IB/srp: Let srp_abort() return FAST_IO_FAIL if TL offline
[linux/fpc-iii.git] / arch / tile / kernel / single_step.c
blob27742e87e25596842c8e0d2030834ad0e5e89b5d
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * A code-rewriter that enables instruction single-stepping.
15 * Derived from iLib's single-stepping code.
18 #ifndef __tilegx__ /* Hardware support for single step unavailable. */
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/unaligned.h>
29 #include <arch/abi.h>
30 #include <arch/opcode.h>
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
35 int unaligned_printk;
37 static int __init setup_unaligned_printk(char *str)
39 long val;
40 if (strict_strtol(str, 0, &val) != 0)
41 return 0;
42 unaligned_printk = val;
43 pr_info("Printk for each unaligned data accesses is %s\n",
44 unaligned_printk ? "enabled" : "disabled");
45 return 1;
47 __setup("unaligned_printk=", setup_unaligned_printk);
49 unsigned int unaligned_fixup_count;
51 enum mem_op {
52 MEMOP_NONE,
53 MEMOP_LOAD,
54 MEMOP_STORE,
55 MEMOP_LOAD_POSTINCR,
56 MEMOP_STORE_POSTINCR
59 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
61 tile_bundle_bits result;
63 /* mask out the old offset */
64 tile_bundle_bits mask = create_BrOff_X1(-1);
65 result = n & (~mask);
67 /* or in the new offset */
68 result |= create_BrOff_X1(offset);
70 return result;
73 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
75 tile_bundle_bits result;
76 tile_bundle_bits op;
78 result = n & (~TILE_X1_MASK);
80 op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82 create_Dest_X1(dest) |
83 create_SrcB_X1(TREG_ZERO) |
84 create_SrcA_X1(src) ;
86 result |= op;
87 return result;
90 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
92 return move_X1(n, TREG_ZERO, TREG_ZERO);
95 static inline tile_bundle_bits addi_X1(
96 tile_bundle_bits n, int dest, int src, int imm)
98 n &= ~TILE_X1_MASK;
100 n |= (create_SrcA_X1(src) |
101 create_Dest_X1(dest) |
102 create_Imm8_X1(imm) |
103 create_S_X1(0) |
104 create_Opcode_X1(IMM_0_OPCODE_X1) |
105 create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
107 return n;
110 static tile_bundle_bits rewrite_load_store_unaligned(
111 struct single_step_state *state,
112 tile_bundle_bits bundle,
113 struct pt_regs *regs,
114 enum mem_op mem_op,
115 int size, int sign_ext)
117 unsigned char __user *addr;
118 int val_reg, addr_reg, err, val;
120 /* Get address and value registers */
121 if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
122 addr_reg = get_SrcA_Y2(bundle);
123 val_reg = get_SrcBDest_Y2(bundle);
124 } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125 addr_reg = get_SrcA_X1(bundle);
126 val_reg = get_Dest_X1(bundle);
127 } else {
128 addr_reg = get_SrcA_X1(bundle);
129 val_reg = get_SrcB_X1(bundle);
133 * If registers are not GPRs, don't try to handle it.
135 * FIXME: we could handle non-GPR loads by getting the real value
136 * from memory, writing it to the single step buffer, using a
137 * temp_reg to hold a pointer to that memory, then executing that
138 * instruction and resetting temp_reg. For non-GPR stores, it's a
139 * little trickier; we could use the single step buffer for that
140 * too, but we'd have to add some more state bits so that we could
141 * call back in here to copy that value to the real target. For
142 * now, we just handle the simple case.
144 if ((val_reg >= PTREGS_NR_GPRS &&
145 (val_reg != TREG_ZERO ||
146 mem_op == MEMOP_LOAD ||
147 mem_op == MEMOP_LOAD_POSTINCR)) ||
148 addr_reg >= PTREGS_NR_GPRS)
149 return bundle;
151 /* If it's aligned, don't handle it specially */
152 addr = (void __user *)regs->regs[addr_reg];
153 if (((unsigned long)addr % size) == 0)
154 return bundle;
157 * Return SIGBUS with the unaligned address, if requested.
