2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
26 #include <linux/uaccess.h>
27 #include <linux/export.h>
29 #include <asm/processor.h>
30 #include <asm/sections.h>
31 #include <asm/byteorder.h>
32 #include <asm/hv_driver.h>
33 #include <hv/drv_pcie_rc_intf.h>
37 * Initialization flow and process
38 * -------------------------------
40 * This files contains the routines to search for PCI buses,
41 * enumerate the buses, and configure any attached devices.
43 * There are two entry points here:
45 * This sets up the pci_controller structs, and opens the
46 * FDs to the hypervisor. This is called from setup_arch() early
47 * in the boot process.
49 * This probes the PCI bus(es) for any attached hardware. It's
50 * called by subsys_initcall. All of the real work is done by the
51 * generic Linux PCI layer.
56 * This flag tells if the platform is TILEmpower that needs
57 * special configuration for the PLX switch chip.
59 int __write_once tile_plx_gen1
;
61 static struct pci_controller controllers
[TILE_NUM_PCIE
];
62 static int num_controllers
;
63 static int pci_scan_flags
[TILE_NUM_PCIE
];
65 static struct pci_ops tile_cfg_ops
;
69 * We don't need to worry about the alignment of resources.
71 resource_size_t
pcibios_align_resource(void *data
, const struct resource
*res
,
72 resource_size_t size
, resource_size_t align
)
76 EXPORT_SYMBOL(pcibios_align_resource
);
79 * Open a FD to the hypervisor PCI device.
81 * controller_id is the controller number, config type is 0 or 1 for
82 * config0 or config1 operations.
84 static int tile_pcie_open(int controller_id
, int config_type
)
89 sprintf(filename
, "pcie/%d/config%d", controller_id
, config_type
);
91 fd
= hv_dev_open((HV_VirtAddr
)filename
, 0);
98 * Get the IRQ numbers from the HV and set up the handlers for them.
100 static int tile_init_irqs(int controller_id
, struct pci_controller
*controller
)
106 struct pcie_rc_config rc_config
;
108 sprintf(filename
, "pcie/%d/ctl", controller_id
);
109 fd
= hv_dev_open((HV_VirtAddr
)filename
, 0);
111 pr_err("PCI: hv_dev_open(%s) failed\n", filename
);
114 ret
= hv_dev_pread(fd
, 0, (HV_VirtAddr
)(&rc_config
),
115 sizeof(rc_config
), PCIE_RC_CONFIG_MASK_OFF
);
117 if (ret
!= sizeof(rc_config
)) {
118 pr_err("PCI: wanted %zd bytes, got %d\n",
119 sizeof(rc_config
), ret
);
122 /* Record irq_base so that we can map INTx to IRQ # later. */
123 controller
->irq_base
= rc_config
.intr
;
125 for (x
= 0; x
< 4; x
++)
126 tile_irq_activate(rc_config
.intr
+ x
,
129 if (rc_config
.plx_gen1
)
130 controller
->plx_gen1
= 1;
136 * First initialization entry point, called from setup_arch().
138 * Find valid controllers and fill in pci_controller structs for each
141 * Returns the number of controllers discovered.
143 int __init
tile_pci_init(void)
147 pr_info("PCI: Searching for controllers...\n");
149 /* Re-init number of PCIe controllers to support hot-plug feature. */
152 /* Do any configuration we need before using the PCIe */
154 for (i
= 0; i
< TILE_NUM_PCIE
; i
++) {
156 * To see whether we need a real config op based on
157 * the results of pcibios_init(), to support PCIe hot-plug.
159 if (pci_scan_flags
[i
] == 0) {
164 struct pci_controller
*controller
;
167 * Open the fd to the HV. If it fails then this
168 * device doesn't exist.
170 hv_cfg_fd0
= tile_pcie_open(i
, 0);
173 hv_cfg_fd1
= tile_pcie_open(i
, 1);
174 if (hv_cfg_fd1
< 0) {
175 pr_err("PCI: Couldn't open config fd to HV "
176 "for controller %d\n", i
);
180 sprintf(name
, "pcie/%d/mem", i
);
181 hv_mem_fd
= hv_dev_open((HV_VirtAddr
)name
, 0);
183 pr_err("PCI: Could not open mem fd to HV!\n");
187 pr_info("PCI: Found PCI controller #%d\n", i
);
189 controller
= &controllers
[i
];
191 controller
->index
= i
;
192 controller
->hv_cfg_fd
[0] = hv_cfg_fd0
;
193 controller
->hv_cfg_fd
[1] = hv_cfg_fd1
;
194 controller
->hv_mem_fd
= hv_mem_fd
;
195 controller
->first_busno
= 0;
196 controller
->last_busno
= 0xff;
197 controller
->ops
= &tile_cfg_ops
;
204 hv_dev_close(hv_cfg_fd0
);
206 hv_dev_close(hv_cfg_fd1
);
208 hv_dev_close(hv_mem_fd
);
214 * Before using the PCIe, see if we need to do any platform-specific
215 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
217 for (i
= 0; i
< num_controllers
; i
++) {
218 struct pci_controller
*controller
= &controllers
[i
];
220 if (controller
->plx_gen1
)
224 return num_controllers
;
228 * (pin - 1) converts from the PCI standard's [1:4] convention to
229 * a normal [0:3] range.
