IB/srp: Let srp_abort() return FAST_IO_FAIL if TL offline
[linux/fpc-iii.git] / arch / tile / kernel / pci.c
blob67237d34c2e2ad7f8b3b1c43f3f28bfe4d6c1acc
1 /*
2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25 #include <linux/io.h>
26 #include <linux/uaccess.h>
27 #include <linux/export.h>
29 #include <asm/processor.h>
30 #include <asm/sections.h>
31 #include <asm/byteorder.h>
32 #include <asm/hv_driver.h>
33 #include <hv/drv_pcie_rc_intf.h>
37 * Initialization flow and process
38 * -------------------------------
40 * This files contains the routines to search for PCI buses,
41 * enumerate the buses, and configure any attached devices.
43 * There are two entry points here:
44 * 1) tile_pci_init
45 * This sets up the pci_controller structs, and opens the
46 * FDs to the hypervisor. This is called from setup_arch() early
47 * in the boot process.
48 * 2) pcibios_init
49 * This probes the PCI bus(es) for any attached hardware. It's
50 * called by subsys_initcall. All of the real work is done by the
51 * generic Linux PCI layer.
56 * This flag tells if the platform is TILEmpower that needs
57 * special configuration for the PLX switch chip.
59 int __write_once tile_plx_gen1;
61 static struct pci_controller controllers[TILE_NUM_PCIE];
62 static int num_controllers;
63 static int pci_scan_flags[TILE_NUM_PCIE];
65 static struct pci_ops tile_cfg_ops;
69 * We don't need to worry about the alignment of resources.
71 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
72 resource_size_t size, resource_size_t align)
74 return res->start;
76 EXPORT_SYMBOL(pcibios_align_resource);
79 * Open a FD to the hypervisor PCI device.
81 * controller_id is the controller number, config type is 0 or 1 for
82 * config0 or config1 operations.
84 static int tile_pcie_open(int controller_id, int config_type)
86 char filename[32];
87 int fd;
89 sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
91 fd = hv_dev_open((HV_VirtAddr)filename, 0);
93 return fd;
98 * Get the IRQ numbers from the HV and set up the handlers for them.
100 static int tile_init_irqs(int controller_id, struct pci_controller *controller)
102 char filename[32];
103 int fd;
104 int ret;
105 int x;
106 struct pcie_rc_config rc_config;
108 sprintf(filename, "pcie/%d/ctl", controller_id);
109 fd = hv_dev_open((HV_VirtAddr)filename, 0);
110 if (fd < 0) {
111 pr_err("PCI: hv_dev_open(%s) failed\n", filename);
112 return -1;
114 ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
115 sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
116 hv_dev_close(fd);
117 if (ret != sizeof(rc_config)) {
118 pr_err("PCI: wanted %zd bytes, got %d\n",
119 sizeof(rc_config), ret);
120 return -1;
122 /* Record irq_base so that we can map INTx to IRQ # later. */
123 controller->irq_base = rc_config.intr;
125 for (x = 0; x < 4; x++)
126 tile_irq_activate(rc_config.intr + x,
127 TILE_IRQ_HW_CLEAR);
129 if (rc_config.plx_gen1)
130 controller->plx_gen1 = 1;
132 return 0;
136 * First initialization entry point, called from setup_arch().
138 * Find valid controllers and fill in pci_controller structs for each
139 * of them.
141 * Returns the number of controllers discovered.
143 int __init tile_pci_init(void)
145 int i;
147 pr_info("PCI: Searching for controllers...\n");
149 /* Re-init number of PCIe controllers to support hot-plug feature. */
150 num_controllers = 0;
152 /* Do any configuration we need before using the PCIe */
154 for (i = 0; i < TILE_NUM_PCIE; i++) {
156 * To see whether we need a real config op based on
157 * the results of pcibios_init(), to support PCIe hot-plug.
159 if (pci_scan_flags[i] == 0) {
160 int hv_cfg_fd0 = -1;
161 int hv_cfg_fd1 = -1;
162 int hv_mem_fd = -1;
163 char name[32];
164 struct pci_controller *controller;
167 * Open the fd to the HV. If it fails then this
168 * device doesn't exist.
