IB/srp: Let srp_abort() return FAST_IO_FAIL if TL offline
[linux/fpc-iii.git] / arch / powerpc / platforms / pseries / eeh_cache.c
blob5a4c87903057f46c6bfb7466ca87fdbc653cb1c0
1 /*
2 * PCI address cache; allows the lookup of PCI devices based on I/O address
4 * Copyright IBM Corporation 2004
5 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/rbtree.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/atomic.h>
28 #include <asm/pci-bridge.h>
29 #include <asm/ppc-pci.h>
32 /**
33 * The pci address cache subsystem. This subsystem places
34 * PCI device address resources into a red-black tree, sorted
35 * according to the address range, so that given only an i/o
36 * address, the corresponding PCI device can be **quickly**
37 * found. It is safe to perform an address lookup in an interrupt
38 * context; this ability is an important feature.
40 * Currently, the only customer of this code is the EEH subsystem;
41 * thus, this code has been somewhat tailored to suit EEH better.
42 * In particular, the cache does *not* hold the addresses of devices
43 * for which EEH is not enabled.
45 * (Implementation Note: The RB tree seems to be better/faster
46 * than any hash algo I could think of for this problem, even
47 * with the penalty of slow pointer chases for d-cache misses).
49 struct pci_io_addr_range {
50 struct rb_node rb_node;
51 unsigned long addr_lo;
52 unsigned long addr_hi;
53 struct eeh_dev *edev;
54 struct pci_dev *pcidev;
55 unsigned int flags;
58 static struct pci_io_addr_cache {
59 struct rb_root rb_root;
60 spinlock_t piar_lock;
61 } pci_io_addr_cache_root;
63 static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
65 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
67 while (n) {
68 struct pci_io_addr_range *piar;
69 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
71 if (addr < piar->addr_lo) {
72 n = n->rb_left;
73 } else {
74 if (addr > piar->addr_hi) {
75 n = n->rb_right;
76 } else {
77 pci_dev_get(piar->pcidev);
78 return piar->edev;
83 return NULL;
86 /**
87 * eeh_addr_cache_get_dev - Get device, given only address
88 * @addr: mmio (PIO) phys address or i/o port number
90 * Given an mmio phys address, or a port number, find a pci device
91 * that implements this address. Be sure to pci_dev_put the device
92 * when finished. I/O port numbers are assumed to be offset
93 * from zero (that is, they do *not* have pci_io_addr added in).
94 * It is safe to call this function within an interrupt.
96 struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
98 struct eeh_dev *edev;
99 unsigned long flags;
101 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
102 edev = __eeh_addr_cache_get_device(addr);
103 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
104 return edev;
107 #ifdef DEBUG
109 * Handy-dandy debug print routine, does nothing more
110 * than print out the contents of our addr cache.
112 static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
114 struct rb_node *n;
115 int cnt = 0;
117 n = rb_first(&cache->rb_root);
118 while (n) {
119 struct pci_io_addr_range *piar;
120 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
121 pr_debug("PCI: %s addr range %d [%lx-%lx]: %s\n",
122 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
123 piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
124 cnt++;
125 n = rb_next(n);
128 #endif
130 /* Insert address range into the rb tree. */
131 static struct pci_io_addr_range *
132 eeh_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
133 unsigned long ahi, unsigned int flags)
135 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
136 struct rb_node *parent = NULL;
137 struct pci_io_addr_range *piar;
139 /* Walk tree, find a place to insert into tree */
140 while (*p) {
141 parent = *p;
142 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
143 if (ahi < piar->addr_lo) {
144 p = &parent->rb_left;
145 } else if (alo > piar->addr_hi) {
146 p = &parent->rb_right;
147 } else {
148 if (dev != piar->pcidev ||
149 alo != piar->addr_lo || ahi != piar->addr_hi) {
150 pr_warning("PIAR: overlapping address range\n");
152 return piar;
155 piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
156 if (!piar)
157 return NULL;
159 pci_dev_get(dev);
160 piar->addr_lo = alo;
