2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
14 * A code-rewriter that enables instruction single-stepping.
15 * Derived from iLib's single-stepping code.
18 #ifndef __tilegx__ /* Hardware support for single step unavailable. */
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/unaligned.h>
30 #include <arch/opcode.h>
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
37 static int __init
setup_unaligned_printk(char *str
)
40 if (strict_strtol(str
, 0, &val
) != 0)
42 unaligned_printk
= val
;
43 pr_info("Printk for each unaligned data accesses is %s\n",
44 unaligned_printk
? "enabled" : "disabled");
47 __setup("unaligned_printk=", setup_unaligned_printk
);
49 unsigned int unaligned_fixup_count
;
59 static inline tile_bundle_bits
set_BrOff_X1(tile_bundle_bits n
, s32 offset
)
61 tile_bundle_bits result
;
63 /* mask out the old offset */
64 tile_bundle_bits mask
= create_BrOff_X1(-1);
67 /* or in the new offset */
68 result
|= create_BrOff_X1(offset
);
73 static inline tile_bundle_bits
move_X1(tile_bundle_bits n
, int dest
, int src
)
75 tile_bundle_bits result
;
78 result
= n
& (~TILE_X1_MASK
);
80 op
= create_Opcode_X1(SPECIAL_0_OPCODE_X1
) |
81 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1
) |
82 create_Dest_X1(dest
) |
83 create_SrcB_X1(TREG_ZERO
) |
90 static inline tile_bundle_bits
nop_X1(tile_bundle_bits n
)
92 return move_X1(n
, TREG_ZERO
, TREG_ZERO
);
95 static inline tile_bundle_bits
addi_X1(
96 tile_bundle_bits n
, int dest
, int src
, int imm
)
100 n
|= (create_SrcA_X1(src
) |
101 create_Dest_X1(dest
) |
102 create_Imm8_X1(imm
) |
104 create_Opcode_X1(IMM_0_OPCODE_X1
) |
105 create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1
));
110 static tile_bundle_bits
rewrite_load_store_unaligned(
111 struct single_step_state
*state
,
112 tile_bundle_bits bundle
,
113 struct pt_regs
*regs
,
115 int size
, int sign_ext
)
117 unsigned char __user
*addr
;
118 int val_reg
, addr_reg
, err
, val
;
120 /* Get address and value registers */
121 if (bundle
& TILEPRO_BUNDLE_Y_ENCODING_MASK
) {
122 addr_reg
= get_SrcA_Y2(bundle
);
123 val_reg
= get_SrcBDest_Y2(bundle
);
124 } else if (mem_op
== MEMOP_LOAD
|| mem_op
== MEMOP_LOAD_POSTINCR
) {
125 addr_reg
= get_SrcA_X1(bundle
);
126 val_reg
= get_Dest_X1(bundle
);
128 addr_reg
= get_SrcA_X1(bundle
);
129 val_reg
= get_SrcB_X1(bundle
);
133 * If registers are not GPRs, don't try to handle it.
135 * FIXME: we could handle non-GPR loads by getting the real value
136 * from memory, writing it to the single step buffer, using a
137 * temp_reg to hold a pointer to that memory, then executing that
138 * instruction and resetting temp_reg. For non-GPR stores, it's a
139 * little trickier; we could use the single step buffer for that
140 * too, but we'd have to add some more state bits so that we could
141 * call back in here to copy that value to the real target. For
142 * now, we just handle the simple case.
144 if ((val_reg
>= PTREGS_NR_GPRS
&&
145 (val_reg
!= TREG_ZERO
||
146 mem_op
== MEMOP_LOAD
||
147 mem_op
== MEMOP_LOAD_POSTINCR
)) ||
148 addr_reg
>= PTREGS_NR_GPRS
)
151 /* If it's aligned, don't handle it specially */
152 addr
= (void __user
*)regs
->regs
[addr_reg
];
153 if (((unsigned long)addr
% size
) == 0)
157 * Return SIGBUS with the unaligned address, if requested.
158 * Note that we return SIGBUS even for completely invalid addresses
159 * as long as they are in fact unaligned; this matches what the
160 * tilepro hardware would be doing, if it could provide us with the
161 * actual bad address in an SPR, which it doesn't.