170 hv_cfg_fd0 = tile_pcie_open(i, 0);
171 if (hv_cfg_fd0 < 0)
172 continue;
173 hv_cfg_fd1 = tile_pcie_open(i, 1);
174 if (hv_cfg_fd1 < 0) {
175 pr_err("PCI: Couldn't open config fd to HV "
176 "for controller %d\n", i);
177 goto err_cont;
180 sprintf(name, "pcie/%d/mem", i);
181 hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
182 if (hv_mem_fd < 0) {
183 pr_err("PCI: Could not open mem fd to HV!\n");
184 goto err_cont;
187 pr_info("PCI: Found PCI controller #%d\n", i);
189 controller = &controllers[i];
191 controller->index = i;
192 controller->hv_cfg_fd[0] = hv_cfg_fd0;
193 controller->hv_cfg_fd[1] = hv_cfg_fd1;
194 controller->hv_mem_fd = hv_mem_fd;
195 controller->first_busno = 0;
196 controller->last_busno = 0xff;
197 controller->ops = &tile_cfg_ops;
199 num_controllers++;
200 continue;
202 err_cont:
203 if (hv_cfg_fd0 >= 0)
204 hv_dev_close(hv_cfg_fd0);
205 if (hv_cfg_fd1 >= 0)
206 hv_dev_close(hv_cfg_fd1);
207 if (hv_mem_fd >= 0)
208 hv_dev_close(hv_mem_fd);
209 continue;
214 * Before using the PCIe, see if we need to do any platform-specific
215 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
217 for (i = 0; i < num_controllers; i++) {
218 struct pci_controller *controller = &controllers[i];
220 if (controller->plx_gen1)
221 tile_plx_gen1 = 1;
224 return num_controllers;
228 * (pin - 1) converts from the PCI standard's [1:4] convention to
229 * a normal [0:3] range.
231 static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
233 struct pci_controller *controller =
234 (struct pci_controller *)dev->sysdata;
235 return (pin - 1) + controller->irq_base;
239 static void fixup_read_and_payload_sizes(void)
241 struct pci_dev *dev = NULL;
242 int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
243 int max_read_size = 0x2; /* Limit to 512 byte reads. */
244 u16 new_values;
246 /* Scan for the smallest maximum payload size. */
247 for_each_pci_dev(dev) {
248 u32 devcap;
249 int max_payload;
251 if (!pci_is_pcie(dev))
252 continue;
254 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &devcap);
255 max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
256 if (max_payload < smallest_max_payload)
257 smallest_max_payload = max_payload;
260 /* Now, set the max_payload_size for all devices to that value. */
261 new_values = (max_read_size << 12) | (smallest_max_payload << 5);
262 for_each_pci_dev(dev)
263 pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
264 PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ,
265 new_values);
270 * Second PCI initialization entry point, called by subsys_initcall.
272 * The controllers have been set up by the time we get here, by a call to
273 * tile_pci_init.
275 int __init pcibios_init(void)
277 int i;
279 pr_info("PCI: Probing PCI hardware\n");
282 * Delay a bit in case devices aren't ready. Some devices are
283 * known to require at least 20ms here, but we use a more
284 * conservative value.
286 mdelay(250);
288 /* Scan all of the recorded PCI controllers. */
289 for (i = 0; i < TILE_NUM_PCIE; i++) {
291 * Do real pcibios init ops if the controller is initialized
292 * by tile_pci_init() successfully and not initialized by
293 * pcibios_init() yet to support PCIe hot-plug.
295 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
296 struct pci_controller *controller = &controllers[i];
297 struct pci_bus *bus;
298 LIST_HEAD(resources);
300 if (tile_init_irqs(i, controller)) {
301 pr_err("PCI: Could not initialize IRQs\n");
302 continue;
305 pr_info("PCI: initializing controller #%d\n", i);
308 * This comes from the generic Linux PCI driver.
310 * It reads the PCI tree for this bus into the Linux
311 * data structures.