158 * Note that we return SIGBUS even for completely invalid addresses
159 * as long as they are in fact unaligned; this matches what the
160 * tilepro hardware would be doing, if it could provide us with the
161 * actual bad address in an SPR, which it doesn't.
163 if (unaligned_fixup == 0) {
164 siginfo_t info = {
165 .si_signo = SIGBUS,
166 .si_code = BUS_ADRALN,
167 .si_addr = addr
169 trace_unhandled_signal("unaligned trap", regs,
170 (unsigned long)addr, SIGBUS);
171 force_sig_info(info.si_signo, &info, current);
172 return (tilepro_bundle_bits) 0;
175 /* Handle unaligned load/store */
176 if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
177 unsigned short val_16;
178 switch (size) {
179 case 2:
180 err = copy_from_user(&val_16, addr, sizeof(val_16));
181 val = sign_ext ? ((short)val_16) : val_16;
182 break;
183 case 4:
184 err = copy_from_user(&val, addr, sizeof(val));
185 break;
186 default:
187 BUG();
189 if (err == 0) {
190 state->update_reg = val_reg;
191 state->update_value = val;
192 state->update = 1;
194 } else {
195 unsigned short val_16;
196 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
197 switch (size) {
198 case 2:
199 val_16 = val;
200 err = copy_to_user(addr, &val_16, sizeof(val_16));
201 break;
202 case 4:
203 err = copy_to_user(addr, &val, sizeof(val));
204 break;
205 default:
206 BUG();
210 if (err) {
211 siginfo_t info = {
212 .si_signo = SIGSEGV,
213 .si_code = SEGV_MAPERR,
214 .si_addr = addr
216 trace_unhandled_signal("segfault", regs,
217 (unsigned long)addr, SIGSEGV);
218 force_sig_info(info.si_signo, &info, current);
219 return (tile_bundle_bits) 0;
222 if (unaligned_printk || unaligned_fixup_count == 0) {
223 pr_info("Process %d/%s: PC %#lx: Fixup of"
224 " unaligned %s at %#lx.\n",
225 current->pid, current->comm, regs->pc,
226 (mem_op == MEMOP_LOAD ||
227 mem_op == MEMOP_LOAD_POSTINCR) ?
228 "load" : "store",
229 (unsigned long)addr);
230 if (!unaligned_printk) {
231 #define P pr_info
232 P("\n");
233 P("Unaligned fixups in the kernel will slow your application considerably.\n");
234 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
235 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
236 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
237 P("access will become a SIGBUS you can debug. No further warnings will be\n");
238 P("shown so as to avoid additional slowdown, but you can track the number\n");
239 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
240 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
241 P("\n");
242 #undef P
245 ++unaligned_fixup_count;
247 if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
248 /* Convert the Y2 instruction to a prefetch. */
249 bundle &= ~(create_SrcBDest_Y2(-1) |
250 create_Opcode_Y2(-1));
251 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
252 create_Opcode_Y2(LW_OPCODE_Y2));
253 /* Replace the load postincr with an addi */
254 } else if (mem_op == MEMOP_LOAD_POSTINCR) {
255 bundle = addi_X1(bundle, addr_reg, addr_reg,
256 get_Imm8_X1(bundle));
257 /* Replace the store postincr with an addi */
258 } else if (mem_op == MEMOP_STORE_POSTINCR) {
259 bundle = addi_X1(bundle, addr_reg, addr_reg,
260 get_Dest_Imm8_X1(bundle));
261 } else {
262 /* Convert the X1 instruction to a nop. */
263 bundle &= ~(create_Opcode_X1(-1) |
264 create_UnShOpcodeExtension_X1(-1) |
265 create_UnOpcodeExtension_X1(-1));
266 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
267 create_UnShOpcodeExtension_X1(
268 UN_0_SHUN_0_OPCODE_X1) |
269 create_UnOpcodeExtension_X1(
270 NOP_UN_0_SHUN_0_OPCODE_X1));
273 return bundle;
277 * Called after execve() has started the new image. This allows us
278 * to reset the info state. Note that the the mmap'ed memory, if there
279 * was any, has already been unmapped by the exec.