231 static int tile_map_irq(const struct pci_dev
*dev
, u8 slot
, u8 pin
)
233 struct pci_controller
*controller
=
234 (struct pci_controller
*)dev
->sysdata
;
235 return (pin
- 1) + controller
->irq_base
;
239 static void fixup_read_and_payload_sizes(void)
241 struct pci_dev
*dev
= NULL
;
242 int smallest_max_payload
= 0x1; /* Tile maxes out at 256 bytes. */
243 int max_read_size
= 0x2; /* Limit to 512 byte reads. */
246 /* Scan for the smallest maximum payload size. */
247 for_each_pci_dev(dev
) {
251 if (!pci_is_pcie(dev
))
254 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &devcap
);
255 max_payload
= devcap
& PCI_EXP_DEVCAP_PAYLOAD
;
256 if (max_payload
< smallest_max_payload
)
257 smallest_max_payload
= max_payload
;
260 /* Now, set the max_payload_size for all devices to that value. */
261 new_values
= (max_read_size
<< 12) | (smallest_max_payload
<< 5);
262 for_each_pci_dev(dev
)
263 pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
264 PCI_EXP_DEVCTL_PAYLOAD
| PCI_EXP_DEVCTL_READRQ
,
270 * Second PCI initialization entry point, called by subsys_initcall.
272 * The controllers have been set up by the time we get here, by a call to
275 int __init
pcibios_init(void)
279 pr_info("PCI: Probing PCI hardware\n");
282 * Delay a bit in case devices aren't ready. Some devices are
283 * known to require at least 20ms here, but we use a more
284 * conservative value.
288 /* Scan all of the recorded PCI controllers. */
289 for (i
= 0; i
< TILE_NUM_PCIE
; i
++) {
291 * Do real pcibios init ops if the controller is initialized
292 * by tile_pci_init() successfully and not initialized by
293 * pcibios_init() yet to support PCIe hot-plug.
295 if (pci_scan_flags
[i
] == 0 && controllers
[i
].ops
!= NULL
) {
296 struct pci_controller
*controller
= &controllers
[i
];
298 LIST_HEAD(resources
);
300 if (tile_init_irqs(i
, controller
)) {
301 pr_err("PCI: Could not initialize IRQs\n");
305 pr_info("PCI: initializing controller #%d\n", i
);
308 * This comes from the generic Linux PCI driver.
310 * It reads the PCI tree for this bus into the Linux
313 * This is inlined in linux/pci.h and calls into
314 * pci_scan_bus_parented() in probe.c.
316 pci_add_resource(&resources
, &ioport_resource
);
317 pci_add_resource(&resources
, &iomem_resource
);
318 bus
= pci_scan_root_bus(NULL
, 0, controller
->ops
, controller
, &resources
);
319 controller
->root_bus
= bus
;
320 controller
->last_busno
= bus
->busn_res
.end
;
324 /* Do machine dependent PCI interrupt routing */
325 pci_fixup_irqs(pci_common_swizzle
, tile_map_irq
);
328 * This comes from the generic Linux PCI driver.
330 * It allocates all of the resources (I/O memory, etc)
331 * associated with the devices read in above.
333 pci_assign_unassigned_resources();
335 /* Configure the max_read_size and max_payload_size values. */
336 fixup_read_and_payload_sizes();
338 /* Record the I/O resources in the PCI controller structure. */
339 for (i
= 0; i
< TILE_NUM_PCIE
; i
++) {
341 * Do real pcibios init ops if the controller is initialized
342 * by tile_pci_init() successfully and not initialized by
343 * pcibios_init() yet to support PCIe hot-plug.
345 if (pci_scan_flags
[i
] == 0 && controllers
[i
].ops
!= NULL
) {
346 struct pci_bus
*root_bus
= controllers
[i
].root_bus
;
347 struct pci_bus
*next_bus
;
350 list_for_each_entry(dev
, &root_bus
->devices
, bus_list
) {
352 * Find the PCI host controller, ie. the 1st
355 if ((dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
&&
356 (PCI_SLOT(dev
->devfn
) == 0)) {
357 next_bus
= dev
->subordinate
;
358 controllers
[i
].mem_resources
[0] =
359 *next_bus
->resource
[0];
360 controllers
[i
].mem_resources
[1] =
361 *next_bus
->resource
[1];
362 controllers
[i
].mem_resources
[2] =
363 *next_bus
->resource
[2];
366 pci_scan_flags
[i
] = 1;
376 subsys_initcall(pcibios_init
);
379 * No bus fixups needed.
381 void pcibios_fixup_bus(struct pci_bus
*bus
)
383 /* Nothing needs to be done. */
386 void pcibios_set_master(struct pci_dev
*dev
)
388 /* No special bus mastering setup handling. */
392 * Enable memory and/or address decoding, as appropriate, for the
393 * device described by the 'dev' struct.
