IB/srp: Let srp_abort() return FAST_IO_FAIL if TL offline
[linux/fpc-iii.git] / arch / tile / kernel / pci_gx.c
blob11425633b2d7a03e2b04cadf144fbde7efe585cf
1 /*
2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/kernel.h>
16 #include <linux/mmzone.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/capability.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/irq.h>
25 #include <linux/msi.h>
26 #include <linux/io.h>
27 #include <linux/uaccess.h>
28 #include <linux/ctype.h>
30 #include <asm/processor.h>
31 #include <asm/sections.h>
32 #include <asm/byteorder.h>
34 #include <gxio/iorpc_globals.h>
35 #include <gxio/kiorpc.h>
36 #include <gxio/trio.h>
37 #include <gxio/iorpc_trio.h>
38 #include <hv/drv_trio_intf.h>
40 #include <arch/sim.h>
43 * This file containes the routines to search for PCI buses,
44 * enumerate the buses, and configure any attached devices.
47 #define DEBUG_PCI_CFG 0
49 #if DEBUG_PCI_CFG
50 #define TRACE_CFG_WR(size, val, bus, dev, func, offset) \
51 pr_info("CFG WR %d-byte VAL %#x to bus %d dev %d func %d addr %u\n", \
52 size, val, bus, dev, func, offset & 0xFFF);
53 #define TRACE_CFG_RD(size, val, bus, dev, func, offset) \
54 pr_info("CFG RD %d-byte VAL %#x from bus %d dev %d func %d addr %u\n", \
55 size, val, bus, dev, func, offset & 0xFFF);
56 #else
57 #define TRACE_CFG_WR(...)
58 #define TRACE_CFG_RD(...)
59 #endif
61 static int pci_probe = 1;
63 /* Information on the PCIe RC ports configuration. */
64 static int pcie_rc[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
67 * On some platforms with one or more Gx endpoint ports, we need to
68 * delay the PCIe RC port probe for a few seconds to work around
69 * a HW PCIe link-training bug. The exact delay is specified with
70 * a kernel boot argument in the form of "pcie_rc_delay=T,P,S",
71 * where T is the TRIO instance number, P is the port number and S is
72 * the delay in seconds. If the delay is not provided, the value
73 * will be DEFAULT_RC_DELAY.
75 static int rc_delay[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
77 /* Default number of seconds that the PCIe RC port probe can be delayed. */
78 #define DEFAULT_RC_DELAY 10
80 /* Max number of seconds that the PCIe RC port probe can be delayed. */
81 #define MAX_RC_DELAY 20
83 /* Array of the PCIe ports configuration info obtained from the BIB. */
84 struct pcie_port_property pcie_ports[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
86 /* All drivers share the TRIO contexts defined here. */
87 gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
89 /* Pointer to an array of PCIe RC controllers. */
90 struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES];
91 int num_rc_controllers;
92 static int num_ep_controllers;
94 static struct pci_ops tile_cfg_ops;
96 /* Mask of CPUs that should receive PCIe interrupts. */
97 static struct cpumask intr_cpus_map;
100 * We don't need to worry about the alignment of resources.
102 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
103 resource_size_t size, resource_size_t align)
105 return res->start;
107 EXPORT_SYMBOL(pcibios_align_resource);
111 * Pick a CPU to receive and handle the PCIe interrupts, based on the IRQ #.
112 * For now, we simply send interrupts to non-dataplane CPUs.
113 * We may implement methods to allow user to specify the target CPUs,
114 * e.g. via boot arguments.
116 static int tile_irq_cpu(int irq)
118 unsigned int count;
119 int i = 0;
120 int cpu;
122 count = cpumask_weight(&intr_cpus_map);
123 if (unlikely(count == 0)) {
124 pr_warning("intr_cpus_map empty, interrupts will be"
125 " delievered to dataplane tiles\n");
126 return irq % (smp_height * smp_width);
129 count = irq % count;
130 for_each_cpu(cpu, &intr_cpus_map) {
131 if (i++ == count)
132 break;
134 return cpu;
138 * Open a file descriptor to the TRIO shim.
140 static int tile_pcie_open(int trio_index)
142 gxio_trio_context_t *context = &trio_contexts[trio_index];
143 int ret;
146 * This opens a file descriptor to the TRIO shim.
148 ret = gxio_trio_init(context, trio_index);
149 if (ret < 0)
150 return ret;
153 * Allocate an ASID for the kernel.
155 ret = gxio_trio_alloc_asids(context, 1, 0, 0);
156 if (ret < 0) {
157 pr_err("PCI: ASID alloc failure on TRIO %d, give up\n",
158 trio_index);
159 goto asid_alloc_failure;
162 context->asid = ret;
164 #ifdef USE_SHARED_PCIE_CONFIG_REGION
166 * Alloc a PIO region for config access, shared by all MACs per TRIO.
167 * This shouldn't fail since the kernel is supposed to the first
168 * client of the TRIO's PIO regions.
170 ret = gxio_trio_alloc_pio_regions(context, 1, 0, 0);
171 if (ret < 0) {
172 pr_err("PCI: CFG PIO alloc failure on TRIO %d, give up\n",
173 trio_index);
174 goto pio_alloc_failure;
177 context->pio_cfg_index = ret;
180 * For PIO CFG, the bus_address_hi parameter is 0. The mac parameter
181 * is also 0 because it is specified in PIO_REGION_SETUP_CFG_ADDR.