163 if (unaligned_fixup
== 0) {
166 .si_code
= BUS_ADRALN
,
169 trace_unhandled_signal("unaligned trap", regs
,
170 (unsigned long)addr
, SIGBUS
);
171 force_sig_info(info
.si_signo
, &info
, current
);
172 return (tilepro_bundle_bits
) 0;
175 /* Handle unaligned load/store */
176 if (mem_op
== MEMOP_LOAD
|| mem_op
== MEMOP_LOAD_POSTINCR
) {
177 unsigned short val_16
;
180 err
= copy_from_user(&val_16
, addr
, sizeof(val_16
));
181 val
= sign_ext
? ((short)val_16
) : val_16
;
184 err
= copy_from_user(&val
, addr
, sizeof(val
));
190 state
->update_reg
= val_reg
;
191 state
->update_value
= val
;
195 unsigned short val_16
;
196 val
= (val_reg
== TREG_ZERO
) ? 0 : regs
->regs
[val_reg
];
200 err
= copy_to_user(addr
, &val_16
, sizeof(val_16
));
203 err
= copy_to_user(addr
, &val
, sizeof(val
));
213 .si_code
= SEGV_MAPERR
,
216 trace_unhandled_signal("segfault", regs
,
217 (unsigned long)addr
, SIGSEGV
);
218 force_sig_info(info
.si_signo
, &info
, current
);
219 return (tile_bundle_bits
) 0;
222 if (unaligned_printk
|| unaligned_fixup_count
== 0) {
223 pr_info("Process %d/%s: PC %#lx: Fixup of"
224 " unaligned %s at %#lx.\n",
225 current
->pid
, current
->comm
, regs
->pc
,
226 (mem_op
== MEMOP_LOAD
||
227 mem_op
== MEMOP_LOAD_POSTINCR
) ?
229 (unsigned long)addr
);
230 if (!unaligned_printk
) {
233 P("Unaligned fixups in the kernel will slow your application considerably.\n");
234 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
235 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
236 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
237 P("access will become a SIGBUS you can debug. No further warnings will be\n");
238 P("shown so as to avoid additional slowdown, but you can track the number\n");
239 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
240 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
245 ++unaligned_fixup_count
;
247 if (bundle
& TILEPRO_BUNDLE_Y_ENCODING_MASK
) {
248 /* Convert the Y2 instruction to a prefetch. */
249 bundle
&= ~(create_SrcBDest_Y2(-1) |
250 create_Opcode_Y2(-1));
251 bundle
|= (create_SrcBDest_Y2(TREG_ZERO
) |
252 create_Opcode_Y2(LW_OPCODE_Y2
));
253 /* Replace the load postincr with an addi */
254 } else if (mem_op
== MEMOP_LOAD_POSTINCR
) {
255 bundle
= addi_X1(bundle
, addr_reg
, addr_reg
,
256 get_Imm8_X1(bundle
));
257 /* Replace the store postincr with an addi */
258 } else if (mem_op
== MEMOP_STORE_POSTINCR
) {
259 bundle
= addi_X1(bundle
, addr_reg
, addr_reg
,
260 get_Dest_Imm8_X1(bundle
));
262 /* Convert the X1 instruction to a nop. */
263 bundle
&= ~(create_Opcode_X1(-1) |
264 create_UnShOpcodeExtension_X1(-1) |
265 create_UnOpcodeExtension_X1(-1));
266 bundle
|= (create_Opcode_X1(SHUN_0_OPCODE_X1
) |
267 create_UnShOpcodeExtension_X1(
268 UN_0_SHUN_0_OPCODE_X1
) |
269 create_UnOpcodeExtension_X1(
270 NOP_UN_0_SHUN_0_OPCODE_X1
));
277 * Called after execve() has started the new image. This allows us
278 * to reset the info state. Note that the the mmap'ed memory, if there
279 * was any, has already been unmapped by the exec.
281 void single_step_execve(void)
283 struct thread_info
*ti
= current_thread_info();
284 kfree(ti
->step_state
);
285 ti
->step_state
= NULL
;
289 * single_step_once() - entry point when single stepping has been triggered.
290 * @regs: The machine register state
292 * When we arrive at this routine via a trampoline, the single step
293 * engine copies the executing bundle to the single step buffer.
294 * If the instruction is a condition branch, then the target is
295 * reset to one past the next instruction. If the instruction
296 * sets the lr, then that is noted. If the instruction is a jump
297 * or call, then the new target pc is preserved and the current
298 * bundle instruction set to null.
