IB/srp: Let srp_abort() return FAST_IO_FAIL if TL offline
[linux/fpc-iii.git] / arch / powerpc / platforms / pseries / nvram.c
blob8733a86ad52ed6dbb2b0fc9030b08852a3ca2b62
1 /*
2 * c 2001 PPC 64 Team, IBM Corp
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * /dev/nvram driver for PPC64
11 * This perhaps should live in drivers/char
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/kmsg_dump.h>
21 #include <linux/ctype.h>
22 #include <linux/zlib.h>
23 #include <asm/uaccess.h>
24 #include <asm/nvram.h>
25 #include <asm/rtas.h>
26 #include <asm/prom.h>
27 #include <asm/machdep.h>
29 /* Max bytes to read/write in one go */
30 #define NVRW_CNT 0x20
32 static unsigned int nvram_size;
33 static int nvram_fetch, nvram_store;
34 static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
35 static DEFINE_SPINLOCK(nvram_lock);
37 struct err_log_info {
38 int error_type;
39 unsigned int seq_num;
42 struct nvram_os_partition {
43 const char *name;
44 int req_size; /* desired size, in bytes */
45 int min_size; /* minimum acceptable size (0 means req_size) */
46 long size; /* size of data portion (excluding err_log_info) */
47 long index; /* offset of data portion of partition */
50 static struct nvram_os_partition rtas_log_partition = {
51 .name = "ibm,rtas-log",
52 .req_size = 2079,
53 .min_size = 1055,
54 .index = -1
57 static struct nvram_os_partition oops_log_partition = {
58 .name = "lnx,oops-log",
59 .req_size = 4000,
60 .min_size = 2000,
61 .index = -1
64 static const char *pseries_nvram_os_partitions[] = {
65 "ibm,rtas-log",
66 "lnx,oops-log",
67 NULL
70 static void oops_to_nvram(struct kmsg_dumper *dumper,
71 enum kmsg_dump_reason reason);
73 static struct kmsg_dumper nvram_kmsg_dumper = {
74 .dump = oops_to_nvram
77 /* See clobbering_unread_rtas_event() */
78 #define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */
79 static unsigned long last_unread_rtas_event; /* timestamp */
82 * For capturing and compressing an oops or panic report...
84 * big_oops_buf[] holds the uncompressed text we're capturing.
86 * oops_buf[] holds the compressed text, preceded by a prefix.
87 * The prefix is just a u16 holding the length of the compressed* text.
88 * (*Or uncompressed, if compression fails.) oops_buf[] gets written
89 * to NVRAM.
91 * oops_len points to the prefix. oops_data points to the compressed text.
93 * +- oops_buf
94 * | +- oops_data
95 * v v
96 * +------------+-----------------------------------------------+
97 * | length | text |
98 * | (2 bytes) | (oops_data_sz bytes) |
99 * +------------+-----------------------------------------------+
101 * +- oops_len
103 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
105 static size_t big_oops_buf_sz;
106 static char *big_oops_buf, *oops_buf;
107 static u16 *oops_len;
108 static char *oops_data;
109 static size_t oops_data_sz;
111 /* Compression parameters */
112 #define COMPR_LEVEL 6
113 #define WINDOW_BITS 12
114 #define MEM_LEVEL 4
115 static struct z_stream_s stream;
117 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
119 unsigned int i;
120 unsigned long len;
121 int done;
122 unsigned long flags;
123 char *p = buf;
126 if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
127 return -ENODEV;
129 if (*index >= nvram_size)
130 return 0;
132 i = *index;
133 if (i + count > nvram_size)
134 count = nvram_size - i;
136 spin_lock_irqsave(&nvram_lock, flags);
138 for (; count != 0; count -= len) {
139 len = count;
140 if (len > NVRW_CNT)
141 len = NVRW_CNT;
143 if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
144 len) != 0) || len != done) {
145 spin_unlock_irqrestore(&nvram_lock, flags);
146 return -EIO;
149 memcpy(p, nvram_buf, len);
151 p += len;
152 i += len;
155 spin_unlock_irqrestore(&nvram_lock, flags);
157 *index = i;
158 return p - buf;
161 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
163 unsigned int i;
164 unsigned long len;
165 int done;
166 unsigned long flags;
167 const char *p = buf;
169 if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
170 return -ENODEV;
172 if (*index >= nvram_size)
173 return 0;
175 i = *index;
176 if (i + count > nvram_size)
177 count = nvram_size - i;
179 spin_lock_irqsave(&nvram_lock, flags);
181 for (; count != 0; count -= len) {
182 len = count;
183 if (len > NVRW_CNT)
184 len = NVRW_CNT;
