IB/srp: Let srp_abort() return FAST_IO_FAIL if TL offline
[linux/fpc-iii.git] / arch / tile / kernel / pci-dma.c
blobb9fe80ec108989fa341060542816d9760fd62d63
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/swiotlb.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20 #include <asm/tlbflush.h>
21 #include <asm/homecache.h>
23 /* Generic DMA mapping functions: */
26 * Allocate what Linux calls "coherent" memory. On TILEPro this is
27 * uncached memory; on TILE-Gx it is hash-for-home memory.
29 #ifdef __tilepro__
30 #define PAGE_HOME_DMA PAGE_HOME_UNCACHED
31 #else
32 #define PAGE_HOME_DMA PAGE_HOME_HASH
33 #endif
35 static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
36 dma_addr_t *dma_handle, gfp_t gfp,
37 struct dma_attrs *attrs)
39 u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
40 int node = dev_to_node(dev);
41 int order = get_order(size);
42 struct page *pg;
43 dma_addr_t addr;
45 gfp |= __GFP_ZERO;
48 * If the mask specifies that the memory be in the first 4 GB, then
49 * we force the allocation to come from the DMA zone. We also
50 * force the node to 0 since that's the only node where the DMA
51 * zone isn't empty. If the mask size is smaller than 32 bits, we
52 * may still not be able to guarantee a suitable memory address, in
53 * which case we will return NULL. But such devices are uncommon.
55 if (dma_mask <= DMA_BIT_MASK(32)) {
56 gfp |= GFP_DMA;
57 node = 0;
60 pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
61 if (pg == NULL)
62 return NULL;
64 addr = page_to_phys(pg);
65 if (addr + size > dma_mask) {
66 __homecache_free_pages(pg, order);
67 return NULL;
70 *dma_handle = addr;
72 return page_address(pg);
76 * Free memory that was allocated with tile_dma_alloc_coherent.
78 static void tile_dma_free_coherent(struct device *dev, size_t size,
79 void *vaddr, dma_addr_t dma_handle,
80 struct dma_attrs *attrs)
82 homecache_free_pages((unsigned long)vaddr, get_order(size));
86 * The map routines "map" the specified address range for DMA
87 * accesses. The memory belongs to the device after this call is
88 * issued, until it is unmapped with dma_unmap_single.
90 * We don't need to do any mapping, we just flush the address range
91 * out of the cache and return a DMA address.
93 * The unmap routines do whatever is necessary before the processor
94 * accesses the memory again, and must be called before the driver
95 * touches the memory. We can get away with a cache invalidate if we
96 * can count on nothing having been touched.
99 /* Set up a single page for DMA access. */
100 static void __dma_prep_page(struct page *page, unsigned long offset,
101 size_t size, enum dma_data_direction direction)
104 * Flush the page from cache if necessary.
105 * On tilegx, data is delivered to hash-for-home L3; on tilepro,
106 * data is delivered direct to memory.
108 * NOTE: If we were just doing DMA_TO_DEVICE we could optimize
109 * this to be a "flush" not a "finv" and keep some of the
110 * state in cache across the DMA operation, but it doesn't seem
111 * worth creating the necessary flush_buffer_xxx() infrastructure.
