rtlwifi: don't touch with treewide double semicolon removal
[linux/fpc-iii.git] / drivers / regulator / core.c
blob0fae51c4845a3cf703f220c11d313be6a8ee099c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #define pr_fmt(fmt) "%s: " fmt, __func__
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/regulator/driver.h>
29 #include <linux/regulator/machine.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
34 #include "dummy.h"
36 #define rdev_err(rdev, fmt, ...) \
37 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_warn(rdev, fmt, ...) \
39 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_info(rdev, fmt, ...) \
41 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_dbg(rdev, fmt, ...) \
43 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 static DEFINE_MUTEX(regulator_list_mutex);
46 static LIST_HEAD(regulator_list);
47 static LIST_HEAD(regulator_map_list);
48 static bool has_full_constraints;
49 static bool board_wants_dummy_regulator;
51 #ifdef CONFIG_DEBUG_FS
52 static struct dentry *debugfs_root;
53 #endif
56 * struct regulator_map
58 * Used to provide symbolic supply names to devices.
60 struct regulator_map {
61 struct list_head list;
62 const char *dev_name; /* The dev_name() for the consumer */
63 const char *supply;
64 struct regulator_dev *regulator;
68 * struct regulator
70 * One for each consumer device.
72 struct regulator {
73 struct device *dev;
74 struct list_head list;
75 int uA_load;
76 int min_uV;
77 int max_uV;
78 char *supply_name;
79 struct device_attribute dev_attr;
80 struct regulator_dev *rdev;
83 static int _regulator_is_enabled(struct regulator_dev *rdev);
84 static int _regulator_disable(struct regulator_dev *rdev,
85 struct regulator_dev **supply_rdev_ptr);
86 static int _regulator_get_voltage(struct regulator_dev *rdev);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static void _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
94 static const char *rdev_get_name(struct regulator_dev *rdev)
96 if (rdev->constraints && rdev->constraints->name)
97 return rdev->constraints->name;
98 else if (rdev->desc->name)
99 return rdev->desc->name;
100 else
101 return "";
104 /* gets the regulator for a given consumer device */
105 static struct regulator *get_device_regulator(struct device *dev)
107 struct regulator *regulator = NULL;
108 struct regulator_dev *rdev;
110 mutex_lock(&regulator_list_mutex);
111 list_for_each_entry(rdev, &regulator_list, list) {
112 mutex_lock(&rdev->mutex);
113 list_for_each_entry(regulator, &rdev->consumer_list, list) {
114 if (regulator->dev == dev) {
115 mutex_unlock(&rdev->mutex);
116 mutex_unlock(&regulator_list_mutex);
117 return regulator;
120 mutex_unlock(&rdev->mutex);
122 mutex_unlock(&regulator_list_mutex);
123 return NULL;
126 /* Platform voltage constraint check */
127 static int regulator_check_voltage(struct regulator_dev *rdev,
128 int *min_uV, int *max_uV)
130 BUG_ON(*min_uV > *max_uV);
132 if (!rdev->constraints) {
133 rdev_err(rdev, "no constraints\n");
134 return -ENODEV;
136 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137 rdev_err(rdev, "operation not allowed\n");
138 return -EPERM;
141 if (*max_uV > rdev->constraints->max_uV)
142 *max_uV = rdev->constraints->max_uV;
143 if (*min_uV < rdev->constraints->min_uV)
144 *min_uV = rdev->constraints->min_uV;
146 if (*min_uV > *max_uV)
147 return -EINVAL;
149 return 0;
152 /* Make sure we select a voltage that suits the needs of all
153 * regulator consumers
155 static int regulator_check_consumers(struct regulator_dev *rdev,
156 int *min_uV, int *max_uV)
158 struct regulator *regulator;
160 list_for_each_entry(regulator, &rdev->consumer_list, list) {
161 if (*max_uV > regulator->max_uV)
162 *max_uV = regulator->max_uV;
163 if (*min_uV < regulator->min_uV)
