2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
71 #include "libata-transport.h"
73 /* debounce timing parameters in msecs { interval, duration, timeout } */
74 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
75 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
76 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
78 const struct ata_port_operations ata_base_port_ops
= {
79 .prereset
= ata_std_prereset
,
80 .postreset
= ata_std_postreset
,
81 .error_handler
= ata_std_error_handler
,
84 const struct ata_port_operations sata_port_ops
= {
85 .inherits
= &ata_base_port_ops
,
87 .qc_defer
= ata_std_qc_defer
,
88 .hardreset
= sata_std_hardreset
,
91 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
92 u16 heads
, u16 sectors
);
93 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
94 static void ata_dev_xfermask(struct ata_device
*dev
);
95 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
97 unsigned int ata_print_id
= 1;
99 struct ata_force_param
{
103 unsigned long xfer_mask
;
104 unsigned int horkage_on
;
105 unsigned int horkage_off
;
109 struct ata_force_ent
{
112 struct ata_force_param param
;
115 static struct ata_force_ent
*ata_force_tbl
;
116 static int ata_force_tbl_size
;
118 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
119 /* param_buf is thrown away after initialization, disallow read */
120 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
121 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123 static int atapi_enabled
= 1;
124 module_param(atapi_enabled
, int, 0444);
125 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
127 static int atapi_dmadir
= 0;
128 module_param(atapi_dmadir
, int, 0444);
129 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
131 int atapi_passthru16
= 1;
132 module_param(atapi_passthru16
, int, 0444);
133 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
136 module_param_named(fua
, libata_fua
, int, 0444);
137 MODULE_PARM_DESC(fua
, "FUA support (0=off [default], 1=on)");
139 static int ata_ignore_hpa
;
140 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
141 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
144 module_param_named(dma
, libata_dma_mask
, int, 0444);
145 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147 static int ata_probe_timeout
;
148 module_param(ata_probe_timeout
, int, 0444);
149 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
151 int libata_noacpi
= 0;
152 module_param_named(noacpi
, libata_noacpi
, int, 0444);
153 MODULE_PARM_DESC(noacpi
, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
155 int libata_allow_tpm
= 0;
156 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
157 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands (0=off [default], 1=on)");
160 module_param(atapi_an
, int, 0444);
161 MODULE_PARM_DESC(atapi_an
, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
163 MODULE_AUTHOR("Jeff Garzik");
164 MODULE_DESCRIPTION("Library module for ATA devices");
165 MODULE_LICENSE("GPL");
166 MODULE_VERSION(DRV_VERSION
);
169 static bool ata_sstatus_online(u32 sstatus
)
171 return (sstatus
& 0xf) == 0x3;
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
181 * Host lock or EH context.
184 * Pointer to the next link.
186 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
187 enum ata_link_iter_mode mode
)
189 BUG_ON(mode
!= ATA_LITER_EDGE
&&
190 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
192 /* NULL link indicates start of iteration */
196 case ATA_LITER_PMP_FIRST
:
197 if (sata_pmp_attached(ap
))
200 case ATA_LITER_HOST_FIRST
:
204 /* we just iterated over the host link, what's next? */
205 if (link
== &ap
->link
)
207 case ATA_LITER_HOST_FIRST
:
208 if (sata_pmp_attached(ap
))
211 case ATA_LITER_PMP_FIRST
:
212 if (unlikely(ap
->slave_link
))
213 return ap
->slave_link
;
219 /* slave_link excludes PMP */
220 if (unlikely(link
== ap
->slave_link
))
223 /* we were over a PMP link */
224 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
227 if (mode
== ATA_LITER_PMP_FIRST
)
234 * ata_dev_next - device iteration helper
235 * @dev: the previous device, NULL to start
236 * @link: ATA link containing devices to iterate
237 * @mode: iteration mode, one of ATA_DITER_*
240 * Host lock or EH context.
243 * Pointer to the next device.
245 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
246 enum ata_dev_iter_mode mode
)
248 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
249 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
251 /* NULL dev indicates start of iteration */
254 case ATA_DITER_ENABLED
:
258 case ATA_DITER_ENABLED_REVERSE
:
259 case ATA_DITER_ALL_REVERSE
:
260 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
265 /* move to the next one */
267 case ATA_DITER_ENABLED
:
269 if (++dev
< link
->device
+ ata_link_max_devices(link
))
272 case ATA_DITER_ENABLED_REVERSE
:
273 case ATA_DITER_ALL_REVERSE
:
274 if (--dev
>= link
->device
)
280 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
281 !ata_dev_enabled(dev
))
287 * ata_dev_phys_link - find physical link for a device
288 * @dev: ATA device to look up physical link for
290 * Look up physical link which @dev is attached to. Note that
291 * this is different from @dev->link only when @dev is on slave
292 * link. For all other cases, it's the same as @dev->link.
298 * Pointer to the found physical link.
300 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
302 struct ata_port
*ap
= dev
->link
->ap
;
308 return ap
->slave_link
;
312 * ata_force_cbl - force cable type according to libata.force
313 * @ap: ATA port of interest
315 * Force cable type according to libata.force and whine about it.
316 * The last entry which has matching port number is used, so it
317 * can be specified as part of device force parameters. For
318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
324 void ata_force_cbl(struct ata_port
*ap
)
328 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
329 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
331 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
334 if (fe
->param
.cbl
== ATA_CBL_NONE
)
337 ap
->cbl
= fe
->param
.cbl
;
338 ata_port_printk(ap
, KERN_NOTICE
,
339 "FORCE: cable set to %s\n", fe
->param
.name
);
345 * ata_force_link_limits - force link limits according to libata.force
346 * @link: ATA link of interest
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
360 static void ata_force_link_limits(struct ata_link
*link
)
362 bool did_spd
= false;
363 int linkno
= link
->pmp
;
366 if (ata_is_host_link(link
))
369 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
370 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
372 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
375 if (fe
->device
!= -1 && fe
->device
!= linkno
)
378 /* only honor the first spd limit */
379 if (!did_spd
&& fe
->param
.spd_limit
) {
380 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
381 ata_link_printk(link
, KERN_NOTICE
,
382 "FORCE: PHY spd limit set to %s\n",
387 /* let lflags stack */
388 if (fe
->param
.lflags
) {
389 link
->flags
|= fe
->param
.lflags
;
390 ata_link_printk(link
, KERN_NOTICE
,
391 "FORCE: link flag 0x%x forced -> 0x%x\n",
392 fe
->param
.lflags
, link
->flags
);
398 * ata_force_xfermask - force xfermask according to libata.force
399 * @dev: ATA device of interest
401 * Force xfer_mask according to libata.force and whine about it.
402 * For consistency with link selection, device number 15 selects
403 * the first device connected to the host link.
408 static void ata_force_xfermask(struct ata_device
*dev
)
410 int devno
= dev
->link
->pmp
+ dev
->devno
;
411 int alt_devno
= devno
;
414 /* allow n.15/16 for devices attached to host port */
415 if (ata_is_host_link(dev
->link
))
418 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
419 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
420 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
422 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
425 if (fe
->device
!= -1 && fe
->device
!= devno
&&
426 fe
->device
!= alt_devno
)
429 if (!fe
->param
.xfer_mask
)
432 ata_unpack_xfermask(fe
->param
.xfer_mask
,
433 &pio_mask
, &mwdma_mask
, &udma_mask
);
435 dev
->udma_mask
= udma_mask
;
436 else if (mwdma_mask
) {
438 dev
->mwdma_mask
= mwdma_mask
;
442 dev
->pio_mask
= pio_mask
;
445 ata_dev_printk(dev
, KERN_NOTICE
,
446 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
452 * ata_force_horkage - force horkage according to libata.force
453 * @dev: ATA device of interest
455 * Force horkage according to libata.force and whine about it.
456 * For consistency with link selection, device number 15 selects
457 * the first device connected to the host link.
462 static void ata_force_horkage(struct ata_device
*dev
)
464 int devno
= dev
->link
->pmp
+ dev
->devno
;
465 int alt_devno
= devno
;
468 /* allow n.15/16 for devices attached to host port */
469 if (ata_is_host_link(dev
->link
))
472 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
473 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
475 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
478 if (fe
->device
!= -1 && fe
->device
!= devno
&&
479 fe
->device
!= alt_devno
)
482 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
483 !(dev
->horkage
& fe
->param
.horkage_off
))
486 dev
->horkage
|= fe
->param
.horkage_on
;
487 dev
->horkage
&= ~fe
->param
.horkage_off
;
489 ata_dev_printk(dev
, KERN_NOTICE
,
490 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
498 * Determine ATAPI command type from @opcode.
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
506 int atapi_cmd_type(u8 opcode
)
515 case GPCMD_WRITE_AND_VERIFY_10
:
519 case GPCMD_READ_CD_MSF
:
520 return ATAPI_READ_CD
;
524 if (atapi_passthru16
)
525 return ATAPI_PASS_THRU
;
533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534 * @tf: Taskfile to convert
535 * @pmp: Port multiplier port
536 * @is_cmd: This FIS is for command
537 * @fis: Buffer into which data will output
539 * Converts a standard ATA taskfile to a Serial ATA
540 * FIS structure (Register - Host to Device).
543 * Inherited from caller.
545 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
547 fis
[0] = 0x27; /* Register - Host to Device FIS */
548 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
550 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
552 fis
[2] = tf
->command
;
553 fis
[3] = tf
->feature
;
560 fis
[8] = tf
->hob_lbal
;
561 fis
[9] = tf
->hob_lbam
;
562 fis
[10] = tf
->hob_lbah
;
563 fis
[11] = tf
->hob_feature
;
566 fis
[13] = tf
->hob_nsect
;
577 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
578 * @fis: Buffer from which data will be input
579 * @tf: Taskfile to output
581 * Converts a serial ATA FIS structure to a standard ATA taskfile.
584 * Inherited from caller.
587 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
589 tf
->command
= fis
[2]; /* status */
590 tf
->feature
= fis
[3]; /* error */
597 tf
->hob_lbal
= fis
[8];
598 tf
->hob_lbam
= fis
[9];
599 tf
->hob_lbah
= fis
[10];
602 tf
->hob_nsect
= fis
[13];
605 static const u8 ata_rw_cmds
[] = {
609 ATA_CMD_READ_MULTI_EXT
,
610 ATA_CMD_WRITE_MULTI_EXT
,
614 ATA_CMD_WRITE_MULTI_FUA_EXT
,
618 ATA_CMD_PIO_READ_EXT
,
619 ATA_CMD_PIO_WRITE_EXT
,
632 ATA_CMD_WRITE_FUA_EXT
636 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
637 * @tf: command to examine and configure
638 * @dev: device tf belongs to
640 * Examine the device configuration and tf->flags to calculate
641 * the proper read/write commands and protocol to use.
646 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
650 int index
, fua
, lba48
, write
;
652 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
653 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
654 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
656 if (dev
->flags
& ATA_DFLAG_PIO
) {
657 tf
->protocol
= ATA_PROT_PIO
;
658 index
= dev
->multi_count
? 0 : 8;
659 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
660 /* Unable to use DMA due to host limitation */
661 tf
->protocol
= ATA_PROT_PIO
;
662 index
= dev
->multi_count
? 0 : 8;
664 tf
->protocol
= ATA_PROT_DMA
;
668 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
677 * ata_tf_read_block - Read block address from ATA taskfile
678 * @tf: ATA taskfile of interest
679 * @dev: ATA device @tf belongs to
684 * Read block address from @tf. This function can handle all
685 * three address formats - LBA, LBA48 and CHS. tf->protocol and
686 * flags select the address format to use.
689 * Block address read from @tf.
691 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
695 if (tf
->flags
& ATA_TFLAG_LBA
) {
696 if (tf
->flags
& ATA_TFLAG_LBA48
) {
697 block
|= (u64
)tf
->hob_lbah
<< 40;
698 block
|= (u64
)tf
->hob_lbam
<< 32;
699 block
|= (u64
)tf
->hob_lbal
<< 24;
701 block
|= (tf
->device
& 0xf) << 24;
703 block
|= tf
->lbah
<< 16;
704 block
|= tf
->lbam
<< 8;
709 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
710 head
= tf
->device
& 0xf;
714 ata_dev_printk(dev
, KERN_WARNING
, "device reported "
715 "invalid CHS sector 0\n");
716 sect
= 1; /* oh well */
719 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
- 1;
726 * ata_build_rw_tf - Build ATA taskfile for given read/write request
727 * @tf: Target ATA taskfile
728 * @dev: ATA device @tf belongs to
729 * @block: Block address
730 * @n_block: Number of blocks
731 * @tf_flags: RW/FUA etc...
737 * Build ATA taskfile @tf for read/write request described by
738 * @block, @n_block, @tf_flags and @tag on @dev.
742 * 0 on success, -ERANGE if the request is too large for @dev,
743 * -EINVAL if the request is invalid.
745 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
746 u64 block
, u32 n_block
, unsigned int tf_flags
,
749 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
750 tf
->flags
|= tf_flags
;
752 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
754 if (!lba_48_ok(block
, n_block
))
757 tf
->protocol
= ATA_PROT_NCQ
;
758 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
760 if (tf
->flags
& ATA_TFLAG_WRITE
)
761 tf
->command
= ATA_CMD_FPDMA_WRITE
;
763 tf
->command
= ATA_CMD_FPDMA_READ
;
765 tf
->nsect
= tag
<< 3;
766 tf
->hob_feature
= (n_block
>> 8) & 0xff;
767 tf
->feature
= n_block
& 0xff;
769 tf
->hob_lbah
= (block
>> 40) & 0xff;
770 tf
->hob_lbam
= (block
>> 32) & 0xff;
771 tf
->hob_lbal
= (block
>> 24) & 0xff;
772 tf
->lbah
= (block
>> 16) & 0xff;
773 tf
->lbam
= (block
>> 8) & 0xff;
774 tf
->lbal
= block
& 0xff;
777 if (tf
->flags
& ATA_TFLAG_FUA
)
778 tf
->device
|= 1 << 7;
779 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
780 tf
->flags
|= ATA_TFLAG_LBA
;
782 if (lba_28_ok(block
, n_block
)) {
784 tf
->device
|= (block
>> 24) & 0xf;
785 } else if (lba_48_ok(block
, n_block
)) {
786 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
790 tf
->flags
|= ATA_TFLAG_LBA48
;
792 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
794 tf
->hob_lbah
= (block
>> 40) & 0xff;
795 tf
->hob_lbam
= (block
>> 32) & 0xff;
796 tf
->hob_lbal
= (block
>> 24) & 0xff;
798 /* request too large even for LBA48 */
801 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
804 tf
->nsect
= n_block
& 0xff;
806 tf
->lbah
= (block
>> 16) & 0xff;
807 tf
->lbam
= (block
>> 8) & 0xff;
808 tf
->lbal
= block
& 0xff;
810 tf
->device
|= ATA_LBA
;
813 u32 sect
, head
, cyl
, track
;
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block
, n_block
))
819 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
822 /* Convert LBA to CHS */
823 track
= (u32
)block
/ dev
->sectors
;
824 cyl
= track
/ dev
->heads
;
825 head
= track
% dev
->heads
;
826 sect
= (u32
)block
% dev
->sectors
+ 1;
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32
)block
, track
, cyl
, head
, sect
);
831 /* Check whether the converted CHS can fit.
835 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
838 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
863 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
864 unsigned long mwdma_mask
,
865 unsigned long udma_mask
)
867 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
868 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
869 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL distination masks will be ignored.
882 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
883 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
886 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
888 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
890 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
893 static const struct ata_xfer_ent
{
897 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
898 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
899 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
914 * Matching XFER_* value, 0xff if no match found.
916 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
918 int highbit
= fls(xfer_mask
) - 1;
919 const struct ata_xfer_ent
*ent
;
921 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
922 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
923 return ent
->base
+ highbit
- ent
->shift
;
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
931 * Return matching xfer_mask for @xfer_mode.
937 * Matching xfer_mask, 0 if no match found.
939 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
941 const struct ata_xfer_ent
*ent
;
943 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
944 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
945 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
946 & ~((1 << ent
->shift
) - 1);
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
954 * Return matching xfer_shift for @xfer_mode.
960 * Matching xfer_shift, -1 if no match found.
962 int ata_xfer_mode2shift(unsigned long xfer_mode
)
964 const struct ata_xfer_ent
*ent
;
966 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
967 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
976 * Determine string which represents the highest speed
977 * (highest bit in @modemask).
983 * Constant C string representing highest speed listed in
984 * @mode_mask, or the constant C string "<n/a>".
986 const char *ata_mode_string(unsigned long xfer_mask
)
988 static const char * const xfer_mode_str
[] = {
1012 highbit
= fls(xfer_mask
) - 1;
1013 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1014 return xfer_mode_str
[highbit
];
1018 const char *sata_spd_string(unsigned int spd
)
1020 static const char * const spd_str
[] = {
1026 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1028 return spd_str
[spd
- 1];
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1044 * %ATA_DEV_UNKNOWN the event of failure.
1046 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1069 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1070 DPRINTK("found ATA device by sig\n");
1074 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1075 DPRINTK("found ATAPI device by sig\n");
1076 return ATA_DEV_ATAPI
;
1079 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1080 DPRINTK("found PMP device by sig\n");
1084 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1085 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086 return ATA_DEV_SEMB
;
1089 DPRINTK("unknown device\n");
1090 return ATA_DEV_UNKNOWN
;
1094 * ata_id_string - Convert IDENTIFY DEVICE page into string
1095 * @id: IDENTIFY DEVICE results we will examine
1096 * @s: string into which data is output
1097 * @ofs: offset into identify device page
1098 * @len: length of string to return. must be an even number.
1100 * The strings in the IDENTIFY DEVICE page are broken up into
1101 * 16-bit chunks. Run through the string, and output each
1102 * 8-bit chunk linearly, regardless of platform.
1108 void ata_id_string(const u16
*id
, unsigned char *s
,
1109 unsigned int ofs
, unsigned int len
)
1130 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1131 * @id: IDENTIFY DEVICE results we will examine
1132 * @s: string into which data is output
1133 * @ofs: offset into identify device page
1134 * @len: length of string to return. must be an odd number.
