2 * linux/fs/jbd/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
44 #include <asm/uaccess.h>
47 EXPORT_SYMBOL(journal_start
);
48 EXPORT_SYMBOL(journal_restart
);
49 EXPORT_SYMBOL(journal_extend
);
50 EXPORT_SYMBOL(journal_stop
);
51 EXPORT_SYMBOL(journal_lock_updates
);
52 EXPORT_SYMBOL(journal_unlock_updates
);
53 EXPORT_SYMBOL(journal_get_write_access
);
54 EXPORT_SYMBOL(journal_get_create_access
);
55 EXPORT_SYMBOL(journal_get_undo_access
);
56 EXPORT_SYMBOL(journal_dirty_data
);
57 EXPORT_SYMBOL(journal_dirty_metadata
);
58 EXPORT_SYMBOL(journal_release_buffer
);
59 EXPORT_SYMBOL(journal_forget
);
61 EXPORT_SYMBOL(journal_sync_buffer
);
63 EXPORT_SYMBOL(journal_flush
);
64 EXPORT_SYMBOL(journal_revoke
);
66 EXPORT_SYMBOL(journal_init_dev
);
67 EXPORT_SYMBOL(journal_init_inode
);
68 EXPORT_SYMBOL(journal_update_format
);
69 EXPORT_SYMBOL(journal_check_used_features
);
70 EXPORT_SYMBOL(journal_check_available_features
);
71 EXPORT_SYMBOL(journal_set_features
);
72 EXPORT_SYMBOL(journal_create
);
73 EXPORT_SYMBOL(journal_load
);
74 EXPORT_SYMBOL(journal_destroy
);
75 EXPORT_SYMBOL(journal_abort
);
76 EXPORT_SYMBOL(journal_errno
);
77 EXPORT_SYMBOL(journal_ack_err
);
78 EXPORT_SYMBOL(journal_clear_err
);
79 EXPORT_SYMBOL(log_wait_commit
);
80 EXPORT_SYMBOL(log_start_commit
);
81 EXPORT_SYMBOL(journal_start_commit
);
82 EXPORT_SYMBOL(journal_force_commit_nested
);
83 EXPORT_SYMBOL(journal_wipe
);
84 EXPORT_SYMBOL(journal_blocks_per_page
);
85 EXPORT_SYMBOL(journal_invalidatepage
);
86 EXPORT_SYMBOL(journal_try_to_free_buffers
);
87 EXPORT_SYMBOL(journal_force_commit
);
89 static int journal_convert_superblock_v1(journal_t
*, journal_superblock_t
*);
90 static void __journal_abort_soft (journal_t
*journal
, int errno
);
91 static const char *journal_dev_name(journal_t
*journal
, char *buffer
);
94 * Helper function used to manage commit timeouts
97 static void commit_timeout(unsigned long __data
)
99 struct task_struct
* p
= (struct task_struct
*) __data
;
105 * kjournald: The main thread function used to manage a logging device
108 * This kernel thread is responsible for two things:
110 * 1) COMMIT: Every so often we need to commit the current state of the
111 * filesystem to disk. The journal thread is responsible for writing
112 * all of the metadata buffers to disk.
114 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115 * of the data in that part of the log has been rewritten elsewhere on
116 * the disk. Flushing these old buffers to reclaim space in the log is
117 * known as checkpointing, and this thread is responsible for that job.
120 static int kjournald(void *arg
)
122 journal_t
*journal
= arg
;
123 transaction_t
*transaction
;
126 * Set up an interval timer which can be used to trigger a commit wakeup
127 * after the commit interval expires
129 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
130 (unsigned long)current
);
134 /* Record that the journal thread is running */
135 journal
->j_task
= current
;
136 wake_up(&journal
->j_wait_done_commit
);
138 printk(KERN_INFO
"kjournald starting. Commit interval %ld seconds\n",
139 journal
->j_commit_interval
/ HZ
);
142 * And now, wait forever for commit wakeup events.
144 spin_lock(&journal
->j_state_lock
);
147 if (journal
->j_flags
& JFS_UNMOUNT
)
150 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
151 journal
->j_commit_sequence
, journal
->j_commit_request
);
153 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
154 jbd_debug(1, "OK, requests differ\n");
155 spin_unlock(&journal
->j_state_lock
);
156 del_timer_sync(&journal
->j_commit_timer
);
157 journal_commit_transaction(journal
);
158 spin_lock(&journal
->j_state_lock
);
162 wake_up(&journal
->j_wait_done_commit
);
163 if (freezing(current
)) {
165 * The simpler the better. Flushing journal isn't a
166 * good idea, because that depends on threads that may
167 * be already stopped.
169 jbd_debug(1, "Now suspending kjournald\n");
170 spin_unlock(&journal
->j_state_lock
);
172 spin_lock(&journal
->j_state_lock
);
175 * We assume on resume that commits are already there,
179 int should_sleep
= 1;
181 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
183 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
185 transaction
= journal
->j_running_transaction
;
186 if (transaction
&& time_after_eq(jiffies
,
187 transaction
->t_expires
))
189 if (journal
->j_flags
& JFS_UNMOUNT
)
192 spin_unlock(&journal
->j_state_lock
);
194 spin_lock(&journal
->j_state_lock
);
196 finish_wait(&journal
->j_wait_commit
, &wait
);
199 jbd_debug(1, "kjournald wakes\n");
202 * Were we woken up by a commit wakeup event?
204 transaction
= journal
->j_running_transaction
;
205 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
206 journal
->j_commit_request
= transaction
->t_tid
;
207 jbd_debug(1, "woke because of timeout\n");
212 spin_unlock(&journal
->j_state_lock
);
213 del_timer_sync(&journal
->j_commit_timer
);
214 journal
->j_task
= NULL
;
215 wake_up(&journal
->j_wait_done_commit
);
216 jbd_debug(1, "Journal thread exiting.\n");
220 static int journal_start_thread(journal_t
*journal
)
222 struct task_struct
*t
;
224 t
= kthread_run(kjournald
, journal
, "kjournald");
228 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
232 static void journal_kill_thread(journal_t
*journal
)
234 spin_lock(&journal
->j_state_lock
);
235 journal
->j_flags
|= JFS_UNMOUNT
;
237 while (journal
->j_task
) {
238 wake_up(&journal
->j_wait_commit
);
239 spin_unlock(&journal
->j_state_lock
);
240 wait_event(journal
->j_wait_done_commit
,
241 journal
->j_task
== NULL
);
242 spin_lock(&journal
->j_state_lock
);
244 spin_unlock(&journal
->j_state_lock
);
248 * journal_write_metadata_buffer: write a metadata buffer to the journal.
250 * Writes a metadata buffer to a given disk block. The actual IO is not
251 * performed but a new buffer_head is constructed which labels the data
252 * to be written with the correct destination disk block.
254 * Any magic-number escaping which needs to be done will cause a
255 * copy-out here. If the buffer happens to start with the
256 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
257 * magic number is only written to the log for descripter blocks. In
258 * this case, we copy the data and replace the first word with 0, and we
259 * return a result code which indicates that this buffer needs to be
260 * marked as an escaped buffer in the corresponding log descriptor
261 * block. The missing word can then be restored when the block is read
264 * If the source buffer has already been modified by a new transaction
265 * since we took the last commit snapshot, we use the frozen copy of
266 * that data for IO. If we end up using the existing buffer_head's data
267 * for the write, then we *have* to lock the buffer to prevent anyone
268 * else from using and possibly modifying it while the IO is in
271 * The function returns a pointer to the buffer_heads to be used for IO.