313 * This is inlined in linux/pci.h and calls into
314 * pci_scan_bus_parented() in probe.c.
316 pci_add_resource(&resources, &ioport_resource);
317 pci_add_resource(&resources, &iomem_resource);
318 bus = pci_scan_root_bus(NULL, 0, controller->ops, controller, &resources);
319 controller->root_bus = bus;
320 controller->last_busno = bus->busn_res.end;
324 /* Do machine dependent PCI interrupt routing */
325 pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
328 * This comes from the generic Linux PCI driver.
330 * It allocates all of the resources (I/O memory, etc)
331 * associated with the devices read in above.
333 pci_assign_unassigned_resources();
335 /* Configure the max_read_size and max_payload_size values. */
336 fixup_read_and_payload_sizes();
338 /* Record the I/O resources in the PCI controller structure. */
339 for (i = 0; i < TILE_NUM_PCIE; i++) {
341 * Do real pcibios init ops if the controller is initialized
342 * by tile_pci_init() successfully and not initialized by
343 * pcibios_init() yet to support PCIe hot-plug.
345 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
346 struct pci_bus *root_bus = controllers[i].root_bus;
347 struct pci_bus *next_bus;
348 struct pci_dev *dev;
350 list_for_each_entry(dev, &root_bus->devices, bus_list) {
352 * Find the PCI host controller, ie. the 1st
353 * bridge.
355 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
356 (PCI_SLOT(dev->devfn) == 0)) {
357 next_bus = dev->subordinate;
358 controllers[i].mem_resources[0] =
359 *next_bus->resource[0];
360 controllers[i].mem_resources[1] =
361 *next_bus->resource[1];
362 controllers[i].mem_resources[2] =
363 *next_bus->resource[2];
365 /* Setup flags. */
366 pci_scan_flags[i] = 1;
368 break;
374 return 0;
376 subsys_initcall(pcibios_init);
379 * No bus fixups needed.
381 void pcibios_fixup_bus(struct pci_bus *bus)
383 /* Nothing needs to be done. */
386 void pcibios_set_master(struct pci_dev *dev)
388 /* No special bus mastering setup handling. */
392 * Enable memory and/or address decoding, as appropriate, for the
393 * device described by the 'dev' struct.
395 * This is called from the generic PCI layer, and can be called
396 * for bridges or endpoints.
398 int pcibios_enable_device(struct pci_dev *dev, int mask)
400 u16 cmd, old_cmd;
401 u8 header_type;
402 int i;
403 struct resource *r;
405 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
407 pci_read_config_word(dev, PCI_COMMAND, &cmd);
408 old_cmd = cmd;
409 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
411 * For bridges, we enable both memory and I/O decoding
412 * in call cases.
414 cmd |= PCI_COMMAND_IO;
415 cmd |= PCI_COMMAND_MEMORY;
416 } else {
418 * For endpoints, we enable memory and/or I/O decoding
419 * only if they have a memory resource of that type.
421 for (i = 0; i < 6; i++) {
422 r = &dev->resource[i];
423 if (r->flags & IORESOURCE_UNSET) {
424 pr_err("PCI: Device %s not available "
425 "because of resource collisions\n",
426 pci_name(dev));
427 return -EINVAL;
429 if (r->flags & IORESOURCE_IO)
430 cmd |= PCI_COMMAND_IO;
431 if (r->flags & IORESOURCE_MEM)
432 cmd |= PCI_COMMAND_MEMORY;
437 * We only write the command if it changed.
439 if (cmd != old_cmd)
440 pci_write_config_word(dev, PCI_COMMAND, cmd);
441 return 0;
444 /****************************************************************
446 * Tile PCI config space read/write routines
448 ****************************************************************/
451 * These are the normal read and write ops
452 * These are expanded with macros from pci_bus_read_config_byte() etc.
454 * devfn is the combined PCI slot & function.
456 * offset is in bytes, from the start of config space for the
457 * specified bus & slot.