300 * The necessary post-single-step rewriting information is stored in
301 * single_step_state-> We use data segment values because the
302 * stack will be rewound when we run the rewritten single-stepped
305 void single_step_once(struct pt_regs
*regs
)
307 extern tile_bundle_bits __single_step_ill_insn
;
308 extern tile_bundle_bits __single_step_j_insn
;
309 extern tile_bundle_bits __single_step_addli_insn
;
310 extern tile_bundle_bits __single_step_auli_insn
;
311 struct thread_info
*info
= (void *)current_thread_info();
312 struct single_step_state
*state
= info
->step_state
;
313 int is_single_step
= test_ti_thread_flag(info
, TIF_SINGLESTEP
);
314 tile_bundle_bits __user
*buffer
, *pc
;
315 tile_bundle_bits bundle
;
317 int target_reg
= TREG_LR
;
319 enum mem_op mem_op
= MEMOP_NONE
;
320 int size
= 0, sign_ext
= 0; /* happy compiler */
323 " .pushsection .rodata.single_step\n"
325 " .globl __single_step_ill_insn\n"
326 "__single_step_ill_insn:\n"
328 " .globl __single_step_addli_insn\n"
329 "__single_step_addli_insn:\n"
330 " { nop; addli r0, zero, 0 }\n"
331 " .globl __single_step_auli_insn\n"
332 "__single_step_auli_insn:\n"
333 " { nop; auli r0, r0, 0 }\n"
334 " .globl __single_step_j_insn\n"
335 "__single_step_j_insn:\n"
341 * Enable interrupts here to allow touching userspace and the like.
342 * The callers expect this: do_trap() already has interrupts
343 * enabled, and do_work_pending() handles functions that enable
344 * interrupts internally.
349 /* allocate a page of writable, executable memory */
350 state
= kmalloc(sizeof(struct single_step_state
), GFP_KERNEL
);
352 pr_err("Out of kernel memory trying to single-step\n");
356 /* allocate a cache line of writable, executable memory */
357 buffer
= (void __user
*) vm_mmap(NULL
, 0, 64,
358 PROT_EXEC
| PROT_READ
| PROT_WRITE
,
359 MAP_PRIVATE
| MAP_ANONYMOUS
,
362 if (IS_ERR((void __force
*)buffer
)) {
364 pr_err("Out of kernel pages trying to single-step\n");
368 state
->buffer
= buffer
;
369 state
->is_enabled
= 0;
371 info
->step_state
= state
;
373 /* Validate our stored instruction patterns */
374 BUG_ON(get_Opcode_X1(__single_step_addli_insn
) !=
376 BUG_ON(get_Opcode_X1(__single_step_auli_insn
) !=
378 BUG_ON(get_SrcA_X1(__single_step_addli_insn
) != TREG_ZERO
);
379 BUG_ON(get_Dest_X1(__single_step_addli_insn
) != 0);
380 BUG_ON(get_JOffLong_X1(__single_step_j_insn
) != 0);
384 * If we are returning from a syscall, we still haven't hit the
385 * "ill" for the swint1 instruction. So back the PC up to be
386 * pointing at the swint1, but we'll actually return directly
387 * back to the "ill" so we come back in via SIGILL as if we
388 * had "executed" the swint1 without ever being in kernel space.
390 if (regs
->faultnum
== INT_SWINT_1
)
393 pc
= (tile_bundle_bits __user
*)(regs
->pc
);
394 if (get_user(bundle
, pc
) != 0) {
395 pr_err("Couldn't read instruction at %p trying to step\n", pc
);
399 /* We'll follow the instruction with 2 ill op bundles */
400 state
->orig_pc
= (unsigned long)pc
;
401 state
->next_pc
= (unsigned long)(pc
+ 1);
402 state
->branch_next_pc
= 0;
405 if (!(bundle
& TILEPRO_BUNDLE_Y_ENCODING_MASK
)) {
406 /* two wide, check for control flow */
407 int opcode
= get_Opcode_X1(bundle
);
411 case BRANCH_OPCODE_X1
:
413 s32 offset
= signExtend17(get_BrOff_X1(bundle
));
416 * For branches, we use a rewriting trick to let the
417 * hardware evaluate whether the branch is taken or
418 * untaken. We record the target offset and then
419 * rewrite the branch instruction to target 1 insn
420 * ahead if the branch is taken. We then follow the
421 * rewritten branch with two bundles, each containing
422 * an "ill" instruction. The supervisor examines the
423 * pc after the single step code is executed, and if
424 * the pc is the first ill instruction, then the
425 * branch (if any) was not taken. If the pc is the
426 * second ill instruction, then the branch was
427 * taken. The new pc is computed for these cases, and
428 * inserted into the registers for the thread. If
429 * the pc is the start of the single step code, then
430 * an exception or interrupt was taken before the
431 * code started processing, and the same "original"
432 * pc is restored. This change, different from the
433 * original implementation, has the advantage of
434 * executing a single user instruction.