186 memcpy(nvram_buf, p, len);
188 if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
189 len) != 0) || len != done) {
190 spin_unlock_irqrestore(&nvram_lock, flags);
191 return -EIO;
194 p += len;
195 i += len;
197 spin_unlock_irqrestore(&nvram_lock, flags);
199 *index = i;
200 return p - buf;
203 static ssize_t pSeries_nvram_get_size(void)
205 return nvram_size ? nvram_size : -ENODEV;
209 /* nvram_write_os_partition, nvram_write_error_log
211 * We need to buffer the error logs into nvram to ensure that we have
212 * the failure information to decode. If we have a severe error there
213 * is no way to guarantee that the OS or the machine is in a state to
214 * get back to user land and write the error to disk. For example if
215 * the SCSI device driver causes a Machine Check by writing to a bad
216 * IO address, there is no way of guaranteeing that the device driver
217 * is in any state that is would also be able to write the error data
218 * captured to disk, thus we buffer it in NVRAM for analysis on the
219 * next boot.
221 * In NVRAM the partition containing the error log buffer will looks like:
222 * Header (in bytes):
223 * +-----------+----------+--------+------------+------------------+
224 * | signature | checksum | length | name | data |
225 * |0 |1 |2 3|4 15|16 length-1|
226 * +-----------+----------+--------+------------+------------------+
228 * The 'data' section would look like (in bytes):
229 * +--------------+------------+-----------------------------------+
230 * | event_logged | sequence # | error log |
231 * |0 3|4 7|8 error_log_size-1|
232 * +--------------+------------+-----------------------------------+
234 * event_logged: 0 if event has not been logged to syslog, 1 if it has
235 * sequence #: The unique sequence # for each event. (until it wraps)
236 * error log: The error log from event_scan
238 int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
239 int length, unsigned int err_type, unsigned int error_log_cnt)
241 int rc;
242 loff_t tmp_index;
243 struct err_log_info info;
245 if (part->index == -1) {
246 return -ESPIPE;
249 if (length > part->size) {
250 length = part->size;
253 info.error_type = err_type;
254 info.seq_num = error_log_cnt;
256 tmp_index = part->index;
258 rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
259 if (rc <= 0) {
260 pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
261 return rc;
264 rc = ppc_md.nvram_write(buff, length, &tmp_index);
265 if (rc <= 0) {
266 pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
267 return rc;
270 return 0;
273 int nvram_write_error_log(char * buff, int length,
274 unsigned int err_type, unsigned int error_log_cnt)
276 int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
277 err_type, error_log_cnt);
278 if (!rc)
279 last_unread_rtas_event = get_seconds();
280 return rc;
283 /* nvram_read_error_log
285 * Reads nvram for error log for at most 'length'
287 int nvram_read_error_log(char * buff, int length,
288 unsigned int * err_type, unsigned int * error_log_cnt)
290 int rc;
291 loff_t tmp_index;
292 struct err_log_info info;
294 if (rtas_log_partition.index == -1)
295 return -1;
297 if (length > rtas_log_partition.size)
298 length = rtas_log_partition.size;
300 tmp_index = rtas_log_partition.index;
302 rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
303 if (rc <= 0) {
304 printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
305 return rc;
308 rc = ppc_md.nvram_read(buff, length, &tmp_index);
309 if (rc <= 0) {
310 printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
311 return rc;
314 *error_log_cnt = info.seq_num;
315 *err_type = info.error_type;
317 return 0;
320 /* This doesn't actually zero anything, but it sets the event_logged
321 * word to tell that this event is safely in syslog.
323 int nvram_clear_error_log(void)
325 loff_t tmp_index;
326 int clear_word = ERR_FLAG_ALREADY_LOGGED;
327 int rc;
329 if (rtas_log_partition.index == -1)
330 return -1;
332 tmp_index = rtas_log_partition.index;
334 rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
335 if (rc <= 0) {
336 printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
337 return rc;
339 last_unread_rtas_event = 0;
341 return 0;
344 /* pseries_nvram_init_os_partition
346 * This sets up a partition with an "OS" signature.