1136 * This function is identical to ata_id_string except that it
1137 * trims trailing spaces and terminates the resulting string with
1138 * null. @len must be actual maximum length (even number) + 1.
1143 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1144 unsigned int ofs
, unsigned int len
)
1148 ata_id_string(id
, s
, ofs
, len
- 1);
1150 p
= s
+ strnlen(s
, len
- 1);
1151 while (p
> s
&& p
[-1] == ' ')
1156 static u64
ata_id_n_sectors(const u16
*id
)
1158 if (ata_id_has_lba(id
)) {
1159 if (ata_id_has_lba48(id
))
1160 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1162 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1164 if (ata_id_current_chs_valid(id
))
1165 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1166 id
[ATA_ID_CUR_SECTORS
];
1168 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1173 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1177 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1178 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1179 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1180 sectors
|= (tf
->lbah
& 0xff) << 16;
1181 sectors
|= (tf
->lbam
& 0xff) << 8;
1182 sectors
|= (tf
->lbal
& 0xff);
1187 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1191 sectors
|= (tf
->device
& 0x0f) << 24;
1192 sectors
|= (tf
->lbah
& 0xff) << 16;
1193 sectors
|= (tf
->lbam
& 0xff) << 8;
1194 sectors
|= (tf
->lbal
& 0xff);
1200 * ata_read_native_max_address - Read native max address
1201 * @dev: target device
1202 * @max_sectors: out parameter for the result native max address
1204 * Perform an LBA48 or LBA28 native size query upon the device in
1208 * 0 on success, -EACCES if command is aborted by the drive.
1209 * -EIO on other errors.
1211 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1213 unsigned int err_mask
;
1214 struct ata_taskfile tf
;
1215 int lba48
= ata_id_has_lba48(dev
->id
);
1217 ata_tf_init(dev
, &tf
);
1219 /* always clear all address registers */
1220 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1223 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1224 tf
.flags
|= ATA_TFLAG_LBA48
;
1226 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1228 tf
.protocol
|= ATA_PROT_NODATA
;
1229 tf
.device
|= ATA_LBA
;
1231 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1233 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1234 "max address (err_mask=0x%x)\n", err_mask
);
1235 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1241 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1243 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1244 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1250 * ata_set_max_sectors - Set max sectors
1251 * @dev: target device
1252 * @new_sectors: new max sectors value to set for the device
1254 * Set max sectors of @dev to @new_sectors.
1257 * 0 on success, -EACCES if command is aborted or denied (due to
1258 * previous non-volatile SET_MAX) by the drive. -EIO on other
1261 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1263 unsigned int err_mask
;
1264 struct ata_taskfile tf
;
1265 int lba48
= ata_id_has_lba48(dev
->id
);
1269 ata_tf_init(dev
, &tf
);
1271 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1274 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1275 tf
.flags
|= ATA_TFLAG_LBA48
;
1277 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1278 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1279 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1281 tf
.command
= ATA_CMD_SET_MAX
;
1283 tf
.device
|= (new_sectors
>> 24) & 0xf;
1286 tf
.protocol
|= ATA_PROT_NODATA
;
1287 tf
.device
|= ATA_LBA
;
1289 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1290 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1291 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1293 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1295 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1296 "max address (err_mask=0x%x)\n", err_mask
);
1297 if (err_mask
== AC_ERR_DEV
&&
1298 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1307 * ata_hpa_resize - Resize a device with an HPA set
1308 * @dev: Device to resize
1310 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1311 * it if required to the full size of the media. The caller must check
1312 * the drive has the HPA feature set enabled.
1315 * 0 on success, -errno on failure.
1317 static int ata_hpa_resize(struct ata_device
*dev
)
1319 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1320 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1321 bool unlock_hpa
= ata_ignore_hpa
|| dev
->flags
& ATA_DFLAG_UNLOCK_HPA
;
1322 u64 sectors
= ata_id_n_sectors(dev
->id
);
1326 /* do we need to do it? */
1327 if (dev
->class != ATA_DEV_ATA
||
1328 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1329 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1332 /* read native max address */
1333 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1335 /* If device aborted the command or HPA isn't going to
1336 * be unlocked, skip HPA resizing.
1338 if (rc
== -EACCES
|| !unlock_hpa
) {
1339 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1340 "broken, skipping HPA handling\n");
1341 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1343 /* we can continue if device aborted the command */
1350 dev
->n_native_sectors
= native_sectors
;
1352 /* nothing to do? */
1353 if (native_sectors
<= sectors
|| !unlock_hpa
) {
1354 if (!print_info
|| native_sectors
== sectors
)
1357 if (native_sectors
> sectors
)
1358 ata_dev_printk(dev
, KERN_INFO
,
1359 "HPA detected: current %llu, native %llu\n",
1360 (unsigned long long)sectors
,
1361 (unsigned long long)native_sectors
);
1362 else if (native_sectors
< sectors
)
1363 ata_dev_printk(dev
, KERN_WARNING
,
1364 "native sectors (%llu) is smaller than "
1366 (unsigned long long)native_sectors
,
1367 (unsigned long long)sectors
);
1371 /* let's unlock HPA */
1372 rc
= ata_set_max_sectors(dev
, native_sectors
);
1373 if (rc
== -EACCES
) {
1374 /* if device aborted the command, skip HPA resizing */
1375 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1376 "(%llu -> %llu), skipping HPA handling\n",
1377 (unsigned long long)sectors
,
1378 (unsigned long long)native_sectors
);
1379 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1384 /* re-read IDENTIFY data */
1385 rc
= ata_dev_reread_id(dev
, 0);
1387 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1388 "data after HPA resizing\n");
1393 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1394 ata_dev_printk(dev
, KERN_INFO
,
1395 "HPA unlocked: %llu -> %llu, native %llu\n",
1396 (unsigned long long)sectors
,
1397 (unsigned long long)new_sectors
,
1398 (unsigned long long)native_sectors
);
1405 * ata_dump_id - IDENTIFY DEVICE info debugging output
1406 * @id: IDENTIFY DEVICE page to dump
1408 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1415 static inline void ata_dump_id(const u16
*id
)
1417 DPRINTK("49==0x%04x "
1427 DPRINTK("80==0x%04x "
1437 DPRINTK("88==0x%04x "
1444 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 * @id: IDENTIFY data to compute xfer mask from
1447 * Compute the xfermask for this device. This is not as trivial
1448 * as it seems if we must consider early devices correctly.
1450 * FIXME: pre IDE drive timing (do we care ?).
1458 unsigned long ata_id_xfermask(const u16
*id
)
1460 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1462 /* Usual case. Word 53 indicates word 64 is valid */
1463 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1464 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1468 /* If word 64 isn't valid then Word 51 high byte holds
1469 * the PIO timing number for the maximum. Turn it into
1472 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1473 if (mode
< 5) /* Valid PIO range */
1474 pio_mask
= (2 << mode
) - 1;
1478 /* But wait.. there's more. Design your standards by
1479 * committee and you too can get a free iordy field to
1480 * process. However its the speeds not the modes that
1481 * are supported... Note drivers using the timing API
1482 * will get this right anyway
1486 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1488 if (ata_id_is_cfa(id
)) {
1490 * Process compact flash extended modes
1492 int pio
= (id
[ATA_ID_CFA_MODES
] >> 0) & 0x7;
1493 int dma
= (id
[ATA_ID_CFA_MODES
] >> 3) & 0x7;
1496 pio_mask
|= (1 << 5);
1498 pio_mask
|= (1 << 6);
1500 mwdma_mask
|= (1 << 3);
1502 mwdma_mask
|= (1 << 4);
1506 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1507 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1509 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1512 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1514 struct completion
*waiting
= qc
->private_data
;
1520 * ata_exec_internal_sg - execute libata internal command
1521 * @dev: Device to which the command is sent
1522 * @tf: Taskfile registers for the command and the result
1523 * @cdb: CDB for packet command
1524 * @dma_dir: Data tranfer direction of the command
1525 * @sgl: sg list for the data buffer of the command
1526 * @n_elem: Number of sg entries
1527 * @timeout: Timeout in msecs (0 for default)
1529 * Executes libata internal command with timeout. @tf contains
1530 * command on entry and result on return. Timeout and error
1531 * conditions are reported via return value. No recovery action
1532 * is taken after a command times out. It's caller's duty to
1533 * clean up after timeout.
1536 * None. Should be called with kernel context, might sleep.
1539 * Zero on success, AC_ERR_* mask on failure
1541 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1542 struct ata_taskfile
*tf
, const u8
*cdb
,
1543 int dma_dir
, struct scatterlist
*sgl
,
1544 unsigned int n_elem
, unsigned long timeout
)
1546 struct ata_link
*link
= dev
->link
;
1547 struct ata_port
*ap
= link
->ap
;
1548 u8 command
= tf
->command
;
1549 int auto_timeout
= 0;
1550 struct ata_queued_cmd
*qc
;
1551 unsigned int tag
, preempted_tag
;
1552 u32 preempted_sactive
, preempted_qc_active
;
1553 int preempted_nr_active_links
;
1554 DECLARE_COMPLETION_ONSTACK(wait
);
1555 unsigned long flags
;
1556 unsigned int err_mask
;
1559 spin_lock_irqsave(ap
->lock
, flags
);
1561 /* no internal command while frozen */
1562 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1563 spin_unlock_irqrestore(ap
->lock
, flags
);
1564 return AC_ERR_SYSTEM
;
1567 /* initialize internal qc */
1569 /* XXX: Tag 0 is used for drivers with legacy EH as some
1570 * drivers choke if any other tag is given. This breaks
1571 * ata_tag_internal() test for those drivers. Don't use new
1572 * EH stuff without converting to it.
1574 if (ap
->ops
->error_handler
)
1575 tag
= ATA_TAG_INTERNAL
;
1579 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1581 qc
= __ata_qc_from_tag(ap
, tag
);
1589 preempted_tag
= link
->active_tag
;
1590 preempted_sactive
= link
->sactive
;
1591 preempted_qc_active
= ap
->qc_active
;
1592 preempted_nr_active_links
= ap
->nr_active_links
;
1593 link
->active_tag
= ATA_TAG_POISON
;
1596 ap
->nr_active_links
= 0;
1598 /* prepare & issue qc */
1601 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1602 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1603 qc
->dma_dir
= dma_dir
;
1604 if (dma_dir
!= DMA_NONE
) {
1605 unsigned int i
, buflen
= 0;
1606 struct scatterlist
*sg
;
1608 for_each_sg(sgl
, sg
, n_elem
, i
)
1609 buflen
+= sg
->length
;
1611 ata_sg_init(qc
, sgl
, n_elem
);
1612 qc
->nbytes
= buflen
;
1615 qc
->private_data
= &wait
;
1616 qc
->complete_fn
= ata_qc_complete_internal
;
1620 spin_unlock_irqrestore(ap
->lock
, flags
);
1623 if (ata_probe_timeout
)
1624 timeout
= ata_probe_timeout
* 1000;
1626 timeout
= ata_internal_cmd_timeout(dev
, command
);
1631 if (ap
->ops
->error_handler
)
1634 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1636 if (ap
->ops
->error_handler
)
1639 ata_sff_flush_pio_task(ap
);
1642 spin_lock_irqsave(ap
->lock
, flags
);
1644 /* We're racing with irq here. If we lose, the
1645 * following test prevents us from completing the qc
1646 * twice. If we win, the port is frozen and will be
1647 * cleaned up by ->post_internal_cmd().
1649 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1650 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1652 if (ap
->ops
->error_handler
)
1653 ata_port_freeze(ap
);
1655 ata_qc_complete(qc
);
1657 if (ata_msg_warn(ap
))
1658 ata_dev_printk(dev
, KERN_WARNING
,
1659 "qc timeout (cmd 0x%x)\n", command
);
1662 spin_unlock_irqrestore(ap
->lock
, flags
);
1665 /* do post_internal_cmd */
1666 if (ap
->ops
->post_internal_cmd
)
1667 ap
->ops
->post_internal_cmd(qc
);
1669 /* perform minimal error analysis */
1670 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1671 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1672 qc
->err_mask
|= AC_ERR_DEV
;
1675 qc
->err_mask
|= AC_ERR_OTHER
;
1677 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1678 qc
->err_mask
&= ~AC_ERR_OTHER
;
1682 spin_lock_irqsave(ap
->lock
, flags
);
1684 *tf
= qc
->result_tf
;
1685 err_mask
= qc
->err_mask
;
1688 link
->active_tag
= preempted_tag
;
1689 link
->sactive
= preempted_sactive
;
1690 ap
->qc_active
= preempted_qc_active
;
1691 ap
->nr_active_links
= preempted_nr_active_links
;
1693 spin_unlock_irqrestore(ap
->lock
, flags
);
1695 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1696 ata_internal_cmd_timed_out(dev
, command
);
1702 * ata_exec_internal - execute libata internal command
1703 * @dev: Device to which the command is sent
1704 * @tf: Taskfile registers for the command and the result
1705 * @cdb: CDB for packet command
1706 * @dma_dir: Data tranfer direction of the command
1707 * @buf: Data buffer of the command
1708 * @buflen: Length of data buffer
1709 * @timeout: Timeout in msecs (0 for default)
1711 * Wrapper around ata_exec_internal_sg() which takes simple
1712 * buffer instead of sg list.
1715 * None. Should be called with kernel context, might sleep.
1718 * Zero on success, AC_ERR_* mask on failure
1720 unsigned ata_exec_internal(struct ata_device
*dev
,
1721 struct ata_taskfile
*tf
, const u8
*cdb
,
1722 int dma_dir
, void *buf
, unsigned int buflen
,
1723 unsigned long timeout
)
1725 struct scatterlist
*psg
= NULL
, sg
;
1726 unsigned int n_elem
= 0;
1728 if (dma_dir
!= DMA_NONE
) {
1730 sg_init_one(&sg
, buf
, buflen
);
1735 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1740 * ata_do_simple_cmd - execute simple internal command
1741 * @dev: Device to which the command is sent
1742 * @cmd: Opcode to execute
1744 * Execute a 'simple' command, that only consists of the opcode
1745 * 'cmd' itself, without filling any other registers
1748 * Kernel thread context (may sleep).
1751 * Zero on success, AC_ERR_* mask on failure
1753 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1755 struct ata_taskfile tf
;
1757 ata_tf_init(dev
, &tf
);
1760 tf
.flags
|= ATA_TFLAG_DEVICE
;
1761 tf
.protocol
= ATA_PROT_NODATA
;
1763 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1767 * ata_pio_need_iordy - check if iordy needed
1770 * Check if the current speed of the device requires IORDY. Used
1771 * by various controllers for chip configuration.
1773 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1775 /* Don't set IORDY if we're preparing for reset. IORDY may
1776 * lead to controller lock up on certain controllers if the
1777 * port is not occupied. See bko#11703 for details.
1779 if (adev
->link
->ap
->pflags
& ATA_PFLAG_RESETTING
)
1781 /* Controller doesn't support IORDY. Probably a pointless
1782 * check as the caller should know this.
1784 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1786 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1787 if (ata_id_is_cfa(adev
->id
)
1788 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
1790 /* PIO3 and higher it is mandatory */
1791 if (adev
->pio_mode
> XFER_PIO_2
)
1793 /* We turn it on when possible */
1794 if (ata_id_has_iordy(adev
->id
))
1800 * ata_pio_mask_no_iordy - Return the non IORDY mask
1803 * Compute the highest mode possible if we are not using iordy. Return
1804 * -1 if no iordy mode is available.
1806 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1808 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1809 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1810 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1811 /* Is the speed faster than the drive allows non IORDY ? */
1813 /* This is cycle times not frequency - watch the logic! */
1814 if (pio
> 240) /* PIO2 is 240nS per cycle */
1815 return 3 << ATA_SHIFT_PIO
;
1816 return 7 << ATA_SHIFT_PIO
;
1819 return 3 << ATA_SHIFT_PIO
;
1823 * ata_do_dev_read_id - default ID read method
1825 * @tf: proposed taskfile
1828 * Issue the identify taskfile and hand back the buffer containing
1829 * identify data. For some RAID controllers and for pre ATA devices
1830 * this function is wrapped or replaced by the driver
1832 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
1833 struct ata_taskfile
*tf
, u16
*id
)
1835 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
1836 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
1840 * ata_dev_read_id - Read ID data from the specified device
1841 * @dev: target device
1842 * @p_class: pointer to class of the target device (may be changed)
1843 * @flags: ATA_READID_* flags
1844 * @id: buffer to read IDENTIFY data into
1846 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1847 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1848 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1849 * for pre-ATA4 drives.
1851 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1852 * now we abort if we hit that case.
1855 * Kernel thread context (may sleep)
1858 * 0 on success, -errno otherwise.
1860 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1861 unsigned int flags
, u16
*id
)
1863 struct ata_port
*ap
= dev
->link
->ap
;
1864 unsigned int class = *p_class
;
1865 struct ata_taskfile tf
;
1866 unsigned int err_mask
= 0;
1868 bool is_semb
= class == ATA_DEV_SEMB
;
1869 int may_fallback
= 1, tried_spinup
= 0;
1872 if (ata_msg_ctl(ap
))
1873 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
1876 ata_tf_init(dev
, &tf
);
1880 class = ATA_DEV_ATA
; /* some hard drives report SEMB sig */
1882 tf
.command
= ATA_CMD_ID_ATA
;
1885 tf
.command
= ATA_CMD_ID_ATAPI
;
1889 reason
= "unsupported class";
1893 tf
.protocol
= ATA_PROT_PIO
;
1895 /* Some devices choke if TF registers contain garbage. Make
1896 * sure those are properly initialized.
1898 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1900 /* Device presence detection is unreliable on some
1901 * controllers. Always poll IDENTIFY if available.
1903 tf
.flags
|= ATA_TFLAG_POLLING
;
1905 if (ap
->ops
->read_id
)
1906 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
1908 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
1911 if (err_mask
& AC_ERR_NODEV_HINT
) {
1912 ata_dev_printk(dev
, KERN_DEBUG
,
1913 "NODEV after polling detection\n");
1918 ata_dev_printk(dev
, KERN_INFO
, "IDENTIFY failed on "
1919 "device w/ SEMB sig, disabled\n");
1920 /* SEMB is not supported yet */
1921 *p_class
= ATA_DEV_SEMB_UNSUP
;
1925 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1926 /* Device or controller might have reported
1927 * the wrong device class. Give a shot at the
1928 * other IDENTIFY if the current one is
1929 * aborted by the device.