281 void single_step_execve(void)
283 struct thread_info *ti = current_thread_info();
284 kfree(ti->step_state);
285 ti->step_state = NULL;
289 * single_step_once() - entry point when single stepping has been triggered.
290 * @regs: The machine register state
292 * When we arrive at this routine via a trampoline, the single step
293 * engine copies the executing bundle to the single step buffer.
294 * If the instruction is a condition branch, then the target is
295 * reset to one past the next instruction. If the instruction
296 * sets the lr, then that is noted. If the instruction is a jump
297 * or call, then the new target pc is preserved and the current
298 * bundle instruction set to null.
300 * The necessary post-single-step rewriting information is stored in
301 * single_step_state-> We use data segment values because the
302 * stack will be rewound when we run the rewritten single-stepped
303 * instruction.
305 void single_step_once(struct pt_regs *regs)
307 extern tile_bundle_bits __single_step_ill_insn;
308 extern tile_bundle_bits __single_step_j_insn;
309 extern tile_bundle_bits __single_step_addli_insn;
310 extern tile_bundle_bits __single_step_auli_insn;
311 struct thread_info *info = (void *)current_thread_info();
312 struct single_step_state *state = info->step_state;
313 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
314 tile_bundle_bits __user *buffer, *pc;
315 tile_bundle_bits bundle;
316 int temp_reg;
317 int target_reg = TREG_LR;
318 int err;
319 enum mem_op mem_op = MEMOP_NONE;
320 int size = 0, sign_ext = 0; /* happy compiler */
322 asm(
323 " .pushsection .rodata.single_step\n"
324 " .align 8\n"
325 " .globl __single_step_ill_insn\n"
326 "__single_step_ill_insn:\n"
327 " ill\n"
328 " .globl __single_step_addli_insn\n"
329 "__single_step_addli_insn:\n"
330 " { nop; addli r0, zero, 0 }\n"
331 " .globl __single_step_auli_insn\n"
332 "__single_step_auli_insn:\n"
333 " { nop; auli r0, r0, 0 }\n"
334 " .globl __single_step_j_insn\n"
335 "__single_step_j_insn:\n"
336 " j .\n"
337 " .popsection\n"
341 * Enable interrupts here to allow touching userspace and the like.
342 * The callers expect this: do_trap() already has interrupts
343 * enabled, and do_work_pending() handles functions that enable
344 * interrupts internally.
346 local_irq_enable();
348 if (state == NULL) {
349 /* allocate a page of writable, executable memory */
350 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
351 if (state == NULL) {
352 pr_err("Out of kernel memory trying to single-step\n");
353 return;
356 /* allocate a cache line of writable, executable memory */
357 buffer = (void __user *) vm_mmap(NULL, 0, 64,
358 PROT_EXEC | PROT_READ | PROT_WRITE,
359 MAP_PRIVATE | MAP_ANONYMOUS,
362 if (IS_ERR((void __force *)buffer)) {
363 kfree(state);
364 pr_err("Out of kernel pages trying to single-step\n");
365 return;
368 state->buffer = buffer;
369 state->is_enabled = 0;
371 info->step_state = state;
373 /* Validate our stored instruction patterns */
374 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
375 ADDLI_OPCODE_X1);
376 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
377 AULI_OPCODE_X1);
378 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
379 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
380 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
384 * If we are returning from a syscall, we still haven't hit the
385 * "ill" for the swint1 instruction. So back the PC up to be
386 * pointing at the swint1, but we'll actually return directly
387 * back to the "ill" so we come back in via SIGILL as if we
388 * had "executed" the swint1 without ever being in kernel space.