183 ret = gxio_trio_init_pio_region_aux(context, context->pio_cfg_index,
184 0, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
185 if (ret < 0) {
186 pr_err("PCI: CFG PIO init failure on TRIO %d, give up\n",
187 trio_index);
188 goto pio_alloc_failure;
190 #endif
192 return ret;
194 asid_alloc_failure:
195 #ifdef USE_SHARED_PCIE_CONFIG_REGION
196 pio_alloc_failure:
197 #endif
198 hv_dev_close(context->fd);
200 return ret;
203 static void
204 tilegx_legacy_irq_ack(struct irq_data *d)
206 __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
209 static void
210 tilegx_legacy_irq_mask(struct irq_data *d)
212 __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
215 static void
216 tilegx_legacy_irq_unmask(struct irq_data *d)
218 __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
221 static struct irq_chip tilegx_legacy_irq_chip = {
222 .name = "tilegx_legacy_irq",
223 .irq_ack = tilegx_legacy_irq_ack,
224 .irq_mask = tilegx_legacy_irq_mask,
225 .irq_unmask = tilegx_legacy_irq_unmask,
227 /* TBD: support set_affinity. */
231 * This is a wrapper function of the kernel level-trigger interrupt
232 * handler handle_level_irq() for PCI legacy interrupts. The TRIO
233 * is configured such that only INTx Assert interrupts are proxied
234 * to Linux which just calls handle_level_irq() after clearing the
235 * MAC INTx Assert status bit associated with this interrupt.
237 static void
238 trio_handle_level_irq(unsigned int irq, struct irq_desc *desc)
240 struct pci_controller *controller = irq_desc_get_handler_data(desc);
241 gxio_trio_context_t *trio_context = controller->trio;
242 uint64_t intx = (uint64_t)irq_desc_get_chip_data(desc);
243 int mac = controller->mac;
244 unsigned int reg_offset;
245 uint64_t level_mask;
247 handle_level_irq(irq, desc);
250 * Clear the INTx Level status, otherwise future interrupts are
251 * not sent.
253 reg_offset = (TRIO_PCIE_INTFC_MAC_INT_STS <<
254 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
255 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
256 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
257 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
259 level_mask = TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK << intx;
261 __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, level_mask);
265 * Create kernel irqs and set up the handlers for the legacy interrupts.
266 * Also some minimum initialization for the MSI support.
268 static int tile_init_irqs(struct pci_controller *controller)
270 int i;
271 int j;
272 int irq;
273 int result;
275 cpumask_copy(&intr_cpus_map, cpu_online_mask);
278 for (i = 0; i < 4; i++) {
279 gxio_trio_context_t *context = controller->trio;
280 int cpu;
282 /* Ask the kernel to allocate an IRQ. */
283 irq = create_irq();
284 if (irq < 0) {
285 pr_err("PCI: no free irq vectors, failed for %d\n", i);
287 goto free_irqs;
289 controller->irq_intx_table[i] = irq;
291 /* Distribute the 4 IRQs to different tiles. */
292 cpu = tile_irq_cpu(irq);
294 /* Configure the TRIO intr binding for this IRQ. */
295 result = gxio_trio_config_legacy_intr(context, cpu_x(cpu),
296 cpu_y(cpu), KERNEL_PL,
297 irq, controller->mac, i);
298 if (result < 0) {
299 pr_err("PCI: MAC intx config failed for %d\n", i);
301 goto free_irqs;
305 * Register the IRQ handler with the kernel.
307 irq_set_chip_and_handler(irq, &tilegx_legacy_irq_chip,
308 trio_handle_level_irq);
309 irq_set_chip_data(irq, (void *)(uint64_t)i);
310 irq_set_handler_data(irq, controller);
313 return 0;
315 free_irqs:
316 for (j = 0; j < i; j++)
317 destroy_irq(controller->irq_intx_table[j]);
319 return -1;
323 * Find valid controllers and fill in pci_controller structs for each
324 * of them.
326 * Returns the number of controllers discovered.
328 int __init tile_pci_init(void)
330 int num_trio_shims = 0;
331 int ctl_index = 0;
332 int i, j;
334 if (!pci_probe) {
335 pr_info("PCI: disabled by boot argument\n");
336 return 0;
339 pr_info("PCI: Searching for controllers...\n");
342 * We loop over all the TRIO shims.
344 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
345 int ret;
347 ret = tile_pcie_open(i);
348 if (ret < 0)
349 continue;
351 num_trio_shims++;
354 if (num_trio_shims == 0 || sim_is_simulator())
355 return 0;
358 * Now determine which PCIe ports are configured to operate in RC mode.
359 * We look at the Board Information Block first and then see if there
360 * are any overriding configuration by the HW strapping pin.
362 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
363 gxio_trio_context_t *context = &trio_contexts[i];
364 int ret;
366 if (context->fd < 0)
367 continue;
369 ret = hv_dev_pread(context->fd, 0,
370 (HV_VirtAddr)&pcie_ports[i][0],
371 sizeof(struct pcie_port_property) * TILEGX_TRIO_PCIES,
372 GXIO_TRIO_OP_GET_PORT_PROPERTY);
373 if (ret < 0) {
374 pr_err("PCI: PCIE_GET_PORT_PROPERTY failure, error %d,"
375 " on TRIO %d\n", ret, i);
376 continue;
379 for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
380 if (pcie_ports[i][j].allow_rc) {
381 pcie_rc[i][j] = 1;
382 num_rc_controllers++;
384 else if (pcie_ports[i][j].allow_ep) {
385 num_ep_controllers++;
391 * Return if no PCIe ports are configured to operate in RC mode.