273 * We assume that the journal has already been locked in this function.
280 * Bit 0 set == escape performed on the data
281 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
284 int journal_write_metadata_buffer(transaction_t
*transaction
,
285 struct journal_head
*jh_in
,
286 struct journal_head
**jh_out
,
287 unsigned int blocknr
)
289 int need_copy_out
= 0;
290 int done_copy_out
= 0;
293 struct buffer_head
*new_bh
;
294 struct journal_head
*new_jh
;
295 struct page
*new_page
;
296 unsigned int new_offset
;
297 struct buffer_head
*bh_in
= jh2bh(jh_in
);
298 journal_t
*journal
= transaction
->t_journal
;
301 * The buffer really shouldn't be locked: only the current committing
302 * transaction is allowed to write it, so nobody else is allowed
305 * akpm: except if we're journalling data, and write() output is
306 * also part of a shared mapping, and another thread has
307 * decided to launch a writepage() against this buffer.
309 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
311 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
312 /* keep subsequent assertions sane */
313 atomic_set(&new_bh
->b_count
, 1);
314 new_jh
= journal_add_journal_head(new_bh
); /* This sleeps */
317 * If a new transaction has already done a buffer copy-out, then
318 * we use that version of the data for the commit.
320 jbd_lock_bh_state(bh_in
);
322 if (jh_in
->b_frozen_data
) {
324 new_page
= virt_to_page(jh_in
->b_frozen_data
);
325 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
327 new_page
= jh2bh(jh_in
)->b_page
;
328 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
331 mapped_data
= kmap_atomic(new_page
);
335 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
336 cpu_to_be32(JFS_MAGIC_NUMBER
)) {
340 kunmap_atomic(mapped_data
);
343 * Do we need to do a data copy?
345 if (need_copy_out
&& !done_copy_out
) {
348 jbd_unlock_bh_state(bh_in
);
349 tmp
= jbd_alloc(bh_in
->b_size
, GFP_NOFS
);
350 jbd_lock_bh_state(bh_in
);
351 if (jh_in
->b_frozen_data
) {
352 jbd_free(tmp
, bh_in
->b_size
);
356 jh_in
->b_frozen_data
= tmp
;
357 mapped_data
= kmap_atomic(new_page
);
358 memcpy(tmp
, mapped_data
+ new_offset
, jh2bh(jh_in
)->b_size
);
359 kunmap_atomic(mapped_data
);
361 new_page
= virt_to_page(tmp
);
362 new_offset
= offset_in_page(tmp
);
367 * Did we need to do an escaping? Now we've done all the
368 * copying, we can finally do so.
371 mapped_data
= kmap_atomic(new_page
);
372 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
373 kunmap_atomic(mapped_data
);
376 set_bh_page(new_bh
, new_page
, new_offset
);
377 new_jh
->b_transaction
= NULL
;
378 new_bh
->b_size
= jh2bh(jh_in
)->b_size
;
379 new_bh
->b_bdev
= transaction
->t_journal
->j_dev
;
380 new_bh
->b_blocknr
= blocknr
;
381 set_buffer_mapped(new_bh
);
382 set_buffer_dirty(new_bh
);
387 * The to-be-written buffer needs to get moved to the io queue,
388 * and the original buffer whose contents we are shadowing or
389 * copying is moved to the transaction's shadow queue.
391 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
392 spin_lock(&journal
->j_list_lock
);
393 __journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
394 spin_unlock(&journal
->j_list_lock
);
395 jbd_unlock_bh_state(bh_in
);
397 JBUFFER_TRACE(new_jh
, "file as BJ_IO");
398 journal_file_buffer(new_jh
, transaction
, BJ_IO
);
400 return do_escape
| (done_copy_out
<< 1);
404 * Allocation code for the journal file. Manage the space left in the
405 * journal, so that we can begin checkpointing when appropriate.
409 * __log_space_left: Return the number of free blocks left in the journal.
411 * Called with the journal already locked.
413 * Called under j_state_lock
416 int __log_space_left(journal_t
*journal
)
418 int left
= journal
->j_free
;
420 assert_spin_locked(&journal
->j_state_lock
);
423 * Be pessimistic here about the number of those free blocks which
424 * might be required for log descriptor control blocks.
427 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
429 left
-= MIN_LOG_RESERVED_BLOCKS
;
438 * Called under j_state_lock. Returns true if a transaction commit was started.
440 int __log_start_commit(journal_t
*journal
, tid_t target
)
443 * The only transaction we can possibly wait upon is the
444 * currently running transaction (if it exists). Otherwise,
445 * the target tid must be an old one.
447 if (journal
->j_commit_request
!= target
&&
448 journal
->j_running_transaction
&&
449 journal
->j_running_transaction
->t_tid
== target
) {
451 * We want a new commit: OK, mark the request and wakeup the
452 * commit thread. We do _not_ do the commit ourselves.
455 journal
->j_commit_request
= target
;
456 jbd_debug(1, "JBD: requesting commit %d/%d\n",
457 journal
->j_commit_request
,
458 journal
->j_commit_sequence
);
459 wake_up(&journal
->j_wait_commit
);
461 } else if (!tid_geq(journal
->j_commit_request
, target
))
462 /* This should never happen, but if it does, preserve
463 the evidence before kjournald goes into a loop and
464 increments j_commit_sequence beyond all recognition. */
465 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
466 journal
->j_commit_request
, journal
->j_commit_sequence
,
467 target
, journal
->j_running_transaction
?
468 journal
->j_running_transaction
->t_tid
: 0);
472 int log_start_commit(journal_t
*journal
, tid_t tid
)
476 spin_lock(&journal
->j_state_lock
);
477 ret
= __log_start_commit(journal
, tid
);
478 spin_unlock(&journal
->j_state_lock
);
483 * Force and wait upon a commit if the calling process is not within
484 * transaction. This is used for forcing out undo-protected data which contains
485 * bitmaps, when the fs is running out of space.
487 * We can only force the running transaction if we don't have an active handle;
488 * otherwise, we will deadlock.
490 * Returns true if a transaction was started.
492 int journal_force_commit_nested(journal_t
*journal
)
494 transaction_t
*transaction
= NULL
;
497 spin_lock(&journal
->j_state_lock
);
498 if (journal
->j_running_transaction
&& !current
->journal_info
) {
499 transaction
= journal
->j_running_transaction
;
500 __log_start_commit(journal
, transaction
->t_tid
);
501 } else if (journal
->j_committing_transaction
)
502 transaction
= journal
->j_committing_transaction
;
505 spin_unlock(&journal
->j_state_lock
);
506 return 0; /* Nothing to retry */
509 tid
= transaction
->t_tid
;
510 spin_unlock(&journal
->j_state_lock
);
511 log_wait_commit(journal
, tid
);
516 * Start a commit of the current running transaction (if any). Returns true
517 * if a transaction is going to be committed (or is currently already
518 * committing), and fills its tid in at *ptid
520 int journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
524 spin_lock(&journal
->j_state_lock
);
525 if (journal
->j_running_transaction
) {
526 tid_t tid
= journal
->j_running_transaction
->t_tid
;
528 __log_start_commit(journal
, tid
);
529 /* There's a running transaction and we've just made sure
530 * it's commit has been scheduled. */
534 } else if (journal
->j_committing_transaction
) {
536 * If commit has been started, then we have to wait for
537 * completion of that transaction.