113 int home = page_home(page);
114 switch (home) {
115 case PAGE_HOME_HASH:
116 #ifdef __tilegx__
117 return;
118 #endif
119 break;
120 case PAGE_HOME_UNCACHED:
121 #ifdef __tilepro__
122 return;
123 #endif
124 break;
125 case PAGE_HOME_IMMUTABLE:
126 /* Should be going to the device only. */
127 BUG_ON(direction == DMA_FROM_DEVICE ||
128 direction == DMA_BIDIRECTIONAL);
129 return;
130 case PAGE_HOME_INCOHERENT:
131 /* Incoherent anyway, so no need to work hard here. */
132 return;
133 default:
134 BUG_ON(home < 0 || home >= NR_CPUS);
135 break;
137 homecache_finv_page(page);
139 #ifdef DEBUG_ALIGNMENT
140 /* Warn if the region isn't cacheline aligned. */
141 if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
142 pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
143 PFN_PHYS(page_to_pfn(page)) + offset, size);
144 #endif
147 /* Make the page ready to be read by the core. */
148 static void __dma_complete_page(struct page *page, unsigned long offset,
149 size_t size, enum dma_data_direction direction)
151 #ifdef __tilegx__
152 switch (page_home(page)) {
153 case PAGE_HOME_HASH:
154 /* I/O device delivered data the way the cpu wanted it. */
155 break;
156 case PAGE_HOME_INCOHERENT:
157 /* Incoherent anyway, so no need to work hard here. */
158 break;
159 case PAGE_HOME_IMMUTABLE:
160 /* Extra read-only copies are not a problem. */
161 break;
162 default:
163 /* Flush the bogus hash-for-home I/O entries to memory. */
164 homecache_finv_map_page(page, PAGE_HOME_HASH);
165 break;
167 #endif
170 static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
171 enum dma_data_direction direction)
173 struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
174 unsigned long offset = dma_addr & (PAGE_SIZE - 1);
175 size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
177 while (size != 0) {
178 __dma_prep_page(page, offset, bytes, direction);
179 size -= bytes;
180 ++page;
181 offset = 0;
182 bytes = min((size_t)PAGE_SIZE, size);
186 static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
187 enum dma_data_direction direction)
189 struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
190 unsigned long offset = dma_addr & (PAGE_SIZE - 1);
191 size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
193 while (size != 0) {
194 __dma_complete_page(page, offset, bytes, direction);
195 size -= bytes;
196 ++page;
197 offset = 0;
198 bytes = min((size_t)PAGE_SIZE, size);
202 static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
203 int nents, enum dma_data_direction direction,
204 struct dma_attrs *attrs)
206 struct scatterlist *sg;
207 int i;
209 BUG_ON(!valid_dma_direction(direction));
211 WARN_ON(nents == 0 || sglist->length == 0);
213 for_each_sg(sglist, sg, nents, i) {
214 sg->dma_address = sg_phys(sg);
215 __dma_prep_pa_range(sg->dma_address, sg->length, direction);
216 #ifdef CONFIG_NEED_SG_DMA_LENGTH
217 sg->dma_length = sg->length;
218 #endif
221 return nents;
224 static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
225 int nents, enum dma_data_direction direction,
226 struct dma_attrs *attrs)
228 struct scatterlist *sg;
229 int i;
231 BUG_ON(!valid_dma_direction(direction));
232 for_each_sg(sglist, sg, nents, i) {
233 sg->dma_address = sg_phys(sg);
234 __dma_complete_pa_range(sg->dma_address, sg->length,
235 direction);
239 static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
240 unsigned long offset, size_t size,
241 enum dma_data_direction direction,
242 struct dma_attrs *attrs)
244 BUG_ON(!valid_dma_direction(direction));
246 BUG_ON(offset + size > PAGE_SIZE);
247 __dma_prep_page(page, offset, size, direction);
249 return page_to_pa(page) + offset;
252 static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
253 size_t size, enum dma_data_direction direction,
254 struct dma_attrs *attrs)
256 BUG_ON(!valid_dma_direction(direction));
258 __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
259 dma_address & PAGE_OFFSET, size, direction);
262 static void tile_dma_sync_single_for_cpu(struct device *dev,
263 dma_addr_t dma_handle,
264 size_t size,
265 enum dma_data_direction direction)
267 BUG_ON(!valid_dma_direction(direction));
269 __dma_complete_pa_range(dma_handle, size, direction);
272 static void tile_dma_sync_single_for_device(struct device *dev,
