
*idle
)
73 * set synchronisation state between this boot processor
74 * and the secondary one
76 spin_lock(&boot_lock
);
78 core_reg_write(TXUPC_ID
, 0, thread
, (unsigned int)secondary_startup
);
79 core_reg_write(TXUPC_ID
, 1, thread
, 0);
82 * Give the thread privilege (PSTAT) and clear potentially problematic
83 * bits in the process (namely ISTAT, CBMarker, CBMarkerI, LSM_STEP).
85 core_reg_write(TXUCT_ID
, TXSTATUS_REGNUM
, thread
, TXSTATUS_PSTAT_BIT
);
87 /* Clear the minim enable bit. */
88 val
= core_reg_read(TXUCT_ID
, TXPRIVEXT_REGNUM
, thread
);
89 core_reg_write(TXUCT_ID
, TXPRIVEXT_REGNUM
, thread
, val
& ~0x80);
92 * set the ThreadEnable bit (0x1) in the TXENABLE register
93 * for the specified thread - off it goes!
95 val
= core_reg_read(TXUCT_ID
, TXENABLE_REGNUM
, thread
);
96 core_reg_write(TXUCT_ID
, TXENABLE_REGNUM
, thread
, val
| 0x1);
99 * now the secondary core is starting up let it run its
100 * calibrations, then wait for it to finish
102 spin_unlock(&boot_lock
);
108 * describe_cachepart_change: describe a change to cache partitions.
109 * @thread: Hardware thread number.
110 * @label: Label of cache type, e.g. "dcache" or "icache".
111 * @sz: Total size of the cache.
112 * @old: Old cache partition configuration (*CPART* register).
113 * @new: New cache partition configuration (*CPART* register).
115 * If the cache partition has changed, prints a message to the log describing
118 static __cpuinit
void describe_cachepart_change(unsigned int thread
,
124 unsigned int lor1
, land1
, gor1
, gand1
;
125 unsigned int lor2
, land2
, gor2
, gand2
;
126 unsigned int diff
= old
^ new;
131 pr_info("Thread %d: %s partition changed:", thread
, label
);
132 if (diff
& (SYSC_xCPARTL_OR_BITS
| SYSC_xCPARTL_AND_BITS
)) {
133 lor1
= (old
& SYSC_xCPARTL_OR_BITS
) >> SYSC_xCPARTL_OR_S
;
134 lor2
= (new & SYSC_xCPARTL_OR_BITS
) >> SYSC_xCPARTL_OR_S
;
135 land1
= (old
& SYSC_xCPARTL_AND_BITS
) >> SYSC_xCPARTL_AND_S
;
136 land2
= (new & SYSC_xCPARTL_AND_BITS
) >> SYSC_xCPARTL_AND_S
;
137 pr_cont(" L:%#x+%#x->%#x+%#x",
139 ((land1
+ 1) * sz
) >> 4,
141 ((land2
+ 1) * sz
) >> 4);
143 if (diff
& (SYSC_xCPARTG_OR_BITS
| SYSC_xCPARTG_AND_BITS
)) {
144 gor1
= (old
& SYSC_xCPARTG_OR_BITS
) >> SYSC_xCPARTG_OR_S
;
145 gor2
= (new & SYSC_xCPARTG_OR_BITS
) >> SYSC_xCPARTG_OR_S
;
146 gand1
= (old
& SYSC_xCPARTG_AND_BITS
) >> SYSC_xCPARTG_AND_S
;
147 gand2
= (new & SYSC_xCPARTG_AND_BITS
) >> SYSC_xCPARTG_AND_S
;
148 pr_cont(" G:%#x+%#x->%#x+%#x",
150 ((gand1
+ 1) * sz
) >> 4,
152 ((gand2
+ 1) * sz
) >> 4);
154 if (diff
& SYSC_CWRMODE_BIT
)
156 (new & SYSC_CWRMODE_BIT
) ? "+" : "-");
157 if (diff
& SYSC_DCPART_GCON_BIT
)
159 (new & SYSC_DCPART_GCON_BIT
) ? "+" : "-");
164 * setup_smp_cache: ensure cache coherency for new SMP thread.
165 * @thread: New hardware thread number.
167 * Ensures that coherency is enabled and that the threads share the same cache
170 static __cpuinit
void setup_smp_cache(unsigned int thread
)
172 unsigned int this_thread
, lflags
;
173 unsigned int dcsz
, dcpart_this
, dcpart_old
, dcpart_new
;
174 unsigned int icsz
, icpart_old
, icpart_new
;
177 * Copy over the current thread's cache partition configuration to the
178 * new thread so that they share cache partitions.