1934 if (class == ATA_DEV_ATA
)
1935 class = ATA_DEV_ATAPI
;
1937 class = ATA_DEV_ATA
;
1941 /* Control reaches here iff the device aborted
1942 * both flavors of IDENTIFYs which happens
1943 * sometimes with phantom devices.
1945 ata_dev_printk(dev
, KERN_DEBUG
,
1946 "both IDENTIFYs aborted, assuming NODEV\n");
1951 reason
= "I/O error";
1955 if (dev
->horkage
& ATA_HORKAGE_DUMP_ID
) {
1956 ata_dev_printk(dev
, KERN_DEBUG
, "dumping IDENTIFY data, "
1957 "class=%d may_fallback=%d tried_spinup=%d\n",
1958 class, may_fallback
, tried_spinup
);
1959 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
,
1960 16, 2, id
, ATA_ID_WORDS
* sizeof(*id
), true);
1963 /* Falling back doesn't make sense if ID data was read
1964 * successfully at least once.
1968 swap_buf_le16(id
, ATA_ID_WORDS
);
1972 reason
= "device reports invalid type";
1974 if (class == ATA_DEV_ATA
) {
1975 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1978 if (ata_id_is_ata(id
))
1982 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1985 * Drive powered-up in standby mode, and requires a specific
1986 * SET_FEATURES spin-up subcommand before it will accept
1987 * anything other than the original IDENTIFY command.
1989 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
1990 if (err_mask
&& id
[2] != 0x738c) {
1992 reason
= "SPINUP failed";
1996 * If the drive initially returned incomplete IDENTIFY info,
1997 * we now must reissue the IDENTIFY command.
1999 if (id
[2] == 0x37c8)
2003 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2005 * The exact sequence expected by certain pre-ATA4 drives is:
2007 * IDENTIFY (optional in early ATA)
2008 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2010 * Some drives were very specific about that exact sequence.
2012 * Note that ATA4 says lba is mandatory so the second check
2013 * should never trigger.
2015 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2016 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2019 reason
= "INIT_DEV_PARAMS failed";
2023 /* current CHS translation info (id[53-58]) might be
2024 * changed. reread the identify device info.
2026 flags
&= ~ATA_READID_POSTRESET
;
2036 if (ata_msg_warn(ap
))
2037 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2038 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2042 static int ata_do_link_spd_horkage(struct ata_device
*dev
)
2044 struct ata_link
*plink
= ata_dev_phys_link(dev
);
2045 u32 target
, target_limit
;
2047 if (!sata_scr_valid(plink
))
2050 if (dev
->horkage
& ATA_HORKAGE_1_5_GBPS
)
2055 target_limit
= (1 << target
) - 1;
2057 /* if already on stricter limit, no need to push further */
2058 if (plink
->sata_spd_limit
<= target_limit
)
2061 plink
->sata_spd_limit
= target_limit
;
2063 /* Request another EH round by returning -EAGAIN if link is
2064 * going faster than the target speed. Forward progress is
2065 * guaranteed by setting sata_spd_limit to target_limit above.
2067 if (plink
->sata_spd
> target
) {
2068 ata_dev_printk(dev
, KERN_INFO
,
2069 "applying link speed limit horkage to %s\n",
2070 sata_spd_string(target
));
2076 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2078 struct ata_port
*ap
= dev
->link
->ap
;
2080 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2083 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2086 static int ata_dev_config_ncq(struct ata_device
*dev
,
2087 char *desc
, size_t desc_sz
)
2089 struct ata_port
*ap
= dev
->link
->ap
;
2090 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2091 unsigned int err_mask
;
2094 if (!ata_id_has_ncq(dev
->id
)) {
2098 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2099 snprintf(desc
, desc_sz
, "NCQ (not used)");
2102 if (ap
->flags
& ATA_FLAG_NCQ
) {
2103 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2104 dev
->flags
|= ATA_DFLAG_NCQ
;
2107 if (!(dev
->horkage
& ATA_HORKAGE_BROKEN_FPDMA_AA
) &&
2108 (ap
->flags
& ATA_FLAG_FPDMA_AA
) &&
2109 ata_id_has_fpdma_aa(dev
->id
)) {
2110 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SATA_ENABLE
,
2113 ata_dev_printk(dev
, KERN_ERR
, "failed to enable AA"
2114 "(error_mask=0x%x)\n", err_mask
);
2115 if (err_mask
!= AC_ERR_DEV
) {
2116 dev
->horkage
|= ATA_HORKAGE_BROKEN_FPDMA_AA
;
2123 if (hdepth
>= ddepth
)
2124 snprintf(desc
, desc_sz
, "NCQ (depth %d)%s", ddepth
, aa_desc
);
2126 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)%s", hdepth
,
2132 * ata_dev_configure - Configure the specified ATA/ATAPI device
2133 * @dev: Target device to configure
2135 * Configure @dev according to @dev->id. Generic and low-level
2136 * driver specific fixups are also applied.
2139 * Kernel thread context (may sleep)
2142 * 0 on success, -errno otherwise
2144 int ata_dev_configure(struct ata_device
*dev
)
2146 struct ata_port
*ap
= dev
->link
->ap
;
2147 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2148 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2149 const u16
*id
= dev
->id
;
2150 unsigned long xfer_mask
;
2151 char revbuf
[7]; /* XYZ-99\0 */
2152 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2153 char modelbuf
[ATA_ID_PROD_LEN
+1];
2156 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2157 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2162 if (ata_msg_probe(ap
))
2163 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2166 dev
->horkage
|= ata_dev_blacklisted(dev
);
2167 ata_force_horkage(dev
);
2169 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2170 ata_dev_printk(dev
, KERN_INFO
,
2171 "unsupported device, disabling\n");
2172 ata_dev_disable(dev
);
2176 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2177 dev
->class == ATA_DEV_ATAPI
) {
2178 ata_dev_printk(dev
, KERN_WARNING
,
2179 "WARNING: ATAPI is %s, device ignored.\n",
2180 atapi_enabled
? "not supported with this driver"
2182 ata_dev_disable(dev
);
2186 rc
= ata_do_link_spd_horkage(dev
);
2190 /* let ACPI work its magic */
2191 rc
= ata_acpi_on_devcfg(dev
);
2195 /* massage HPA, do it early as it might change IDENTIFY data */
2196 rc
= ata_hpa_resize(dev
);
2200 /* print device capabilities */
2201 if (ata_msg_probe(ap
))
2202 ata_dev_printk(dev
, KERN_DEBUG
,
2203 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2204 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2206 id
[49], id
[82], id
[83], id
[84],
2207 id
[85], id
[86], id
[87], id
[88]);
2209 /* initialize to-be-configured parameters */
2210 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2211 dev
->max_sectors
= 0;
2217 dev
->multi_count
= 0;
2220 * common ATA, ATAPI feature tests
2223 /* find max transfer mode; for printk only */
2224 xfer_mask
= ata_id_xfermask(id
);
2226 if (ata_msg_probe(ap
))
2229 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2230 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2233 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2236 /* ATA-specific feature tests */
2237 if (dev
->class == ATA_DEV_ATA
) {
2238 if (ata_id_is_cfa(id
)) {
2239 /* CPRM may make this media unusable */
2240 if (id
[ATA_ID_CFA_KEY_MGMT
] & 1)
2241 ata_dev_printk(dev
, KERN_WARNING
,
2242 "supports DRM functions and may "
2243 "not be fully accessible.\n");
2244 snprintf(revbuf
, 7, "CFA");
2246 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2247 /* Warn the user if the device has TPM extensions */
2248 if (ata_id_has_tpm(id
))
2249 ata_dev_printk(dev
, KERN_WARNING
,
2250 "supports DRM functions and may "
2251 "not be fully accessible.\n");
2254 dev
->n_sectors
= ata_id_n_sectors(id
);
2256 /* get current R/W Multiple count setting */
2257 if ((dev
->id
[47] >> 8) == 0x80 && (dev
->id
[59] & 0x100)) {
2258 unsigned int max
= dev
->id
[47] & 0xff;
2259 unsigned int cnt
= dev
->id
[59] & 0xff;
2260 /* only recognize/allow powers of two here */
2261 if (is_power_of_2(max
) && is_power_of_2(cnt
))
2263 dev
->multi_count
= cnt
;
2266 if (ata_id_has_lba(id
)) {
2267 const char *lba_desc
;
2271 dev
->flags
|= ATA_DFLAG_LBA
;
2272 if (ata_id_has_lba48(id
)) {
2273 dev
->flags
|= ATA_DFLAG_LBA48
;
2276 if (dev
->n_sectors
>= (1UL << 28) &&
2277 ata_id_has_flush_ext(id
))
2278 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2282 rc
= ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2286 /* print device info to dmesg */
2287 if (ata_msg_drv(ap
) && print_info
) {
2288 ata_dev_printk(dev
, KERN_INFO
,
2289 "%s: %s, %s, max %s\n",
2290 revbuf
, modelbuf
, fwrevbuf
,
2291 ata_mode_string(xfer_mask
));
2292 ata_dev_printk(dev
, KERN_INFO
,
2293 "%Lu sectors, multi %u: %s %s\n",
2294 (unsigned long long)dev
->n_sectors
,
2295 dev
->multi_count
, lba_desc
, ncq_desc
);
2300 /* Default translation */
2301 dev
->cylinders
= id
[1];
2303 dev
->sectors
= id
[6];
2305 if (ata_id_current_chs_valid(id
)) {
2306 /* Current CHS translation is valid. */
2307 dev
->cylinders
= id
[54];
2308 dev
->heads
= id
[55];
2309 dev
->sectors
= id
[56];
2312 /* print device info to dmesg */
2313 if (ata_msg_drv(ap
) && print_info
) {
2314 ata_dev_printk(dev
, KERN_INFO
,
2315 "%s: %s, %s, max %s\n",
2316 revbuf
, modelbuf
, fwrevbuf
,
2317 ata_mode_string(xfer_mask
));
2318 ata_dev_printk(dev
, KERN_INFO
,
2319 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2320 (unsigned long long)dev
->n_sectors
,
2321 dev
->multi_count
, dev
->cylinders
,
2322 dev
->heads
, dev
->sectors
);
2329 /* ATAPI-specific feature tests */
2330 else if (dev
->class == ATA_DEV_ATAPI
) {
2331 const char *cdb_intr_string
= "";
2332 const char *atapi_an_string
= "";
2333 const char *dma_dir_string
= "";
2336 rc
= atapi_cdb_len(id
);
2337 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2338 if (ata_msg_warn(ap
))
2339 ata_dev_printk(dev
, KERN_WARNING
,
2340 "unsupported CDB len\n");
2344 dev
->cdb_len
= (unsigned int) rc
;
2346 /* Enable ATAPI AN if both the host and device have
2347 * the support. If PMP is attached, SNTF is required
2348 * to enable ATAPI AN to discern between PHY status
2349 * changed notifications and ATAPI ANs.
2352 (ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2353 (!sata_pmp_attached(ap
) ||
2354 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2355 unsigned int err_mask
;
2357 /* issue SET feature command to turn this on */
2358 err_mask
= ata_dev_set_feature(dev
,
2359 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2361 ata_dev_printk(dev
, KERN_ERR
,
2362 "failed to enable ATAPI AN "
2363 "(err_mask=0x%x)\n", err_mask
);
2365 dev
->flags
|= ATA_DFLAG_AN
;
2366 atapi_an_string
= ", ATAPI AN";
2370 if (ata_id_cdb_intr(dev
->id
)) {
2371 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2372 cdb_intr_string
= ", CDB intr";
2375 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2376 dev
->flags
|= ATA_DFLAG_DMADIR
;
2377 dma_dir_string
= ", DMADIR";
2380 /* print device info to dmesg */
2381 if (ata_msg_drv(ap
) && print_info
)
2382 ata_dev_printk(dev
, KERN_INFO
,
2383 "ATAPI: %s, %s, max %s%s%s%s\n",
2385 ata_mode_string(xfer_mask
),
2386 cdb_intr_string
, atapi_an_string
,
2390 /* determine max_sectors */
2391 dev
->max_sectors
= ATA_MAX_SECTORS
;
2392 if (dev
->flags
& ATA_DFLAG_LBA48
)
2393 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2395 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2397 if (ata_dev_knobble(dev
)) {
2398 if (ata_msg_drv(ap
) && print_info
)
2399 ata_dev_printk(dev
, KERN_INFO
,
2400 "applying bridge limits\n");
2401 dev
->udma_mask
&= ATA_UDMA5
;
2402 dev
->max_sectors
= ATA_MAX_SECTORS
;
2405 if ((dev
->class == ATA_DEV_ATAPI
) &&
2406 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2407 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2408 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2411 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2412 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2415 if (ap
->ops
->dev_config
)
2416 ap
->ops
->dev_config(dev
);
2418 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2419 /* Let the user know. We don't want to disallow opens for
2420 rescue purposes, or in case the vendor is just a blithering
2421 idiot. Do this after the dev_config call as some controllers
2422 with buggy firmware may want to avoid reporting false device
2426 ata_dev_printk(dev
, KERN_WARNING
,
2427 "Drive reports diagnostics failure. This may indicate a drive\n");
2428 ata_dev_printk(dev
, KERN_WARNING
,
2429 "fault or invalid emulation. Contact drive vendor for information.\n");
2433 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2434 ata_dev_printk(dev
, KERN_WARNING
, "WARNING: device requires "
2435 "firmware update to be fully functional.\n");
2436 ata_dev_printk(dev
, KERN_WARNING
, " contact the vendor "
2437 "or visit http://ata.wiki.kernel.org.\n");
2443 if (ata_msg_probe(ap
))
2444 ata_dev_printk(dev
, KERN_DEBUG
,
2445 "%s: EXIT, err\n", __func__
);
2450 * ata_cable_40wire - return 40 wire cable type
2453 * Helper method for drivers which want to hardwire 40 wire cable
2457 int ata_cable_40wire(struct ata_port
*ap
)
2459 return ATA_CBL_PATA40
;
2463 * ata_cable_80wire - return 80 wire cable type
2466 * Helper method for drivers which want to hardwire 80 wire cable
2470 int ata_cable_80wire(struct ata_port
*ap
)
2472 return ATA_CBL_PATA80
;
2476 * ata_cable_unknown - return unknown PATA cable.
2479 * Helper method for drivers which have no PATA cable detection.
2482 int ata_cable_unknown(struct ata_port
*ap
)
2484 return ATA_CBL_PATA_UNK
;
2488 * ata_cable_ignore - return ignored PATA cable.
2491 * Helper method for drivers which don't use cable type to limit
2494 int ata_cable_ignore(struct ata_port
*ap
)
2496 return ATA_CBL_PATA_IGN
;
2500 * ata_cable_sata - return SATA cable type
2503 * Helper method for drivers which have SATA cables
2506 int ata_cable_sata(struct ata_port
*ap
)
2508 return ATA_CBL_SATA
;
2512 * ata_bus_probe - Reset and probe ATA bus
2515 * Master ATA bus probing function. Initiates a hardware-dependent
2516 * bus reset, then attempts to identify any devices found on
2520 * PCI/etc. bus probe sem.
2523 * Zero on success, negative errno otherwise.
2526 int ata_bus_probe(struct ata_port
*ap
)
2528 unsigned int classes
[ATA_MAX_DEVICES
];
2529 int tries
[ATA_MAX_DEVICES
];
2531 struct ata_device
*dev
;
2533 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2534 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2537 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2538 /* If we issue an SRST then an ATA drive (not ATAPI)
2539 * may change configuration and be in PIO0 timing. If
2540 * we do a hard reset (or are coming from power on)
2541 * this is true for ATA or ATAPI. Until we've set a
2542 * suitable controller mode we should not touch the
2543 * bus as we may be talking too fast.
2545 dev
->pio_mode
= XFER_PIO_0
;
2547 /* If the controller has a pio mode setup function
2548 * then use it to set the chipset to rights. Don't
2549 * touch the DMA setup as that will be dealt with when
2550 * configuring devices.
2552 if (ap
->ops
->set_piomode
)
2553 ap
->ops
->set_piomode(ap
, dev
);
2556 /* reset and determine device classes */
2557 ap
->ops
->phy_reset(ap
);
2559 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2560 if (dev
->class != ATA_DEV_UNKNOWN
)
2561 classes
[dev
->devno
] = dev
->class;
2563 classes
[dev
->devno
] = ATA_DEV_NONE
;
2565 dev
->class = ATA_DEV_UNKNOWN
;
2568 /* read IDENTIFY page and configure devices. We have to do the identify
2569 specific sequence bass-ackwards so that PDIAG- is released by
2572 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2573 if (tries
[dev
->devno
])
2574 dev
->class = classes
[dev
->devno
];
2576 if (!ata_dev_enabled(dev
))
2579 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2585 /* Now ask for the cable type as PDIAG- should have been released */
2586 if (ap
->ops
->cable_detect
)
2587 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2589 /* We may have SATA bridge glue hiding here irrespective of
2590 * the reported cable types and sensed types. When SATA
2591 * drives indicate we have a bridge, we don't know which end
2592 * of the link the bridge is which is a problem.
2594 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2595 if (ata_id_is_sata(dev
->id
))
2596 ap
->cbl
= ATA_CBL_SATA
;
2598 /* After the identify sequence we can now set up the devices. We do
2599 this in the normal order so that the user doesn't get confused */
2601 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2602 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2603 rc
= ata_dev_configure(dev
);
2604 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2609 /* configure transfer mode */
2610 rc
= ata_set_mode(&ap
->link
, &dev
);
2614 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2620 tries
[dev
->devno
]--;
2624 /* eeek, something went very wrong, give up */
2625 tries
[dev
->devno
] = 0;
2629 /* give it just one more chance */
2630 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2632 if (tries
[dev
->devno
] == 1) {
2633 /* This is the last chance, better to slow
2634 * down than lose it.