540 *ptid
= journal
->j_committing_transaction
->t_tid
;
543 spin_unlock(&journal
->j_state_lock
);
548 * Wait for a specified commit to complete.
549 * The caller may not hold the journal lock.
551 int log_wait_commit(journal_t
*journal
, tid_t tid
)
555 #ifdef CONFIG_JBD_DEBUG
556 spin_lock(&journal
->j_state_lock
);
557 if (!tid_geq(journal
->j_commit_request
, tid
)) {
559 "%s: error: j_commit_request=%d, tid=%d\n",
560 __func__
, journal
->j_commit_request
, tid
);
562 spin_unlock(&journal
->j_state_lock
);
564 spin_lock(&journal
->j_state_lock
);
566 * Not running or committing trans? Must be already committed. This
567 * saves us from waiting for a *long* time when tid overflows.
569 if (!((journal
->j_running_transaction
&&
570 journal
->j_running_transaction
->t_tid
== tid
) ||
571 (journal
->j_committing_transaction
&&
572 journal
->j_committing_transaction
->t_tid
== tid
)))
575 if (!tid_geq(journal
->j_commit_waited
, tid
))
576 journal
->j_commit_waited
= tid
;
577 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
578 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
579 tid
, journal
->j_commit_sequence
);
580 wake_up(&journal
->j_wait_commit
);
581 spin_unlock(&journal
->j_state_lock
);
582 wait_event(journal
->j_wait_done_commit
,
583 !tid_gt(tid
, journal
->j_commit_sequence
));
584 spin_lock(&journal
->j_state_lock
);
587 spin_unlock(&journal
->j_state_lock
);
589 if (unlikely(is_journal_aborted(journal
))) {
590 printk(KERN_EMERG
"journal commit I/O error\n");
597 * Return 1 if a given transaction has not yet sent barrier request
598 * connected with a transaction commit. If 0 is returned, transaction
599 * may or may not have sent the barrier. Used to avoid sending barrier
600 * twice in common cases.
602 int journal_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
605 transaction_t
*commit_trans
;
607 if (!(journal
->j_flags
& JFS_BARRIER
))
609 spin_lock(&journal
->j_state_lock
);
610 /* Transaction already committed? */
611 if (tid_geq(journal
->j_commit_sequence
, tid
))
614 * Transaction is being committed and we already proceeded to
615 * writing commit record?
617 commit_trans
= journal
->j_committing_transaction
;
618 if (commit_trans
&& commit_trans
->t_tid
== tid
&&
619 commit_trans
->t_state
>= T_COMMIT_RECORD
)
623 spin_unlock(&journal
->j_state_lock
);
626 EXPORT_SYMBOL(journal_trans_will_send_data_barrier
);
629 * Log buffer allocation routines:
632 int journal_next_log_block(journal_t
*journal
, unsigned int *retp
)
634 unsigned int blocknr
;
636 spin_lock(&journal
->j_state_lock
);
637 J_ASSERT(journal
->j_free
> 1);
639 blocknr
= journal
->j_head
;
642 if (journal
->j_head
== journal
->j_last
)
643 journal
->j_head
= journal
->j_first
;
644 spin_unlock(&journal
->j_state_lock
);
645 return journal_bmap(journal
, blocknr
, retp
);
649 * Conversion of logical to physical block numbers for the journal
651 * On external journals the journal blocks are identity-mapped, so
652 * this is a no-op. If needed, we can use j_blk_offset - everything is
655 int journal_bmap(journal_t
*journal
, unsigned int blocknr
,
661 if (journal
->j_inode
) {
662 ret
= bmap(journal
->j_inode
, blocknr
);
666 char b
[BDEVNAME_SIZE
];
668 printk(KERN_ALERT
"%s: journal block not found "
669 "at offset %u on %s\n",
672 bdevname(journal
->j_dev
, b
));
674 __journal_abort_soft(journal
, err
);
677 *retp
= blocknr
; /* +journal->j_blk_offset */
683 * We play buffer_head aliasing tricks to write data/metadata blocks to
684 * the journal without copying their contents, but for journal
685 * descriptor blocks we do need to generate bona fide buffers.
687 * After the caller of journal_get_descriptor_buffer() has finished modifying
688 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
689 * But we don't bother doing that, so there will be coherency problems with
690 * mmaps of blockdevs which hold live JBD-controlled filesystems.
692 struct journal_head
*journal_get_descriptor_buffer(journal_t
*journal
)
694 struct buffer_head
*bh
;
695 unsigned int blocknr
;
698 err
= journal_next_log_block(journal
, &blocknr
);
703 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
707 memset(bh
->b_data
, 0, journal
->j_blocksize
);
708 set_buffer_uptodate(bh
);
710 BUFFER_TRACE(bh
, "return this buffer");
711 return journal_add_journal_head(bh
);
715 * Management for journal control blocks: functions to create and
716 * destroy journal_t structures, and to initialise and read existing
717 * journal blocks from disk. */
719 /* First: create and setup a journal_t object in memory. We initialise
720 * very few fields yet: that has to wait until we have created the
721 * journal structures from from scratch, or loaded them from disk. */
723 static journal_t
* journal_init_common (void)
728 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
732 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
733 init_waitqueue_head(&journal
->j_wait_logspace
);
734 init_waitqueue_head(&journal
->j_wait_done_commit
);
735 init_waitqueue_head(&journal
->j_wait_checkpoint
);
736 init_waitqueue_head(&journal
->j_wait_commit
);
737 init_waitqueue_head(&journal
->j_wait_updates
);
738 mutex_init(&journal
->j_checkpoint_mutex
);
739 spin_lock_init(&journal
->j_revoke_lock
);
740 spin_lock_init(&journal
->j_list_lock
);
741 spin_lock_init(&journal
->j_state_lock
);
743 journal
->j_commit_interval
= (HZ
* JBD_DEFAULT_MAX_COMMIT_AGE
);
745 /* The journal is marked for error until we succeed with recovery! */
746 journal
->j_flags
= JFS_ABORT
;
748 /* Set up a default-sized revoke table for the new mount. */
749 err
= journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
759 /* journal_init_dev and journal_init_inode:
761 * Create a journal structure assigned some fixed set of disk blocks to
762 * the journal. We don't actually touch those disk blocks yet, but we
763 * need to set up all of the mapping information to tell the journaling
764 * system where the journal blocks are.
769 * journal_t * journal_init_dev() - creates and initialises a journal structure
770 * @bdev: Block device on which to create the journal
771 * @fs_dev: Device which hold journalled filesystem for this journal.
772 * @start: Block nr Start of journal.
773 * @len: Length of the journal in blocks.
774 * @blocksize: blocksize of journalling device
776 * Returns: a newly created journal_t *
778 * journal_init_dev creates a journal which maps a fixed contiguous
779 * range of blocks on an arbitrary block device.