273 dma_addr_t dma_handle, size_t size,
274 enum dma_data_direction direction)
276 __dma_prep_pa_range(dma_handle, size, direction);
279 static void tile_dma_sync_sg_for_cpu(struct device *dev,
280 struct scatterlist *sglist, int nelems,
281 enum dma_data_direction direction)
283 struct scatterlist *sg;
284 int i;
286 BUG_ON(!valid_dma_direction(direction));
287 WARN_ON(nelems == 0 || sglist->length == 0);
289 for_each_sg(sglist, sg, nelems, i) {
290 dma_sync_single_for_cpu(dev, sg->dma_address,
291 sg_dma_len(sg), direction);
295 static void tile_dma_sync_sg_for_device(struct device *dev,
296 struct scatterlist *sglist, int nelems,
297 enum dma_data_direction direction)
299 struct scatterlist *sg;
300 int i;
302 BUG_ON(!valid_dma_direction(direction));
303 WARN_ON(nelems == 0 || sglist->length == 0);
305 for_each_sg(sglist, sg, nelems, i) {
306 dma_sync_single_for_device(dev, sg->dma_address,
307 sg_dma_len(sg), direction);
311 static inline int
312 tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
314 return 0;
317 static inline int
318 tile_dma_supported(struct device *dev, u64 mask)
320 return 1;
323 static struct dma_map_ops tile_default_dma_map_ops = {
324 .alloc = tile_dma_alloc_coherent,
325 .free = tile_dma_free_coherent,
326 .map_page = tile_dma_map_page,
327 .unmap_page = tile_dma_unmap_page,
328 .map_sg = tile_dma_map_sg,
329 .unmap_sg = tile_dma_unmap_sg,
330 .sync_single_for_cpu = tile_dma_sync_single_for_cpu,
331 .sync_single_for_device = tile_dma_sync_single_for_device,
332 .sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
333 .sync_sg_for_device = tile_dma_sync_sg_for_device,
334 .mapping_error = tile_dma_mapping_error,
335 .dma_supported = tile_dma_supported
338 struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
339 EXPORT_SYMBOL(tile_dma_map_ops);
341 /* Generic PCI DMA mapping functions */
343 static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
344 dma_addr_t *dma_handle, gfp_t gfp,
345 struct dma_attrs *attrs)
347 int node = dev_to_node(dev);
348 int order = get_order(size);
349 struct page *pg;
350 dma_addr_t addr;
352 gfp |= __GFP_ZERO;
354 pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
355 if (pg == NULL)
356 return NULL;
358 addr = page_to_phys(pg);
360 *dma_handle = phys_to_dma(dev, addr);
362 return page_address(pg);
366 * Free memory that was allocated with tile_pci_dma_alloc_coherent.
368 static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
369 void *vaddr, dma_addr_t dma_handle,
370 struct dma_attrs *attrs)
372 homecache_free_pages((unsigned long)vaddr, get_order(size));
375 static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
376 int nents, enum dma_data_direction direction,
377 struct dma_attrs *attrs)
379 struct scatterlist *sg;
380 int i;
382 BUG_ON(!valid_dma_direction(direction));
384 WARN_ON(nents == 0 || sglist->length == 0);
386 for_each_sg(sglist, sg, nents, i) {
387 sg->dma_address = sg_phys(sg);
388 __dma_prep_pa_range(sg->dma_address, sg->length, direction);
390 sg->dma_address = phys_to_dma(dev, sg->dma_address);
391 #ifdef CONFIG_NEED_SG_DMA_LENGTH
392 sg->dma_length = sg->length;
393 #endif
396 return nents;
399 static void tile_pci_dma_unmap_sg(struct device *dev,
400 struct scatterlist *sglist, int nents,
401 enum dma_data_direction direction,
402 struct dma_attrs *attrs)
404 struct scatterlist *sg;
405 int i;
407 BUG_ON(!valid_dma_direction(direction));
408 for_each_sg(sglist, sg, nents, i) {
409 sg->dma_address = sg_phys(sg);
410 __dma_complete_pa_range(sg->dma_address, sg->length,
411 direction);
415 static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
416 unsigned long offset, size_t size,
417 enum dma_data_direction direction,
418 struct dma_attrs *attrs)
420 BUG_ON(!valid_dma_direction(direction));
422 BUG_ON(offset + size > PAGE_SIZE);
423 __dma_prep_page(page, offset, size, direction);
425 return phys_to_dma(dev, page_to_pa(page) + offset);
428 static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
429 size_t size,
430 enum dma_data_direction direction,
431 struct dma_attrs *attrs)
433 BUG_ON(!valid_dma_direction(direction));
435 dma_address = dma_to_phys(dev, dma_address);
437 __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