2636 sata_down_spd_limit(&ap
->link
, 0);
2637 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2641 if (!tries
[dev
->devno
])
2642 ata_dev_disable(dev
);
2648 * sata_print_link_status - Print SATA link status
2649 * @link: SATA link to printk link status about
2651 * This function prints link speed and status of a SATA link.
2656 static void sata_print_link_status(struct ata_link
*link
)
2658 u32 sstatus
, scontrol
, tmp
;
2660 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2662 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2664 if (ata_phys_link_online(link
)) {
2665 tmp
= (sstatus
>> 4) & 0xf;
2666 ata_link_printk(link
, KERN_INFO
,
2667 "SATA link up %s (SStatus %X SControl %X)\n",
2668 sata_spd_string(tmp
), sstatus
, scontrol
);
2670 ata_link_printk(link
, KERN_INFO
,
2671 "SATA link down (SStatus %X SControl %X)\n",
2677 * ata_dev_pair - return other device on cable
2680 * Obtain the other device on the same cable, or if none is
2681 * present NULL is returned
2684 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2686 struct ata_link
*link
= adev
->link
;
2687 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2688 if (!ata_dev_enabled(pair
))
2694 * sata_down_spd_limit - adjust SATA spd limit downward
2695 * @link: Link to adjust SATA spd limit for
2696 * @spd_limit: Additional limit
2698 * Adjust SATA spd limit of @link downward. Note that this
2699 * function only adjusts the limit. The change must be applied
2700 * using sata_set_spd().
2702 * If @spd_limit is non-zero, the speed is limited to equal to or
2703 * lower than @spd_limit if such speed is supported. If
2704 * @spd_limit is slower than any supported speed, only the lowest
2705 * supported speed is allowed.
2708 * Inherited from caller.
2711 * 0 on success, negative errno on failure
2713 int sata_down_spd_limit(struct ata_link
*link
, u32 spd_limit
)
2715 u32 sstatus
, spd
, mask
;
2718 if (!sata_scr_valid(link
))
2721 /* If SCR can be read, use it to determine the current SPD.
2722 * If not, use cached value in link->sata_spd.
2724 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2725 if (rc
== 0 && ata_sstatus_online(sstatus
))
2726 spd
= (sstatus
>> 4) & 0xf;
2728 spd
= link
->sata_spd
;
2730 mask
= link
->sata_spd_limit
;
2734 /* unconditionally mask off the highest bit */
2735 bit
= fls(mask
) - 1;
2736 mask
&= ~(1 << bit
);
2738 /* Mask off all speeds higher than or equal to the current
2739 * one. Force 1.5Gbps if current SPD is not available.
2742 mask
&= (1 << (spd
- 1)) - 1;
2746 /* were we already at the bottom? */
2751 if (mask
& ((1 << spd_limit
) - 1))
2752 mask
&= (1 << spd_limit
) - 1;
2754 bit
= ffs(mask
) - 1;
2759 link
->sata_spd_limit
= mask
;
2761 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2762 sata_spd_string(fls(mask
)));
2767 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2769 struct ata_link
*host_link
= &link
->ap
->link
;
2770 u32 limit
, target
, spd
;
2772 limit
= link
->sata_spd_limit
;
2774 /* Don't configure downstream link faster than upstream link.
2775 * It doesn't speed up anything and some PMPs choke on such
2778 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2779 limit
&= (1 << host_link
->sata_spd
) - 1;
2781 if (limit
== UINT_MAX
)
2784 target
= fls(limit
);
2786 spd
= (*scontrol
>> 4) & 0xf;
2787 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2789 return spd
!= target
;
2793 * sata_set_spd_needed - is SATA spd configuration needed
2794 * @link: Link in question
2796 * Test whether the spd limit in SControl matches
2797 * @link->sata_spd_limit. This function is used to determine
2798 * whether hardreset is necessary to apply SATA spd
2802 * Inherited from caller.
2805 * 1 if SATA spd configuration is needed, 0 otherwise.
2807 static int sata_set_spd_needed(struct ata_link
*link
)
2811 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2814 return __sata_set_spd_needed(link
, &scontrol
);
2818 * sata_set_spd - set SATA spd according to spd limit
2819 * @link: Link to set SATA spd for
2821 * Set SATA spd of @link according to sata_spd_limit.
2824 * Inherited from caller.
2827 * 0 if spd doesn't need to be changed, 1 if spd has been
2828 * changed. Negative errno if SCR registers are inaccessible.
2830 int sata_set_spd(struct ata_link
*link
)
2835 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
2838 if (!__sata_set_spd_needed(link
, &scontrol
))
2841 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
2848 * This mode timing computation functionality is ported over from
2849 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2852 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2853 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2854 * for UDMA6, which is currently supported only by Maxtor drives.
2856 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2859 static const struct ata_timing ata_timing
[] = {
2860 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2861 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2862 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2863 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2864 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2865 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2866 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2867 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2869 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2870 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2871 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2873 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2874 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2875 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2876 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2877 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2879 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2880 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2881 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2882 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2883 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2884 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2885 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2886 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2891 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2892 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2894 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2896 q
->setup
= EZ(t
->setup
* 1000, T
);
2897 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2898 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2899 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2900 q
->active
= EZ(t
->active
* 1000, T
);
2901 q
->recover
= EZ(t
->recover
* 1000, T
);
2902 q
->dmack_hold
= EZ(t
->dmack_hold
* 1000, T
);
2903 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2904 q
->udma
= EZ(t
->udma
* 1000, UT
);
2907 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2908 struct ata_timing
*m
, unsigned int what
)
2910 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2911 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2912 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2913 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2914 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2915 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2916 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
2917 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2918 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2921 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
2923 const struct ata_timing
*t
= ata_timing
;
2925 while (xfer_mode
> t
->mode
)
2928 if (xfer_mode
== t
->mode
)
2933 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2934 struct ata_timing
*t
, int T
, int UT
)
2936 const u16
*id
= adev
->id
;
2937 const struct ata_timing
*s
;
2938 struct ata_timing p
;
2944 if (!(s
= ata_timing_find_mode(speed
)))
2947 memcpy(t
, s
, sizeof(*s
));
2950 * If the drive is an EIDE drive, it can tell us it needs extended
2951 * PIO/MW_DMA cycle timing.
2954 if (id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2955 memset(&p
, 0, sizeof(p
));
2957 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2958 if (speed
<= XFER_PIO_2
)
2959 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO
];
2960 else if ((speed
<= XFER_PIO_4
) ||
2961 (speed
== XFER_PIO_5
&& !ata_id_is_cfa(id
)))
2962 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO_IORDY
];
2963 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
)
2964 p
.cycle
= id
[ATA_ID_EIDE_DMA_MIN
];
2966 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2970 * Convert the timing to bus clock counts.
2973 ata_timing_quantize(t
, t
, T
, UT
);
2976 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2977 * S.M.A.R.T * and some other commands. We have to ensure that the
2978 * DMA cycle timing is slower/equal than the fastest PIO timing.
2981 if (speed
> XFER_PIO_6
) {
2982 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2983 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2987 * Lengthen active & recovery time so that cycle time is correct.
2990 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2991 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2992 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2995 if (t
->active
+ t
->recover
< t
->cycle
) {
2996 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2997 t
->recover
= t
->cycle
- t
->active
;
3000 /* In a few cases quantisation may produce enough errors to
3001 leave t->cycle too low for the sum of active and recovery
3002 if so we must correct this */
3003 if (t
->active
+ t
->recover
> t
->cycle
)
3004 t
->cycle
= t
->active
+ t
->recover
;
3010 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3011 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3012 * @cycle: cycle duration in ns
3014 * Return matching xfer mode for @cycle. The returned mode is of
3015 * the transfer type specified by @xfer_shift. If @cycle is too
3016 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3017 * than the fastest known mode, the fasted mode is returned.
3023 * Matching xfer_mode, 0xff if no match found.
3025 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3027 u8 base_mode
= 0xff, last_mode
= 0xff;
3028 const struct ata_xfer_ent
*ent
;
3029 const struct ata_timing
*t
;
3031 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3032 if (ent
->shift
== xfer_shift
)
3033 base_mode
= ent
->base
;
3035 for (t
= ata_timing_find_mode(base_mode
);
3036 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3037 unsigned short this_cycle
;
3039 switch (xfer_shift
) {
3041 case ATA_SHIFT_MWDMA
:
3042 this_cycle
= t
->cycle
;
3044 case ATA_SHIFT_UDMA
:
3045 this_cycle
= t
->udma
;
3051 if (cycle
> this_cycle
)
3054 last_mode
= t
->mode
;
3061 * ata_down_xfermask_limit - adjust dev xfer masks downward
3062 * @dev: Device to adjust xfer masks
3063 * @sel: ATA_DNXFER_* selector
3065 * Adjust xfer masks of @dev downward. Note that this function
3066 * does not apply the change. Invoking ata_set_mode() afterwards
3067 * will apply the limit.
3070 * Inherited from caller.
3073 * 0 on success, negative errno on failure
3075 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3078 unsigned long orig_mask
, xfer_mask
;
3079 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3082 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3083 sel
&= ~ATA_DNXFER_QUIET
;
3085 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3088 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3091 case ATA_DNXFER_PIO
:
3092 highbit
= fls(pio_mask
) - 1;
3093 pio_mask
&= ~(1 << highbit
);
3096 case ATA_DNXFER_DMA
:
3098 highbit
= fls(udma_mask
) - 1;
3099 udma_mask
&= ~(1 << highbit
);
3102 } else if (mwdma_mask
) {
3103 highbit
= fls(mwdma_mask
) - 1;
3104 mwdma_mask
&= ~(1 << highbit
);
3110 case ATA_DNXFER_40C
:
3111 udma_mask
&= ATA_UDMA_MASK_40C
;
3114 case ATA_DNXFER_FORCE_PIO0
:
3116 case ATA_DNXFER_FORCE_PIO
:
3125 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3127 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3131 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3132 snprintf(buf
, sizeof(buf
), "%s:%s",
3133 ata_mode_string(xfer_mask
),
3134 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3136 snprintf(buf
, sizeof(buf
), "%s",
3137 ata_mode_string(xfer_mask
));
3139 ata_dev_printk(dev
, KERN_WARNING
,
3140 "limiting speed to %s\n", buf
);
3143 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3149 static int ata_dev_set_mode(struct ata_device
*dev
)
3151 struct ata_port
*ap
= dev
->link
->ap
;
3152 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3153 const bool nosetxfer
= dev
->horkage
& ATA_HORKAGE_NOSETXFER
;
3154 const char *dev_err_whine
= "";
3155 int ign_dev_err
= 0;
3156 unsigned int err_mask
= 0;
3159 dev
->flags
&= ~ATA_DFLAG_PIO
;
3160 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3161 dev
->flags
|= ATA_DFLAG_PIO
;
3163 if (nosetxfer
&& ap
->flags
& ATA_FLAG_SATA
&& ata_id_is_sata(dev
->id
))
3164 dev_err_whine
= " (SET_XFERMODE skipped)";
3167 ata_dev_printk(dev
, KERN_WARNING
,
3168 "NOSETXFER but PATA detected - can't "
3169 "skip SETXFER, might malfunction\n");
3170 err_mask
= ata_dev_set_xfermode(dev
);
3173 if (err_mask
& ~AC_ERR_DEV
)
3177 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3178 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3179 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3183 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3184 /* Old CFA may refuse this command, which is just fine */
3185 if (ata_id_is_cfa(dev
->id
))
3187 /* Catch several broken garbage emulations plus some pre
3189 if (ata_id_major_version(dev
->id
) == 0 &&
3190 dev
->pio_mode
<= XFER_PIO_2
)
3192 /* Some very old devices and some bad newer ones fail
3193 any kind of SET_XFERMODE request but support PIO0-2
3194 timings and no IORDY */
3195 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3198 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3199 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3200 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3201 dev
->dma_mode
== XFER_MW_DMA_0
&&
3202 (dev
->id
[63] >> 8) & 1)
3205 /* if the device is actually configured correctly, ignore dev err */
3206 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3209 if (err_mask
& AC_ERR_DEV
) {
3213 dev_err_whine
= " (device error ignored)";
3216 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3217 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3219 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3220 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3226 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3227 "(err_mask=0x%x)\n", err_mask
);
3232 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3233 * @link: link on which timings will be programmed
3234 * @r_failed_dev: out parameter for failed device
3236 * Standard implementation of the function used to tune and set
3237 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3238 * ata_dev_set_mode() fails, pointer to the failing device is
3239 * returned in @r_failed_dev.
3242 * PCI/etc. bus probe sem.
3245 * 0 on success, negative errno otherwise
3248 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3250 struct ata_port
*ap
= link
->ap
;
3251 struct ata_device
*dev
;
3252 int rc
= 0, used_dma
= 0, found
= 0;
3254 /* step 1: calculate xfer_mask */
3255 ata_for_each_dev(dev
, link
, ENABLED
) {
3256 unsigned long pio_mask
, dma_mask
;
3257 unsigned int mode_mask
;
3259 mode_mask
= ATA_DMA_MASK_ATA
;
3260 if (dev
->class == ATA_DEV_ATAPI
)
3261 mode_mask
= ATA_DMA_MASK_ATAPI
;
3262 else if (ata_id_is_cfa(dev
->id
))
3263 mode_mask
= ATA_DMA_MASK_CFA
;
3265 ata_dev_xfermask(dev
);
3266 ata_force_xfermask(dev
);
3268 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3269 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3271 if (libata_dma_mask
& mode_mask
)
3272 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3276 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3277 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3280 if (ata_dma_enabled(dev
))
3286 /* step 2: always set host PIO timings */
3287 ata_for_each_dev(dev
, link
, ENABLED
) {
3288 if (dev
->pio_mode
== 0xff) {
3289 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3294 dev
->xfer_mode
= dev
->pio_mode
;
3295 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3296 if (ap
->ops
->set_piomode
)
3297 ap
->ops
->set_piomode(ap
, dev
);
3300 /* step 3: set host DMA timings */
3301 ata_for_each_dev(dev
, link
, ENABLED
) {
3302 if (!ata_dma_enabled(dev
))
3305 dev
->xfer_mode
= dev
->dma_mode
;
3306 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3307 if (ap
->ops
->set_dmamode
)
3308 ap
->ops
->set_dmamode(ap
, dev
);
3311 /* step 4: update devices' xfer mode */
3312 ata_for_each_dev(dev
, link
, ENABLED
) {
3313 rc
= ata_dev_set_mode(dev
);
3318 /* Record simplex status. If we selected DMA then the other
3319 * host channels are not permitted to do so.
3321 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3322 ap
->host
->simplex_claimed
= ap
;
3326 *r_failed_dev
= dev
;
3331 * ata_wait_ready - wait for link to become ready
3332 * @link: link to be waited on
3333 * @deadline: deadline jiffies for the operation
3334 * @check_ready: callback to check link readiness
3336 * Wait for @link to become ready. @check_ready should return
3337 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3338 * link doesn't seem to be occupied, other errno for other error
3341 * Transient -ENODEV conditions are allowed for
3342 * ATA_TMOUT_FF_WAIT.
3348 * 0 if @linke is ready before @deadline; otherwise, -errno.
3350 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3351 int (*check_ready
)(struct ata_link
*link
))
3353 unsigned long start
= jiffies
;
3354 unsigned long nodev_deadline
;
3357 /* choose which 0xff timeout to use, read comment in libata.h */
3358 if (link
->ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
)
3359 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT_LONG
);
3361 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3363 /* Slave readiness can't be tested separately from master. On
3364 * M/S emulation configuration, this function should be called
3365 * only on the master and it will handle both master and slave.
3367 WARN_ON(link
== link
->ap
->slave_link
);
3369 if (time_after(nodev_deadline
, deadline
))
3370 nodev_deadline
= deadline
;
3373 unsigned long now
= jiffies
;
3376 ready
= tmp
= check_ready(link
);
3381 * -ENODEV could be transient. Ignore -ENODEV if link
3382 * is online. Also, some SATA devices take a long
3383 * time to clear 0xff after reset. Wait for
3384 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3387 * Note that some PATA controllers (pata_ali) explode
3388 * if status register is read more than once when
3389 * there's no device attached.
3391 if (ready
== -ENODEV
) {
3392 if (ata_link_online(link
))
3394 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3395 !ata_link_offline(link
) &&
3396 time_before(now
, nodev_deadline
))
3402 if (time_after(now
, deadline
))
3405 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3406 (deadline
- now
> 3 * HZ
)) {
3407 ata_link_printk(link
, KERN_WARNING
,
3408 "link is slow to respond, please be patient "
3409 "(ready=%d)\n", tmp
);
3413 ata_msleep(link
->ap
, 50);
3418 * ata_wait_after_reset - wait for link to become ready after reset
3419 * @link: link to be waited on
3420 * @deadline: deadline jiffies for the operation
3421 * @check_ready: callback to check link readiness
3423 * Wait for @link to become ready after reset.
3429 * 0 if @linke is ready before @deadline; otherwise, -errno.
3431 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3432 int (*check_ready
)(struct ata_link
*link
))
3434 ata_msleep(link
->ap
, ATA_WAIT_AFTER_RESET
);
3436 return ata_wait_ready(link
, deadline
, check_ready
);
3440 * sata_link_debounce - debounce SATA phy status
3441 * @link: ATA link to debounce SATA phy status for
3442 * @params: timing parameters { interval, duratinon, timeout } in msec
3443 * @deadline: deadline jiffies for the operation
3445 * Make sure SStatus of @link reaches stable state, determined by
3446 * holding the same value where DET is not 1 for @duration polled
3447 * every @interval, before @timeout. Timeout constraints the
3448 * beginning of the stable state. Because DET gets stuck at 1 on
3449 * some controllers after hot unplugging, this functions waits
3450 * until timeout then returns 0 if DET is stable at 1.
3452 * @timeout is further limited by @deadline. The sooner of the
3456 * Kernel thread context (may sleep)
3459 * 0 on success, -errno on failure.