348 * The general strategy is the following:
349 * 1.) If a partition with the indicated name already exists...
350 * - If it's large enough, use it.
351 * - Otherwise, recycle it and keep going.
352 * 2.) Search for a free partition that is large enough.
353 * 3.) If there's not a free partition large enough, recycle any obsolete
354 * OS partitions and try again.
355 * 4.) Will first try getting a chunk that will satisfy the requested size.
356 * 5.) If a chunk of the requested size cannot be allocated, then try finding
357 * a chunk that will satisfy the minum needed.
359 * Returns 0 on success, else -1.
361 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
362 *part)
364 loff_t p;
365 int size;
367 /* Scan nvram for partitions */
368 nvram_scan_partitions();
370 /* Look for ours */
371 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
373 /* Found one but too small, remove it */
374 if (p && size < part->min_size) {
375 pr_info("nvram: Found too small %s partition,"
376 " removing it...\n", part->name);
377 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
378 p = 0;
381 /* Create one if we didn't find */
382 if (!p) {
383 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
384 part->req_size, part->min_size);
385 if (p == -ENOSPC) {
386 pr_info("nvram: No room to create %s partition, "
387 "deleting any obsolete OS partitions...\n",
388 part->name);
389 nvram_remove_partition(NULL, NVRAM_SIG_OS,
390 pseries_nvram_os_partitions);
391 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
392 part->req_size, part->min_size);
396 if (p <= 0) {
397 pr_err("nvram: Failed to find or create %s"
398 " partition, err %d\n", part->name, (int)p);
399 return -1;
402 part->index = p;
403 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
405 return 0;
408 static void __init nvram_init_oops_partition(int rtas_partition_exists)
410 int rc;
412 rc = pseries_nvram_init_os_partition(&oops_log_partition);
413 if (rc != 0) {
414 if (!rtas_partition_exists)
415 return;
416 pr_notice("nvram: Using %s partition to log both"
417 " RTAS errors and oops/panic reports\n",
418 rtas_log_partition.name);
419 memcpy(&oops_log_partition, &rtas_log_partition,
420 sizeof(rtas_log_partition));
422 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
423 if (!oops_buf) {
424 pr_err("nvram: No memory for %s partition\n",
425 oops_log_partition.name);
426 return;
428 oops_len = (u16*) oops_buf;
429 oops_data = oops_buf + sizeof(u16);
430 oops_data_sz = oops_log_partition.size - sizeof(u16);
433 * Figure compression (preceded by elimination of each line's <n>
434 * severity prefix) will reduce the oops/panic report to at most
435 * 45% of its original size.
437 big_oops_buf_sz = (oops_data_sz * 100) / 45;
438 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
439 if (big_oops_buf) {
440 stream.workspace = kmalloc(zlib_deflate_workspacesize(
441 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
442 if (!stream.workspace) {
443 pr_err("nvram: No memory for compression workspace; "
444 "skipping compression of %s partition data\n",
445 oops_log_partition.name);
446 kfree(big_oops_buf);
447 big_oops_buf = NULL;
449 } else {
450 pr_err("No memory for uncompressed %s data; "
451 "skipping compression\n", oops_log_partition.name);
452 stream.workspace = NULL;
455 rc = kmsg_dump_register(&nvram_kmsg_dumper);
456 if (rc != 0) {
457 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
458 kfree(oops_buf);
459 kfree(big_oops_buf);
460 kfree(stream.workspace);
464 static int __init pseries_nvram_init_log_partitions(void)
466 int rc;
468 rc = pseries_nvram_init_os_partition(&rtas_log_partition);
469 nvram_init_oops_partition(rc == 0);
470 return 0;
472 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
474 int __init pSeries_nvram_init(void)
476 struct device_node *nvram;
477 const unsigned int *nbytes_p;
478 unsigned int proplen;
480 nvram = of_find_node_by_type(NULL, "nvram");
481 if (nvram == NULL)
482 return -ENODEV;
484 nbytes_p = of_get_property(nvram, "#bytes", &proplen);
485 if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
486 of_node_put(nvram);
487 return -EIO;
490 nvram_size = *nbytes_p;
492 nvram_fetch = rtas_token("nvram-fetch");
493 nvram_store = rtas_token("nvram-store");
494 printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
495 of_node_put(nvram);
497 ppc_md.nvram_read = pSeries_nvram_read;
498 ppc_md.nvram_write = pSeries_nvram_write;
499 ppc_md.nvram_size = pSeries_nvram_get_size;
501 return 0;
505 * Are we using the ibm,rtas-log for oops/panic reports? And if so,
506 * would logging this oops/panic overwrite an RTAS event that rtas_errd
507 * hasn't had a chance to read and process? Return 1 if so, else 0.