782 journal_t
* journal_init_dev(struct block_device
*bdev
,
783 struct block_device
*fs_dev
,
784 int start
, int len
, int blocksize
)
786 journal_t
*journal
= journal_init_common();
787 struct buffer_head
*bh
;
793 /* journal descriptor can store up to n blocks -bzzz */
794 journal
->j_blocksize
= blocksize
;
795 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
796 journal
->j_wbufsize
= n
;
797 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
798 if (!journal
->j_wbuf
) {
799 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
803 journal
->j_dev
= bdev
;
804 journal
->j_fs_dev
= fs_dev
;
805 journal
->j_blk_offset
= start
;
806 journal
->j_maxlen
= len
;
808 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
811 "%s: Cannot get buffer for journal superblock\n",
815 journal
->j_sb_buffer
= bh
;
816 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
820 kfree(journal
->j_wbuf
);
826 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
827 * @inode: An inode to create the journal in
829 * journal_init_inode creates a journal which maps an on-disk inode as
830 * the journal. The inode must exist already, must support bmap() and
831 * must have all data blocks preallocated.
833 journal_t
* journal_init_inode (struct inode
*inode
)
835 struct buffer_head
*bh
;
836 journal_t
*journal
= journal_init_common();
839 unsigned int blocknr
;
844 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
845 journal
->j_inode
= inode
;
847 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
848 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
849 (long long) inode
->i_size
,
850 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
852 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
853 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
855 /* journal descriptor can store up to n blocks -bzzz */
856 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
857 journal
->j_wbufsize
= n
;
858 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
859 if (!journal
->j_wbuf
) {
860 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
865 err
= journal_bmap(journal
, 0, &blocknr
);
866 /* If that failed, give up */
868 printk(KERN_ERR
"%s: Cannot locate journal superblock\n",
873 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
876 "%s: Cannot get buffer for journal superblock\n",
880 journal
->j_sb_buffer
= bh
;
881 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
885 kfree(journal
->j_wbuf
);
891 * If the journal init or create aborts, we need to mark the journal
892 * superblock as being NULL to prevent the journal destroy from writing
893 * back a bogus superblock.
895 static void journal_fail_superblock (journal_t
*journal
)
897 struct buffer_head
*bh
= journal
->j_sb_buffer
;
899 journal
->j_sb_buffer
= NULL
;
903 * Given a journal_t structure, initialise the various fields for
904 * startup of a new journaling session. We use this both when creating
905 * a journal, and after recovering an old journal to reset it for
909 static int journal_reset(journal_t
*journal
)
911 journal_superblock_t
*sb
= journal
->j_superblock
;
912 unsigned int first
, last
;
914 first
= be32_to_cpu(sb
->s_first
);
915 last
= be32_to_cpu(sb
->s_maxlen
);
916 if (first
+ JFS_MIN_JOURNAL_BLOCKS
> last
+ 1) {
917 printk(KERN_ERR
"JBD: Journal too short (blocks %u-%u).\n",
919 journal_fail_superblock(journal
);
923 journal
->j_first
= first
;
924 journal
->j_last
= last
;
926 journal
->j_head
= first
;
927 journal
->j_tail
= first
;
928 journal
->j_free
= last
- first
;
930 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
931 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
932 journal
->j_commit_request
= journal
->j_commit_sequence
;
934 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
937 * As a special case, if the on-disk copy is already marked as needing
938 * no recovery (s_start == 0), then we can safely defer the superblock
939 * update until the next commit by setting JFS_FLUSHED. This avoids
940 * attempting a write to a potential-readonly device.
942 if (sb
->s_start
== 0) {
943 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
944 "(start %u, seq %d, errno %d)\n",
945 journal
->j_tail
, journal
->j_tail_sequence
,
947 journal
->j_flags
|= JFS_FLUSHED
;
949 /* Lock here to make assertions happy... */
950 mutex_lock(&journal
->j_checkpoint_mutex
);
952 * Update log tail information. We use WRITE_FUA since new
953 * transaction will start reusing journal space and so we
954 * must make sure information about current log tail is on
957 journal_update_sb_log_tail(journal
,
958 journal
->j_tail_sequence
,
961 mutex_unlock(&journal
->j_checkpoint_mutex
);
963 return journal_start_thread(journal
);
967 * int journal_create() - Initialise the new journal file
968 * @journal: Journal to create. This structure must have been initialised
970 * Given a journal_t structure which tells us which disk blocks we can
971 * use, create a new journal superblock and initialise all of the
972 * journal fields from scratch.
974 int journal_create(journal_t
*journal
)
976 unsigned int blocknr
;
977 struct buffer_head
*bh
;
978 journal_superblock_t
*sb
;
981 if (journal
->j_maxlen
< JFS_MIN_JOURNAL_BLOCKS
) {
982 printk (KERN_ERR
"Journal length (%d blocks) too short.\n",
984 journal_fail_superblock(journal
);
988 if (journal
->j_inode
== NULL
) {
990 * We don't know what block to start at!
993 "%s: creation of journal on external device!\n",
998 /* Zero out the entire journal on disk. We cannot afford to
999 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
1000 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
1001 for (i
= 0; i
< journal
->j_maxlen
; i
++) {
1002 err
= journal_bmap(journal
, i
, &blocknr
);
1005 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
1009 memset (bh
->b_data
, 0, journal
->j_blocksize
);
1010 BUFFER_TRACE(bh
, "marking dirty");
1011 mark_buffer_dirty(bh
);
1012 BUFFER_TRACE(bh
, "marking uptodate");
1013 set_buffer_uptodate(bh
);
1018 sync_blockdev(journal
->j_dev
);
1019 jbd_debug(1, "JBD: journal cleared.\n");
1021 /* OK, fill in the initial static fields in the new superblock */
1022 sb
= journal
->j_superblock
;
1024 sb
->s_header
.h_magic
= cpu_to_be32(JFS_MAGIC_NUMBER
);
1025 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
1027 sb
->s_blocksize
= cpu_to_be32(journal
->j_blocksize
);
1028 sb
->s_maxlen
= cpu_to_be32(journal
->j_maxlen
);
1029 sb
->s_first
= cpu_to_be32(1);
1031 journal
->j_transaction_sequence
= 1;
1033 journal
->j_flags
&= ~JFS_ABORT
;
1034 journal
->j_format_version
= 2;
1036 return journal_reset(journal
);
1039 static void journal_write_superblock(journal_t
*journal
, int write_op
)
1041 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1044 trace_journal_write_superblock(journal
, write_op
);
1045 if (!(journal
->j_flags
& JFS_BARRIER
))
1046 write_op
&= ~(REQ_FUA
| REQ_FLUSH
);
1048 if (buffer_write_io_error(bh
)) {
1049 char b
[BDEVNAME_SIZE
];
1051 * Oh, dear. A previous attempt to write the journal
1052 * superblock failed. This could happen because the
1053 * USB device was yanked out. Or it could happen to
1054 * be a transient write error and maybe the block will
1055 * be remapped. Nothing we can do but to retry the
1056 * write and hope for the best.