393 if (num_rc_controllers == 0)
394 return 0;
397 * Set the TRIO pointer and MAC index for each PCIe RC port.
399 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
400 for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
401 if (pcie_rc[i][j]) {
402 pci_controllers[ctl_index].trio =
403 &trio_contexts[i];
404 pci_controllers[ctl_index].mac = j;
405 pci_controllers[ctl_index].trio_index = i;
406 ctl_index++;
407 if (ctl_index == num_rc_controllers)
408 goto out;
413 out:
415 * Configure each PCIe RC port.
417 for (i = 0; i < num_rc_controllers; i++) {
419 * Configure the PCIe MAC to run in RC mode.
422 struct pci_controller *controller = &pci_controllers[i];
424 controller->index = i;
425 controller->ops = &tile_cfg_ops;
428 * The PCI memory resource is located above the PA space.
429 * For every host bridge, the BAR window or the MMIO aperture
430 * is in range [3GB, 4GB - 1] of a 4GB space beyond the
431 * PA space.
434 controller->mem_offset = TILE_PCI_MEM_START +
435 (i * TILE_PCI_BAR_WINDOW_TOP);
436 controller->mem_space.start = controller->mem_offset +
437 TILE_PCI_BAR_WINDOW_TOP - TILE_PCI_BAR_WINDOW_SIZE;
438 controller->mem_space.end = controller->mem_offset +
439 TILE_PCI_BAR_WINDOW_TOP - 1;
440 controller->mem_space.flags = IORESOURCE_MEM;
441 snprintf(controller->mem_space_name,
442 sizeof(controller->mem_space_name),
443 "PCI mem domain %d", i);
444 controller->mem_space.name = controller->mem_space_name;
447 return num_rc_controllers;
451 * (pin - 1) converts from the PCI standard's [1:4] convention to
452 * a normal [0:3] range.
454 static int tile_map_irq(const struct pci_dev *dev, u8 device, u8 pin)
456 struct pci_controller *controller =
457 (struct pci_controller *)dev->sysdata;
458 return controller->irq_intx_table[pin - 1];
462 static void fixup_read_and_payload_sizes(struct pci_controller *controller)
464 gxio_trio_context_t *trio_context = controller->trio;
465 struct pci_bus *root_bus = controller->root_bus;
466 TRIO_PCIE_RC_DEVICE_CONTROL_t dev_control;
467 TRIO_PCIE_RC_DEVICE_CAP_t rc_dev_cap;
468 unsigned int reg_offset;
469 struct pci_bus *child;
470 int mac;
471 int err;
473 mac = controller->mac;
476 * Set our max read request size to be 4KB.
478 reg_offset =
479 (TRIO_PCIE_RC_DEVICE_CONTROL <<
480 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
481 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
482 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
483 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
485 dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
486 reg_offset);
487 dev_control.max_read_req_sz = 5;
488 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
489 dev_control.word);
492 * Set the max payload size supported by this Gx PCIe MAC.
493 * Though Gx PCIe supports Max Payload Size of up to 1024 bytes,
494 * experiments have shown that setting MPS to 256 yields the
495 * best performance.
497 reg_offset =
498 (TRIO_PCIE_RC_DEVICE_CAP <<
499 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
500 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
501 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
502 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
504 rc_dev_cap.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
505 reg_offset);
506 rc_dev_cap.mps_sup = 1;
507 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
508 rc_dev_cap.word);
510 /* Configure PCI Express MPS setting. */
511 list_for_each_entry(child, &root_bus->children, node) {
512 struct pci_dev *self = child->self;
513 if (!self)
514 continue;
516 pcie_bus_configure_settings(child, self->pcie_mpss);
520 * Set the mac_config register in trio based on the MPS/MRS of the link.
522 reg_offset =
523 (TRIO_PCIE_RC_DEVICE_CONTROL <<
524 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
525 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
526 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
527 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
529 dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
530 reg_offset);
532 err = gxio_trio_set_mps_mrs(trio_context,
533 dev_control.max_payload_size,
534 dev_control.max_read_req_sz,
535 mac);
536 if (err < 0) {
537 pr_err("PCI: PCIE_CONFIGURE_MAC_MPS_MRS failure, "
538 "MAC %d on TRIO %d\n",
539 mac, controller->trio_index);
543 static int setup_pcie_rc_delay(char *str)
545 unsigned long delay = 0;
546 unsigned long trio_index;
547 unsigned long mac;
549 if (str == NULL || !isdigit(*str))
550 return -EINVAL;
551 trio_index = simple_strtoul(str, (char **)&str, 10);
552 if (trio_index >= TILEGX_NUM_TRIO)
553 return -EINVAL;
555 if (*str != ',')
556 return -EINVAL;
558 str++;
559 if (!isdigit(*str))
560 return -EINVAL;
561 mac = simple_strtoul(str, (char **)&str, 10);
562 if (mac >= TILEGX_TRIO_PCIES)
563 return -EINVAL;
565 if (*str != '\0') {
566 if (*str != ',')
567 return -EINVAL;
569 str++;
570 if (!isdigit(*str))
571 return -EINVAL;
572 delay = simple_strtoul(str, (char **)&str, 10);
573 if (delay > MAX_RC_DELAY)
574 return -EINVAL;
577 rc_delay[trio_index][mac] = delay ? : DEFAULT_RC_DELAY;
578 pr_info("Delaying PCIe RC link training for %u sec"
579 " on MAC %lu on TRIO %lu\n", rc_delay[trio_index][mac],
580 mac, trio_index);
581 return 0;
583 early_param("pcie_rc_delay", setup_pcie_rc_delay);
586 * PCI initialization entry point, called by subsys_initcall.