3461 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3462 unsigned long deadline
)
3464 unsigned long interval
= params
[0];
3465 unsigned long duration
= params
[1];
3466 unsigned long last_jiffies
, t
;
3470 t
= ata_deadline(jiffies
, params
[2]);
3471 if (time_before(t
, deadline
))
3474 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3479 last_jiffies
= jiffies
;
3482 ata_msleep(link
->ap
, interval
);
3483 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3489 if (cur
== 1 && time_before(jiffies
, deadline
))
3491 if (time_after(jiffies
,
3492 ata_deadline(last_jiffies
, duration
)))
3497 /* unstable, start over */
3499 last_jiffies
= jiffies
;
3501 /* Check deadline. If debouncing failed, return
3502 * -EPIPE to tell upper layer to lower link speed.
3504 if (time_after(jiffies
, deadline
))
3510 * sata_link_resume - resume SATA link
3511 * @link: ATA link to resume SATA
3512 * @params: timing parameters { interval, duratinon, timeout } in msec
3513 * @deadline: deadline jiffies for the operation
3515 * Resume SATA phy @link and debounce it.
3518 * Kernel thread context (may sleep)
3521 * 0 on success, -errno on failure.
3523 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3524 unsigned long deadline
)
3526 int tries
= ATA_LINK_RESUME_TRIES
;
3527 u32 scontrol
, serror
;
3530 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3534 * Writes to SControl sometimes get ignored under certain
3535 * controllers (ata_piix SIDPR). Make sure DET actually is
3539 scontrol
= (scontrol
& 0x0f0) | 0x300;
3540 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3543 * Some PHYs react badly if SStatus is pounded
3544 * immediately after resuming. Delay 200ms before
3547 ata_msleep(link
->ap
, 200);
3549 /* is SControl restored correctly? */
3550 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3552 } while ((scontrol
& 0xf0f) != 0x300 && --tries
);
3554 if ((scontrol
& 0xf0f) != 0x300) {
3555 ata_link_printk(link
, KERN_ERR
,
3556 "failed to resume link (SControl %X)\n",
3561 if (tries
< ATA_LINK_RESUME_TRIES
)
3562 ata_link_printk(link
, KERN_WARNING
,
3563 "link resume succeeded after %d retries\n",
3564 ATA_LINK_RESUME_TRIES
- tries
);
3566 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3569 /* clear SError, some PHYs require this even for SRST to work */
3570 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3571 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3573 return rc
!= -EINVAL
? rc
: 0;
3577 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3578 * @link: ATA link to manipulate SControl for
3579 * @policy: LPM policy to configure
3580 * @spm_wakeup: initiate LPM transition to active state
3582 * Manipulate the IPM field of the SControl register of @link
3583 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3584 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3585 * the link. This function also clears PHYRDY_CHG before
3592 * 0 on succes, -errno otherwise.
3594 int sata_link_scr_lpm(struct ata_link
*link
, enum ata_lpm_policy policy
,
3597 struct ata_eh_context
*ehc
= &link
->eh_context
;
3598 bool woken_up
= false;
3602 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
3607 case ATA_LPM_MAX_POWER
:
3608 /* disable all LPM transitions */
3609 scontrol
|= (0x3 << 8);
3610 /* initiate transition to active state */
3612 scontrol
|= (0x4 << 12);
3616 case ATA_LPM_MED_POWER
:
3617 /* allow LPM to PARTIAL */
3618 scontrol
&= ~(0x1 << 8);
3619 scontrol
|= (0x2 << 8);
3621 case ATA_LPM_MIN_POWER
:
3622 /* no restrictions on LPM transitions */
3623 scontrol
&= ~(0x3 << 8);
3629 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
3633 /* give the link time to transit out of LPM state */
3637 /* clear PHYRDY_CHG from SError */
3638 ehc
->i
.serror
&= ~SERR_PHYRDY_CHG
;
3639 return sata_scr_write(link
, SCR_ERROR
, SERR_PHYRDY_CHG
);
3643 * ata_std_prereset - prepare for reset
3644 * @link: ATA link to be reset
3645 * @deadline: deadline jiffies for the operation
3647 * @link is about to be reset. Initialize it. Failure from
3648 * prereset makes libata abort whole reset sequence and give up
3649 * that port, so prereset should be best-effort. It does its
3650 * best to prepare for reset sequence but if things go wrong, it
3651 * should just whine, not fail.
3654 * Kernel thread context (may sleep)
3657 * 0 on success, -errno otherwise.
3659 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3661 struct ata_port
*ap
= link
->ap
;
3662 struct ata_eh_context
*ehc
= &link
->eh_context
;
3663 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3666 /* if we're about to do hardreset, nothing more to do */
3667 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3670 /* if SATA, resume link */
3671 if (ap
->flags
& ATA_FLAG_SATA
) {
3672 rc
= sata_link_resume(link
, timing
, deadline
);
3673 /* whine about phy resume failure but proceed */
3674 if (rc
&& rc
!= -EOPNOTSUPP
)
3675 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3676 "link for reset (errno=%d)\n", rc
);
3679 /* no point in trying softreset on offline link */
3680 if (ata_phys_link_offline(link
))
3681 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3687 * sata_link_hardreset - reset link via SATA phy reset
3688 * @link: link to reset
3689 * @timing: timing parameters { interval, duratinon, timeout } in msec
3690 * @deadline: deadline jiffies for the operation
3691 * @online: optional out parameter indicating link onlineness
3692 * @check_ready: optional callback to check link readiness
3694 * SATA phy-reset @link using DET bits of SControl register.
3695 * After hardreset, link readiness is waited upon using
3696 * ata_wait_ready() if @check_ready is specified. LLDs are
3697 * allowed to not specify @check_ready and wait itself after this
3698 * function returns. Device classification is LLD's
3701 * *@online is set to one iff reset succeeded and @link is online
3705 * Kernel thread context (may sleep)
3708 * 0 on success, -errno otherwise.
3710 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3711 unsigned long deadline
,
3712 bool *online
, int (*check_ready
)(struct ata_link
*))
3722 if (sata_set_spd_needed(link
)) {
3723 /* SATA spec says nothing about how to reconfigure
3724 * spd. To be on the safe side, turn off phy during
3725 * reconfiguration. This works for at least ICH7 AHCI
3728 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3731 scontrol
= (scontrol
& 0x0f0) | 0x304;
3733 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3739 /* issue phy wake/reset */
3740 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3743 scontrol
= (scontrol
& 0x0f0) | 0x301;
3745 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3748 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3749 * 10.4.2 says at least 1 ms.
3751 ata_msleep(link
->ap
, 1);
3753 /* bring link back */
3754 rc
= sata_link_resume(link
, timing
, deadline
);
3757 /* if link is offline nothing more to do */
3758 if (ata_phys_link_offline(link
))
3761 /* Link is online. From this point, -ENODEV too is an error. */
3765 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3766 /* If PMP is supported, we have to do follow-up SRST.
3767 * Some PMPs don't send D2H Reg FIS after hardreset if
3768 * the first port is empty. Wait only for
3769 * ATA_TMOUT_PMP_SRST_WAIT.
3772 unsigned long pmp_deadline
;
3774 pmp_deadline
= ata_deadline(jiffies
,
3775 ATA_TMOUT_PMP_SRST_WAIT
);
3776 if (time_after(pmp_deadline
, deadline
))
3777 pmp_deadline
= deadline
;
3778 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3786 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3788 if (rc
&& rc
!= -EAGAIN
) {
3789 /* online is set iff link is online && reset succeeded */
3792 ata_link_printk(link
, KERN_ERR
,
3793 "COMRESET failed (errno=%d)\n", rc
);
3795 DPRINTK("EXIT, rc=%d\n", rc
);
3800 * sata_std_hardreset - COMRESET w/o waiting or classification
3801 * @link: link to reset
3802 * @class: resulting class of attached device
3803 * @deadline: deadline jiffies for the operation
3805 * Standard SATA COMRESET w/o waiting or classification.
3808 * Kernel thread context (may sleep)
3811 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3813 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3814 unsigned long deadline
)
3816 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3821 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3822 return online
? -EAGAIN
: rc
;
3826 * ata_std_postreset - standard postreset callback
3827 * @link: the target ata_link
3828 * @classes: classes of attached devices
3830 * This function is invoked after a successful reset. Note that
3831 * the device might have been reset more than once using
3832 * different reset methods before postreset is invoked.
3835 * Kernel thread context (may sleep)
3837 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3843 /* reset complete, clear SError */
3844 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
3845 sata_scr_write(link
, SCR_ERROR
, serror
);
3847 /* print link status */
3848 sata_print_link_status(link
);
3854 * ata_dev_same_device - Determine whether new ID matches configured device
3855 * @dev: device to compare against
3856 * @new_class: class of the new device
3857 * @new_id: IDENTIFY page of the new device
3859 * Compare @new_class and @new_id against @dev and determine
3860 * whether @dev is the device indicated by @new_class and
3867 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3869 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3872 const u16
*old_id
= dev
->id
;
3873 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3874 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3876 if (dev
->class != new_class
) {
3877 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3878 dev
->class, new_class
);
3882 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3883 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3884 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3885 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3887 if (strcmp(model
[0], model
[1])) {
3888 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3889 "'%s' != '%s'\n", model
[0], model
[1]);
3893 if (strcmp(serial
[0], serial
[1])) {
3894 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3895 "'%s' != '%s'\n", serial
[0], serial
[1]);
3903 * ata_dev_reread_id - Re-read IDENTIFY data
3904 * @dev: target ATA device
3905 * @readid_flags: read ID flags
3907 * Re-read IDENTIFY page and make sure @dev is still attached to
3911 * Kernel thread context (may sleep)
3914 * 0 on success, negative errno otherwise
3916 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3918 unsigned int class = dev
->class;
3919 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
3923 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3927 /* is the device still there? */
3928 if (!ata_dev_same_device(dev
, class, id
))
3931 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3936 * ata_dev_revalidate - Revalidate ATA device
3937 * @dev: device to revalidate
3938 * @new_class: new class code
3939 * @readid_flags: read ID flags
3941 * Re-read IDENTIFY page, make sure @dev is still attached to the
3942 * port and reconfigure it according to the new IDENTIFY page.
3945 * Kernel thread context (may sleep)
3948 * 0 on success, negative errno otherwise
3950 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
3951 unsigned int readid_flags
)
3953 u64 n_sectors
= dev
->n_sectors
;
3954 u64 n_native_sectors
= dev
->n_native_sectors
;
3957 if (!ata_dev_enabled(dev
))
3960 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3961 if (ata_class_enabled(new_class
) &&
3962 new_class
!= ATA_DEV_ATA
&&
3963 new_class
!= ATA_DEV_ATAPI
&&
3964 new_class
!= ATA_DEV_SEMB
) {
3965 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
3966 dev
->class, new_class
);
3972 rc
= ata_dev_reread_id(dev
, readid_flags
);
3976 /* configure device according to the new ID */
3977 rc
= ata_dev_configure(dev
);
3981 /* verify n_sectors hasn't changed */
3982 if (dev
->class != ATA_DEV_ATA
|| !n_sectors
||
3983 dev
->n_sectors
== n_sectors
)
3986 /* n_sectors has changed */
3987 ata_dev_printk(dev
, KERN_WARNING
, "n_sectors mismatch %llu != %llu\n",
3988 (unsigned long long)n_sectors
,
3989 (unsigned long long)dev
->n_sectors
);
3992 * Something could have caused HPA to be unlocked
3993 * involuntarily. If n_native_sectors hasn't changed and the
3994 * new size matches it, keep the device.
3996 if (dev
->n_native_sectors
== n_native_sectors
&&
3997 dev
->n_sectors
> n_sectors
&& dev
->n_sectors
== n_native_sectors
) {
3998 ata_dev_printk(dev
, KERN_WARNING
,
3999 "new n_sectors matches native, probably "
4000 "late HPA unlock, n_sectors updated\n");
4001 /* use the larger n_sectors */
4006 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4007 * unlocking HPA in those cases.
4009 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4011 if (dev
->n_native_sectors
== n_native_sectors
&&
4012 dev
->n_sectors
< n_sectors
&& n_sectors
== n_native_sectors
&&
4013 !(dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
)) {
4014 ata_dev_printk(dev
, KERN_WARNING
,
4015 "old n_sectors matches native, probably "
4016 "late HPA lock, will try to unlock HPA\n");
4017 /* try unlocking HPA */
4018 dev
->flags
|= ATA_DFLAG_UNLOCK_HPA
;
4023 /* restore original n_[native_]sectors and fail */
4024 dev
->n_native_sectors
= n_native_sectors
;
4025 dev
->n_sectors
= n_sectors
;
4027 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4031 struct ata_blacklist_entry
{
4032 const char *model_num
;
4033 const char *model_rev
;
4034 unsigned long horkage
;
4037 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4038 /* Devices with DMA related problems under Linux */
4039 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4040 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4041 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4042 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4043 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4044 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4045 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4046 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4047 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4048 { "CRD-848[02]B", NULL
, ATA_HORKAGE_NODMA
},
4049 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4050 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4051 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4052 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4053 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4054 { "HITACHI CDR-8[34]35",NULL
, ATA_HORKAGE_NODMA
},
4055 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4056 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4057 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4058 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4059 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4060 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4061 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4062 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4063 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4064 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4065 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4066 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4067 /* Odd clown on sil3726/4726 PMPs */
4068 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4070 /* Weird ATAPI devices */
4071 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4072 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4074 /* Devices we expect to fail diagnostics */
4076 /* Devices where NCQ should be avoided */
4078 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4079 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4080 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4081 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4083 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4084 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4085 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4086 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4087 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4089 /* Seagate NCQ + FLUSH CACHE firmware bug */
4090 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4091 ATA_HORKAGE_FIRMWARE_WARN
},
4093 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4094 ATA_HORKAGE_FIRMWARE_WARN
},
4096 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4097 ATA_HORKAGE_FIRMWARE_WARN
},
4099 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4100 ATA_HORKAGE_FIRMWARE_WARN
},
4102 /* Blacklist entries taken from Silicon Image 3124/3132
4103 Windows driver .inf file - also several Linux problem reports */
4104 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4105 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4106 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4108 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4109 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ
, },
4111 /* devices which puke on READ_NATIVE_MAX */
4112 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4113 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4114 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4115 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4117 /* this one allows HPA unlocking but fails IOs on the area */
4118 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA
},
4120 /* Devices which report 1 sector over size HPA */
4121 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4122 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4123 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4125 /* Devices which get the IVB wrong */
4126 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4127 /* Maybe we should just blacklist TSSTcorp... */
4128 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB
, },
4130 /* Devices that do not need bridging limits applied */
4131 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4133 /* Devices which aren't very happy with higher link speeds */
4134 { "WD My Book", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4137 * Devices which choke on SETXFER. Applies only if both the
4138 * device and controller are SATA.
4140 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER
},
4141 { "PIONEER DVD-RW DVR-212D", "1.28", ATA_HORKAGE_NOSETXFER
},
4142 { "PIONEER DVD-RW DVR-216D", "1.08", ATA_HORKAGE_NOSETXFER
},
4149 * glob_match - match a text string against a glob-style pattern
4150 * @text: the string to be examined
4151 * @pattern: the glob-style pattern to be matched against
4153 * Either/both of text and pattern can be empty strings.
4155 * Match text against a glob-style pattern, with wildcards and simple sets:
4157 * ? matches any single character.
4158 * * matches any run of characters.
4159 * [xyz] matches a single character from the set: x, y, or z.
4160 * [a-d] matches a single character from the range: a, b, c, or d.
4161 * [a-d0-9] matches a single character from either range.
4163 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4164 * Behaviour with malformed patterns is undefined, though generally reasonable.
4166 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4168 * This function uses one level of recursion per '*' in pattern.
4169 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4170 * this will not cause stack problems for any reasonable use here.
4173 * 0 on match, 1 otherwise.
4175 static int glob_match (const char *text
, const char *pattern
)
4178 /* Match single character or a '?' wildcard */
4179 if (*text
== *pattern
|| *pattern
== '?') {
4181 return 0; /* End of both strings: match */
4183 /* Match single char against a '[' bracketed ']' pattern set */
4184 if (!*text
|| *pattern
!= '[')
4185 break; /* Not a pattern set */
4186 while (*++pattern
&& *pattern
!= ']' && *text
!= *pattern
) {
4187 if (*pattern
== '-' && *(pattern
- 1) != '[')
4188 if (*text
> *(pattern
- 1) && *text
< *(pattern
+ 1)) {
4193 if (!*pattern
|| *pattern
== ']')
4194 return 1; /* No match */
4195 while (*pattern
&& *pattern
++ != ']');
4197 } while (*++text
&& *pattern
);
4199 /* Match any run of chars against a '*' wildcard */
4200 if (*pattern
== '*') {
4202 return 0; /* Match: avoid recursion at end of pattern */
4203 /* Loop to handle additional pattern chars after the wildcard */
4205 if (glob_match(text
, pattern
) == 0)
4206 return 0; /* Remainder matched */
4207 ++text
; /* Absorb (match) this char and try again */
4210 if (!*text
&& !*pattern
)
4211 return 0; /* End of both strings: match */
4212 return 1; /* No match */
4215 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4217 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4218 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4219 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4221 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4222 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4224 while (ad
->model_num
) {
4225 if (!glob_match(model_num
, ad
->model_num
)) {
4226 if (ad
->model_rev
== NULL
)
4228 if (!glob_match(model_rev
, ad
->model_rev
))
4236 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4238 /* We don't support polling DMA.
4239 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4240 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4242 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4243 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4245 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4249 * ata_is_40wire - check drive side detection
4252 * Perform drive side detection decoding, allowing for device vendors
4253 * who can't follow the documentation.
4256 static int ata_is_40wire(struct ata_device
*dev
)
4258 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4259 return ata_drive_40wire_relaxed(dev
->id
);
4260 return ata_drive_40wire(dev
->id
);
4264 * cable_is_40wire - 40/80/SATA decider
4265 * @ap: port to consider
4267 * This function encapsulates the policy for speed management
4268 * in one place. At the moment we don't cache the result but
4269 * there is a good case for setting ap->cbl to the result when
4270 * we are called with unknown cables (and figuring out if it
4271 * impacts hotplug at all).