1058 printk(KERN_ERR
"JBD: previous I/O error detected "
1059 "for journal superblock update for %s.\n",
1060 journal_dev_name(journal
, b
));
1061 clear_buffer_write_io_error(bh
);
1062 set_buffer_uptodate(bh
);
1066 bh
->b_end_io
= end_buffer_write_sync
;
1067 ret
= submit_bh(write_op
, bh
);
1069 if (buffer_write_io_error(bh
)) {
1070 clear_buffer_write_io_error(bh
);
1071 set_buffer_uptodate(bh
);
1075 char b
[BDEVNAME_SIZE
];
1076 printk(KERN_ERR
"JBD: Error %d detected "
1077 "when updating journal superblock for %s.\n",
1078 ret
, journal_dev_name(journal
, b
));
1083 * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1084 * @journal: The journal to update.
1085 * @tail_tid: TID of the new transaction at the tail of the log
1086 * @tail_block: The first block of the transaction at the tail of the log
1087 * @write_op: With which operation should we write the journal sb
1089 * Update a journal's superblock information about log tail and write it to
1090 * disk, waiting for the IO to complete.
1092 void journal_update_sb_log_tail(journal_t
*journal
, tid_t tail_tid
,
1093 unsigned int tail_block
, int write_op
)
1095 journal_superblock_t
*sb
= journal
->j_superblock
;
1097 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1098 jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1099 tail_block
, tail_tid
);
1101 sb
->s_sequence
= cpu_to_be32(tail_tid
);
1102 sb
->s_start
= cpu_to_be32(tail_block
);
1104 journal_write_superblock(journal
, write_op
);
1106 /* Log is no longer empty */
1107 spin_lock(&journal
->j_state_lock
);
1108 WARN_ON(!sb
->s_sequence
);
1109 journal
->j_flags
&= ~JFS_FLUSHED
;
1110 spin_unlock(&journal
->j_state_lock
);
1114 * mark_journal_empty() - Mark on disk journal as empty.
1115 * @journal: The journal to update.
1117 * Update a journal's dynamic superblock fields to show that journal is empty.
1118 * Write updated superblock to disk waiting for IO to complete.
1120 static void mark_journal_empty(journal_t
*journal
)
1122 journal_superblock_t
*sb
= journal
->j_superblock
;
1124 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1125 spin_lock(&journal
->j_state_lock
);
1126 /* Is it already empty? */
1127 if (sb
->s_start
== 0) {
1128 spin_unlock(&journal
->j_state_lock
);
1131 jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1132 journal
->j_tail_sequence
);
1134 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1135 sb
->s_start
= cpu_to_be32(0);
1136 spin_unlock(&journal
->j_state_lock
);
1138 journal_write_superblock(journal
, WRITE_FUA
);
1140 spin_lock(&journal
->j_state_lock
);
1142 journal
->j_flags
|= JFS_FLUSHED
;
1143 spin_unlock(&journal
->j_state_lock
);
1147 * journal_update_sb_errno() - Update error in the journal.
1148 * @journal: The journal to update.
1150 * Update a journal's errno. Write updated superblock to disk waiting for IO
1153 static void journal_update_sb_errno(journal_t
*journal
)
1155 journal_superblock_t
*sb
= journal
->j_superblock
;
1157 spin_lock(&journal
->j_state_lock
);
1158 jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1160 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
1161 spin_unlock(&journal
->j_state_lock
);
1163 journal_write_superblock(journal
, WRITE_SYNC
);
1167 * Read the superblock for a given journal, performing initial
1168 * validation of the format.
1171 static int journal_get_superblock(journal_t
*journal
)
1173 struct buffer_head
*bh
;
1174 journal_superblock_t
*sb
;
1177 bh
= journal
->j_sb_buffer
;
1179 J_ASSERT(bh
!= NULL
);
1180 if (!buffer_uptodate(bh
)) {
1181 ll_rw_block(READ
, 1, &bh
);
1183 if (!buffer_uptodate(bh
)) {
1185 "JBD: IO error reading journal superblock\n");
1190 sb
= journal
->j_superblock
;
1194 if (sb
->s_header
.h_magic
!= cpu_to_be32(JFS_MAGIC_NUMBER
) ||
1195 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1196 printk(KERN_WARNING
"JBD: no valid journal superblock found\n");
1200 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1201 case JFS_SUPERBLOCK_V1
:
1202 journal
->j_format_version
= 1;
1204 case JFS_SUPERBLOCK_V2
:
1205 journal
->j_format_version
= 2;
1208 printk(KERN_WARNING
"JBD: unrecognised superblock format ID\n");
1212 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1213 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1214 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1215 printk (KERN_WARNING
"JBD: journal file too short\n");
1219 if (be32_to_cpu(sb
->s_first
) == 0 ||
1220 be32_to_cpu(sb
->s_first
) >= journal
->j_maxlen
) {
1222 "JBD: Invalid start block of journal: %u\n",
1223 be32_to_cpu(sb
->s_first
));
1230 journal_fail_superblock(journal
);
1235 * Load the on-disk journal superblock and read the key fields into the
1239 static int load_superblock(journal_t
*journal
)
1242 journal_superblock_t
*sb
;
1244 err
= journal_get_superblock(journal
);
1248 sb
= journal
->j_superblock
;
1250 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1251 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1252 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1253 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1254 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1261 * int journal_load() - Read journal from disk.
1262 * @journal: Journal to act on.
1264 * Given a journal_t structure which tells us which disk blocks contain
1265 * a journal, read the journal from disk to initialise the in-memory
1268 int journal_load(journal_t
*journal
)
1271 journal_superblock_t
*sb
;
1273 err
= load_superblock(journal
);
1277 sb
= journal
->j_superblock
;
1278 /* If this is a V2 superblock, then we have to check the
1279 * features flags on it. */
1281 if (journal
->j_format_version
>= 2) {
1282 if ((sb
->s_feature_ro_compat
&
1283 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES
)) ||
1284 (sb
->s_feature_incompat
&
1285 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES
))) {
1286 printk (KERN_WARNING
1287 "JBD: Unrecognised features on journal\n");
1292 /* Let the recovery code check whether it needs to recover any
1293 * data from the journal. */
1294 if (journal_recover(journal
))
1295 goto recovery_error
;
1297 /* OK, we've finished with the dynamic journal bits:
1298 * reinitialise the dynamic contents of the superblock in memory
1299 * and reset them on disk. */
1300 if (journal_reset(journal
))
1301 goto recovery_error
;
1303 journal
->j_flags
&= ~JFS_ABORT
;
1304 journal
->j_flags
|= JFS_LOADED
;
1308 printk (KERN_WARNING
"JBD: recovery failed\n");
1313 * void journal_destroy() - Release a journal_t structure.
1314 * @journal: Journal to act on.
1316 * Release a journal_t structure once it is no longer in use by the
1318 * Return <0 if we couldn't clean up the journal.
