IB/srp: Let srp_abort() return FAST_IO_FAIL if TL offline
[linux/fpc-iii.git] / arch / tile / kernel / process.c
blob8ac304484f988a685118d4d4475b48cee1156060
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/sched.h>
16 #include <linux/preempt.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/kprobes.h>
20 #include <linux/elfcore.h>
21 #include <linux/tick.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/hardirq.h>
26 #include <linux/syscalls.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/signal.h>
30 #include <asm/stack.h>
31 #include <asm/switch_to.h>
32 #include <asm/homecache.h>
33 #include <asm/syscalls.h>
34 #include <asm/traps.h>
35 #include <asm/setup.h>
36 #ifdef CONFIG_HARDWALL
37 #include <asm/hardwall.h>
38 #endif
39 #include <arch/chip.h>
40 #include <arch/abi.h>
41 #include <arch/sim_def.h>
44 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
45 * idle loop over low power while in the idle loop, e.g. if we have
46 * one thread per core and we want to get threads out of futex waits fast.
48 static int __init idle_setup(char *str)
50 if (!str)
51 return -EINVAL;
53 if (!strcmp(str, "poll")) {
54 pr_info("using polling idle threads.\n");
55 cpu_idle_poll_ctrl(true);
56 return 0;
57 } else if (!strcmp(str, "halt")) {
58 return 0;
60 return -1;
62 early_param("idle", idle_setup);
64 void arch_cpu_idle(void)
66 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
67 _cpu_idle();
71 * Release a thread_info structure
73 void arch_release_thread_info(struct thread_info *info)
75 struct single_step_state *step_state = info->step_state;
77 #ifdef CONFIG_HARDWALL
79 * We free a thread_info from the context of the task that has
80 * been scheduled next, so the original task is already dead.
81 * Calling deactivate here just frees up the data structures.
82 * If the task we're freeing held the last reference to a
83 * hardwall fd, it would have been released prior to this point
84 * anyway via exit_files(), and the hardwall_task.info pointers
85 * would be NULL by now.
87 hardwall_deactivate_all(info->task);
88 #endif
90 if (step_state) {
93 * FIXME: we don't munmap step_state->buffer
94 * because the mm_struct for this process (info->task->mm)
95 * has already been zeroed in exit_mm(). Keeping a
96 * reference to it here seems like a bad move, so this
97 * means we can't munmap() the buffer, and therefore if we
98 * ptrace multiple threads in a process, we will slowly
99 * leak user memory. (Note that as soon as the last
100 * thread in a process dies, we will reclaim all user
101 * memory including single-step buffers in the usual way.)
102 * We should either assign a kernel VA to this buffer
103 * somehow, or we should associate the buffer(s) with the
104 * mm itself so we can clean them up that way.
106 kfree(step_state);
110 static void save_arch_state(struct thread_struct *t);
112 int copy_thread(unsigned long clone_flags, unsigned long sp,
113 unsigned long arg, struct task_struct *p)
115 struct pt_regs *childregs = task_pt_regs(p);
116 unsigned long ksp;
117 unsigned long *callee_regs;
120 * Set up the stack and stack pointer appropriately for the
121 * new child to find itself woken up in __switch_to().
122 * The callee-saved registers must be on the stack to be read;
123 * the new task will then jump to assembly support to handle
124 * calling schedule_tail(), etc., and (for userspace tasks)
125 * returning to the context set up in the pt_regs.
127 ksp = (unsigned long) childregs;
128 ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
129 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
130 ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
131 callee_regs = (unsigned long *)ksp;
132 ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
133 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
134 p->thread.ksp = ksp;
136 /* Record the pid of the task that created this one. */
137 p->thread.creator_pid = current->pid;
139 if (unlikely(p->flags & PF_KTHREAD)) {
140 /* kernel thread */
141 memset(childregs, 0, sizeof(struct pt_regs));
142 memset(&callee_regs[2], 0,
143 (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
144 callee_regs[0] = sp; /* r30 = function */
145 callee_regs[1] = arg; /* r31 = arg */
146 childregs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
147 p->thread.pc = (unsigned long) ret_from_kernel_thread;
148 return 0;
152 * Start new thread in ret_from_fork so it schedules properly
153 * and then return from interrupt like the parent.