438 dma_address & PAGE_OFFSET, size, direction);
441 static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
442 dma_addr_t dma_handle,
443 size_t size,
444 enum dma_data_direction direction)
446 BUG_ON(!valid_dma_direction(direction));
448 dma_handle = dma_to_phys(dev, dma_handle);
450 __dma_complete_pa_range(dma_handle, size, direction);
453 static void tile_pci_dma_sync_single_for_device(struct device *dev,
454 dma_addr_t dma_handle,
455 size_t size,
456 enum dma_data_direction
457 direction)
459 dma_handle = dma_to_phys(dev, dma_handle);
461 __dma_prep_pa_range(dma_handle, size, direction);
464 static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
465 struct scatterlist *sglist,
466 int nelems,
467 enum dma_data_direction direction)
469 struct scatterlist *sg;
470 int i;
472 BUG_ON(!valid_dma_direction(direction));
473 WARN_ON(nelems == 0 || sglist->length == 0);
475 for_each_sg(sglist, sg, nelems, i) {
476 dma_sync_single_for_cpu(dev, sg->dma_address,
477 sg_dma_len(sg), direction);
481 static void tile_pci_dma_sync_sg_for_device(struct device *dev,
482 struct scatterlist *sglist,
483 int nelems,
484 enum dma_data_direction direction)
486 struct scatterlist *sg;
487 int i;
489 BUG_ON(!valid_dma_direction(direction));
490 WARN_ON(nelems == 0 || sglist->length == 0);
492 for_each_sg(sglist, sg, nelems, i) {
493 dma_sync_single_for_device(dev, sg->dma_address,
494 sg_dma_len(sg), direction);
498 static inline int
499 tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
501 return 0;
504 static inline int
505 tile_pci_dma_supported(struct device *dev, u64 mask)
507 return 1;
510 static struct dma_map_ops tile_pci_default_dma_map_ops = {
511 .alloc = tile_pci_dma_alloc_coherent,
512 .free = tile_pci_dma_free_coherent,
513 .map_page = tile_pci_dma_map_page,
514 .unmap_page = tile_pci_dma_unmap_page,
515 .map_sg = tile_pci_dma_map_sg,
516 .unmap_sg = tile_pci_dma_unmap_sg,
517 .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
518 .sync_single_for_device = tile_pci_dma_sync_single_for_device,
519 .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
520 .sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
521 .mapping_error = tile_pci_dma_mapping_error,
522 .dma_supported = tile_pci_dma_supported
525 struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
526 EXPORT_SYMBOL(gx_pci_dma_map_ops);
528 /* PCI DMA mapping functions for legacy PCI devices */
530 #ifdef CONFIG_SWIOTLB
531 static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
532 dma_addr_t *dma_handle, gfp_t gfp,
533 struct dma_attrs *attrs)
535 gfp |= GFP_DMA;
536 return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
539 static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
540 void *vaddr, dma_addr_t dma_addr,
541 struct dma_attrs *attrs)
543 swiotlb_free_coherent(dev, size, vaddr, dma_addr);
546 static struct dma_map_ops pci_swiotlb_dma_ops = {
547 .alloc = tile_swiotlb_alloc_coherent,
548 .free = tile_swiotlb_free_coherent,
549 .map_page = swiotlb_map_page,
550 .unmap_page = swiotlb_unmap_page,
551 .map_sg = swiotlb_map_sg_attrs,
552 .unmap_sg = swiotlb_unmap_sg_attrs,
553 .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
554 .sync_single_for_device = swiotlb_sync_single_for_device,
555 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
556 .sync_sg_for_device = swiotlb_sync_sg_for_device,
557 .dma_supported = swiotlb_dma_supported,
558 .mapping_error = swiotlb_dma_mapping_error,
561 struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
562 #else
563 struct dma_map_ops *gx_legacy_pci_dma_map_ops;
564 #endif
565 EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
567 #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
568 int dma_set_coherent_mask(struct device *dev, u64 mask)
570 struct dma_map_ops *dma_ops = get_dma_ops(dev);
572 /* Handle legacy PCI devices with limited memory addressability. */
573 if (((dma_ops == gx_pci_dma_map_ops) ||
574 (dma_ops == gx_legacy_pci_dma_map_ops)) &&
575 (mask <= DMA_BIT_MASK(32))) {
576 if (mask > dev->archdata.max_direct_dma_addr)
577 mask = dev->archdata.max_direct_dma_addr;
580 if (!dma_supported(dev, mask))
581 return -EIO;
582 dev->coherent_dma_mask = mask;
583 return 0;
585 EXPORT_SYMBOL(dma_set_coherent_mask);
586 #endif