180 __global_lock2(lflags
);
181 this_thread
= hard_processor_id();
182 /* Share dcache partition */
183 dcpart_this
= metag_in32(SYSC_DCPART(this_thread
));
184 dcpart_old
= metag_in32(SYSC_DCPART(thread
));
185 dcpart_new
= dcpart_this
;
186 #if PAGE_OFFSET < LINGLOBAL_BASE
188 * For the local data cache to be coherent the threads must also have
191 dcpart_new
|= SYSC_DCPART_GCON_BIT
;
192 metag_out32(dcpart_new
, SYSC_DCPART(this_thread
));
194 metag_out32(dcpart_new
, SYSC_DCPART(thread
));
195 /* Share icache partition too */
196 icpart_new
= metag_in32(SYSC_ICPART(this_thread
));
197 icpart_old
= metag_in32(SYSC_ICPART(thread
));
198 metag_out32(icpart_new
, SYSC_ICPART(thread
));
199 __global_unlock2(lflags
);
202 * Log if the cache partitions were altered so the user is aware of any
203 * potential unintentional cache wastage.
205 dcsz
= get_dcache_size();
206 icsz
= get_dcache_size();
207 describe_cachepart_change(this_thread
, "dcache", dcsz
,
208 dcpart_this
, dcpart_new
);
209 describe_cachepart_change(thread
, "dcache", dcsz
,
210 dcpart_old
, dcpart_new
);
211 describe_cachepart_change(thread
, "icache", icsz
,
212 icpart_old
, icpart_new
);
215 int __cpuinit
__cpu_up(unsigned int cpu
, struct task_struct
*idle
)
217 unsigned int thread
= cpu_2_hwthread_id
[cpu
];
220 load_pgd(swapper_pg_dir
, thread
);
224 setup_smp_cache(thread
);
227 * Tell the secondary CPU where to find its idle thread's stack.
229 secondary_data_stack
= task_stack_page(idle
);
234 * Now bring the CPU into our world.
236 ret
= boot_secondary(thread
, idle
);
238 unsigned long timeout
;
241 * CPU was successfully started, wait for it
242 * to come online or time out.
244 timeout
= jiffies
+ HZ
;
245 while (time_before(jiffies
, timeout
)) {
253 if (!cpu_online(cpu
))
257 secondary_data_stack
= NULL
;
260 pr_crit("CPU%u: processor failed to boot\n", cpu
);
263 * FIXME: We need to clean up the new idle thread. --rmk
270 #ifdef CONFIG_HOTPLUG_CPU
271 static DECLARE_COMPLETION(cpu_killed
);
274 * __cpu_disable runs on the processor to be shutdown.
276 int __cpuexit
__cpu_disable(void)
278 unsigned int cpu
= smp_processor_id();
279 struct task_struct
*p
;
282 * Take this CPU offline. Once we clear this, we can't return,
283 * and we must not schedule until we're ready to give up the cpu.
285 set_cpu_online(cpu
, false);
288 * OK - migrate IRQs away from this CPU
293 * Flush user cache and TLB mappings, and then remove this CPU
294 * from the vm mask set of all processes.
297 local_flush_tlb_all();
299 read_lock(&tasklist_lock
);
300 for_each_process(p
) {
302 cpumask_clear_cpu(cpu
, mm_cpumask(p
->mm
));
304 read_unlock(&tasklist_lock
);
310 * called on the thread which is asking for a CPU to be shutdown -
311 * waits until shutdown has completed, or it is timed out.
313 void __cpuexit
__cpu_die(unsigned int cpu
)
315 if (!wait_for_completion_timeout(&cpu_killed
, msecs_to_jiffies(1)))
316 pr_err("CPU%u: unable to kill\n", cpu
);
320 * Called from the idle thread for the CPU which has been shutdown.
322 * Note that we do not return from this function. If this cpu is
323 * brought online again it will need to run secondary_startup().
325 void __cpuexit
cpu_die(void)
330 complete(&cpu_killed
);
332 asm ("XOR TXENABLE, D0Re0,D0Re0\n");
334 #endif /* CONFIG_HOTPLUG_CPU */
337 * Called by both boot and secondaries to move global data into
338 * per-processor storage.
340 void __cpuinit
smp_store_cpu_info(unsigned int cpuid
)
342 struct cpuinfo_metag
*cpu_info
= &per_cpu(cpu_data
, cpuid
);
344 cpu_info
->loops_per_jiffy
= loops_per_jiffy
;
348 * This is the secondary CPU boot entry. We're using this CPUs
349 * idle thread stack and the global page tables.