1320 int journal_destroy(journal_t
*journal
)
1325 /* Wait for the commit thread to wake up and die. */
1326 journal_kill_thread(journal
);
1328 /* Force a final log commit */
1329 if (journal
->j_running_transaction
)
1330 journal_commit_transaction(journal
);
1332 /* Force any old transactions to disk */
1334 /* We cannot race with anybody but must keep assertions happy */
1335 mutex_lock(&journal
->j_checkpoint_mutex
);
1336 /* Totally anal locking here... */
1337 spin_lock(&journal
->j_list_lock
);
1338 while (journal
->j_checkpoint_transactions
!= NULL
) {
1339 spin_unlock(&journal
->j_list_lock
);
1340 log_do_checkpoint(journal
);
1341 spin_lock(&journal
->j_list_lock
);
1344 J_ASSERT(journal
->j_running_transaction
== NULL
);
1345 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1346 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1347 spin_unlock(&journal
->j_list_lock
);
1349 if (journal
->j_sb_buffer
) {
1350 if (!is_journal_aborted(journal
)) {
1351 journal
->j_tail_sequence
=
1352 ++journal
->j_transaction_sequence
;
1353 mark_journal_empty(journal
);
1356 brelse(journal
->j_sb_buffer
);
1358 mutex_unlock(&journal
->j_checkpoint_mutex
);
1360 if (journal
->j_inode
)
1361 iput(journal
->j_inode
);
1362 if (journal
->j_revoke
)
1363 journal_destroy_revoke(journal
);
1364 kfree(journal
->j_wbuf
);
1372 *int journal_check_used_features () - Check if features specified are used.
1373 * @journal: Journal to check.
1374 * @compat: bitmask of compatible features
1375 * @ro: bitmask of features that force read-only mount
1376 * @incompat: bitmask of incompatible features
1378 * Check whether the journal uses all of a given set of
1379 * features. Return true (non-zero) if it does.
1382 int journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1383 unsigned long ro
, unsigned long incompat
)
1385 journal_superblock_t
*sb
;
1387 if (!compat
&& !ro
&& !incompat
)
1389 if (journal
->j_format_version
== 1)
1392 sb
= journal
->j_superblock
;
1394 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1395 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1396 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1403 * int journal_check_available_features() - Check feature set in journalling layer
1404 * @journal: Journal to check.
1405 * @compat: bitmask of compatible features
1406 * @ro: bitmask of features that force read-only mount
1407 * @incompat: bitmask of incompatible features
1409 * Check whether the journaling code supports the use of
1410 * all of a given set of features on this journal. Return true
1411 * (non-zero) if it can. */
1413 int journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1414 unsigned long ro
, unsigned long incompat
)
1416 if (!compat
&& !ro
&& !incompat
)
1419 /* We can support any known requested features iff the
1420 * superblock is in version 2. Otherwise we fail to support any
1421 * extended sb features. */
1423 if (journal
->j_format_version
!= 2)
1426 if ((compat
& JFS_KNOWN_COMPAT_FEATURES
) == compat
&&
1427 (ro
& JFS_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1428 (incompat
& JFS_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1435 * int journal_set_features () - Mark a given journal feature in the superblock
1436 * @journal: Journal to act on.
1437 * @compat: bitmask of compatible features
1438 * @ro: bitmask of features that force read-only mount
1439 * @incompat: bitmask of incompatible features
1441 * Mark a given journal feature as present on the
1442 * superblock. Returns true if the requested features could be set.
1446 int journal_set_features (journal_t
*journal
, unsigned long compat
,
1447 unsigned long ro
, unsigned long incompat
)
1449 journal_superblock_t
*sb
;
1451 if (journal_check_used_features(journal
, compat
, ro
, incompat
))
1454 if (!journal_check_available_features(journal
, compat
, ro
, incompat
))
1457 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1458 compat
, ro
, incompat
);
1460 sb
= journal
->j_superblock
;
1462 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1463 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1464 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1471 * int journal_update_format () - Update on-disk journal structure.
1472 * @journal: Journal to act on.
1474 * Given an initialised but unloaded journal struct, poke about in the
1475 * on-disk structure to update it to the most recent supported version.
1477 int journal_update_format (journal_t
*journal
)
1479 journal_superblock_t
*sb
;
1482 err
= journal_get_superblock(journal
);
1486 sb
= journal
->j_superblock
;
1488 switch (be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1489 case JFS_SUPERBLOCK_V2
:
1491 case JFS_SUPERBLOCK_V1
:
1492 return journal_convert_superblock_v1(journal
, sb
);
1499 static int journal_convert_superblock_v1(journal_t
*journal
,
1500 journal_superblock_t
*sb
)
1502 int offset
, blocksize
;
1503 struct buffer_head
*bh
;
1506 "JBD: Converting superblock from version 1 to 2.\n");
1508 /* Pre-initialise new fields to zero */
1509 offset
= ((char *) &(sb
->s_feature_compat
)) - ((char *) sb
);
1510 blocksize
= be32_to_cpu(sb
->s_blocksize
);
1511 memset(&sb
->s_feature_compat
, 0, blocksize
-offset
);
1513 sb
->s_nr_users
= cpu_to_be32(1);
1514 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
1515 journal
->j_format_version
= 2;
1517 bh
= journal
->j_sb_buffer
;
1518 BUFFER_TRACE(bh
, "marking dirty");
1519 mark_buffer_dirty(bh
);
1520 sync_dirty_buffer(bh
);
1526 * int journal_flush () - Flush journal
1527 * @journal: Journal to act on.
1529 * Flush all data for a given journal to disk and empty the journal.
1530 * Filesystems can use this when remounting readonly to ensure that
1531 * recovery does not need to happen on remount.
1534 int journal_flush(journal_t
*journal
)
1537 transaction_t
*transaction
= NULL
;
1539 spin_lock(&journal
->j_state_lock
);
1541 /* Force everything buffered to the log... */
1542 if (journal
->j_running_transaction
) {
1543 transaction
= journal
->j_running_transaction
;
1544 __log_start_commit(journal
, transaction
->t_tid
);
1545 } else if (journal
->j_committing_transaction
)
1546 transaction
= journal
->j_committing_transaction
;
1548 /* Wait for the log commit to complete... */
1550 tid_t tid
= transaction
->t_tid
;
1552 spin_unlock(&journal
->j_state_lock
);
1553 log_wait_commit(journal
, tid
);
1555 spin_unlock(&journal
->j_state_lock
);
1558 /* ...and flush everything in the log out to disk. */
1559 spin_lock(&journal
->j_list_lock
);
1560 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1561 spin_unlock(&journal
->j_list_lock
);
1562 mutex_lock(&journal
->j_checkpoint_mutex
);
1563 err
= log_do_checkpoint(journal
);
1564 mutex_unlock(&journal
->j_checkpoint_mutex
);
1565 spin_lock(&journal
->j_list_lock
);
1567 spin_unlock(&journal
->j_list_lock
);
1569 if (is_journal_aborted(journal
))
1572 mutex_lock(&journal
->j_checkpoint_mutex
);
1573 cleanup_journal_tail(journal
);
1575 /* Finally, mark the journal as really needing no recovery.
1576 * This sets s_start==0 in the underlying superblock, which is
1577 * the magic code for a fully-recovered superblock. Any future
1578 * commits of data to the journal will restore the current
1580 mark_journal_empty(journal
);
1581 mutex_unlock(&journal
->j_checkpoint_mutex
);
1582 spin_lock(&journal
->j_state_lock
);
1583 J_ASSERT(!journal
->j_running_transaction
);
1584 J_ASSERT(!journal
->j_committing_transaction
);
1585 J_ASSERT(!journal
->j_checkpoint_transactions
);
1586 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1587 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1588 spin_unlock(&journal
->j_state_lock
);
1593 * int journal_wipe() - Wipe journal contents
1594 * @journal: Journal to act on.