436 state
->branch_next_pc
= (unsigned long)(pc
+ offset
);
438 /* rewrite branch offset to go forward one bundle */
439 bundle
= set_BrOff_X1(bundle
, 2);
448 (unsigned long) (pc
+ get_JOffLong_X1(bundle
));
454 (unsigned long) (pc
+ get_JOffLong_X1(bundle
));
455 bundle
= nop_X1(bundle
);
458 case SPECIAL_0_OPCODE_X1
:
459 switch (get_RRROpcodeExtension_X1(bundle
)) {
461 case JALRP_SPECIAL_0_OPCODE_X1
:
462 case JALR_SPECIAL_0_OPCODE_X1
:
465 regs
->regs
[get_SrcA_X1(bundle
)];
468 case JRP_SPECIAL_0_OPCODE_X1
:
469 case JR_SPECIAL_0_OPCODE_X1
:
471 regs
->regs
[get_SrcA_X1(bundle
)];
472 bundle
= nop_X1(bundle
);
475 case LNK_SPECIAL_0_OPCODE_X1
:
477 target_reg
= get_Dest_X1(bundle
);
481 case SH_SPECIAL_0_OPCODE_X1
:
482 mem_op
= MEMOP_STORE
;
486 case SW_SPECIAL_0_OPCODE_X1
:
487 mem_op
= MEMOP_STORE
;
494 case SHUN_0_OPCODE_X1
:
495 if (get_UnShOpcodeExtension_X1(bundle
) ==
496 UN_0_SHUN_0_OPCODE_X1
) {
497 switch (get_UnOpcodeExtension_X1(bundle
)) {
498 case LH_UN_0_SHUN_0_OPCODE_X1
:
504 case LH_U_UN_0_SHUN_0_OPCODE_X1
:
510 case LW_UN_0_SHUN_0_OPCODE_X1
:
515 case IRET_UN_0_SHUN_0_OPCODE_X1
:
517 unsigned long ex0_0
= __insn_mfspr(
519 unsigned long ex0_1
= __insn_mfspr(
522 * Special-case it if we're iret'ing
523 * to PL0 again. Otherwise just let
524 * it run and it will generate SIGILL.
526 if (EX1_PL(ex0_1
) == USER_PL
) {
527 state
->next_pc
= ex0_0
;
529 bundle
= nop_X1(bundle
);
537 /* postincrement operations */
538 case IMM_0_OPCODE_X1
:
539 switch (get_ImmOpcodeExtension_X1(bundle
)) {
540 case LWADD_IMM_0_OPCODE_X1
:
541 mem_op
= MEMOP_LOAD_POSTINCR
;
545 case LHADD_IMM_0_OPCODE_X1
:
546 mem_op
= MEMOP_LOAD_POSTINCR
;
551 case LHADD_U_IMM_0_OPCODE_X1
:
552 mem_op
= MEMOP_LOAD_POSTINCR
;
557 case SWADD_IMM_0_OPCODE_X1
:
558 mem_op
= MEMOP_STORE_POSTINCR
;
562 case SHADD_IMM_0_OPCODE_X1
:
563 mem_op
= MEMOP_STORE_POSTINCR
;
571 #endif /* CHIP_HAS_WH64() */
576 * Get an available register. We start with a
577 * bitmask with 1's for available registers.
578 * We truncate to the low 32 registers since
579 * we are guaranteed to have set bits in the
580 * low 32 bits, then use ctz to pick the first.
582 u32 mask
= (u32
) ~((1ULL << get_Dest_X0(bundle
)) |
583 (1ULL << get_SrcA_X0(bundle
)) |
584 (1ULL << get_SrcB_X0(bundle
)) |
585 (1ULL << target_reg
));
586 temp_reg
= __builtin_ctz(mask
);
587 state
->update_reg
= temp_reg
;
588 state
->update_value
= regs
->regs
[temp_reg
];
589 regs
->regs
[temp_reg
] = (unsigned long) (pc
+1);
590 regs
->flags
|= PT_FLAGS_RESTORE_REGS
;
591 bundle
= move_X1(bundle
, target_reg
, temp_reg
);
594 int opcode
= get_Opcode_Y2(bundle
);
617 mem_op
= MEMOP_STORE
;
622 mem_op
= MEMOP_STORE
;
629 * Check if we need to rewrite an unaligned load/store.