155 p->thread.pc = (unsigned long) ret_from_fork;
158 * Do not clone step state from the parent; each thread
159 * must make its own lazily.
161 task_thread_info(p)->step_state = NULL;
164 * Copy the registers onto the kernel stack so the
165 * return-from-interrupt code will reload it into registers.
167 *childregs = *current_pt_regs();
168 childregs->regs[0] = 0; /* return value is zero */
169 if (sp)
170 childregs->sp = sp; /* override with new user stack pointer */
171 memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
172 CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
174 /* Save user stack top pointer so we can ID the stack vm area later. */
175 p->thread.usp0 = childregs->sp;
178 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
179 * which is passed in as arg #5 to sys_clone().
181 if (clone_flags & CLONE_SETTLS)
182 childregs->tp = childregs->regs[4];
185 #if CHIP_HAS_TILE_DMA()
187 * No DMA in the new thread. We model this on the fact that
188 * fork() clears the pending signals, alarms, and aio for the child.
190 memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
191 memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
192 #endif
194 #if CHIP_HAS_SN_PROC()
195 /* Likewise, the new thread is not running static processor code. */
196 p->thread.sn_proc_running = 0;
197 memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
198 #endif
200 #if CHIP_HAS_PROC_STATUS_SPR()
201 /* New thread has its miscellaneous processor state bits clear. */
202 p->thread.proc_status = 0;
203 #endif
205 #ifdef CONFIG_HARDWALL
206 /* New thread does not own any networks. */
207 memset(&p->thread.hardwall[0], 0,
208 sizeof(struct hardwall_task) * HARDWALL_TYPES);
209 #endif
213 * Start the new thread with the current architecture state
214 * (user interrupt masks, etc.).
216 save_arch_state(&p->thread);
218 return 0;
222 * Return "current" if it looks plausible, or else a pointer to a dummy.
223 * This can be helpful if we are just trying to emit a clean panic.
225 struct task_struct *validate_current(void)
227 static struct task_struct corrupt = { .comm = "<corrupt>" };
228 struct task_struct *tsk = current;
229 if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
230 (high_memory && (void *)tsk > high_memory) ||
231 ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
232 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
233 tsk = &corrupt;
235 return tsk;
238 /* Take and return the pointer to the previous task, for schedule_tail(). */
239 struct task_struct *sim_notify_fork(struct task_struct *prev)
241 struct task_struct *tsk = current;
242 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
243 (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
244 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
245 (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
246 return prev;
249 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
251 struct pt_regs *ptregs = task_pt_regs(tsk);
252 elf_core_copy_regs(regs, ptregs);
253 return 1;
256 #if CHIP_HAS_TILE_DMA()
258 /* Allow user processes to access the DMA SPRs */
259 void grant_dma_mpls(void)
261 #if CONFIG_KERNEL_PL == 2
262 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
263 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
264 #else
265 __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
266 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
267 #endif
270 /* Forbid user processes from accessing the DMA SPRs */
271 void restrict_dma_mpls(void)
273 #if CONFIG_KERNEL_PL == 2
274 __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
275 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
276 #else
277 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
278 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
279 #endif
282 /* Pause the DMA engine, then save off its state registers. */
283 static void save_tile_dma_state(struct tile_dma_state *dma)
285 unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
286 unsigned long post_suspend_state;
288 /* If we're running, suspend the engine. */
289 if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
290 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
293 * Wait for the engine to idle, then save regs. Note that we
294 * want to record the "running" bit from before suspension,
295 * and the "done" bit from after, so that we can properly
296 * distinguish a case where the user suspended the engine from
297 * the case where the kernel suspended as part of the context
298 * swap.