4273 * Return 1 if the cable appears to be 40 wire.
4276 static int cable_is_40wire(struct ata_port
*ap
)
4278 struct ata_link
*link
;
4279 struct ata_device
*dev
;
4281 /* If the controller thinks we are 40 wire, we are. */
4282 if (ap
->cbl
== ATA_CBL_PATA40
)
4285 /* If the controller thinks we are 80 wire, we are. */
4286 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4289 /* If the system is known to be 40 wire short cable (eg
4290 * laptop), then we allow 80 wire modes even if the drive
4293 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4296 /* If the controller doesn't know, we scan.
4298 * Note: We look for all 40 wire detects at this point. Any
4299 * 80 wire detect is taken to be 80 wire cable because
4300 * - in many setups only the one drive (slave if present) will
4301 * give a valid detect
4302 * - if you have a non detect capable drive you don't want it
4303 * to colour the choice
4305 ata_for_each_link(link
, ap
, EDGE
) {
4306 ata_for_each_dev(dev
, link
, ENABLED
) {
4307 if (!ata_is_40wire(dev
))
4315 * ata_dev_xfermask - Compute supported xfermask of the given device
4316 * @dev: Device to compute xfermask for
4318 * Compute supported xfermask of @dev and store it in
4319 * dev->*_mask. This function is responsible for applying all
4320 * known limits including host controller limits, device
4326 static void ata_dev_xfermask(struct ata_device
*dev
)
4328 struct ata_link
*link
= dev
->link
;
4329 struct ata_port
*ap
= link
->ap
;
4330 struct ata_host
*host
= ap
->host
;
4331 unsigned long xfer_mask
;
4333 /* controller modes available */
4334 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4335 ap
->mwdma_mask
, ap
->udma_mask
);
4337 /* drive modes available */
4338 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4339 dev
->mwdma_mask
, dev
->udma_mask
);
4340 xfer_mask
&= ata_id_xfermask(dev
->id
);
4343 * CFA Advanced TrueIDE timings are not allowed on a shared
4346 if (ata_dev_pair(dev
)) {
4347 /* No PIO5 or PIO6 */
4348 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4349 /* No MWDMA3 or MWDMA 4 */
4350 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4353 if (ata_dma_blacklisted(dev
)) {
4354 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4355 ata_dev_printk(dev
, KERN_WARNING
,
4356 "device is on DMA blacklist, disabling DMA\n");
4359 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4360 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4361 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4362 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4363 "other device, disabling DMA\n");
4366 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4367 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4369 if (ap
->ops
->mode_filter
)
4370 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4372 /* Apply cable rule here. Don't apply it early because when
4373 * we handle hot plug the cable type can itself change.
4374 * Check this last so that we know if the transfer rate was
4375 * solely limited by the cable.
4376 * Unknown or 80 wire cables reported host side are checked
4377 * drive side as well. Cases where we know a 40wire cable
4378 * is used safely for 80 are not checked here.
4380 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4381 /* UDMA/44 or higher would be available */
4382 if (cable_is_40wire(ap
)) {
4383 ata_dev_printk(dev
, KERN_WARNING
,
4384 "limited to UDMA/33 due to 40-wire cable\n");
4385 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4388 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4389 &dev
->mwdma_mask
, &dev
->udma_mask
);
4393 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4394 * @dev: Device to which command will be sent
4396 * Issue SET FEATURES - XFER MODE command to device @dev
4400 * PCI/etc. bus probe sem.
4403 * 0 on success, AC_ERR_* mask otherwise.
4406 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4408 struct ata_taskfile tf
;
4409 unsigned int err_mask
;
4411 /* set up set-features taskfile */
4412 DPRINTK("set features - xfer mode\n");
4414 /* Some controllers and ATAPI devices show flaky interrupt
4415 * behavior after setting xfer mode. Use polling instead.
4417 ata_tf_init(dev
, &tf
);
4418 tf
.command
= ATA_CMD_SET_FEATURES
;
4419 tf
.feature
= SETFEATURES_XFER
;
4420 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4421 tf
.protocol
= ATA_PROT_NODATA
;
4422 /* If we are using IORDY we must send the mode setting command */
4423 if (ata_pio_need_iordy(dev
))
4424 tf
.nsect
= dev
->xfer_mode
;
4425 /* If the device has IORDY and the controller does not - turn it off */
4426 else if (ata_id_has_iordy(dev
->id
))
4428 else /* In the ancient relic department - skip all of this */
4431 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4433 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4438 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4439 * @dev: Device to which command will be sent
4440 * @enable: Whether to enable or disable the feature
4441 * @feature: The sector count represents the feature to set
4443 * Issue SET FEATURES - SATA FEATURES command to device @dev
4444 * on port @ap with sector count
4447 * PCI/etc. bus probe sem.
4450 * 0 on success, AC_ERR_* mask otherwise.
4452 unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
, u8 feature
)
4454 struct ata_taskfile tf
;
4455 unsigned int err_mask
;
4457 /* set up set-features taskfile */
4458 DPRINTK("set features - SATA features\n");
4460 ata_tf_init(dev
, &tf
);
4461 tf
.command
= ATA_CMD_SET_FEATURES
;
4462 tf
.feature
= enable
;
4463 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4464 tf
.protocol
= ATA_PROT_NODATA
;
4467 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4469 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4474 * ata_dev_init_params - Issue INIT DEV PARAMS command
4475 * @dev: Device to which command will be sent
4476 * @heads: Number of heads (taskfile parameter)
4477 * @sectors: Number of sectors (taskfile parameter)
4480 * Kernel thread context (may sleep)
4483 * 0 on success, AC_ERR_* mask otherwise.
4485 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4486 u16 heads
, u16 sectors
)
4488 struct ata_taskfile tf
;
4489 unsigned int err_mask
;
4491 /* Number of sectors per track 1-255. Number of heads 1-16 */
4492 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4493 return AC_ERR_INVALID
;
4495 /* set up init dev params taskfile */
4496 DPRINTK("init dev params \n");
4498 ata_tf_init(dev
, &tf
);
4499 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4500 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4501 tf
.protocol
= ATA_PROT_NODATA
;
4503 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4505 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4506 /* A clean abort indicates an original or just out of spec drive
4507 and we should continue as we issue the setup based on the
4508 drive reported working geometry */
4509 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4512 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4517 * ata_sg_clean - Unmap DMA memory associated with command
4518 * @qc: Command containing DMA memory to be released
4520 * Unmap all mapped DMA memory associated with this command.
4523 * spin_lock_irqsave(host lock)
4525 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4527 struct ata_port
*ap
= qc
->ap
;
4528 struct scatterlist
*sg
= qc
->sg
;
4529 int dir
= qc
->dma_dir
;
4531 WARN_ON_ONCE(sg
== NULL
);
4533 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4536 dma_unmap_sg(ap
->dev
, sg
, qc
->orig_n_elem
, dir
);
4538 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4543 * atapi_check_dma - Check whether ATAPI DMA can be supported
4544 * @qc: Metadata associated with taskfile to check
4546 * Allow low-level driver to filter ATA PACKET commands, returning
4547 * a status indicating whether or not it is OK to use DMA for the
4548 * supplied PACKET command.
4551 * spin_lock_irqsave(host lock)
4553 * RETURNS: 0 when ATAPI DMA can be used
4556 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4558 struct ata_port
*ap
= qc
->ap
;
4560 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4561 * few ATAPI devices choke on such DMA requests.
4563 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4564 unlikely(qc
->nbytes
& 15))
4567 if (ap
->ops
->check_atapi_dma
)
4568 return ap
->ops
->check_atapi_dma(qc
);
4574 * ata_std_qc_defer - Check whether a qc needs to be deferred
4575 * @qc: ATA command in question
4577 * Non-NCQ commands cannot run with any other command, NCQ or
4578 * not. As upper layer only knows the queue depth, we are
4579 * responsible for maintaining exclusion. This function checks
4580 * whether a new command @qc can be issued.
4583 * spin_lock_irqsave(host lock)
4586 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4588 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4590 struct ata_link
*link
= qc
->dev
->link
;
4592 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4593 if (!ata_tag_valid(link
->active_tag
))
4596 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4600 return ATA_DEFER_LINK
;
4603 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4606 * ata_sg_init - Associate command with scatter-gather table.
4607 * @qc: Command to be associated
4608 * @sg: Scatter-gather table.
4609 * @n_elem: Number of elements in s/g table.
4611 * Initialize the data-related elements of queued_cmd @qc
4612 * to point to a scatter-gather table @sg, containing @n_elem
4616 * spin_lock_irqsave(host lock)
4618 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4619 unsigned int n_elem
)
4622 qc
->n_elem
= n_elem
;
4627 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4628 * @qc: Command with scatter-gather table to be mapped.
4630 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4633 * spin_lock_irqsave(host lock)
4636 * Zero on success, negative on error.
4639 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4641 struct ata_port
*ap
= qc
->ap
;
4642 unsigned int n_elem
;
4644 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4646 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4650 DPRINTK("%d sg elements mapped\n", n_elem
);
4651 qc
->orig_n_elem
= qc
->n_elem
;
4652 qc
->n_elem
= n_elem
;
4653 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4659 * swap_buf_le16 - swap halves of 16-bit words in place
4660 * @buf: Buffer to swap
4661 * @buf_words: Number of 16-bit words in buffer.
4663 * Swap halves of 16-bit words if needed to convert from
4664 * little-endian byte order to native cpu byte order, or
4668 * Inherited from caller.
4670 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4675 for (i
= 0; i
< buf_words
; i
++)
4676 buf
[i
] = le16_to_cpu(buf
[i
]);
4677 #endif /* __BIG_ENDIAN */
4681 * ata_qc_new - Request an available ATA command, for queueing
4688 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4690 struct ata_queued_cmd
*qc
= NULL
;
4693 /* no command while frozen */
4694 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4697 /* the last tag is reserved for internal command. */
4698 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4699 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4700 qc
= __ata_qc_from_tag(ap
, i
);
4711 * ata_qc_new_init - Request an available ATA command, and initialize it
4712 * @dev: Device from whom we request an available command structure
4718 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4720 struct ata_port
*ap
= dev
->link
->ap
;
4721 struct ata_queued_cmd
*qc
;
4723 qc
= ata_qc_new(ap
);
4736 * ata_qc_free - free unused ata_queued_cmd
4737 * @qc: Command to complete
4739 * Designed to free unused ata_queued_cmd object
4740 * in case something prevents using it.
4743 * spin_lock_irqsave(host lock)
4745 void ata_qc_free(struct ata_queued_cmd
*qc
)
4747 struct ata_port
*ap
;
4750 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4755 if (likely(ata_tag_valid(tag
))) {
4756 qc
->tag
= ATA_TAG_POISON
;
4757 clear_bit(tag
, &ap
->qc_allocated
);
4761 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4763 struct ata_port
*ap
;
4764 struct ata_link
*link
;
4766 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4767 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4769 link
= qc
->dev
->link
;
4771 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4774 /* command should be marked inactive atomically with qc completion */
4775 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4776 link
->sactive
&= ~(1 << qc
->tag
);
4778 ap
->nr_active_links
--;
4780 link
->active_tag
= ATA_TAG_POISON
;
4781 ap
->nr_active_links
--;
4784 /* clear exclusive status */
4785 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4786 ap
->excl_link
== link
))
4787 ap
->excl_link
= NULL
;
4789 /* atapi: mark qc as inactive to prevent the interrupt handler
4790 * from completing the command twice later, before the error handler
4791 * is called. (when rc != 0 and atapi request sense is needed)
4793 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4794 ap
->qc_active
&= ~(1 << qc
->tag
);
4796 /* call completion callback */
4797 qc
->complete_fn(qc
);
4800 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4802 struct ata_port
*ap
= qc
->ap
;
4804 qc
->result_tf
.flags
= qc
->tf
.flags
;
4805 ap
->ops
->qc_fill_rtf(qc
);
4808 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4810 struct ata_device
*dev
= qc
->dev
;
4812 if (ata_is_nodata(qc
->tf
.protocol
))
4815 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4818 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4822 * ata_qc_complete - Complete an active ATA command
4823 * @qc: Command to complete
4825 * Indicate to the mid and upper layers that an ATA command has
4826 * completed, with either an ok or not-ok status.
4828 * Refrain from calling this function multiple times when
4829 * successfully completing multiple NCQ commands.
4830 * ata_qc_complete_multiple() should be used instead, which will
4831 * properly update IRQ expect state.
4834 * spin_lock_irqsave(host lock)
4836 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4838 struct ata_port
*ap
= qc
->ap
;
4840 /* XXX: New EH and old EH use different mechanisms to
4841 * synchronize EH with regular execution path.
4843 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4844 * Normal execution path is responsible for not accessing a
4845 * failed qc. libata core enforces the rule by returning NULL
4846 * from ata_qc_from_tag() for failed qcs.
4848 * Old EH depends on ata_qc_complete() nullifying completion
4849 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4850 * not synchronize with interrupt handler. Only PIO task is
4853 if (ap
->ops
->error_handler
) {
4854 struct ata_device
*dev
= qc
->dev
;
4855 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4857 if (unlikely(qc
->err_mask
))
4858 qc
->flags
|= ATA_QCFLAG_FAILED
;
4861 * Finish internal commands without any further processing
4862 * and always with the result TF filled.
4864 if (unlikely(ata_tag_internal(qc
->tag
))) {
4866 __ata_qc_complete(qc
);
4871 * Non-internal qc has failed. Fill the result TF and
4874 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4876 ata_qc_schedule_eh(qc
);
4880 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
4882 /* read result TF if requested */
4883 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4886 /* Some commands need post-processing after successful
4889 switch (qc
->tf
.command
) {
4890 case ATA_CMD_SET_FEATURES
:
4891 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
4892 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
4895 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
4896 case ATA_CMD_SET_MULTI
: /* multi_count changed */
4897 /* revalidate device */
4898 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
4899 ata_port_schedule_eh(ap
);
4903 dev
->flags
|= ATA_DFLAG_SLEEPING
;
4907 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
4908 ata_verify_xfer(qc
);
4910 __ata_qc_complete(qc
);
4912 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4915 /* read result TF if failed or requested */
4916 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4919 __ata_qc_complete(qc
);
4924 * ata_qc_complete_multiple - Complete multiple qcs successfully
4925 * @ap: port in question
4926 * @qc_active: new qc_active mask
4928 * Complete in-flight commands. This functions is meant to be
4929 * called from low-level driver's interrupt routine to complete
4930 * requests normally. ap->qc_active and @qc_active is compared
4931 * and commands are completed accordingly.
4933 * Always use this function when completing multiple NCQ commands
4934 * from IRQ handlers instead of calling ata_qc_complete()
4935 * multiple times to keep IRQ expect status properly in sync.
4938 * spin_lock_irqsave(host lock)
4941 * Number of completed commands on success, -errno otherwise.
4943 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
4948 done_mask
= ap
->qc_active
^ qc_active
;
4950 if (unlikely(done_mask
& qc_active
)) {
4951 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
4952 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
4957 struct ata_queued_cmd
*qc
;
4958 unsigned int tag
= __ffs(done_mask
);
4960 qc
= ata_qc_from_tag(ap
, tag
);
4962 ata_qc_complete(qc
);
4965 done_mask
&= ~(1 << tag
);
4972 * ata_qc_issue - issue taskfile to device
4973 * @qc: command to issue to device
4975 * Prepare an ATA command to submission to device.
4976 * This includes mapping the data into a DMA-able
4977 * area, filling in the S/G table, and finally
4978 * writing the taskfile to hardware, starting the command.
4981 * spin_lock_irqsave(host lock)
4983 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4985 struct ata_port
*ap
= qc
->ap
;
4986 struct ata_link
*link
= qc
->dev
->link
;
4987 u8 prot
= qc
->tf
.protocol
;
4989 /* Make sure only one non-NCQ command is outstanding. The
4990 * check is skipped for old EH because it reuses active qc to
4991 * request ATAPI sense.
4993 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
4995 if (ata_is_ncq(prot
)) {
4996 WARN_ON_ONCE(link
->sactive
& (1 << qc
->tag
));
4999 ap
->nr_active_links
++;
5000 link
->sactive
|= 1 << qc
->tag
;
5002 WARN_ON_ONCE(link
->sactive
);
5004 ap
->nr_active_links
++;
5005 link
->active_tag
= qc
->tag
;
5008 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5009 ap
->qc_active
|= 1 << qc
->tag
;
5012 * We guarantee to LLDs that they will have at least one
5013 * non-zero sg if the command is a data command.
5015 if (WARN_ON_ONCE(ata_is_data(prot
) &&
5016 (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
)))
5019 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5020 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5021 if (ata_sg_setup(qc
))
5024 /* if device is sleeping, schedule reset and abort the link */
5025 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5026 link
->eh_info
.action
|= ATA_EH_RESET
;
5027 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5028 ata_link_abort(link
);
5032 ap
->ops
->qc_prep(qc
);
5034 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5035 if (unlikely(qc
->err_mask
))
5040 qc
->err_mask
|= AC_ERR_SYSTEM
;
5042 ata_qc_complete(qc
);
5046 * sata_scr_valid - test whether SCRs are accessible
5047 * @link: ATA link to test SCR accessibility for
5049 * Test whether SCRs are accessible for @link.
5055 * 1 if SCRs are accessible, 0 otherwise.
5057 int sata_scr_valid(struct ata_link
*link
)
5059 struct ata_port
*ap
= link
->ap
;
5061 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5065 * sata_scr_read - read SCR register of the specified port
5066 * @link: ATA link to read SCR for
5068 * @val: Place to store read value
5070 * Read SCR register @reg of @link into *@val. This function is
5071 * guaranteed to succeed if @link is ap->link, the cable type of
5072 * the port is SATA and the port implements ->scr_read.
5075 * None if @link is ap->link. Kernel thread context otherwise.
5078 * 0 on success, negative errno on failure.
5080 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5082 if (ata_is_host_link(link
)) {
5083 if (sata_scr_valid(link
))
5084 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5088 return sata_pmp_scr_read(link
, reg
, val
);
5092 * sata_scr_write - write SCR register of the specified port
5093 * @link: ATA link to write SCR for
5094 * @reg: SCR to write
5095 * @val: value to write
5097 * Write @val to SCR register @reg of @link. This function is
5098 * guaranteed to succeed if @link is ap->link, the cable type of
5099 * the port is SATA and the port implements ->scr_read.