588 int __init pcibios_init(void)
590 resource_size_t offset;
591 LIST_HEAD(resources);
592 int next_busno;
593 int i;
595 tile_pci_init();
597 if (num_rc_controllers == 0 && num_ep_controllers == 0)
598 return 0;
601 * We loop over all the TRIO shims and set up the MMIO mappings.
603 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
604 gxio_trio_context_t *context = &trio_contexts[i];
606 if (context->fd < 0)
607 continue;
610 * Map in the MMIO space for the MAC.
612 offset = 0;
613 context->mmio_base_mac =
614 iorpc_ioremap(context->fd, offset,
615 HV_TRIO_CONFIG_IOREMAP_SIZE);
616 if (context->mmio_base_mac == NULL) {
617 pr_err("PCI: MAC map failure on TRIO %d\n", i);
619 hv_dev_close(context->fd);
620 context->fd = -1;
621 continue;
626 * Delay a bit in case devices aren't ready. Some devices are
627 * known to require at least 20ms here, but we use a more
628 * conservative value.
630 msleep(250);
632 /* Scan all of the recorded PCI controllers. */
633 for (next_busno = 0, i = 0; i < num_rc_controllers; i++) {
634 struct pci_controller *controller = &pci_controllers[i];
635 gxio_trio_context_t *trio_context = controller->trio;
636 TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
637 TRIO_PCIE_INTFC_PORT_STATUS_t port_status;
638 TRIO_PCIE_INTFC_TX_FIFO_CTL_t tx_fifo_ctl;
639 struct pci_bus *bus;
640 unsigned int reg_offset;
641 unsigned int class_code_revision;
642 int trio_index;
643 int mac;
644 int ret;
646 if (trio_context->fd < 0)
647 continue;
649 trio_index = controller->trio_index;
650 mac = controller->mac;
653 * Check the port strap state which will override the BIB
654 * setting.
657 reg_offset =
658 (TRIO_PCIE_INTFC_PORT_CONFIG <<
659 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
660 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
661 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
662 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
664 port_config.word =
665 __gxio_mmio_read(trio_context->mmio_base_mac +
666 reg_offset);
668 if ((port_config.strap_state !=
669 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC) &&
670 (port_config.strap_state !=
671 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1)) {
673 * If this is really intended to be an EP port,
674 * record it so that the endpoint driver will know about it.
676 if (port_config.strap_state ==
677 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT ||
678 port_config.strap_state ==
679 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1)
680 pcie_ports[trio_index][mac].allow_ep = 1;
682 continue;
686 * Delay the RC link training if needed.
688 if (rc_delay[trio_index][mac])
689 msleep(rc_delay[trio_index][mac] * 1000);
691 ret = gxio_trio_force_rc_link_up(trio_context, mac);
692 if (ret < 0)
693 pr_err("PCI: PCIE_FORCE_LINK_UP failure, "
694 "MAC %d on TRIO %d\n", mac, trio_index);
696 pr_info("PCI: Found PCI controller #%d on TRIO %d MAC %d\n", i,
697 trio_index, controller->mac);
700 * Wait a bit here because some EP devices take longer
701 * to come up.
703 msleep(1000);
706 * Check for PCIe link-up status.
709 reg_offset =
710 (TRIO_PCIE_INTFC_PORT_STATUS <<
711 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
712 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
713 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
714 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
716 port_status.word =
717 __gxio_mmio_read(trio_context->mmio_base_mac +
718 reg_offset);
719 if (!port_status.dl_up) {
720 pr_err("PCI: link is down, MAC %d on TRIO %d\n",
721 mac, trio_index);
722 continue;
726 * Ensure that the link can come out of L1 power down state.
727 * Strictly speaking, this is needed only in the case of
728 * heavy RC-initiated DMAs.
730 reg_offset =
731 (TRIO_PCIE_INTFC_TX_FIFO_CTL <<
732 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
733 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
734 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
735 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
736 tx_fifo_ctl.word =
737 __gxio_mmio_read(trio_context->mmio_base_mac +
738 reg_offset);
739 tx_fifo_ctl.min_p_credits = 0;
740 __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset,
741 tx_fifo_ctl.word);
744 * Change the device ID so that Linux bus crawl doesn't confuse
745 * the internal bridge with any Tilera endpoints.
748 reg_offset =
749 (TRIO_PCIE_RC_DEVICE_ID_VEN_ID <<
750 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
751 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
752 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
753 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
755 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
756 (TILERA_GX36_RC_DEV_ID <<
757 TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT) |
758 TILERA_VENDOR_ID);
761 * Set the internal P2P bridge class code.