300 do {
301 post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
302 } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
304 dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
305 dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
306 dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
307 dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
308 dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
309 dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
310 dma->byte = __insn_mfspr(SPR_DMA_BYTE);
311 dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
312 (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
315 /* Restart a DMA that was running before we were context-switched out. */
316 static void restore_tile_dma_state(struct thread_struct *t)
318 const struct tile_dma_state *dma = &t->tile_dma_state;
321 * The only way to restore the done bit is to run a zero
322 * length transaction.
324 if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
325 !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
326 __insn_mtspr(SPR_DMA_BYTE, 0);
327 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
328 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
329 SPR_DMA_STATUS__BUSY_MASK)
333 __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
334 __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
335 __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
336 __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
337 __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
338 __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
339 __insn_mtspr(SPR_DMA_BYTE, dma->byte);
342 * Restart the engine if we were running and not done.
343 * Clear a pending async DMA fault that we were waiting on return
344 * to user space to execute, since we expect the DMA engine
345 * to regenerate those faults for us now. Note that we don't
346 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
347 * harmless if set, and it covers both DMA and the SN processor.
349 if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
350 t->dma_async_tlb.fault_num = 0;
351 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
355 #endif
357 static void save_arch_state(struct thread_struct *t)
359 #if CHIP_HAS_SPLIT_INTR_MASK()
360 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
361 ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
362 #else
363 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
364 #endif
365 t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
366 t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
367 t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
368 t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
369 t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
370 t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
371 t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
372 #if CHIP_HAS_PROC_STATUS_SPR()
373 t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
374 #endif
375 #if !CHIP_HAS_FIXED_INTVEC_BASE()
376 t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
377 #endif
378 #if CHIP_HAS_TILE_RTF_HWM()
379 t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
380 #endif
381 #if CHIP_HAS_DSTREAM_PF()
382 t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
383 #endif
386 static void restore_arch_state(const struct thread_struct *t)
388 #if CHIP_HAS_SPLIT_INTR_MASK()
389 __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
390 __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
391 #else
392 __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
393 #endif
394 __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
395 __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
396 __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
397 __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
398 __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
399 __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
400 __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
401 #if CHIP_HAS_PROC_STATUS_SPR()
402 __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
403 #endif
404 #if !CHIP_HAS_FIXED_INTVEC_BASE()
405 __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
406 #endif
407 #if CHIP_HAS_TILE_RTF_HWM()
408 __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
409 #endif
410 #if CHIP_HAS_DSTREAM_PF()
411 __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
412 #endif
416 void _prepare_arch_switch(struct task_struct *next)
418 #if CHIP_HAS_SN_PROC()
419 int snctl;
420 #endif
421 #if CHIP_HAS_TILE_DMA()
422 struct tile_dma_state *dma = &current->thread.tile_dma_state;
423 if (dma->enabled)
424 save_tile_dma_state(dma);
425 #endif
426 #if CHIP_HAS_SN_PROC()
428 * Suspend the static network processor if it was running.
429 * We do not suspend the fabric itself, just like we don't
430 * try to suspend the UDN.
432 snctl = __insn_mfspr(SPR_SNCTL);
433 current->thread.sn_proc_running =
434 (snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
435 if (current->thread.sn_proc_running)
436 __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
437 #endif
441 struct task_struct *__sched _switch_to(struct task_struct *prev,
442 struct task_struct *next)
444 /* DMA state is already saved; save off other arch state. */
445 save_arch_state(&prev->thread);
447 #if CHIP_HAS_TILE_DMA()
449 * Restore DMA in new task if desired.
450 * Note that it is only safe to restart here since interrupts
451 * are disabled, so we can't take any DMATLB miss or access
452 * interrupts before we have finished switching stacks.
