IB/srp: Let srp_abort() return FAST_IO_FAIL if TL offline
[linux/fpc-iii.git] / fs / afs / super.c
blobc4861557e38573796dd20237ff90938ee5f1429e
1 /* AFS superblock handling
3 * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
5 * This software may be freely redistributed under the terms of the
6 * GNU General Public License.
8 * You should have received a copy of the GNU General Public License
9 * along with this program; if not, write to the Free Software
10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
12 * Authors: David Howells <dhowells@redhat.com>
13 * David Woodhouse <dwmw2@infradead.org>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mount.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/parser.h>
25 #include <linux/statfs.h>
26 #include <linux/sched.h>
27 #include <linux/nsproxy.h>
28 #include <net/net_namespace.h>
29 #include "internal.h"
31 #define AFS_FS_MAGIC 0x6B414653 /* 'kAFS' */
33 static void afs_i_init_once(void *foo);
34 static struct dentry *afs_mount(struct file_system_type *fs_type,
35 int flags, const char *dev_name, void *data);
36 static void afs_kill_super(struct super_block *sb);
37 static struct inode *afs_alloc_inode(struct super_block *sb);
38 static void afs_destroy_inode(struct inode *inode);
39 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
41 struct file_system_type afs_fs_type = {
42 .owner = THIS_MODULE,
43 .name = "afs",
44 .mount = afs_mount,
45 .kill_sb = afs_kill_super,
46 .fs_flags = 0,
48 MODULE_ALIAS_FS("afs");
50 static const struct super_operations afs_super_ops = {
51 .statfs = afs_statfs,
52 .alloc_inode = afs_alloc_inode,
53 .drop_inode = afs_drop_inode,
54 .destroy_inode = afs_destroy_inode,
55 .evict_inode = afs_evict_inode,
56 .show_options = generic_show_options,
59 static struct kmem_cache *afs_inode_cachep;
60 static atomic_t afs_count_active_inodes;
62 enum {
63 afs_no_opt,
64 afs_opt_cell,
65 afs_opt_rwpath,
66 afs_opt_vol,
67 afs_opt_autocell,
70 static const match_table_t afs_options_list = {
71 { afs_opt_cell, "cell=%s" },
72 { afs_opt_rwpath, "rwpath" },
73 { afs_opt_vol, "vol=%s" },
74 { afs_opt_autocell, "autocell" },
75 { afs_no_opt, NULL },
79 * initialise the filesystem
81 int __init afs_fs_init(void)
83 int ret;
85 _enter("");
87 /* create ourselves an inode cache */
88 atomic_set(&afs_count_active_inodes, 0);
90 ret = -ENOMEM;
91 afs_inode_cachep = kmem_cache_create("afs_inode_cache",
92 sizeof(struct afs_vnode),
94 SLAB_HWCACHE_ALIGN,
95 afs_i_init_once);
96 if (!afs_inode_cachep) {
97 printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
98 return ret;
101 /* now export our filesystem to lesser mortals */
102 ret = register_filesystem(&afs_fs_type);
103 if (ret < 0) {
104 kmem_cache_destroy(afs_inode_cachep);
105 _leave(" = %d", ret);
106 return ret;
109 _leave(" = 0");
110 return 0;
114 * clean up the filesystem
116 void __exit afs_fs_exit(void)
118 _enter("");
120 afs_mntpt_kill_timer();
121 unregister_filesystem(&afs_fs_type);
123 if (atomic_read(&afs_count_active_inodes) != 0) {
124 printk("kAFS: %d active inode objects still present\n",
125 atomic_read(&afs_count_active_inodes));
126 BUG();
130 * Make sure all delayed rcu free inodes are flushed before we
131 * destroy cache.