630 * Returning zero is a special value meaning we need to SIGSEGV.
632 if (mem_op
!= MEMOP_NONE
&& unaligned_fixup
>= 0) {
633 bundle
= rewrite_load_store_unaligned(state
, bundle
, regs
,
634 mem_op
, size
, sign_ext
);
639 /* write the bundle to our execution area */
640 buffer
= state
->buffer
;
641 err
= __put_user(bundle
, buffer
++);
644 * If we're really single-stepping, we take an INT_ILL after.
645 * If we're just handling an unaligned access, we can just
646 * jump directly back to where we were in user code.
648 if (is_single_step
) {
649 err
|= __put_user(__single_step_ill_insn
, buffer
++);
650 err
|= __put_user(__single_step_ill_insn
, buffer
++);
655 /* We have some state to update; do it inline */
657 bundle
= __single_step_addli_insn
;
658 bundle
|= create_Dest_X1(state
->update_reg
);
659 bundle
|= create_Imm16_X1(state
->update_value
);
660 err
|= __put_user(bundle
, buffer
++);
661 bundle
= __single_step_auli_insn
;
662 bundle
|= create_Dest_X1(state
->update_reg
);
663 bundle
|= create_SrcA_X1(state
->update_reg
);
664 ha16
= (state
->update_value
+ 0x8000) >> 16;
665 bundle
|= create_Imm16_X1(ha16
);
666 err
|= __put_user(bundle
, buffer
++);
670 /* End with a jump back to the next instruction */
671 delta
= ((regs
->pc
+ TILE_BUNDLE_SIZE_IN_BYTES
) -
672 (unsigned long)buffer
) >>
673 TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES
;
674 bundle
= __single_step_j_insn
;
675 bundle
|= create_JOffLong_X1(delta
);
676 err
|= __put_user(bundle
, buffer
++);
680 pr_err("Fault when writing to single-step buffer\n");
686 * We do a local flush only, since this is a thread-specific buffer.
688 __flush_icache_range((unsigned long)state
->buffer
,
689 (unsigned long)buffer
);
691 /* Indicate enabled */
692 state
->is_enabled
= is_single_step
;
693 regs
->pc
= (unsigned long)state
->buffer
;
695 /* Fault immediately if we are coming back from a syscall. */
696 if (regs
->faultnum
== INT_SWINT_1
)
701 #include <linux/smp.h>
702 #include <linux/ptrace.h>
703 #include <arch/spr_def.h>
705 static DEFINE_PER_CPU(unsigned long, ss_saved_pc
);
709 * Called directly on the occasion of an interrupt.
711 * If the process doesn't have single step set, then we use this as an
712 * opportunity to turn single step off.
714 * It has been mentioned that we could conditionally turn off single stepping
715 * on each entry into the kernel and rely on single_step_once to turn it
716 * on for the processes that matter (as we already do), but this
717 * implementation is somewhat more efficient in that we muck with registers
718 * once on a bum interrupt rather than on every entry into the kernel.
720 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
721 * so we have to run through this process again before we can say that an
722 * instruction has executed.
724 * swint will set CANCELED, but it's a legitimate instruction. Fortunately
725 * it changes the PC. If it hasn't changed, then we know that the interrupt
726 * wasn't generated by swint and we'll need to run this process again before
727 * we can say an instruction has executed.
729 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
733 void gx_singlestep_handle(struct pt_regs
*regs
, int fault_num
)
735 unsigned long *ss_pc
= &__get_cpu_var(ss_saved_pc
);
736 struct thread_info
*info
= (void *)current_thread_info();
737 int is_single_step
= test_ti_thread_flag(info
, TIF_SINGLESTEP
);
738 unsigned long control
= __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K
);
740 if (is_single_step
== 0) {
741 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K
, 0);
743 } else if ((*ss_pc
!= regs
->pc
) ||
744 (!(control
& SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK
))) {
746 ptrace_notify(SIGTRAP
);
747 control
|= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK
;
748 control
|= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK
;
749 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K
, control
);
755 * Called from need_singlestep. Set up the control registers and the enable
756 * register, then return back.
759 void single_step_once(struct pt_regs
*regs
)
761 unsigned long *ss_pc
= &__get_cpu_var(ss_saved_pc
);
762 unsigned long control
= __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K
);
765 control
|= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK
;
766 control
|= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK
;
767 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K
, control
);
768 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K
, 1 << USER_PL
);
771 void single_step_execve(void)
776 #endif /* !__tilegx__ */