1595 * @write: flag (see below)
1597 * Wipe out all of the contents of a journal, safely. This will produce
1598 * a warning if the journal contains any valid recovery information.
1599 * Must be called between journal_init_*() and journal_load().
1601 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1602 * we merely suppress recovery.
1605 int journal_wipe(journal_t
*journal
, int write
)
1609 J_ASSERT (!(journal
->j_flags
& JFS_LOADED
));
1611 err
= load_superblock(journal
);
1615 if (!journal
->j_tail
)
1618 printk (KERN_WARNING
"JBD: %s recovery information on journal\n",
1619 write
? "Clearing" : "Ignoring");
1621 err
= journal_skip_recovery(journal
);
1623 /* Lock to make assertions happy... */
1624 mutex_lock(&journal
->j_checkpoint_mutex
);
1625 mark_journal_empty(journal
);
1626 mutex_unlock(&journal
->j_checkpoint_mutex
);
1634 * journal_dev_name: format a character string to describe on what
1635 * device this journal is present.
1638 static const char *journal_dev_name(journal_t
*journal
, char *buffer
)
1640 struct block_device
*bdev
;
1642 if (journal
->j_inode
)
1643 bdev
= journal
->j_inode
->i_sb
->s_bdev
;
1645 bdev
= journal
->j_dev
;
1647 return bdevname(bdev
, buffer
);
1651 * Journal abort has very specific semantics, which we describe
1652 * for journal abort.
1654 * Two internal function, which provide abort to te jbd layer
1659 * Quick version for internal journal use (doesn't lock the journal).
1660 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1661 * and don't attempt to make any other journal updates.
1663 static void __journal_abort_hard(journal_t
*journal
)
1665 transaction_t
*transaction
;
1666 char b
[BDEVNAME_SIZE
];
1668 if (journal
->j_flags
& JFS_ABORT
)
1671 printk(KERN_ERR
"Aborting journal on device %s.\n",
1672 journal_dev_name(journal
, b
));
1674 spin_lock(&journal
->j_state_lock
);
1675 journal
->j_flags
|= JFS_ABORT
;
1676 transaction
= journal
->j_running_transaction
;
1678 __log_start_commit(journal
, transaction
->t_tid
);
1679 spin_unlock(&journal
->j_state_lock
);
1682 /* Soft abort: record the abort error status in the journal superblock,
1683 * but don't do any other IO. */
1684 static void __journal_abort_soft (journal_t
*journal
, int errno
)
1686 if (journal
->j_flags
& JFS_ABORT
)
1689 if (!journal
->j_errno
)
1690 journal
->j_errno
= errno
;
1692 __journal_abort_hard(journal
);
1695 journal_update_sb_errno(journal
);
1699 * void journal_abort () - Shutdown the journal immediately.
1700 * @journal: the journal to shutdown.
1701 * @errno: an error number to record in the journal indicating
1702 * the reason for the shutdown.
1704 * Perform a complete, immediate shutdown of the ENTIRE
1705 * journal (not of a single transaction). This operation cannot be
1706 * undone without closing and reopening the journal.
1708 * The journal_abort function is intended to support higher level error
1709 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1712 * Journal abort has very specific semantics. Any existing dirty,
1713 * unjournaled buffers in the main filesystem will still be written to
1714 * disk by bdflush, but the journaling mechanism will be suspended
1715 * immediately and no further transaction commits will be honoured.
1717 * Any dirty, journaled buffers will be written back to disk without
1718 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1719 * filesystem, but we _do_ attempt to leave as much data as possible
1720 * behind for fsck to use for cleanup.
1722 * Any attempt to get a new transaction handle on a journal which is in
1723 * ABORT state will just result in an -EROFS error return. A
1724 * journal_stop on an existing handle will return -EIO if we have
1725 * entered abort state during the update.
1727 * Recursive transactions are not disturbed by journal abort until the
1728 * final journal_stop, which will receive the -EIO error.
1730 * Finally, the journal_abort call allows the caller to supply an errno
1731 * which will be recorded (if possible) in the journal superblock. This
1732 * allows a client to record failure conditions in the middle of a
1733 * transaction without having to complete the transaction to record the
1734 * failure to disk. ext3_error, for example, now uses this
1737 * Errors which originate from within the journaling layer will NOT
1738 * supply an errno; a null errno implies that absolutely no further
1739 * writes are done to the journal (unless there are any already in
1744 void journal_abort(journal_t
*journal
, int errno
)
1746 __journal_abort_soft(journal
, errno
);
1750 * int journal_errno () - returns the journal's error state.
1751 * @journal: journal to examine.
1753 * This is the errno numbet set with journal_abort(), the last
1754 * time the journal was mounted - if the journal was stopped
1755 * without calling abort this will be 0.
1757 * If the journal has been aborted on this mount time -EROFS will
1760 int journal_errno(journal_t
*journal
)
1764 spin_lock(&journal
->j_state_lock
);
1765 if (journal
->j_flags
& JFS_ABORT
)
1768 err
= journal
->j_errno
;
1769 spin_unlock(&journal
->j_state_lock
);
1774 * int journal_clear_err () - clears the journal's error state
1775 * @journal: journal to act on.
1777 * An error must be cleared or Acked to take a FS out of readonly
1780 int journal_clear_err(journal_t
*journal
)
1784 spin_lock(&journal
->j_state_lock
);
1785 if (journal
->j_flags
& JFS_ABORT
)
1788 journal
->j_errno
= 0;
1789 spin_unlock(&journal
->j_state_lock
);
1794 * void journal_ack_err() - Ack journal err.
1795 * @journal: journal to act on.
1797 * An error must be cleared or Acked to take a FS out of readonly
1800 void journal_ack_err(journal_t
*journal
)
1802 spin_lock(&journal
->j_state_lock
);
1803 if (journal
->j_errno
)
1804 journal
->j_flags
|= JFS_ACK_ERR
;
1805 spin_unlock(&journal
->j_state_lock
);
1808 int journal_blocks_per_page(struct inode
*inode
)
1810 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1814 * Journal_head storage management
1816 static struct kmem_cache
*journal_head_cache
;
1817 #ifdef CONFIG_JBD_DEBUG
1818 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
1821 static int journal_init_journal_head_cache(void)
1825 J_ASSERT(journal_head_cache
== NULL
);
1826 journal_head_cache
= kmem_cache_create("journal_head",
1827 sizeof(struct journal_head
),
1829 SLAB_TEMPORARY
, /* flags */
1832 if (!journal_head_cache
) {
1834 printk(KERN_EMERG
"JBD: no memory for journal_head cache\n");
1839 static void journal_destroy_journal_head_cache(void)
1841 if (journal_head_cache
) {
1842 kmem_cache_destroy(journal_head_cache
);
1843 journal_head_cache
= NULL
;
1848 * journal_head splicing and dicing
1850 static struct journal_head
*journal_alloc_journal_head(void)
1852 struct journal_head
*ret
;
1854 #ifdef CONFIG_JBD_DEBUG
1855 atomic_inc(&nr_journal_heads
);
1857 ret
= kmem_cache_zalloc(journal_head_cache
, GFP_NOFS
);
1859 jbd_debug(1, "out of memory for journal_head\n");
1860 printk_ratelimited(KERN_NOTICE
"ENOMEM in %s, retrying.\n",
1863 while (ret
== NULL
) {
1865 ret
= kmem_cache_zalloc(journal_head_cache
, GFP_NOFS
);
1871 static void journal_free_journal_head(struct journal_head
*jh
)
1873 #ifdef CONFIG_JBD_DEBUG
1874 atomic_dec(&nr_journal_heads
);
1875 memset(jh
, JBD_POISON_FREE
, sizeof(*jh
));
1877 kmem_cache_free(journal_head_cache
, jh
);
1881 * A journal_head is attached to a buffer_head whenever JBD has an
1882 * interest in the buffer.