133 rcu_barrier();
134 kmem_cache_destroy(afs_inode_cachep);
135 _leave("");
139 * parse the mount options
140 * - this function has been shamelessly adapted from the ext3 fs which
141 * shamelessly adapted it from the msdos fs
143 static int afs_parse_options(struct afs_mount_params *params,
144 char *options, const char **devname)
146 struct afs_cell *cell;
147 substring_t args[MAX_OPT_ARGS];
148 char *p;
149 int token;
151 _enter("%s", options);
153 options[PAGE_SIZE - 1] = 0;
155 while ((p = strsep(&options, ","))) {
156 if (!*p)
157 continue;
159 token = match_token(p, afs_options_list, args);
160 switch (token) {
161 case afs_opt_cell:
162 cell = afs_cell_lookup(args[0].from,
163 args[0].to - args[0].from,
164 false);
165 if (IS_ERR(cell))
166 return PTR_ERR(cell);
167 afs_put_cell(params->cell);
168 params->cell = cell;
169 break;
171 case afs_opt_rwpath:
172 params->rwpath = 1;
173 break;
175 case afs_opt_vol:
176 *devname = args[0].from;
177 break;
179 case afs_opt_autocell:
180 params->autocell = 1;
181 break;
183 default:
184 printk(KERN_ERR "kAFS:"
185 " Unknown or invalid mount option: '%s'\n", p);
186 return -EINVAL;
190 _leave(" = 0");
191 return 0;
195 * parse a device name to get cell name, volume name, volume type and R/W
196 * selector
197 * - this can be one of the following:
198 * "%[cell:]volume[.]" R/W volume
199 * "#[cell:]volume[.]" R/O or R/W volume (rwpath=0),
200 * or R/W (rwpath=1) volume
201 * "%[cell:]volume.readonly" R/O volume
202 * "#[cell:]volume.readonly" R/O volume
203 * "%[cell:]volume.backup" Backup volume
204 * "#[cell:]volume.backup" Backup volume
206 static int afs_parse_device_name(struct afs_mount_params *params,
207 const char *name)
209 struct afs_cell *cell;
210 const char *cellname, *suffix;
211 int cellnamesz;
213 _enter(",%s", name);
215 if (!name) {
216 printk(KERN_ERR "kAFS: no volume name specified\n");
217 return -EINVAL;
220 if ((name[0] != '%' && name[0] != '#') || !name[1]) {
221 printk(KERN_ERR "kAFS: unparsable volume name\n");
222 return -EINVAL;
225 /* determine the type of volume we're looking for */
226 params->type = AFSVL_ROVOL;
227 params->force = false;
228 if (params->rwpath || name[0] == '%') {
229 params->type = AFSVL_RWVOL;
230 params->force = true;
232 name++;
234 /* split the cell name out if there is one */
235 params->volname = strchr(name, ':');
236 if (params->volname) {
237 cellname = name;
238 cellnamesz = params->volname - name;
239 params->volname++;
240 } else {
241 params->volname = name;
242 cellname = NULL;
243 cellnamesz = 0;
246 /* the volume type is further affected by a possible suffix */
247 suffix = strrchr(params->volname, '.');
248 if (suffix) {
249 if (strcmp(suffix, ".readonly") == 0) {
250 params->type = AFSVL_ROVOL;
251 params->force = true;
252 } else if (strcmp(suffix, ".backup") == 0) {
253 params->type = AFSVL_BACKVOL;
254 params->force = true;
255 } else if (suffix[1] == 0) {
256 } else {
257 suffix = NULL;
261 params->volnamesz = suffix ?