395 * This is called from the generic PCI layer, and can be called
396 * for bridges or endpoints.
398 int pcibios_enable_device(struct pci_dev
*dev
, int mask
)
405 pci_read_config_byte(dev
, PCI_HEADER_TYPE
, &header_type
);
407 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
409 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
411 * For bridges, we enable both memory and I/O decoding
414 cmd
|= PCI_COMMAND_IO
;
415 cmd
|= PCI_COMMAND_MEMORY
;
418 * For endpoints, we enable memory and/or I/O decoding
419 * only if they have a memory resource of that type.
421 for (i
= 0; i
< 6; i
++) {
422 r
= &dev
->resource
[i
];
423 if (r
->flags
& IORESOURCE_UNSET
) {
424 pr_err("PCI: Device %s not available "
425 "because of resource collisions\n",
429 if (r
->flags
& IORESOURCE_IO
)
430 cmd
|= PCI_COMMAND_IO
;
431 if (r
->flags
& IORESOURCE_MEM
)
432 cmd
|= PCI_COMMAND_MEMORY
;
437 * We only write the command if it changed.
440 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
444 /****************************************************************
446 * Tile PCI config space read/write routines
448 ****************************************************************/
451 * These are the normal read and write ops
452 * These are expanded with macros from pci_bus_read_config_byte() etc.
454 * devfn is the combined PCI slot & function.
456 * offset is in bytes, from the start of config space for the
457 * specified bus & slot.
460 static int tile_cfg_read(struct pci_bus
*bus
, unsigned int devfn
, int offset
,
463 struct pci_controller
*controller
= bus
->sysdata
;
464 int busnum
= bus
->number
& 0xff;
465 int slot
= (devfn
>> 3) & 0x1f;
466 int function
= devfn
& 0x7;
471 * There is no bridge between the Tile and bus 0, so we
472 * use config0 to talk to bus 0.
474 * If we're talking to a bus other than zero then we
475 * must have found a bridge.
479 * We fake an empty slot for (busnum == 0) && (slot > 0),
480 * since there is only one slot on bus 0.
489 addr
= busnum
<< 20; /* Bus in 27:20 */
490 addr
|= slot
<< 15; /* Slot (device) in 19:15 */
491 addr
|= function
<< 12; /* Function is in 14:12 */
492 addr
|= (offset
& 0xFFF); /* byte address in 0:11 */
494 return hv_dev_pread(controller
->hv_cfg_fd
[config_mode
], 0,
495 (HV_VirtAddr
)(val
), size
, addr
);
500 * See tile_cfg_read() for relevant comments.
501 * Note that "val" is the value to write, not a pointer to that value.
503 static int tile_cfg_write(struct pci_bus
*bus
, unsigned int devfn
, int offset
,
506 struct pci_controller
*controller
= bus
->sysdata
;
507 int busnum
= bus
->number
& 0xff;
508 int slot
= (devfn
>> 3) & 0x1f;
509 int function
= devfn
& 0x7;
512 HV_VirtAddr valp
= (HV_VirtAddr
)&val
;
515 * For bus 0 slot 0 we use config 0 accesses.
519 * We fake an empty slot for (busnum == 0) && (slot > 0),
520 * since there is only one slot on bus 0.
527 addr
= busnum
<< 20; /* Bus in 27:20 */
528 addr
|= slot
<< 15; /* Slot (device) in 19:15 */
529 addr
|= function
<< 12; /* Function is in 14:12 */
530 addr
|= (offset
& 0xFFF); /* byte address in 0:11 */
533 /* Point to the correct part of the 32-bit "val". */
537 return hv_dev_pwrite(controller
->hv_cfg_fd
[config_mode
], 0,
542 static struct pci_ops tile_cfg_ops
= {
543 .read
= tile_cfg_read
,
544 .write
= tile_cfg_write
,
549 * In the following, each PCI controller's mem_resources[1]
550 * represents its (non-prefetchable) PCI memory resource.
551 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
552 * prefetchable PCI memory resources, respectively.
553 * For more details, see pci_setup_bridge() in setup-bus.c.
554 * By comparing the target PCI memory address against the
555 * end address of controller 0, we can determine the controller
556 * that should accept the PCI memory access.
558 #define TILE_READ(size, type) \
559 type _tile_read##size(unsigned long addr) \
563 if (addr > controllers[0].mem_resources[1].end && \
564 addr > controllers[0].mem_resources[2].end) \
566 if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
567 (HV_VirtAddr)(&val), sizeof(type), addr)) \
568 pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
569 sizeof(type), addr); \
572 EXPORT_SYMBOL(_tile_read##size)
579 #define TILE_WRITE(size, type) \
580 void _tile_write##size(type val, unsigned long addr) \
583 if (addr > controllers[0].mem_resources[1].end && \
584 addr > controllers[0].mem_resources[2].end) \
586 if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
587 (HV_VirtAddr)(&val), sizeof(type), addr)) \
588 pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
589 sizeof(type), addr); \
591 EXPORT_SYMBOL(_tile_write##size)