351 asmlinkage
void secondary_start_kernel(void)
353 struct mm_struct
*mm
= &init_mm
;
354 unsigned int cpu
= smp_processor_id();
357 * All kernel threads share the same mm context; grab a
358 * reference and switch to it.
360 atomic_inc(&mm
->mm_users
);
361 atomic_inc(&mm
->mm_count
);
362 current
->active_mm
= mm
;
363 cpumask_set_cpu(cpu
, mm_cpumask(mm
));
364 enter_lazy_tlb(mm
, current
);
365 local_flush_tlb_all();
368 * TODO: Some day it might be useful for each Linux CPU to
369 * have its own TBI structure. That would allow each Linux CPU
370 * to run different interrupt handlers for the same IRQ
373 * For now, simply copying the pointer to the boot CPU's TBI
374 * structure is sufficient because we always want to run the
375 * same interrupt handler whatever CPU takes the interrupt.
377 per_cpu(pTBI
, cpu
) = __TBI(TBID_ISTAT_BIT
);
379 if (!per_cpu(pTBI
, cpu
))
380 panic("No TBI found!");
382 per_cpu_trap_init(cpu
);
389 * Enable local interrupts.
391 tbi_startup_interrupt(TBID_SIGNUM_TRT
);
392 notify_cpu_starting(cpu
);
395 pr_info("CPU%u (thread %u): Booted secondary processor\n",
396 cpu
, cpu_2_hwthread_id
[cpu
]);
399 smp_store_cpu_info(cpu
);
402 * OK, now it's safe to let the boot CPU continue
404 set_cpu_online(cpu
, true);
407 * Check for cache aliasing.
408 * Preemption is disabled
410 check_for_cache_aliasing(cpu
);
413 * OK, it's off to the idle thread for us
415 cpu_startup_entry(CPUHP_ONLINE
);
418 void __init
smp_cpus_done(unsigned int max_cpus
)
421 unsigned long bogosum
= 0;
423 for_each_online_cpu(cpu
)
424 bogosum
+= per_cpu(cpu_data
, cpu
).loops_per_jiffy
;
426 pr_info("SMP: Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
428 bogosum
/ (500000/HZ
),
429 (bogosum
/ (5000/HZ
)) % 100);
432 void __init
smp_prepare_cpus(unsigned int max_cpus
)
434 unsigned int cpu
= smp_processor_id();
436 init_new_context(current
, &init_mm
);
437 current_thread_info()->cpu
= cpu
;
439 smp_store_cpu_info(cpu
);
440 init_cpu_present(cpu_possible_mask
);
443 void __init
smp_prepare_boot_cpu(void)
445 unsigned int cpu
= smp_processor_id();
447 per_cpu(pTBI
, cpu
) = __TBI(TBID_ISTAT_BIT
);
449 if (!per_cpu(pTBI
, cpu
))
450 panic("No TBI found!");
453 static void smp_cross_call(cpumask_t callmap
, enum ipi_msg_type msg
);
455 static void send_ipi_message(const struct cpumask
*mask
, enum ipi_msg_type msg
)
462 local_irq_save(flags
);
464 for_each_cpu(cpu
, mask
) {
465 struct ipi_data
*ipi
= &per_cpu(ipi_data
, cpu
);
467 spin_lock(&ipi
->lock
);
470 * KICK interrupts are queued in hardware so we'll get
471 * multiple interrupts if we call smp_cross_call()
472 * multiple times for one msg. The problem is that we
473 * only have one bit for each message - we can't queue
476 * The first time through ipi_handler() we'll clear
477 * the msg bit, having done all the work. But when we
478 * return we'll get _another_ interrupt (and another,
479 * and another until we've handled all the queued
480 * KICKs). Running ipi_handler() when there's no work
481 * to do is bad because that's how kick handler
482 * chaining detects who the KICK was intended for.
483 * See arch/metag/kernel/kick.c for more details.
485 * So only add 'cpu' to 'map' if we haven't already
486 * queued a KICK interrupt for 'msg'.
488 if (!(ipi
->bits
& (1 << msg
))) {
489 ipi
->bits
|= 1 << msg
;
490 cpumask_set_cpu(cpu
, &map
);
493 spin_unlock(&ipi
->lock
);
497 * Call the platform specific cross-CPU call function.