262 suffix - params->volname : strlen(params->volname);
264 _debug("cell %*.*s [%p]",
265 cellnamesz, cellnamesz, cellname ?: "", params->cell);
267 /* lookup the cell record */
268 if (cellname || !params->cell) {
269 cell = afs_cell_lookup(cellname, cellnamesz, true);
270 if (IS_ERR(cell)) {
271 printk(KERN_ERR "kAFS: unable to lookup cell '%*.*s'\n",
272 cellnamesz, cellnamesz, cellname ?: "");
273 return PTR_ERR(cell);
275 afs_put_cell(params->cell);
276 params->cell = cell;
279 _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
280 params->cell->name, params->cell,
281 params->volnamesz, params->volnamesz, params->volname,
282 suffix ?: "-", params->type, params->force ? " FORCE" : "");
284 return 0;
288 * check a superblock to see if it's the one we're looking for
290 static int afs_test_super(struct super_block *sb, void *data)
292 struct afs_super_info *as1 = data;
293 struct afs_super_info *as = sb->s_fs_info;
295 return as->volume == as1->volume;
298 static int afs_set_super(struct super_block *sb, void *data)
300 sb->s_fs_info = data;
301 return set_anon_super(sb, NULL);
305 * fill in the superblock
307 static int afs_fill_super(struct super_block *sb,
308 struct afs_mount_params *params)
310 struct afs_super_info *as = sb->s_fs_info;
311 struct afs_fid fid;
312 struct inode *inode = NULL;
313 int ret;
315 _enter("");
317 /* fill in the superblock */
318 sb->s_blocksize = PAGE_CACHE_SIZE;
319 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
320 sb->s_magic = AFS_FS_MAGIC;
321 sb->s_op = &afs_super_ops;
322 sb->s_bdi = &as->volume->bdi;
323 strlcpy(sb->s_id, as->volume->vlocation->vldb.name, sizeof(sb->s_id));
325 /* allocate the root inode and dentry */
326 fid.vid = as->volume->vid;
327 fid.vnode = 1;
328 fid.unique = 1;
329 inode = afs_iget(sb, params->key, &fid, NULL, NULL);
330 if (IS_ERR(inode))
331 return PTR_ERR(inode);
333 if (params->autocell)
334 set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
336 ret = -ENOMEM;
337 sb->s_root = d_make_root(inode);
338 if (!sb->s_root)
339 goto error;
341 sb->s_d_op = &afs_fs_dentry_operations;
343 _leave(" = 0");
344 return 0;
346 error:
347 _leave(" = %d", ret);
348 return ret;
352 * get an AFS superblock
354 static struct dentry *afs_mount(struct file_system_type *fs_type,
355 int flags, const char *dev_name, void *options)
357 struct afs_mount_params params;
358 struct super_block *sb;
359 struct afs_volume *vol;
360 struct key *key;
361 char *new_opts = kstrdup(options, GFP_KERNEL);
362 struct afs_super_info *as;
363 int ret;
365 _enter(",,%s,%p", dev_name, options);
367 memset(&params, 0, sizeof(params));
369 ret = -EINVAL;
370 if (current->nsproxy->net_ns != &init_net)
371 goto error;
373 /* parse the options and device name */
374 if (options) {
375 ret = afs_parse_options(&params, options, &dev_name);
376 if (ret < 0)
377 goto error;
380 ret = afs_parse_device_name(&params, dev_name);
381 if (ret < 0)
382 goto error;
384 /* try and do the mount securely */
385 key = afs_request_key(params.cell);
386 if (IS_ERR(key)) {
387 _leave(" = %ld [key]", PTR_ERR(key));
388 ret = PTR_ERR(key);
389 goto error;
391 params.key = key;
393 /* parse the device name */
394 vol = afs_volume_lookup(&params);
395 if (IS_ERR(vol)) {
396 ret = PTR_ERR(vol);
397 goto error;
400 /* allocate a superblock info record */
401 as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
402 if (!as) {
403 ret = -ENOMEM;
404 afs_put_volume(vol);
405 goto error;
407 as->volume = vol;
409 /* allocate a deviceless superblock */