390 if (regs->faultnum == INT_SWINT_1)
391 regs->pc -= 8;
393 pc = (tile_bundle_bits __user *)(regs->pc);
394 if (get_user(bundle, pc) != 0) {
395 pr_err("Couldn't read instruction at %p trying to step\n", pc);
396 return;
399 /* We'll follow the instruction with 2 ill op bundles */
400 state->orig_pc = (unsigned long)pc;
401 state->next_pc = (unsigned long)(pc + 1);
402 state->branch_next_pc = 0;
403 state->update = 0;
405 if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
406 /* two wide, check for control flow */
407 int opcode = get_Opcode_X1(bundle);
409 switch (opcode) {
410 /* branches */
411 case BRANCH_OPCODE_X1:
413 s32 offset = signExtend17(get_BrOff_X1(bundle));
416 * For branches, we use a rewriting trick to let the
417 * hardware evaluate whether the branch is taken or
418 * untaken. We record the target offset and then
419 * rewrite the branch instruction to target 1 insn
420 * ahead if the branch is taken. We then follow the
421 * rewritten branch with two bundles, each containing
422 * an "ill" instruction. The supervisor examines the
423 * pc after the single step code is executed, and if
424 * the pc is the first ill instruction, then the
425 * branch (if any) was not taken. If the pc is the
426 * second ill instruction, then the branch was
427 * taken. The new pc is computed for these cases, and
428 * inserted into the registers for the thread. If
429 * the pc is the start of the single step code, then
430 * an exception or interrupt was taken before the
431 * code started processing, and the same "original"
432 * pc is restored. This change, different from the
433 * original implementation, has the advantage of
434 * executing a single user instruction.
436 state->branch_next_pc = (unsigned long)(pc + offset);
438 /* rewrite branch offset to go forward one bundle */
439 bundle = set_BrOff_X1(bundle, 2);
441 break;
443 /* jumps */
444 case JALB_OPCODE_X1:
445 case JALF_OPCODE_X1:
446 state->update = 1;
447 state->next_pc =
448 (unsigned long) (pc + get_JOffLong_X1(bundle));
449 break;
451 case JB_OPCODE_X1:
452 case JF_OPCODE_X1:
453 state->next_pc =
454 (unsigned long) (pc + get_JOffLong_X1(bundle));
455 bundle = nop_X1(bundle);
456 break;
458 case SPECIAL_0_OPCODE_X1:
459 switch (get_RRROpcodeExtension_X1(bundle)) {
460 /* jump-register */
461 case JALRP_SPECIAL_0_OPCODE_X1:
462 case JALR_SPECIAL_0_OPCODE_X1:
463 state->update = 1;
464 state->next_pc =
465 regs->regs[get_SrcA_X1(bundle)];
466 break;
468 case JRP_SPECIAL_0_OPCODE_X1:
469 case JR_SPECIAL_0_OPCODE_X1:
470 state->next_pc =
471 regs->regs[get_SrcA_X1(bundle)];
472 bundle = nop_X1(bundle);
473 break;
475 case LNK_SPECIAL_0_OPCODE_X1:
476 state->update = 1;
477 target_reg = get_Dest_X1(bundle);
478 break;
480 /* stores */
481 case SH_SPECIAL_0_OPCODE_X1:
482 mem_op = MEMOP_STORE;
483 size = 2;
484 break;
486 case SW_SPECIAL_0_OPCODE_X1:
487 mem_op = MEMOP_STORE;
488 size = 4;
489 break;
491 break;
493 /* loads and iret */
494 case SHUN_0_OPCODE_X1:
495 if (get_UnShOpcodeExtension_X1(bundle) ==
496 UN_0_SHUN_0_OPCODE_X1) {
497 switch (get_UnOpcodeExtension_X1(bundle)) {
498 case LH_UN_0_SHUN_0_OPCODE_X1:
499 mem_op = MEMOP_LOAD;
500 size = 2;
501 sign_ext = 1;
502 break;
504 case LH_U_UN_0_SHUN_0_OPCODE_X1:
505 mem_op = MEMOP_LOAD;
506 size = 2;
507 sign_ext = 0;
508 break;
510 case LW_UN_0_SHUN_0_OPCODE_X1:
511 mem_op = MEMOP_LOAD;
512 size = 4;
513 break;
515 case IRET_UN_0_SHUN_0_OPCODE_X1:
517 unsigned long ex0_0 = __insn_mfspr(
518 SPR_EX_CONTEXT_0_0);
519 unsigned long ex0_1 = __insn_mfspr(
520 SPR_EX_CONTEXT_0_1);
522 * Special-case it if we're iret'ing
523 * to PL0 again. Otherwise just let
524 * it run and it will generate SIGILL.