499 smp_cross_call(map
, msg
);
501 local_irq_restore(flags
);
504 void arch_send_call_function_ipi_mask(const struct cpumask
*mask
)
506 send_ipi_message(mask
, IPI_CALL_FUNC
);
509 void arch_send_call_function_single_ipi(int cpu
)
511 send_ipi_message(cpumask_of(cpu
), IPI_CALL_FUNC_SINGLE
);
514 void show_ipi_list(struct seq_file
*p
)
520 for_each_present_cpu(cpu
)
521 seq_printf(p
, " %10lu", per_cpu(ipi_data
, cpu
).ipi_count
);
526 static DEFINE_SPINLOCK(stop_lock
);
529 * Main handler for inter-processor interrupts
531 * For Meta, the ipimask now only identifies a single
532 * category of IPI (Bit 1 IPIs have been replaced by a
533 * different mechanism):
535 * Bit 0 - Inter-processor function call
537 static int do_IPI(struct pt_regs
*regs
)
539 unsigned int cpu
= smp_processor_id();
540 struct ipi_data
*ipi
= &per_cpu(ipi_data
, cpu
);
541 struct pt_regs
*old_regs
= set_irq_regs(regs
);
542 unsigned long msgs
, nextmsg
;
547 spin_lock(&ipi
->lock
);
549 nextmsg
= msgs
& -msgs
;
550 ipi
->bits
&= ~nextmsg
;
551 spin_unlock(&ipi
->lock
);
556 nextmsg
= ffz(~nextmsg
);
563 generic_smp_call_function_interrupt();
566 case IPI_CALL_FUNC_SINGLE
:
567 generic_smp_call_function_single_interrupt();
571 pr_crit("CPU%u: Unknown IPI message 0x%lx\n",
577 set_irq_regs(old_regs
);
582 void smp_send_reschedule(int cpu
)
584 send_ipi_message(cpumask_of(cpu
), IPI_RESCHEDULE
);
587 static void stop_this_cpu(void *data
)
589 unsigned int cpu
= smp_processor_id();
591 if (system_state
== SYSTEM_BOOTING
||
592 system_state
== SYSTEM_RUNNING
) {
593 spin_lock(&stop_lock
);
594 pr_crit("CPU%u: stopping\n", cpu
);
596 spin_unlock(&stop_lock
);
599 set_cpu_online(cpu
, false);
603 hard_processor_halt(HALT_OK
);
606 void smp_send_stop(void)
608 smp_call_function(stop_this_cpu
, NULL
, 0);
614 int setup_profiling_timer(unsigned int multiplier
)
620 * We use KICKs for inter-processor interrupts.
622 * For every CPU in "callmap" the IPI data must already have been
623 * stored in that CPU's "ipi_data" member prior to calling this
626 static void kick_raise_softirq(cpumask_t callmap
, unsigned int irq
)
630 for_each_cpu(cpu
, &callmap
) {
633 thread
= cpu_2_hwthread_id
[cpu
];
635 BUG_ON(thread
== BAD_HWTHREAD_ID
);
637 metag_out32(1, T0KICKI
+ (thread
* TnXKICK_STRIDE
));
641 static TBIRES
ipi_handler(TBIRES State
, int SigNum
, int Triggers
,
642 int Inst
, PTBI pTBI
, int *handled
)
644 *handled
= do_IPI((struct pt_regs
*)State
.Sig
.pCtx
);
649 static struct kick_irq_handler ipi_irq
= {
653 static void smp_cross_call(cpumask_t callmap
, enum ipi_msg_type msg
)
655 kick_raise_softirq(callmap
, 1);
658 static inline unsigned int get_core_count(void)
661 unsigned int ret
= 0;
663 for (i
= 0; i
< CONFIG_NR_CPUS
; i
++) {
664 if (core_reg_read(TXUCT_ID
, TXENABLE_REGNUM
, i
))
672 * Initialise the CPU possible map early - this describes the CPUs
673 * which may be present or become present in the system.
675 void __init
smp_init_cpus(void)
677 unsigned int i
, ncores
= get_core_count();
679 /* If no hwthread_map early param was set use default mapping */
680 for (i
= 0; i
< NR_CPUS
; i
++)
681 if (cpu_2_hwthread_id
[i
] == BAD_HWTHREAD_ID
) {
682 cpu_2_hwthread_id
[i
] = i
;
683 hwthread_id_2_cpu
[i
] = i
;
686 for (i
= 0; i
< ncores
; i
++)
687 set_cpu_possible(i
, true);
689 kick_register_func(&ipi_irq
);