410 sb = sget(fs_type, afs_test_super, afs_set_super, flags, as);
411 if (IS_ERR(sb)) {
412 ret = PTR_ERR(sb);
413 afs_put_volume(vol);
414 kfree(as);
415 goto error;
418 if (!sb->s_root) {
419 /* initial superblock/root creation */
420 _debug("create");
421 ret = afs_fill_super(sb, &params);
422 if (ret < 0) {
423 deactivate_locked_super(sb);
424 goto error;
426 save_mount_options(sb, new_opts);
427 sb->s_flags |= MS_ACTIVE;
428 } else {
429 _debug("reuse");
430 ASSERTCMP(sb->s_flags, &, MS_ACTIVE);
431 afs_put_volume(vol);
432 kfree(as);
435 afs_put_cell(params.cell);
436 kfree(new_opts);
437 _leave(" = 0 [%p]", sb);
438 return dget(sb->s_root);
440 error:
441 afs_put_cell(params.cell);
442 key_put(params.key);
443 kfree(new_opts);
444 _leave(" = %d", ret);
445 return ERR_PTR(ret);
448 static void afs_kill_super(struct super_block *sb)
450 struct afs_super_info *as = sb->s_fs_info;
451 kill_anon_super(sb);
452 afs_put_volume(as->volume);
453 kfree(as);
457 * initialise an inode cache slab element prior to any use
459 static void afs_i_init_once(void *_vnode)
461 struct afs_vnode *vnode = _vnode;
463 memset(vnode, 0, sizeof(*vnode));
464 inode_init_once(&vnode->vfs_inode);
465 init_waitqueue_head(&vnode->update_waitq);
466 mutex_init(&vnode->permits_lock);
467 mutex_init(&vnode->validate_lock);
468 spin_lock_init(&vnode->writeback_lock);
469 spin_lock_init(&vnode->lock);
470 INIT_LIST_HEAD(&vnode->writebacks);
471 INIT_LIST_HEAD(&vnode->pending_locks);
472 INIT_LIST_HEAD(&vnode->granted_locks);
473 INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
474 INIT_WORK(&vnode->cb_broken_work, afs_broken_callback_work);
478 * allocate an AFS inode struct from our slab cache
480 static struct inode *afs_alloc_inode(struct super_block *sb)
482 struct afs_vnode *vnode;
484 vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
485 if (!vnode)
486 return NULL;
488 atomic_inc(&afs_count_active_inodes);
490 memset(&vnode->fid, 0, sizeof(vnode->fid));
491 memset(&vnode->status, 0, sizeof(vnode->status));
493 vnode->volume = NULL;
494 vnode->update_cnt = 0;
495 vnode->flags = 1 << AFS_VNODE_UNSET;
496 vnode->cb_promised = false;
498 _leave(" = %p", &vnode->vfs_inode);
499 return &vnode->vfs_inode;
502 static void afs_i_callback(struct rcu_head *head)
504 struct inode *inode = container_of(head, struct inode, i_rcu);
505 struct afs_vnode *vnode = AFS_FS_I(inode);
506 kmem_cache_free(afs_inode_cachep, vnode);
510 * destroy an AFS inode struct
512 static void afs_destroy_inode(struct inode *inode)
514 struct afs_vnode *vnode = AFS_FS_I(inode);
516 _enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode);
518 _debug("DESTROY INODE %p", inode);
520 ASSERTCMP(vnode->server, ==, NULL);
522 call_rcu(&inode->i_rcu, afs_i_callback);
523 atomic_dec(&afs_count_active_inodes);
527 * return information about an AFS volume
529 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
531 struct afs_volume_status vs;
532 struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
533 struct key *key;
534 int ret;
536 key = afs_request_key(vnode->volume->cell);
537 if (IS_ERR(key))
538 return PTR_ERR(key);
540 ret = afs_vnode_get_volume_status(vnode, key, &vs);
541 key_put(key);
542 if (ret < 0) {
543 _leave(" = %d", ret);
544 return ret;
547 buf->f_type = dentry->d_sb->s_magic;
548 buf->f_bsize = AFS_BLOCK_SIZE;
549 buf->f_namelen = AFSNAMEMAX - 1;
551 if (vs.max_quota == 0)
552 buf->f_blocks = vs.part_max_blocks;
553 else
554 buf->f_blocks = vs.max_quota;
555 buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
556 return 0;