764 reg_offset =
765 (TRIO_PCIE_RC_REVISION_ID <<
766 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
767 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
768 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
769 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
771 class_code_revision =
772 __gxio_mmio_read32(trio_context->mmio_base_mac +
773 reg_offset);
774 class_code_revision = (class_code_revision & 0xff ) |
775 (PCI_CLASS_BRIDGE_PCI << 16);
777 __gxio_mmio_write32(trio_context->mmio_base_mac +
778 reg_offset, class_code_revision);
780 #ifdef USE_SHARED_PCIE_CONFIG_REGION
783 * Map in the MMIO space for the PIO region.
785 offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index) |
786 (((unsigned long long)mac) <<
787 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
789 #else
792 * Alloc a PIO region for PCI config access per MAC.
794 ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
795 if (ret < 0) {
796 pr_err("PCI: PCI CFG PIO alloc failure for mac %d "
797 "on TRIO %d, give up\n", mac, trio_index);
799 continue;
802 trio_context->pio_cfg_index[mac] = ret;
805 * For PIO CFG, the bus_address_hi parameter is 0.
807 ret = gxio_trio_init_pio_region_aux(trio_context,
808 trio_context->pio_cfg_index[mac],
809 mac, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
810 if (ret < 0) {
811 pr_err("PCI: PCI CFG PIO init failure for mac %d "
812 "on TRIO %d, give up\n", mac, trio_index);
814 continue;
817 offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index[mac]) |
818 (((unsigned long long)mac) <<
819 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
821 #endif
823 trio_context->mmio_base_pio_cfg[mac] =
824 iorpc_ioremap(trio_context->fd, offset,
825 (1 << TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT));
826 if (trio_context->mmio_base_pio_cfg[mac] == NULL) {
827 pr_err("PCI: PIO map failure for mac %d on TRIO %d\n",
828 mac, trio_index);
830 continue;
834 * Initialize the PCIe interrupts.
836 if (tile_init_irqs(controller)) {
837 pr_err("PCI: IRQs init failure for mac %d on TRIO %d\n",
838 mac, trio_index);
840 continue;
844 * The PCI memory resource is located above the PA space.
845 * The memory range for the PCI root bus should not overlap
846 * with the physical RAM
848 pci_add_resource_offset(&resources, &controller->mem_space,
849 controller->mem_offset);
851 controller->first_busno = next_busno;
852 bus = pci_scan_root_bus(NULL, next_busno, controller->ops,
853 controller, &resources);
854 controller->root_bus = bus;
855 next_busno = bus->busn_res.end + 1;
859 /* Do machine dependent PCI interrupt routing */
860 pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
863 * This comes from the generic Linux PCI driver.
865 * It allocates all of the resources (I/O memory, etc)
866 * associated with the devices read in above.
869 pci_assign_unassigned_resources();
871 /* Record the I/O resources in the PCI controller structure. */
872 for (i = 0; i < num_rc_controllers; i++) {
873 struct pci_controller *controller = &pci_controllers[i];
874 gxio_trio_context_t *trio_context = controller->trio;
875 struct pci_bus *root_bus = pci_controllers[i].root_bus;
876 struct pci_bus *next_bus;
877 uint32_t bus_address_hi;
878 struct pci_dev *dev;
879 int ret;
880 int j;
883 * Skip controllers that are not properly initialized or
884 * have down links.
886 if (root_bus == NULL)
887 continue;
889 /* Configure the max_payload_size values for this domain. */
890 fixup_read_and_payload_sizes(controller);
892 list_for_each_entry(dev, &root_bus->devices, bus_list) {
893 /* Find the PCI host controller, ie. the 1st bridge. */
894 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
895 (PCI_SLOT(dev->devfn) == 0)) {
896 next_bus = dev->subordinate;
897 pci_controllers[i].mem_resources[0] =
898 *next_bus->resource[0];
899 pci_controllers[i].mem_resources[1] =
900 *next_bus->resource[1];
901 pci_controllers[i].mem_resources[2] =
902 *next_bus->resource[2];
904 break;
908 if (pci_controllers[i].mem_resources[1].flags & IORESOURCE_MEM)
909 bus_address_hi =
910 pci_controllers[i].mem_resources[1].start >> 32;
911 else if (pci_controllers[i].mem_resources[2].flags & IORESOURCE_PREFETCH)
912 bus_address_hi =
913 pci_controllers[i].mem_resources[2].start >> 32;
914 else {
915 /* This is unlikely. */
916 pr_err("PCI: no memory resources on TRIO %d mac %d\n",
917 controller->trio_index, controller->mac);
918 continue;
922 * Alloc a PIO region for PCI memory access for each RC port.
924 ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
925 if (ret < 0) {
926 pr_err("PCI: MEM PIO alloc failure on TRIO %d mac %d, "
927 "give up\n", controller->trio_index,
928 controller->mac);
930 continue;
933 controller->pio_mem_index = ret;
936 * For PIO MEM, the bus_address_hi parameter is hard-coded 0
937 * because we always assign 32-bit PCI bus BAR ranges.
939 ret = gxio_trio_init_pio_region_aux(trio_context,
940 controller->pio_mem_index,
941 controller->mac,
944 if (ret < 0) {
945 pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, "
946 "give up\n", controller->trio_index,
947 controller->mac);
949 continue;
953 * Configure a Mem-Map region for each memory controller so
954 * that Linux can map all of its PA space to the PCI bus.