1884 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1885 * is set. This bit is tested in core kernel code where we need to take
1886 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1889 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1891 * When a buffer has its BH_JBD bit set it is immune from being released by
1892 * core kernel code, mainly via ->b_count.
1894 * A journal_head is detached from its buffer_head when the journal_head's
1895 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1896 * transaction (b_cp_transaction) hold their references to b_jcount.
1898 * Various places in the kernel want to attach a journal_head to a buffer_head
1899 * _before_ attaching the journal_head to a transaction. To protect the
1900 * journal_head in this situation, journal_add_journal_head elevates the
1901 * journal_head's b_jcount refcount by one. The caller must call
1902 * journal_put_journal_head() to undo this.
1904 * So the typical usage would be:
1906 * (Attach a journal_head if needed. Increments b_jcount)
1907 * struct journal_head *jh = journal_add_journal_head(bh);
1909 * (Get another reference for transaction)
1910 * journal_grab_journal_head(bh);
1911 * jh->b_transaction = xxx;
1912 * (Put original reference)
1913 * journal_put_journal_head(jh);
1917 * Give a buffer_head a journal_head.
1921 struct journal_head
*journal_add_journal_head(struct buffer_head
*bh
)
1923 struct journal_head
*jh
;
1924 struct journal_head
*new_jh
= NULL
;
1927 if (!buffer_jbd(bh
))
1928 new_jh
= journal_alloc_journal_head();
1930 jbd_lock_bh_journal_head(bh
);
1931 if (buffer_jbd(bh
)) {
1935 (atomic_read(&bh
->b_count
) > 0) ||
1936 (bh
->b_page
&& bh
->b_page
->mapping
));
1939 jbd_unlock_bh_journal_head(bh
);
1944 new_jh
= NULL
; /* We consumed it */
1949 BUFFER_TRACE(bh
, "added journal_head");
1952 jbd_unlock_bh_journal_head(bh
);
1954 journal_free_journal_head(new_jh
);
1955 return bh
->b_private
;
1959 * Grab a ref against this buffer_head's journal_head. If it ended up not
1960 * having a journal_head, return NULL
1962 struct journal_head
*journal_grab_journal_head(struct buffer_head
*bh
)
1964 struct journal_head
*jh
= NULL
;
1966 jbd_lock_bh_journal_head(bh
);
1967 if (buffer_jbd(bh
)) {
1971 jbd_unlock_bh_journal_head(bh
);
1975 static void __journal_remove_journal_head(struct buffer_head
*bh
)
1977 struct journal_head
*jh
= bh2jh(bh
);
1979 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
1980 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
1981 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
1982 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
1983 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
1984 J_ASSERT_BH(bh
, buffer_jbd(bh
));
1985 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
1986 BUFFER_TRACE(bh
, "remove journal_head");
1987 if (jh
->b_frozen_data
) {
1988 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
1989 jbd_free(jh
->b_frozen_data
, bh
->b_size
);
1991 if (jh
->b_committed_data
) {
1992 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
1993 jbd_free(jh
->b_committed_data
, bh
->b_size
);
1995 bh
->b_private
= NULL
;
1996 jh
->b_bh
= NULL
; /* debug, really */
1997 clear_buffer_jbd(bh
);
1998 journal_free_journal_head(jh
);
2002 * Drop a reference on the passed journal_head. If it fell to zero then
2003 * release the journal_head from the buffer_head.
2005 void journal_put_journal_head(struct journal_head
*jh
)
2007 struct buffer_head
*bh
= jh2bh(jh
);
2009 jbd_lock_bh_journal_head(bh
);
2010 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
2012 if (!jh
->b_jcount
) {
2013 __journal_remove_journal_head(bh
);
2014 jbd_unlock_bh_journal_head(bh
);
2017 jbd_unlock_bh_journal_head(bh
);
2023 #ifdef CONFIG_JBD_DEBUG
2025 u8 journal_enable_debug __read_mostly
;
2026 EXPORT_SYMBOL(journal_enable_debug
);
2028 static struct dentry
*jbd_debugfs_dir
;
2029 static struct dentry
*jbd_debug
;
2031 static void __init
jbd_create_debugfs_entry(void)
2033 jbd_debugfs_dir
= debugfs_create_dir("jbd", NULL
);
2034 if (jbd_debugfs_dir
)
2035 jbd_debug
= debugfs_create_u8("jbd-debug", S_IRUGO
| S_IWUSR
,
2037 &journal_enable_debug
);
2040 static void __exit
jbd_remove_debugfs_entry(void)
2042 debugfs_remove(jbd_debug
);
2043 debugfs_remove(jbd_debugfs_dir
);
2048 static inline void jbd_create_debugfs_entry(void)
2052 static inline void jbd_remove_debugfs_entry(void)
2058 struct kmem_cache
*jbd_handle_cache
;
2060 static int __init
journal_init_handle_cache(void)
2062 jbd_handle_cache
= kmem_cache_create("journal_handle",
2065 SLAB_TEMPORARY
, /* flags */
2067 if (jbd_handle_cache
== NULL
) {
2068 printk(KERN_EMERG
"JBD: failed to create handle cache\n");
2074 static void journal_destroy_handle_cache(void)
2076 if (jbd_handle_cache
)
2077 kmem_cache_destroy(jbd_handle_cache
);
2081 * Module startup and shutdown
2084 static int __init
journal_init_caches(void)
2088 ret
= journal_init_revoke_caches();
2090 ret
= journal_init_journal_head_cache();
2092 ret
= journal_init_handle_cache();
2096 static void journal_destroy_caches(void)
2098 journal_destroy_revoke_caches();
2099 journal_destroy_journal_head_cache();
2100 journal_destroy_handle_cache();
2103 static int __init
journal_init(void)
2107 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2109 ret
= journal_init_caches();
2111 journal_destroy_caches();
2112 jbd_create_debugfs_entry();
2116 static void __exit
journal_exit(void)
2118 #ifdef CONFIG_JBD_DEBUG
2119 int n
= atomic_read(&nr_journal_heads
);
2121 printk(KERN_EMERG
"JBD: leaked %d journal_heads!\n", n
);
2123 jbd_remove_debugfs_entry();
2124 journal_destroy_caches();
2127 MODULE_LICENSE("GPL");
2128 module_init(journal_init
);
2129 module_exit(journal_exit
);