509 * We assume that if rtas_errd hasn't read the RTAS event in
510 * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
512 static int clobbering_unread_rtas_event(void)
514 return (oops_log_partition.index == rtas_log_partition.index
515 && last_unread_rtas_event
516 && get_seconds() - last_unread_rtas_event <=
517 NVRAM_RTAS_READ_TIMEOUT);
520 /* Derived from logfs_compress() */
521 static int nvram_compress(const void *in, void *out, size_t inlen,
522 size_t outlen)
524 int err, ret;
526 ret = -EIO;
527 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
528 MEM_LEVEL, Z_DEFAULT_STRATEGY);
529 if (err != Z_OK)
530 goto error;
532 stream.next_in = in;
533 stream.avail_in = inlen;
534 stream.total_in = 0;
535 stream.next_out = out;
536 stream.avail_out = outlen;
537 stream.total_out = 0;
539 err = zlib_deflate(&stream, Z_FINISH);
540 if (err != Z_STREAM_END)
541 goto error;
543 err = zlib_deflateEnd(&stream);
544 if (err != Z_OK)
545 goto error;
547 if (stream.total_out >= stream.total_in)
548 goto error;
550 ret = stream.total_out;
551 error:
552 return ret;
555 /* Compress the text from big_oops_buf into oops_buf. */
556 static int zip_oops(size_t text_len)
558 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
559 oops_data_sz);
560 if (zipped_len < 0) {
561 pr_err("nvram: compression failed; returned %d\n", zipped_len);
562 pr_err("nvram: logging uncompressed oops/panic report\n");
563 return -1;
565 *oops_len = (u16) zipped_len;
566 return 0;
570 * This is our kmsg_dump callback, called after an oops or panic report
571 * has been written to the printk buffer. We want to capture as much
572 * of the printk buffer as possible. First, capture as much as we can
573 * that we think will compress sufficiently to fit in the lnx,oops-log
574 * partition. If that's too much, go back and capture uncompressed text.
576 static void oops_to_nvram(struct kmsg_dumper *dumper,
577 enum kmsg_dump_reason reason)
579 static unsigned int oops_count = 0;
580 static bool panicking = false;
581 static DEFINE_SPINLOCK(lock);
582 unsigned long flags;
583 size_t text_len;
584 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
585 int rc = -1;
587 switch (reason) {
588 case KMSG_DUMP_RESTART:
589 case KMSG_DUMP_HALT:
590 case KMSG_DUMP_POWEROFF:
591 /* These are almost always orderly shutdowns. */
592 return;
593 case KMSG_DUMP_OOPS:
594 break;
595 case KMSG_DUMP_PANIC:
596 panicking = true;
597 break;
598 case KMSG_DUMP_EMERG:
599 if (panicking)
600 /* Panic report already captured. */
601 return;
602 break;
603 default:
604 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
605 __FUNCTION__, (int) reason);
606 return;
609 if (clobbering_unread_rtas_event())
610 return;
612 if (!spin_trylock_irqsave(&lock, flags))
613 return;
615 if (big_oops_buf) {
616 kmsg_dump_get_buffer(dumper, false,
617 big_oops_buf, big_oops_buf_sz, &text_len);
618 rc = zip_oops(text_len);
620 if (rc != 0) {
621 kmsg_dump_rewind(dumper);
622 kmsg_dump_get_buffer(dumper, true,
623 oops_data, oops_data_sz, &text_len);
624 err_type = ERR_TYPE_KERNEL_PANIC;
625 *oops_len = (u16) text_len;
628 (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
629 (int) (sizeof(*oops_len) + *oops_len), err_type, ++oops_count);
631 spin_unlock_irqrestore(&lock, flags);