454 if (next->thread.tile_dma_state.enabled) {
455 restore_tile_dma_state(&next->thread);
456 grant_dma_mpls();
457 } else {
458 restrict_dma_mpls();
460 #endif
462 /* Restore other arch state. */
463 restore_arch_state(&next->thread);
465 #if CHIP_HAS_SN_PROC()
467 * Restart static network processor in the new process
468 * if it was running before.
470 if (next->thread.sn_proc_running) {
471 int snctl = __insn_mfspr(SPR_SNCTL);
472 __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
474 #endif
476 #ifdef CONFIG_HARDWALL
477 /* Enable or disable access to the network registers appropriately. */
478 hardwall_switch_tasks(prev, next);
479 #endif
482 * Switch kernel SP, PC, and callee-saved registers.
483 * In the context of the new task, return the old task pointer
484 * (i.e. the task that actually called __switch_to).
485 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
487 return __switch_to(prev, next, next_current_ksp0(next));
491 * This routine is called on return from interrupt if any of the
492 * TIF_WORK_MASK flags are set in thread_info->flags. It is
493 * entered with interrupts disabled so we don't miss an event
494 * that modified the thread_info flags. If any flag is set, we
495 * handle it and return, and the calling assembly code will
496 * re-disable interrupts, reload the thread flags, and call back
497 * if more flags need to be handled.
499 * We return whether we need to check the thread_info flags again
500 * or not. Note that we don't clear TIF_SINGLESTEP here, so it's
501 * important that it be tested last, and then claim that we don't
502 * need to recheck the flags.
504 int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
506 /* If we enter in kernel mode, do nothing and exit the caller loop. */
507 if (!user_mode(regs))
508 return 0;
510 /* Enable interrupts; they are disabled again on return to caller. */
511 local_irq_enable();
513 if (thread_info_flags & _TIF_NEED_RESCHED) {
514 schedule();
515 return 1;
517 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
518 if (thread_info_flags & _TIF_ASYNC_TLB) {
519 do_async_page_fault(regs);
520 return 1;
522 #endif
523 if (thread_info_flags & _TIF_SIGPENDING) {
524 do_signal(regs);
525 return 1;
527 if (thread_info_flags & _TIF_NOTIFY_RESUME) {
528 clear_thread_flag(TIF_NOTIFY_RESUME);
529 tracehook_notify_resume(regs);
530 return 1;
532 if (thread_info_flags & _TIF_SINGLESTEP) {
533 single_step_once(regs);
534 return 0;
536 panic("work_pending: bad flags %#x\n", thread_info_flags);
539 unsigned long get_wchan(struct task_struct *p)
541 struct KBacktraceIterator kbt;
543 if (!p || p == current || p->state == TASK_RUNNING)
544 return 0;
546 for (KBacktraceIterator_init(&kbt, p, NULL);
547 !KBacktraceIterator_end(&kbt);
548 KBacktraceIterator_next(&kbt)) {
549 if (!in_sched_functions(kbt.it.pc))
550 return kbt.it.pc;
553 return 0;
556 /* Flush thread state. */
557 void flush_thread(void)
559 /* Nothing */
563 * Free current thread data structures etc..
565 void exit_thread(void)
567 /* Nothing */
570 void show_regs(struct pt_regs *regs)
572 struct task_struct *tsk = validate_current();
573 int i;
575 pr_err("\n");
576 show_regs_print_info(KERN_ERR);
577 #ifdef __tilegx__
578 for (i = 0; i < 51; i += 3)
579 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
580 i, regs->regs[i], i+1, regs->regs[i+1],
581 i+2, regs->regs[i+2]);
582 pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
583 regs->regs[51], regs->regs[52], regs->tp);
584 pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
585 #else
586 for (i = 0; i < 52; i += 4)
587 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
588 " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
589 i, regs->regs[i], i+1, regs->regs[i+1],
590 i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
591 pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
592 regs->regs[52], regs->tp, regs->sp, regs->lr);
593 #endif
594 pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
595 regs->pc, regs->ex1, regs->faultnum);
597 dump_stack_regs(regs);