460 static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
461 int size, u32 *val)
463 struct pci_controller *controller = bus->sysdata;
464 int busnum = bus->number & 0xff;
465 int slot = (devfn >> 3) & 0x1f;
466 int function = devfn & 0x7;
467 u32 addr;
468 int config_mode = 1;
471 * There is no bridge between the Tile and bus 0, so we
472 * use config0 to talk to bus 0.
474 * If we're talking to a bus other than zero then we
475 * must have found a bridge.
477 if (busnum == 0) {
479 * We fake an empty slot for (busnum == 0) && (slot > 0),
480 * since there is only one slot on bus 0.
482 if (slot) {
483 *val = 0xFFFFFFFF;
484 return 0;
486 config_mode = 0;
489 addr = busnum << 20; /* Bus in 27:20 */
490 addr |= slot << 15; /* Slot (device) in 19:15 */
491 addr |= function << 12; /* Function is in 14:12 */
492 addr |= (offset & 0xFFF); /* byte address in 0:11 */
494 return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
495 (HV_VirtAddr)(val), size, addr);
500 * See tile_cfg_read() for relevant comments.
501 * Note that "val" is the value to write, not a pointer to that value.
503 static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
504 int size, u32 val)
506 struct pci_controller *controller = bus->sysdata;
507 int busnum = bus->number & 0xff;
508 int slot = (devfn >> 3) & 0x1f;
509 int function = devfn & 0x7;
510 u32 addr;
511 int config_mode = 1;
512 HV_VirtAddr valp = (HV_VirtAddr)&val;
515 * For bus 0 slot 0 we use config 0 accesses.
517 if (busnum == 0) {
519 * We fake an empty slot for (busnum == 0) && (slot > 0),
520 * since there is only one slot on bus 0.
522 if (slot)
523 return 0;
524 config_mode = 0;
527 addr = busnum << 20; /* Bus in 27:20 */
528 addr |= slot << 15; /* Slot (device) in 19:15 */
529 addr |= function << 12; /* Function is in 14:12 */
530 addr |= (offset & 0xFFF); /* byte address in 0:11 */
532 #ifdef __BIG_ENDIAN
533 /* Point to the correct part of the 32-bit "val". */
534 valp += 4 - size;
535 #endif
537 return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
538 valp, size, addr);
542 static struct pci_ops tile_cfg_ops = {
543 .read = tile_cfg_read,
544 .write = tile_cfg_write,
549 * In the following, each PCI controller's mem_resources[1]
550 * represents its (non-prefetchable) PCI memory resource.
551 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
552 * prefetchable PCI memory resources, respectively.
553 * For more details, see pci_setup_bridge() in setup-bus.c.
554 * By comparing the target PCI memory address against the
555 * end address of controller 0, we can determine the controller
556 * that should accept the PCI memory access.
558 #define TILE_READ(size, type) \
559 type _tile_read##size(unsigned long addr) \
561 type val; \
562 int idx = 0; \
563 if (addr > controllers[0].mem_resources[1].end && \
564 addr > controllers[0].mem_resources[2].end) \
565 idx = 1; \
566 if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
567 (HV_VirtAddr)(&val), sizeof(type), addr)) \
568 pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
569 sizeof(type), addr); \
570 return val; \
572 EXPORT_SYMBOL(_tile_read##size)
574 TILE_READ(b, u8);
575 TILE_READ(w, u16);
576 TILE_READ(l, u32);
577 TILE_READ(q, u64);
579 #define TILE_WRITE(size, type) \
580 void _tile_write##size(type val, unsigned long addr) \
582 int idx = 0; \
583 if (addr > controllers[0].mem_resources[1].end && \
584 addr > controllers[0].mem_resources[2].end) \
585 idx = 1; \
586 if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
587 (HV_VirtAddr)(&val), sizeof(type), addr)) \
588 pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
589 sizeof(type), addr); \
591 EXPORT_SYMBOL(_tile_write##size)
593 TILE_WRITE(b, u8);
594 TILE_WRITE(w, u16);
595 TILE_WRITE(l, u32);
596 TILE_WRITE(q, u64);