526 if (EX1_PL(ex0_1) == USER_PL) {
527 state->next_pc = ex0_0;
528 regs->ex1 = ex0_1;
529 bundle = nop_X1(bundle);
534 break;
536 #if CHIP_HAS_WH64()
537 /* postincrement operations */
538 case IMM_0_OPCODE_X1:
539 switch (get_ImmOpcodeExtension_X1(bundle)) {
540 case LWADD_IMM_0_OPCODE_X1:
541 mem_op = MEMOP_LOAD_POSTINCR;
542 size = 4;
543 break;
545 case LHADD_IMM_0_OPCODE_X1:
546 mem_op = MEMOP_LOAD_POSTINCR;
547 size = 2;
548 sign_ext = 1;
549 break;
551 case LHADD_U_IMM_0_OPCODE_X1:
552 mem_op = MEMOP_LOAD_POSTINCR;
553 size = 2;
554 sign_ext = 0;
555 break;
557 case SWADD_IMM_0_OPCODE_X1:
558 mem_op = MEMOP_STORE_POSTINCR;
559 size = 4;
560 break;
562 case SHADD_IMM_0_OPCODE_X1:
563 mem_op = MEMOP_STORE_POSTINCR;
564 size = 2;
565 break;
567 default:
568 break;
570 break;
571 #endif /* CHIP_HAS_WH64() */
574 if (state->update) {
576 * Get an available register. We start with a
577 * bitmask with 1's for available registers.
578 * We truncate to the low 32 registers since
579 * we are guaranteed to have set bits in the
580 * low 32 bits, then use ctz to pick the first.
582 u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
583 (1ULL << get_SrcA_X0(bundle)) |
584 (1ULL << get_SrcB_X0(bundle)) |
585 (1ULL << target_reg));
586 temp_reg = __builtin_ctz(mask);
587 state->update_reg = temp_reg;
588 state->update_value = regs->regs[temp_reg];
589 regs->regs[temp_reg] = (unsigned long) (pc+1);
590 regs->flags |= PT_FLAGS_RESTORE_REGS;
591 bundle = move_X1(bundle, target_reg, temp_reg);
593 } else {
594 int opcode = get_Opcode_Y2(bundle);
596 switch (opcode) {
597 /* loads */
598 case LH_OPCODE_Y2:
599 mem_op = MEMOP_LOAD;
600 size = 2;
601 sign_ext = 1;
602 break;
604 case LH_U_OPCODE_Y2:
605 mem_op = MEMOP_LOAD;
606 size = 2;
607 sign_ext = 0;
608 break;
610 case LW_OPCODE_Y2:
611 mem_op = MEMOP_LOAD;
612 size = 4;
613 break;
615 /* stores */
616 case SH_OPCODE_Y2:
617 mem_op = MEMOP_STORE;
618 size = 2;
619 break;
621 case SW_OPCODE_Y2:
622 mem_op = MEMOP_STORE;
623 size = 4;
624 break;
629 * Check if we need to rewrite an unaligned load/store.