5102 * None if @link is ap->link. Kernel thread context otherwise.
5105 * 0 on success, negative errno on failure.
5107 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5109 if (ata_is_host_link(link
)) {
5110 if (sata_scr_valid(link
))
5111 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5115 return sata_pmp_scr_write(link
, reg
, val
);
5119 * sata_scr_write_flush - write SCR register of the specified port and flush
5120 * @link: ATA link to write SCR for
5121 * @reg: SCR to write
5122 * @val: value to write
5124 * This function is identical to sata_scr_write() except that this
5125 * function performs flush after writing to the register.
5128 * None if @link is ap->link. Kernel thread context otherwise.
5131 * 0 on success, negative errno on failure.
5133 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5135 if (ata_is_host_link(link
)) {
5138 if (sata_scr_valid(link
)) {
5139 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5141 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5147 return sata_pmp_scr_write(link
, reg
, val
);
5151 * ata_phys_link_online - test whether the given link is online
5152 * @link: ATA link to test
5154 * Test whether @link is online. Note that this function returns
5155 * 0 if online status of @link cannot be obtained, so
5156 * ata_link_online(link) != !ata_link_offline(link).
5162 * True if the port online status is available and online.
5164 bool ata_phys_link_online(struct ata_link
*link
)
5168 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5169 ata_sstatus_online(sstatus
))
5175 * ata_phys_link_offline - test whether the given link is offline
5176 * @link: ATA link to test
5178 * Test whether @link is offline. Note that this function
5179 * returns 0 if offline status of @link cannot be obtained, so
5180 * ata_link_online(link) != !ata_link_offline(link).
5186 * True if the port offline status is available and offline.
5188 bool ata_phys_link_offline(struct ata_link
*link
)
5192 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5193 !ata_sstatus_online(sstatus
))
5199 * ata_link_online - test whether the given link is online
5200 * @link: ATA link to test
5202 * Test whether @link is online. This is identical to
5203 * ata_phys_link_online() when there's no slave link. When
5204 * there's a slave link, this function should only be called on
5205 * the master link and will return true if any of M/S links is
5212 * True if the port online status is available and online.
5214 bool ata_link_online(struct ata_link
*link
)
5216 struct ata_link
*slave
= link
->ap
->slave_link
;
5218 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5220 return ata_phys_link_online(link
) ||
5221 (slave
&& ata_phys_link_online(slave
));
5225 * ata_link_offline - test whether the given link is offline
5226 * @link: ATA link to test
5228 * Test whether @link is offline. This is identical to
5229 * ata_phys_link_offline() when there's no slave link. When
5230 * there's a slave link, this function should only be called on
5231 * the master link and will return true if both M/S links are
5238 * True if the port offline status is available and offline.
5240 bool ata_link_offline(struct ata_link
*link
)
5242 struct ata_link
*slave
= link
->ap
->slave_link
;
5244 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5246 return ata_phys_link_offline(link
) &&
5247 (!slave
|| ata_phys_link_offline(slave
));
5251 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5252 unsigned int action
, unsigned int ehi_flags
,
5255 unsigned long flags
;
5258 for (i
= 0; i
< host
->n_ports
; i
++) {
5259 struct ata_port
*ap
= host
->ports
[i
];
5260 struct ata_link
*link
;
5262 /* Previous resume operation might still be in
5263 * progress. Wait for PM_PENDING to clear.
5265 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5266 ata_port_wait_eh(ap
);
5267 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5270 /* request PM ops to EH */
5271 spin_lock_irqsave(ap
->lock
, flags
);
5276 ap
->pm_result
= &rc
;
5279 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5280 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5281 link
->eh_info
.action
|= action
;
5282 link
->eh_info
.flags
|= ehi_flags
;
5285 ata_port_schedule_eh(ap
);
5287 spin_unlock_irqrestore(ap
->lock
, flags
);
5289 /* wait and check result */
5291 ata_port_wait_eh(ap
);
5292 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5302 * ata_host_suspend - suspend host
5303 * @host: host to suspend
5306 * Suspend @host. Actual operation is performed by EH. This
5307 * function requests EH to perform PM operations and waits for EH
5311 * Kernel thread context (may sleep).
5314 * 0 on success, -errno on failure.
5316 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5318 unsigned int ehi_flags
= ATA_EHI_QUIET
;
5322 * On some hardware, device fails to respond after spun down
5323 * for suspend. As the device won't be used before being
5324 * resumed, we don't need to touch the device. Ask EH to skip
5325 * the usual stuff and proceed directly to suspend.
5327 * http://thread.gmane.org/gmane.linux.ide/46764
5329 if (mesg
.event
== PM_EVENT_SUSPEND
)
5330 ehi_flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_NO_RECOVERY
;
5332 rc
= ata_host_request_pm(host
, mesg
, 0, ehi_flags
, 1);
5334 host
->dev
->power
.power_state
= mesg
;
5339 * ata_host_resume - resume host
5340 * @host: host to resume
5342 * Resume @host. Actual operation is performed by EH. This
5343 * function requests EH to perform PM operations and returns.
5344 * Note that all resume operations are performed parallelly.
5347 * Kernel thread context (may sleep).
5349 void ata_host_resume(struct ata_host
*host
)
5351 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_RESET
,
5352 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5353 host
->dev
->power
.power_state
= PMSG_ON
;
5358 * ata_dev_init - Initialize an ata_device structure
5359 * @dev: Device structure to initialize
5361 * Initialize @dev in preparation for probing.
5364 * Inherited from caller.
5366 void ata_dev_init(struct ata_device
*dev
)
5368 struct ata_link
*link
= ata_dev_phys_link(dev
);
5369 struct ata_port
*ap
= link
->ap
;
5370 unsigned long flags
;
5372 /* SATA spd limit is bound to the attached device, reset together */
5373 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5376 /* High bits of dev->flags are used to record warm plug
5377 * requests which occur asynchronously. Synchronize using
5380 spin_lock_irqsave(ap
->lock
, flags
);
5381 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5383 spin_unlock_irqrestore(ap
->lock
, flags
);
5385 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5386 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5387 dev
->pio_mask
= UINT_MAX
;
5388 dev
->mwdma_mask
= UINT_MAX
;
5389 dev
->udma_mask
= UINT_MAX
;
5393 * ata_link_init - Initialize an ata_link structure
5394 * @ap: ATA port link is attached to
5395 * @link: Link structure to initialize
5396 * @pmp: Port multiplier port number
5401 * Kernel thread context (may sleep)
5403 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5407 /* clear everything except for devices */
5408 memset((void *)link
+ ATA_LINK_CLEAR_BEGIN
, 0,
5409 ATA_LINK_CLEAR_END
- ATA_LINK_CLEAR_BEGIN
);
5413 link
->active_tag
= ATA_TAG_POISON
;
5414 link
->hw_sata_spd_limit
= UINT_MAX
;
5416 /* can't use iterator, ap isn't initialized yet */
5417 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5418 struct ata_device
*dev
= &link
->device
[i
];
5421 dev
->devno
= dev
- link
->device
;
5422 #ifdef CONFIG_ATA_ACPI
5423 dev
->gtf_filter
= ata_acpi_gtf_filter
;
5430 * sata_link_init_spd - Initialize link->sata_spd_limit
5431 * @link: Link to configure sata_spd_limit for
5433 * Initialize @link->[hw_]sata_spd_limit to the currently
5437 * Kernel thread context (may sleep).
5440 * 0 on success, -errno on failure.
5442 int sata_link_init_spd(struct ata_link
*link
)
5447 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5451 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5453 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5455 ata_force_link_limits(link
);
5457 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5463 * ata_port_alloc - allocate and initialize basic ATA port resources
5464 * @host: ATA host this allocated port belongs to
5466 * Allocate and initialize basic ATA port resources.
5469 * Allocate ATA port on success, NULL on failure.
5472 * Inherited from calling layer (may sleep).
5474 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5476 struct ata_port
*ap
;
5480 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5484 ap
->pflags
|= ATA_PFLAG_INITIALIZING
| ATA_PFLAG_FROZEN
;
5485 ap
->lock
= &host
->lock
;
5488 ap
->dev
= host
->dev
;
5490 #if defined(ATA_VERBOSE_DEBUG)
5491 /* turn on all debugging levels */
5492 ap
->msg_enable
= 0x00FF;
5493 #elif defined(ATA_DEBUG)
5494 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5496 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5499 mutex_init(&ap
->scsi_scan_mutex
);
5500 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5501 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5502 INIT_LIST_HEAD(&ap
->eh_done_q
);
5503 init_waitqueue_head(&ap
->eh_wait_q
);
5504 init_completion(&ap
->park_req_pending
);
5505 init_timer_deferrable(&ap
->fastdrain_timer
);
5506 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5507 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5509 ap
->cbl
= ATA_CBL_NONE
;
5511 ata_link_init(ap
, &ap
->link
, 0);
5514 ap
->stats
.unhandled_irq
= 1;
5515 ap
->stats
.idle_irq
= 1;
5517 ata_sff_port_init(ap
);
5522 static void ata_host_release(struct device
*gendev
, void *res
)
5524 struct ata_host
*host
= dev_get_drvdata(gendev
);
5527 for (i
= 0; i
< host
->n_ports
; i
++) {
5528 struct ata_port
*ap
= host
->ports
[i
];
5534 scsi_host_put(ap
->scsi_host
);
5536 kfree(ap
->pmp_link
);
5537 kfree(ap
->slave_link
);
5539 host
->ports
[i
] = NULL
;
5542 dev_set_drvdata(gendev
, NULL
);
5546 * ata_host_alloc - allocate and init basic ATA host resources
5547 * @dev: generic device this host is associated with
5548 * @max_ports: maximum number of ATA ports associated with this host
5550 * Allocate and initialize basic ATA host resources. LLD calls
5551 * this function to allocate a host, initializes it fully and
5552 * attaches it using ata_host_register().
5554 * @max_ports ports are allocated and host->n_ports is
5555 * initialized to @max_ports. The caller is allowed to decrease
5556 * host->n_ports before calling ata_host_register(). The unused
5557 * ports will be automatically freed on registration.
5560 * Allocate ATA host on success, NULL on failure.
5563 * Inherited from calling layer (may sleep).
5565 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5567 struct ata_host
*host
;
5573 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5576 /* alloc a container for our list of ATA ports (buses) */
5577 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5578 /* alloc a container for our list of ATA ports (buses) */
5579 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5583 devres_add(dev
, host
);
5584 dev_set_drvdata(dev
, host
);
5586 spin_lock_init(&host
->lock
);
5587 mutex_init(&host
->eh_mutex
);
5589 host
->n_ports
= max_ports
;
5591 /* allocate ports bound to this host */
5592 for (i
= 0; i
< max_ports
; i
++) {
5593 struct ata_port
*ap
;
5595 ap
= ata_port_alloc(host
);
5600 host
->ports
[i
] = ap
;
5603 devres_remove_group(dev
, NULL
);
5607 devres_release_group(dev
, NULL
);
5612 * ata_host_alloc_pinfo - alloc host and init with port_info array
5613 * @dev: generic device this host is associated with
5614 * @ppi: array of ATA port_info to initialize host with
5615 * @n_ports: number of ATA ports attached to this host
5617 * Allocate ATA host and initialize with info from @ppi. If NULL
5618 * terminated, @ppi may contain fewer entries than @n_ports. The
5619 * last entry will be used for the remaining ports.
5622 * Allocate ATA host on success, NULL on failure.
5625 * Inherited from calling layer (may sleep).
5627 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5628 const struct ata_port_info
* const * ppi
,
5631 const struct ata_port_info
*pi
;
5632 struct ata_host
*host
;
5635 host
= ata_host_alloc(dev
, n_ports
);
5639 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5640 struct ata_port
*ap
= host
->ports
[i
];
5645 ap
->pio_mask
= pi
->pio_mask
;
5646 ap
->mwdma_mask
= pi
->mwdma_mask
;
5647 ap
->udma_mask
= pi
->udma_mask
;
5648 ap
->flags
|= pi
->flags
;
5649 ap
->link
.flags
|= pi
->link_flags
;
5650 ap
->ops
= pi
->port_ops
;
5652 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5653 host
->ops
= pi
->port_ops
;
5660 * ata_slave_link_init - initialize slave link
5661 * @ap: port to initialize slave link for
5663 * Create and initialize slave link for @ap. This enables slave
5664 * link handling on the port.
5666 * In libata, a port contains links and a link contains devices.
5667 * There is single host link but if a PMP is attached to it,
5668 * there can be multiple fan-out links. On SATA, there's usually
5669 * a single device connected to a link but PATA and SATA
5670 * controllers emulating TF based interface can have two - master
5673 * However, there are a few controllers which don't fit into this
5674 * abstraction too well - SATA controllers which emulate TF
5675 * interface with both master and slave devices but also have
5676 * separate SCR register sets for each device. These controllers
5677 * need separate links for physical link handling
5678 * (e.g. onlineness, link speed) but should be treated like a
5679 * traditional M/S controller for everything else (e.g. command
5680 * issue, softreset).
5682 * slave_link is libata's way of handling this class of
5683 * controllers without impacting core layer too much. For
5684 * anything other than physical link handling, the default host
5685 * link is used for both master and slave. For physical link
5686 * handling, separate @ap->slave_link is used. All dirty details
5687 * are implemented inside libata core layer. From LLD's POV, the
5688 * only difference is that prereset, hardreset and postreset are
5689 * called once more for the slave link, so the reset sequence
5690 * looks like the following.
5692 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5693 * softreset(M) -> postreset(M) -> postreset(S)
5695 * Note that softreset is called only for the master. Softreset
5696 * resets both M/S by definition, so SRST on master should handle
5697 * both (the standard method will work just fine).
5700 * Should be called before host is registered.
5703 * 0 on success, -errno on failure.
5705 int ata_slave_link_init(struct ata_port
*ap
)
5707 struct ata_link
*link
;
5709 WARN_ON(ap
->slave_link
);
5710 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
5712 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
5716 ata_link_init(ap
, link
, 1);
5717 ap
->slave_link
= link
;
5721 static void ata_host_stop(struct device
*gendev
, void *res
)
5723 struct ata_host
*host
= dev_get_drvdata(gendev
);
5726 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5728 for (i
= 0; i
< host
->n_ports
; i
++) {
5729 struct ata_port
*ap
= host
->ports
[i
];
5731 if (ap
->ops
->port_stop
)
5732 ap
->ops
->port_stop(ap
);
5735 if (host
->ops
->host_stop
)
5736 host
->ops
->host_stop(host
);
5740 * ata_finalize_port_ops - finalize ata_port_operations
5741 * @ops: ata_port_operations to finalize
5743 * An ata_port_operations can inherit from another ops and that
5744 * ops can again inherit from another. This can go on as many
5745 * times as necessary as long as there is no loop in the
5746 * inheritance chain.
5748 * Ops tables are finalized when the host is started. NULL or
5749 * unspecified entries are inherited from the closet ancestor
5750 * which has the method and the entry is populated with it.
5751 * After finalization, the ops table directly points to all the
5752 * methods and ->inherits is no longer necessary and cleared.
5754 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5759 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5761 static DEFINE_SPINLOCK(lock
);
5762 const struct ata_port_operations
*cur
;
5763 void **begin
= (void **)ops
;
5764 void **end
= (void **)&ops
->inherits
;
5767 if (!ops
|| !ops
->inherits
)
5772 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5773 void **inherit
= (void **)cur
;
5775 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5780 for (pp
= begin
; pp
< end
; pp
++)
5784 ops
->inherits
= NULL
;
5790 * ata_host_start - start and freeze ports of an ATA host
5791 * @host: ATA host to start ports for
5793 * Start and then freeze ports of @host. Started status is
5794 * recorded in host->flags, so this function can be called
5795 * multiple times. Ports are guaranteed to get started only
5796 * once. If host->ops isn't initialized yet, its set to the
5797 * first non-dummy port ops.
5800 * Inherited from calling layer (may sleep).
5803 * 0 if all ports are started successfully, -errno otherwise.
5805 int ata_host_start(struct ata_host
*host
)
5808 void *start_dr
= NULL
;
5811 if (host
->flags
& ATA_HOST_STARTED
)
5814 ata_finalize_port_ops(host
->ops
);
5816 for (i
= 0; i
< host
->n_ports
; i
++) {
5817 struct ata_port
*ap
= host
->ports
[i
];
5819 ata_finalize_port_ops(ap
->ops
);
5821 if (!host
->ops
&& !ata_port_is_dummy(ap
))
5822 host
->ops
= ap
->ops
;
5824 if (ap
->ops
->port_stop
)
5828 if (host
->ops
->host_stop
)
5832 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
5837 for (i
= 0; i
< host
->n_ports
; i
++) {
5838 struct ata_port
*ap
= host
->ports
[i
];
5840 if (ap
->ops
->port_start
) {
5841 rc
= ap
->ops
->port_start(ap
);
5844 dev_printk(KERN_ERR
, host
->dev
,
5845 "failed to start port %d "
5846 "(errno=%d)\n", i
, rc
);
5850 ata_eh_freeze_port(ap
);
5854 devres_add(host
->dev
, start_dr
);
5855 host
->flags
|= ATA_HOST_STARTED
;
5860 struct ata_port
*ap
= host
->ports
[i
];
5862 if (ap
->ops
->port_stop
)
5863 ap
->ops
->port_stop(ap
);
5865 devres_free(start_dr
);
5870 * ata_sas_host_init - Initialize a host struct
5871 * @host: host to initialize
5872 * @dev: device host is attached to
5873 * @flags: host flags
5877 * PCI/etc. bus probe sem.