955 * Use the IOMMU to handle hash-for-home memory.
957 for_each_online_node(j) {
958 unsigned long start_pfn = node_start_pfn[j];
959 unsigned long end_pfn = node_end_pfn[j];
960 unsigned long nr_pages = end_pfn - start_pfn;
962 ret = gxio_trio_alloc_memory_maps(trio_context, 1, 0,
964 if (ret < 0) {
965 pr_err("PCI: Mem-Map alloc failure on TRIO %d "
966 "mac %d for MC %d, give up\n",
967 controller->trio_index,
968 controller->mac, j);
970 goto alloc_mem_map_failed;
973 controller->mem_maps[j] = ret;
976 * Initialize the Mem-Map and the I/O MMU so that all
977 * the physical memory can be accessed by the endpoint
978 * devices. The base bus address is set to the base CPA
979 * of this memory controller plus an offset (see pci.h).
980 * The region's base VA is set to the base CPA. The
981 * I/O MMU table essentially translates the CPA to
982 * the real PA. Implicitly, for node 0, we create
983 * a separate Mem-Map region that serves as the inbound
984 * window for legacy 32-bit devices. This is a direct
985 * map of the low 4GB CPA space.
987 ret = gxio_trio_init_memory_map_mmu_aux(trio_context,
988 controller->mem_maps[j],
989 start_pfn << PAGE_SHIFT,
990 nr_pages << PAGE_SHIFT,
991 trio_context->asid,
992 controller->mac,
993 (start_pfn << PAGE_SHIFT) +
994 TILE_PCI_MEM_MAP_BASE_OFFSET,
996 GXIO_TRIO_ORDER_MODE_UNORDERED);
997 if (ret < 0) {
998 pr_err("PCI: Mem-Map init failure on TRIO %d "
999 "mac %d for MC %d, give up\n",
1000 controller->trio_index,
1001 controller->mac, j);
1003 goto alloc_mem_map_failed;
1005 continue;
1007 alloc_mem_map_failed:
1008 break;
1013 return 0;
1015 subsys_initcall(pcibios_init);
1017 /* Note: to be deleted after Linux 3.6 merge. */
1018 void pcibios_fixup_bus(struct pci_bus *bus)
1023 * This can be called from the generic PCI layer, but doesn't need to
1024 * do anything.
1026 char *pcibios_setup(char *str)
1028 if (!strcmp(str, "off")) {
1029 pci_probe = 0;
1030 return NULL;
1032 return str;
1036 * Enable memory address decoding, as appropriate, for the
1037 * device described by the 'dev' struct. The I/O decoding
1038 * is disabled, though the TILE-Gx supports I/O addressing.
1040 * This is called from the generic PCI layer, and can be called
1041 * for bridges or endpoints.
1043 int pcibios_enable_device(struct pci_dev *dev, int mask)
1045 return pci_enable_resources(dev, mask);
1048 /* Called for each device after PCI setup is done. */
1049 static void pcibios_fixup_final(struct pci_dev *pdev)
1051 set_dma_ops(&pdev->dev, gx_pci_dma_map_ops);
1052 set_dma_offset(&pdev->dev, TILE_PCI_MEM_MAP_BASE_OFFSET);
1053 pdev->dev.archdata.max_direct_dma_addr =
1054 TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
1056 DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_final);
1058 /* Map a PCI MMIO bus address into VA space. */
1059 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
1061 struct pci_controller *controller = NULL;
1062 resource_size_t bar_start;
1063 resource_size_t bar_end;
1064 resource_size_t offset;
1065 resource_size_t start;
1066 resource_size_t end;
1067 int trio_fd;
1068 int i, j;
1070 start = phys_addr;
1071 end = phys_addr + size - 1;
1074 * In the following, each PCI controller's mem_resources[1]
1075 * represents its (non-prefetchable) PCI memory resource and
1076 * mem_resources[2] refers to its prefetchable PCI memory resource.
1077 * By searching phys_addr in each controller's mem_resources[], we can
1078 * determine the controller that should accept the PCI memory access.
1081 for (i = 0; i < num_rc_controllers; i++) {
1083 * Skip controllers that are not properly initialized or
1084 * have down links.
1086 if (pci_controllers[i].root_bus == NULL)
1087 continue;
1089 for (j = 1; j < 3; j++) {
1090 bar_start =
1091 pci_controllers[i].mem_resources[j].start;
1092 bar_end =
1093 pci_controllers[i].mem_resources[j].end;
1095 if ((start >= bar_start) && (end <= bar_end)) {
1097 controller = &pci_controllers[i];
1099 goto got_it;
1104 if (controller == NULL)
1105 return NULL;
1107 got_it:
1108 trio_fd = controller->trio->fd;
1110 /* Convert the resource start to the bus address offset. */
1111 start = phys_addr - controller->mem_offset;
1113 offset = HV_TRIO_PIO_OFFSET(controller->pio_mem_index) + start;
1116 * We need to keep the PCI bus address's in-page offset in the VA.