161 piar->addr_hi = ahi;
162 piar->edev = pci_dev_to_eeh_dev(dev);
163 piar->pcidev = dev;
164 piar->flags = flags;
166 #ifdef DEBUG
167 pr_debug("PIAR: insert range=[%lx:%lx] dev=%s\n",
168 alo, ahi, pci_name(dev));
169 #endif
171 rb_link_node(&piar->rb_node, parent, p);
172 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
174 return piar;
177 static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
179 struct device_node *dn;
180 struct eeh_dev *edev;
181 int i;
183 dn = pci_device_to_OF_node(dev);
184 if (!dn) {
185 pr_warning("PCI: no pci dn found for dev=%s\n", pci_name(dev));
186 return;
189 edev = of_node_to_eeh_dev(dn);
190 if (!edev) {
191 pr_warning("PCI: no EEH dev found for dn=%s\n",
192 dn->full_name);
193 return;
196 /* Skip any devices for which EEH is not enabled. */
197 if (!edev->pe) {
198 #ifdef DEBUG
199 pr_info("PCI: skip building address cache for=%s - %s\n",
200 pci_name(dev), dn->full_name);
201 #endif
202 return;
205 /* Walk resources on this device, poke them into the tree */
206 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
207 unsigned long start = pci_resource_start(dev,i);
208 unsigned long end = pci_resource_end(dev,i);
209 unsigned int flags = pci_resource_flags(dev,i);
211 /* We are interested only bus addresses, not dma or other stuff */
212 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
213 continue;
214 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
215 continue;
216 eeh_addr_cache_insert(dev, start, end, flags);
221 * eeh_addr_cache_insert_dev - Add a device to the address cache
222 * @dev: PCI device whose I/O addresses we are interested in.
224 * In order to support the fast lookup of devices based on addresses,
225 * we maintain a cache of devices that can be quickly searched.
226 * This routine adds a device to that cache.
228 void eeh_addr_cache_insert_dev(struct pci_dev *dev)
230 unsigned long flags;
232 /* Ignore PCI bridges */
233 if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE)
234 return;
236 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
237 __eeh_addr_cache_insert_dev(dev);
238 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
241 static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
243 struct rb_node *n;
245 restart:
246 n = rb_first(&pci_io_addr_cache_root.rb_root);
247 while (n) {
248 struct pci_io_addr_range *piar;
249 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
251 if (piar->pcidev == dev) {
252 rb_erase(n, &pci_io_addr_cache_root.rb_root);
253 pci_dev_put(piar->pcidev);
254 kfree(piar);
255 goto restart;
257 n = rb_next(n);
262 * eeh_addr_cache_rmv_dev - remove pci device from addr cache
263 * @dev: device to remove
265 * Remove a device from the addr-cache tree.
266 * This is potentially expensive, since it will walk
267 * the tree multiple times (once per resource).
268 * But so what; device removal doesn't need to be that fast.
270 void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
272 unsigned long flags;
274 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
275 __eeh_addr_cache_rmv_dev(dev);
276 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
280 * eeh_addr_cache_build - Build a cache of I/O addresses
282 * Build a cache of pci i/o addresses. This cache will be used to
283 * find the pci device that corresponds to a given address.
284 * This routine scans all pci busses to build the cache.
285 * Must be run late in boot process, after the pci controllers
286 * have been scanned for devices (after all device resources are known).
288 void __init eeh_addr_cache_build(void)
290 struct device_node *dn;
291 struct eeh_dev *edev;
292 struct pci_dev *dev = NULL;
294 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
296 for_each_pci_dev(dev) {
297 eeh_addr_cache_insert_dev(dev);
299 dn = pci_device_to_OF_node(dev);
300 if (!dn)
301 continue;
303 edev = of_node_to_eeh_dev(dn);
304 if (!edev)
305 continue;
307 pci_dev_get(dev); /* matching put is in eeh_remove_device() */
308 dev->dev.archdata.edev = edev;
309 edev->pdev = dev;
311 eeh_sysfs_add_device(dev);
314 #ifdef DEBUG
315 /* Verify tree built up above, echo back the list of addrs. */
316 eeh_addr_cache_print(&pci_io_addr_cache_root);
317 #endif