630 * Returning zero is a special value meaning we need to SIGSEGV.
632 if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
633 bundle = rewrite_load_store_unaligned(state, bundle, regs,
634 mem_op, size, sign_ext);
635 if (bundle == 0)
636 return;
639 /* write the bundle to our execution area */
640 buffer = state->buffer;
641 err = __put_user(bundle, buffer++);
644 * If we're really single-stepping, we take an INT_ILL after.
645 * If we're just handling an unaligned access, we can just
646 * jump directly back to where we were in user code.
648 if (is_single_step) {
649 err |= __put_user(__single_step_ill_insn, buffer++);
650 err |= __put_user(__single_step_ill_insn, buffer++);
651 } else {
652 long delta;
654 if (state->update) {
655 /* We have some state to update; do it inline */
656 int ha16;
657 bundle = __single_step_addli_insn;
658 bundle |= create_Dest_X1(state->update_reg);
659 bundle |= create_Imm16_X1(state->update_value);
660 err |= __put_user(bundle, buffer++);
661 bundle = __single_step_auli_insn;
662 bundle |= create_Dest_X1(state->update_reg);
663 bundle |= create_SrcA_X1(state->update_reg);
664 ha16 = (state->update_value + 0x8000) >> 16;
665 bundle |= create_Imm16_X1(ha16);
666 err |= __put_user(bundle, buffer++);
667 state->update = 0;
670 /* End with a jump back to the next instruction */
671 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
672 (unsigned long)buffer) >>
673 TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
674 bundle = __single_step_j_insn;
675 bundle |= create_JOffLong_X1(delta);
676 err |= __put_user(bundle, buffer++);
679 if (err) {
680 pr_err("Fault when writing to single-step buffer\n");
681 return;
685 * Flush the buffer.
686 * We do a local flush only, since this is a thread-specific buffer.
688 __flush_icache_range((unsigned long)state->buffer,
689 (unsigned long)buffer);
691 /* Indicate enabled */
692 state->is_enabled = is_single_step;
693 regs->pc = (unsigned long)state->buffer;
695 /* Fault immediately if we are coming back from a syscall. */
696 if (regs->faultnum == INT_SWINT_1)
697 regs->pc += 8;
700 #else
701 #include <linux/smp.h>
702 #include <linux/ptrace.h>
703 #include <arch/spr_def.h>
705 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
709 * Called directly on the occasion of an interrupt.
711 * If the process doesn't have single step set, then we use this as an
712 * opportunity to turn single step off.
714 * It has been mentioned that we could conditionally turn off single stepping
715 * on each entry into the kernel and rely on single_step_once to turn it
716 * on for the processes that matter (as we already do), but this
717 * implementation is somewhat more efficient in that we muck with registers
718 * once on a bum interrupt rather than on every entry into the kernel.
720 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
721 * so we have to run through this process again before we can say that an
722 * instruction has executed.
724 * swint will set CANCELED, but it's a legitimate instruction. Fortunately
725 * it changes the PC. If it hasn't changed, then we know that the interrupt
726 * wasn't generated by swint and we'll need to run this process again before
727 * we can say an instruction has executed.
729 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
730 * on with our lives.
733 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
735 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
736 struct thread_info *info = (void *)current_thread_info();
737 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
738 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
740 if (is_single_step == 0) {
741 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
743 } else if ((*ss_pc != regs->pc) ||
744 (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
746 ptrace_notify(SIGTRAP);
747 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
748 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
749 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
755 * Called from need_singlestep. Set up the control registers and the enable
756 * register, then return back.
759 void single_step_once(struct pt_regs *regs)
761 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
762 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
764 *ss_pc = regs->pc;
765 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
766 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
767 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
768 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
771 void single_step_execve(void)
773 /* Nothing */
776 #endif /* !__tilegx__ */