1118 return iorpc_ioremap(trio_fd, offset, size) +
1119 (phys_addr & (PAGE_SIZE - 1));
1121 EXPORT_SYMBOL(ioremap);
1123 void pci_iounmap(struct pci_dev *dev, void __iomem *addr)
1125 iounmap(addr);
1127 EXPORT_SYMBOL(pci_iounmap);
1129 /****************************************************************
1131 * Tile PCI config space read/write routines
1133 ****************************************************************/
1136 * These are the normal read and write ops
1137 * These are expanded with macros from pci_bus_read_config_byte() etc.
1139 * devfn is the combined PCI device & function.
1141 * offset is in bytes, from the start of config space for the
1142 * specified bus & device.
1145 static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
1146 int size, u32 *val)
1148 struct pci_controller *controller = bus->sysdata;
1149 gxio_trio_context_t *trio_context = controller->trio;
1150 int busnum = bus->number & 0xff;
1151 int device = PCI_SLOT(devfn);
1152 int function = PCI_FUNC(devfn);
1153 int config_type = 1;
1154 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
1155 void *mmio_addr;
1158 * Map all accesses to the local device on root bus into the
1159 * MMIO space of the MAC. Accesses to the downstream devices
1160 * go to the PIO space.
1162 if (pci_is_root_bus(bus)) {
1163 if (device == 0) {
1165 * This is the internal downstream P2P bridge,
1166 * access directly.
1168 unsigned int reg_offset;
1170 reg_offset = ((offset & 0xFFF) <<
1171 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
1172 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
1173 << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
1174 (controller->mac <<
1175 TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
1177 mmio_addr = trio_context->mmio_base_mac + reg_offset;
1179 goto valid_device;
1181 } else {
1183 * We fake an empty device for (device > 0),
1184 * since there is only one device on bus 0.
1186 goto invalid_device;
1191 * Accesses to the directly attached device have to be
1192 * sent as type-0 configs.
1195 if (busnum == (controller->first_busno + 1)) {
1197 * There is only one device off of our built-in P2P bridge.
1199 if (device != 0)
1200 goto invalid_device;
1202 config_type = 0;
1205 cfg_addr.word = 0;
1206 cfg_addr.reg_addr = (offset & 0xFFF);
1207 cfg_addr.fn = function;
1208 cfg_addr.dev = device;
1209 cfg_addr.bus = busnum;
1210 cfg_addr.type = config_type;
1213 * Note that we don't set the mac field in cfg_addr because the
1214 * mapping is per port.
1217 mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
1218 cfg_addr.word;
1220 valid_device:
1222 switch (size) {
1223 case 4:
1224 *val = __gxio_mmio_read32(mmio_addr);
1225 break;
1227 case 2:
1228 *val = __gxio_mmio_read16(mmio_addr);
1229 break;
1231 case 1:
1232 *val = __gxio_mmio_read8(mmio_addr);
1233 break;
1235 default:
1236 return PCIBIOS_FUNC_NOT_SUPPORTED;
1239 TRACE_CFG_RD(size, *val, busnum, device, function, offset);
1241 return 0;
1243 invalid_device:
1245 switch (size) {
1246 case 4:
1247 *val = 0xFFFFFFFF;
1248 break;
1250 case 2:
1251 *val = 0xFFFF;
1252 break;
1254 case 1:
1255 *val = 0xFF;
1256 break;
1258 default:
1259 return PCIBIOS_FUNC_NOT_SUPPORTED;
1262 return 0;
1267 * See tile_cfg_read() for relevent comments.
1268 * Note that "val" is the value to write, not a pointer to that value.
1270 static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
1271 int size, u32 val)
1273 struct pci_controller *controller = bus->sysdata;
1274 gxio_trio_context_t *trio_context = controller->trio;
1275 int busnum = bus->number & 0xff;
1276 int device = PCI_SLOT(devfn);
1277 int function = PCI_FUNC(devfn);
1278 int config_type = 1;
1279 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
1280 void *mmio_addr;
1281 u32 val_32 = (u32)val;
1282 u16 val_16 = (u16)val;
1283 u8 val_8 = (u8)val;
1286 * Map all accesses to the local device on root bus into the
1287 * MMIO space of the MAC. Accesses to the downstream devices
1288 * go to the PIO space.
1290 if (pci_is_root_bus(bus)) {
1291 if (device == 0) {
1293 * This is the internal downstream P2P bridge,
1294 * access directly.
1296 unsigned int reg_offset;
1298 reg_offset = ((offset & 0xFFF) <<
1299 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
1300 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
1301 << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
1302 (controller->mac <<
1303 TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
1305 mmio_addr = trio_context->mmio_base_mac + reg_offset;
1307 goto valid_device;
1309 } else {
1311 * We fake an empty device for (device > 0),
1312 * since there is only one device on bus 0.
1314 goto invalid_device;
1319 * Accesses to the directly attached device have to be
1320 * sent as type-0 configs.
1323 if (busnum == (controller->first_busno + 1)) {
1325 * There is only one device off of our built-in P2P bridge.
1327 if (device != 0)
1328 goto invalid_device;
1330 config_type = 0;
1333 cfg_addr.word = 0;
1334 cfg_addr.reg_addr = (offset & 0xFFF);
1335 cfg_addr.fn = function;
1336 cfg_addr.dev = device;
1337 cfg_addr.bus = busnum;
1338 cfg_addr.type = config_type;
1341 * Note that we don't set the mac field in cfg_addr because the
1342 * mapping is per port.