5880 /* KILLME - the only user left is ipr */
5881 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5882 unsigned long flags
, struct ata_port_operations
*ops
)
5884 spin_lock_init(&host
->lock
);
5885 mutex_init(&host
->eh_mutex
);
5887 host
->flags
= flags
;
5891 int ata_port_probe(struct ata_port
*ap
)
5896 if (ap
->ops
->error_handler
) {
5897 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
5898 unsigned long flags
;
5900 /* kick EH for boot probing */
5901 spin_lock_irqsave(ap
->lock
, flags
);
5903 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
5904 ehi
->action
|= ATA_EH_RESET
;
5905 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
5907 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
5908 ap
->pflags
|= ATA_PFLAG_LOADING
;
5909 ata_port_schedule_eh(ap
);
5911 spin_unlock_irqrestore(ap
->lock
, flags
);
5913 /* wait for EH to finish */
5914 ata_port_wait_eh(ap
);
5916 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
5917 rc
= ata_bus_probe(ap
);
5918 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
5924 static void async_port_probe(void *data
, async_cookie_t cookie
)
5926 struct ata_port
*ap
= data
;
5929 * If we're not allowed to scan this host in parallel,
5930 * we need to wait until all previous scans have completed
5931 * before going further.
5932 * Jeff Garzik says this is only within a controller, so we
5933 * don't need to wait for port 0, only for later ports.
5935 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
5936 async_synchronize_cookie(cookie
);
5938 (void)ata_port_probe(ap
);
5940 /* in order to keep device order, we need to synchronize at this point */
5941 async_synchronize_cookie(cookie
);
5943 ata_scsi_scan_host(ap
, 1);
5947 * ata_host_register - register initialized ATA host
5948 * @host: ATA host to register
5949 * @sht: template for SCSI host
5951 * Register initialized ATA host. @host is allocated using
5952 * ata_host_alloc() and fully initialized by LLD. This function
5953 * starts ports, registers @host with ATA and SCSI layers and
5954 * probe registered devices.
5957 * Inherited from calling layer (may sleep).
5960 * 0 on success, -errno otherwise.
5962 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
5966 /* host must have been started */
5967 if (!(host
->flags
& ATA_HOST_STARTED
)) {
5968 dev_printk(KERN_ERR
, host
->dev
,
5969 "BUG: trying to register unstarted host\n");
5974 /* Blow away unused ports. This happens when LLD can't
5975 * determine the exact number of ports to allocate at
5978 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
5979 kfree(host
->ports
[i
]);
5981 /* give ports names and add SCSI hosts */
5982 for (i
= 0; i
< host
->n_ports
; i
++)
5983 host
->ports
[i
]->print_id
= ata_print_id
++;
5986 /* Create associated sysfs transport objects */
5987 for (i
= 0; i
< host
->n_ports
; i
++) {
5988 rc
= ata_tport_add(host
->dev
,host
->ports
[i
]);
5994 rc
= ata_scsi_add_hosts(host
, sht
);
5998 /* associate with ACPI nodes */
5999 ata_acpi_associate(host
);
6001 /* set cable, sata_spd_limit and report */
6002 for (i
= 0; i
< host
->n_ports
; i
++) {
6003 struct ata_port
*ap
= host
->ports
[i
];
6004 unsigned long xfer_mask
;
6006 /* set SATA cable type if still unset */
6007 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6008 ap
->cbl
= ATA_CBL_SATA
;
6010 /* init sata_spd_limit to the current value */
6011 sata_link_init_spd(&ap
->link
);
6013 sata_link_init_spd(ap
->slave_link
);
6015 /* print per-port info to dmesg */
6016 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6019 if (!ata_port_is_dummy(ap
)) {
6020 ata_port_printk(ap
, KERN_INFO
,
6021 "%cATA max %s %s\n",
6022 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6023 ata_mode_string(xfer_mask
),
6024 ap
->link
.eh_info
.desc
);
6025 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6027 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6030 /* perform each probe asynchronously */
6031 for (i
= 0; i
< host
->n_ports
; i
++) {
6032 struct ata_port
*ap
= host
->ports
[i
];
6033 async_schedule(async_port_probe
, ap
);
6040 ata_tport_delete(host
->ports
[i
]);
6047 * ata_host_activate - start host, request IRQ and register it
6048 * @host: target ATA host
6049 * @irq: IRQ to request
6050 * @irq_handler: irq_handler used when requesting IRQ
6051 * @irq_flags: irq_flags used when requesting IRQ
6052 * @sht: scsi_host_template to use when registering the host
6054 * After allocating an ATA host and initializing it, most libata
6055 * LLDs perform three steps to activate the host - start host,
6056 * request IRQ and register it. This helper takes necessasry
6057 * arguments and performs the three steps in one go.
6059 * An invalid IRQ skips the IRQ registration and expects the host to
6060 * have set polling mode on the port. In this case, @irq_handler
6064 * Inherited from calling layer (may sleep).
6067 * 0 on success, -errno otherwise.
6069 int ata_host_activate(struct ata_host
*host
, int irq
,
6070 irq_handler_t irq_handler
, unsigned long irq_flags
,
6071 struct scsi_host_template
*sht
)
6075 rc
= ata_host_start(host
);
6079 /* Special case for polling mode */
6081 WARN_ON(irq_handler
);
6082 return ata_host_register(host
, sht
);
6085 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6086 dev_driver_string(host
->dev
), host
);
6090 for (i
= 0; i
< host
->n_ports
; i
++)
6091 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6093 rc
= ata_host_register(host
, sht
);
6094 /* if failed, just free the IRQ and leave ports alone */
6096 devm_free_irq(host
->dev
, irq
, host
);
6102 * ata_port_detach - Detach ATA port in prepration of device removal
6103 * @ap: ATA port to be detached
6105 * Detach all ATA devices and the associated SCSI devices of @ap;
6106 * then, remove the associated SCSI host. @ap is guaranteed to
6107 * be quiescent on return from this function.
6110 * Kernel thread context (may sleep).
6112 static void ata_port_detach(struct ata_port
*ap
)
6114 unsigned long flags
;
6116 if (!ap
->ops
->error_handler
)
6119 /* tell EH we're leaving & flush EH */
6120 spin_lock_irqsave(ap
->lock
, flags
);
6121 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6122 ata_port_schedule_eh(ap
);
6123 spin_unlock_irqrestore(ap
->lock
, flags
);
6125 /* wait till EH commits suicide */
6126 ata_port_wait_eh(ap
);
6128 /* it better be dead now */
6129 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6131 cancel_delayed_work_sync(&ap
->hotplug_task
);
6136 for (i
= 0; i
< SATA_PMP_MAX_PORTS
; i
++)
6137 ata_tlink_delete(&ap
->pmp_link
[i
]);
6139 ata_tport_delete(ap
);
6141 /* remove the associated SCSI host */
6142 scsi_remove_host(ap
->scsi_host
);
6146 * ata_host_detach - Detach all ports of an ATA host
6147 * @host: Host to detach
6149 * Detach all ports of @host.
6152 * Kernel thread context (may sleep).
6154 void ata_host_detach(struct ata_host
*host
)
6158 for (i
= 0; i
< host
->n_ports
; i
++)
6159 ata_port_detach(host
->ports
[i
]);
6161 /* the host is dead now, dissociate ACPI */
6162 ata_acpi_dissociate(host
);
6168 * ata_pci_remove_one - PCI layer callback for device removal
6169 * @pdev: PCI device that was removed
6171 * PCI layer indicates to libata via this hook that hot-unplug or
6172 * module unload event has occurred. Detach all ports. Resource
6173 * release is handled via devres.
6176 * Inherited from PCI layer (may sleep).
6178 void ata_pci_remove_one(struct pci_dev
*pdev
)
6180 struct device
*dev
= &pdev
->dev
;
6181 struct ata_host
*host
= dev_get_drvdata(dev
);
6183 ata_host_detach(host
);
6186 /* move to PCI subsystem */
6187 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6189 unsigned long tmp
= 0;
6191 switch (bits
->width
) {
6194 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6200 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6206 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6217 return (tmp
== bits
->val
) ? 1 : 0;
6221 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6223 pci_save_state(pdev
);
6224 pci_disable_device(pdev
);
6226 if (mesg
.event
& PM_EVENT_SLEEP
)
6227 pci_set_power_state(pdev
, PCI_D3hot
);
6230 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6234 pci_set_power_state(pdev
, PCI_D0
);
6235 pci_restore_state(pdev
);
6237 rc
= pcim_enable_device(pdev
);
6239 dev_printk(KERN_ERR
, &pdev
->dev
,
6240 "failed to enable device after resume (%d)\n", rc
);
6244 pci_set_master(pdev
);
6248 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6250 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6253 rc
= ata_host_suspend(host
, mesg
);
6257 ata_pci_device_do_suspend(pdev
, mesg
);
6262 int ata_pci_device_resume(struct pci_dev
*pdev
)
6264 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6267 rc
= ata_pci_device_do_resume(pdev
);
6269 ata_host_resume(host
);
6272 #endif /* CONFIG_PM */
6274 #endif /* CONFIG_PCI */
6276 static int __init
ata_parse_force_one(char **cur
,
6277 struct ata_force_ent
*force_ent
,
6278 const char **reason
)
6280 /* FIXME: Currently, there's no way to tag init const data and
6281 * using __initdata causes build failure on some versions of
6282 * gcc. Once __initdataconst is implemented, add const to the
6283 * following structure.
6285 static struct ata_force_param force_tbl
[] __initdata
= {
6286 { "40c", .cbl
= ATA_CBL_PATA40
},
6287 { "80c", .cbl
= ATA_CBL_PATA80
},
6288 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6289 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6290 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6291 { "sata", .cbl
= ATA_CBL_SATA
},
6292 { "1.5Gbps", .spd_limit
= 1 },
6293 { "3.0Gbps", .spd_limit
= 2 },
6294 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6295 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6296 { "dump_id", .horkage_on
= ATA_HORKAGE_DUMP_ID
},
6297 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6298 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6299 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6300 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6301 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6302 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6303 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6304 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6305 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6306 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6307 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6308 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6309 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6310 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6311 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6312 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6313 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6314 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6315 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6316 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6317 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6318 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6319 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6320 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6321 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6322 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6323 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6324 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6325 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6326 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6327 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6328 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6329 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6330 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6331 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6332 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6333 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6335 char *start
= *cur
, *p
= *cur
;
6336 char *id
, *val
, *endp
;
6337 const struct ata_force_param
*match_fp
= NULL
;
6338 int nr_matches
= 0, i
;
6340 /* find where this param ends and update *cur */
6341 while (*p
!= '\0' && *p
!= ',')
6352 p
= strchr(start
, ':');
6354 val
= strstrip(start
);
6359 id
= strstrip(start
);
6360 val
= strstrip(p
+ 1);
6363 p
= strchr(id
, '.');
6366 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6367 if (p
== endp
|| *endp
!= '\0') {
6368 *reason
= "invalid device";
6373 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6374 if (p
== endp
|| *endp
!= '\0') {
6375 *reason
= "invalid port/link";
6380 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6381 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6382 const struct ata_force_param
*fp
= &force_tbl
[i
];
6384 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6390 if (strcasecmp(val
, fp
->name
) == 0) {
6397 *reason
= "unknown value";
6400 if (nr_matches
> 1) {
6401 *reason
= "ambigious value";
6405 force_ent
->param
= *match_fp
;
6410 static void __init
ata_parse_force_param(void)
6412 int idx
= 0, size
= 1;
6413 int last_port
= -1, last_device
= -1;
6414 char *p
, *cur
, *next
;
6416 /* calculate maximum number of params and allocate force_tbl */
6417 for (p
= ata_force_param_buf
; *p
; p
++)
6421 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6422 if (!ata_force_tbl
) {
6423 printk(KERN_WARNING
"ata: failed to extend force table, "
6424 "libata.force ignored\n");
6428 /* parse and populate the table */
6429 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6430 const char *reason
= "";
6431 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6434 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6435 printk(KERN_WARNING
"ata: failed to parse force "
6436 "parameter \"%s\" (%s)\n",
6441 if (te
.port
== -1) {
6442 te
.port
= last_port
;
6443 te
.device
= last_device
;
6446 ata_force_tbl
[idx
++] = te
;
6448 last_port
= te
.port
;
6449 last_device
= te
.device
;
6452 ata_force_tbl_size
= idx
;
6455 static int __init
ata_init(void)
6459 ata_parse_force_param();
6461 rc
= ata_sff_init();
6463 kfree(ata_force_tbl
);
6467 libata_transport_init();
6468 ata_scsi_transport_template
= ata_attach_transport();
6469 if (!ata_scsi_transport_template
) {
6475 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6482 static void __exit
ata_exit(void)
6484 ata_release_transport(ata_scsi_transport_template
);
6485 libata_transport_exit();
6487 kfree(ata_force_tbl
);
6490 subsys_initcall(ata_init
);
6491 module_exit(ata_exit
);
6493 static DEFINE_RATELIMIT_STATE(ratelimit
, HZ
/ 5, 1);
6495 int ata_ratelimit(void)
6497 return __ratelimit(&ratelimit
);
6501 * ata_msleep - ATA EH owner aware msleep
6502 * @ap: ATA port to attribute the sleep to
6503 * @msecs: duration to sleep in milliseconds
6505 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6506 * ownership is released before going to sleep and reacquired
6507 * after the sleep is complete. IOW, other ports sharing the
6508 * @ap->host will be allowed to own the EH while this task is
6514 void ata_msleep(struct ata_port
*ap
, unsigned int msecs
)
6516 bool owns_eh
= ap
&& ap
->host
->eh_owner
== current
;
6528 * ata_wait_register - wait until register value changes
6529 * @ap: ATA port to wait register for, can be NULL
6530 * @reg: IO-mapped register
6531 * @mask: Mask to apply to read register value
6532 * @val: Wait condition
6533 * @interval: polling interval in milliseconds
6534 * @timeout: timeout in milliseconds
6536 * Waiting for some bits of register to change is a common
6537 * operation for ATA controllers. This function reads 32bit LE
6538 * IO-mapped register @reg and tests for the following condition.
6540 * (*@reg & mask) != val
6542 * If the condition is met, it returns; otherwise, the process is
6543 * repeated after @interval_msec until timeout.
6546 * Kernel thread context (may sleep)
6549 * The final register value.
6551 u32
ata_wait_register(struct ata_port
*ap
, void __iomem
*reg
, u32 mask
, u32 val
,
6552 unsigned long interval
, unsigned long timeout
)
6554 unsigned long deadline
;
6557 tmp
= ioread32(reg
);
6559 /* Calculate timeout _after_ the first read to make sure
6560 * preceding writes reach the controller before starting to
6561 * eat away the timeout.
6563 deadline
= ata_deadline(jiffies
, timeout
);
6565 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6566 ata_msleep(ap
, interval
);
6567 tmp
= ioread32(reg
);
6576 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6578 return AC_ERR_SYSTEM
;
6581 static void ata_dummy_error_handler(struct ata_port
*ap
)
6586 struct ata_port_operations ata_dummy_port_ops
= {
6587 .qc_prep
= ata_noop_qc_prep
,
6588 .qc_issue
= ata_dummy_qc_issue
,
6589 .error_handler
= ata_dummy_error_handler
,
6592 const struct ata_port_info ata_dummy_port_info
= {
6593 .port_ops
= &ata_dummy_port_ops
,
6597 * libata is essentially a library of internal helper functions for
6598 * low-level ATA host controller drivers. As such, the API/ABI is
6599 * likely to change as new drivers are added and updated.
6600 * Do not depend on ABI/API stability.
6602 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6603 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6604 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6605 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6606 EXPORT_SYMBOL_GPL(sata_port_ops
);
6607 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6608 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6609 EXPORT_SYMBOL_GPL(ata_link_next
);
6610 EXPORT_SYMBOL_GPL(ata_dev_next
);
6611 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6612 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity
);
6613 EXPORT_SYMBOL_GPL(ata_host_init
);
6614 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6615 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6616 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
6617 EXPORT_SYMBOL_GPL(ata_host_start
);
6618 EXPORT_SYMBOL_GPL(ata_host_register
);
6619 EXPORT_SYMBOL_GPL(ata_host_activate
);
6620 EXPORT_SYMBOL_GPL(ata_host_detach
);
6621 EXPORT_SYMBOL_GPL(ata_sg_init
);
6622 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6623 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6624 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6625 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6626 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6627 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6628 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6629 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6630 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6631 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6632 EXPORT_SYMBOL_GPL(ata_mode_string
);
6633 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6634 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6635 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6636 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6637 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6638 EXPORT_SYMBOL_GPL(sata_set_spd
);
6639 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6640 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6641 EXPORT_SYMBOL_GPL(sata_link_resume
);
6642 EXPORT_SYMBOL_GPL(sata_link_scr_lpm
);
6643 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6644 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6645 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6646 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6647 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6648 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6649 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6650 EXPORT_SYMBOL_GPL(ata_msleep
);
6651 EXPORT_SYMBOL_GPL(ata_wait_register
);
6652 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6653 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6654 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6655 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6656 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6657 EXPORT_SYMBOL_GPL(sata_scr_read
);
6658 EXPORT_SYMBOL_GPL(sata_scr_write
);
6659 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6660 EXPORT_SYMBOL_GPL(ata_link_online
);
6661 EXPORT_SYMBOL_GPL(ata_link_offline
);
6663 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6664 EXPORT_SYMBOL_GPL(ata_host_resume
);
6665 #endif /* CONFIG_PM */
6666 EXPORT_SYMBOL_GPL(ata_id_string
);
6667 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6668 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6669 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6671 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6672 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6673 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6674 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6675 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6678 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6679 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6681 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6682 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6683 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6684 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6685 #endif /* CONFIG_PM */
6686 #endif /* CONFIG_PCI */
6688 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6689 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6690 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6691 EXPORT_SYMBOL_GPL(ata_port_desc
);
6693 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6694 #endif /* CONFIG_PCI */
6695 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6696 EXPORT_SYMBOL_GPL(ata_link_abort
);
6697 EXPORT_SYMBOL_GPL(ata_port_abort
);
6698 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6699 EXPORT_SYMBOL_GPL(sata_async_notification
);
6700 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6701 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6702 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6703 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6704 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
6705 EXPORT_SYMBOL_GPL(ata_do_eh
);
6706 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6708 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6709 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6710 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6711 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6712 EXPORT_SYMBOL_GPL(ata_cable_sata
);