1345 mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
1346 cfg_addr.word;
1348 valid_device:
1350 switch (size) {
1351 case 4:
1352 __gxio_mmio_write32(mmio_addr, val_32);
1353 TRACE_CFG_WR(size, val_32, busnum, device, function, offset);
1354 break;
1356 case 2:
1357 __gxio_mmio_write16(mmio_addr, val_16);
1358 TRACE_CFG_WR(size, val_16, busnum, device, function, offset);
1359 break;
1361 case 1:
1362 __gxio_mmio_write8(mmio_addr, val_8);
1363 TRACE_CFG_WR(size, val_8, busnum, device, function, offset);
1364 break;
1366 default:
1367 return PCIBIOS_FUNC_NOT_SUPPORTED;
1370 invalid_device:
1372 return 0;
1376 static struct pci_ops tile_cfg_ops = {
1377 .read = tile_cfg_read,
1378 .write = tile_cfg_write,
1383 * MSI support starts here.
1385 static unsigned int
1386 tilegx_msi_startup(struct irq_data *d)
1388 if (d->msi_desc)
1389 unmask_msi_irq(d);
1391 return 0;
1394 static void
1395 tilegx_msi_ack(struct irq_data *d)
1397 __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
1400 static void
1401 tilegx_msi_mask(struct irq_data *d)
1403 mask_msi_irq(d);
1404 __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
1407 static void
1408 tilegx_msi_unmask(struct irq_data *d)
1410 __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
1411 unmask_msi_irq(d);
1414 static struct irq_chip tilegx_msi_chip = {
1415 .name = "tilegx_msi",
1416 .irq_startup = tilegx_msi_startup,
1417 .irq_ack = tilegx_msi_ack,
1418 .irq_mask = tilegx_msi_mask,
1419 .irq_unmask = tilegx_msi_unmask,
1421 /* TBD: support set_affinity. */
1424 int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
1426 struct pci_controller *controller;
1427 gxio_trio_context_t *trio_context;
1428 struct msi_msg msg;
1429 int default_irq;
1430 uint64_t mem_map_base;
1431 uint64_t mem_map_limit;
1432 u64 msi_addr;
1433 int mem_map;
1434 int cpu;
1435 int irq;
1436 int ret;
1438 irq = create_irq();
1439 if (irq < 0)
1440 return irq;
1443 * Since we use a 64-bit Mem-Map to accept the MSI write, we fail
1444 * devices that are not capable of generating a 64-bit message address.
1445 * These devices will fall back to using the legacy interrupts.
1446 * Most PCIe endpoint devices do support 64-bit message addressing.
1448 if (desc->msi_attrib.is_64 == 0) {
1449 dev_printk(KERN_INFO, &pdev->dev,
1450 "64-bit MSI message address not supported, "
1451 "falling back to legacy interrupts.\n");
1453 ret = -ENOMEM;
1454 goto is_64_failure;
1457 default_irq = desc->msi_attrib.default_irq;
1458 controller = irq_get_handler_data(default_irq);
1460 BUG_ON(!controller);
1462 trio_context = controller->trio;
1465 * Allocate the Mem-Map that will accept the MSI write and
1466 * trigger the TILE-side interrupts.
1468 mem_map = gxio_trio_alloc_memory_maps(trio_context, 1, 0, 0);
1469 if (mem_map < 0) {
1470 dev_printk(KERN_INFO, &pdev->dev,
1471 "%s Mem-Map alloc failure. "
1472 "Failed to initialize MSI interrupts. "
1473 "Falling back to legacy interrupts.\n",
1474 desc->msi_attrib.is_msix ? "MSI-X" : "MSI");
1476 ret = -ENOMEM;
1477 goto msi_mem_map_alloc_failure;
1480 /* We try to distribute different IRQs to different tiles. */
1481 cpu = tile_irq_cpu(irq);
1484 * Now call up to the HV to configure the Mem-Map interrupt and
1485 * set up the IPI binding.
1487 mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
1488 mem_map * MEM_MAP_INTR_REGION_SIZE;
1489 mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
1491 ret = gxio_trio_config_msi_intr(trio_context, cpu_x(cpu), cpu_y(cpu),
1492 KERNEL_PL, irq, controller->mac,
1493 mem_map, mem_map_base, mem_map_limit,
1494 trio_context->asid);
1495 if (ret < 0) {
1496 dev_printk(KERN_INFO, &pdev->dev, "HV MSI config failed.\n");
1498 goto hv_msi_config_failure;
1501 irq_set_msi_desc(irq, desc);
1503 msi_addr = mem_map_base + TRIO_MAP_MEM_REG_INT3 - TRIO_MAP_MEM_REG_INT0;
1505 msg.address_hi = msi_addr >> 32;
1506 msg.address_lo = msi_addr & 0xffffffff;
1508 msg.data = mem_map;
1510 write_msi_msg(irq, &msg);
1511 irq_set_chip_and_handler(irq, &tilegx_msi_chip, handle_level_irq);
1512 irq_set_handler_data(irq, controller);
1514 return 0;
1516 hv_msi_config_failure:
1517 /* Free mem-map */
1518 msi_mem_map_alloc_failure:
1519 is_64_failure:
1520 destroy_irq(irq);
1521 return ret;
1524 void arch_teardown_msi_irq(unsigned int irq)
1526 destroy_irq(irq);