164 *min_uV = regulator->min_uV;
167 if (*min_uV > *max_uV)
168 return -EINVAL;
170 return 0;
173 /* current constraint check */
174 static int regulator_check_current_limit(struct regulator_dev *rdev,
175 int *min_uA, int *max_uA)
177 BUG_ON(*min_uA > *max_uA);
179 if (!rdev->constraints) {
180 rdev_err(rdev, "no constraints\n");
181 return -ENODEV;
183 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
184 rdev_err(rdev, "operation not allowed\n");
185 return -EPERM;
188 if (*max_uA > rdev->constraints->max_uA)
189 *max_uA = rdev->constraints->max_uA;
190 if (*min_uA < rdev->constraints->min_uA)
191 *min_uA = rdev->constraints->min_uA;
193 if (*min_uA > *max_uA)
194 return -EINVAL;
196 return 0;
199 /* operating mode constraint check */
200 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
202 switch (mode) {
203 case REGULATOR_MODE_FAST:
204 case REGULATOR_MODE_NORMAL:
205 case REGULATOR_MODE_IDLE:
206 case REGULATOR_MODE_STANDBY:
207 break;
208 default:
209 return -EINVAL;
212 if (!rdev->constraints) {
213 rdev_err(rdev, "no constraints\n");
214 return -ENODEV;
216 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
217 rdev_err(rdev, "operation not allowed\n");
218 return -EPERM;
220 if (!(rdev->constraints->valid_modes_mask & mode)) {
221 rdev_err(rdev, "invalid mode %x\n", mode);
222 return -EINVAL;
224 return 0;
227 /* dynamic regulator mode switching constraint check */
228 static int regulator_check_drms(struct regulator_dev *rdev)
230 if (!rdev->constraints) {
231 rdev_err(rdev, "no constraints\n");
232 return -ENODEV;
234 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
235 rdev_err(rdev, "operation not allowed\n");
236 return -EPERM;
238 return 0;
241 static ssize_t device_requested_uA_show(struct device *dev,
242 struct device_attribute *attr, char *buf)
244 struct regulator *regulator;
246 regulator = get_device_regulator(dev);
247 if (regulator == NULL)
248 return 0;
250 return sprintf(buf, "%d\n", regulator->uA_load);
253 static ssize_t regulator_uV_show(struct device *dev,
254 struct device_attribute *attr, char *buf)
256 struct regulator_dev *rdev = dev_get_drvdata(dev);
257 ssize_t ret;
259 mutex_lock(&rdev->mutex);
260 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
261 mutex_unlock(&rdev->mutex);
263 return ret;
265 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
267 static ssize_t regulator_uA_show(struct device *dev,
268 struct device_attribute *attr, char *buf)
270 struct regulator_dev *rdev = dev_get_drvdata(dev);
272 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
274 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
276 static ssize_t regulator_name_show(struct device *dev,
277 struct device_attribute *attr, char *buf)
279 struct regulator_dev *rdev = dev_get_drvdata(dev);
281 return sprintf(buf, "%s\n", rdev_get_name(rdev));
284 static ssize_t regulator_print_opmode(char *buf, int mode)
286 switch (mode) {
287 case REGULATOR_MODE_FAST:
288 return sprintf(buf, "fast\n");
289 case REGULATOR_MODE_NORMAL:
290 return sprintf(buf, "normal\n");
291 case REGULATOR_MODE_IDLE:
292 return sprintf(buf, "idle\n");
293 case REGULATOR_MODE_STANDBY:
294 return sprintf(buf, "standby\n");
296 return sprintf(buf, "unknown\n");
299 static ssize_t regulator_opmode_show(struct device *dev,
300 struct device_attribute *attr, char *buf)
302 struct regulator_dev *rdev = dev_get_drvdata(dev);
304 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
306 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
308 static ssize_t regulator_print_state(char *buf, int state)
310 if (state > 0)
311 return sprintf(buf, "enabled\n");
312 else if (state == 0)
313 return sprintf(buf, "disabled\n");
314 else
315 return sprintf(buf, "unknown\n");
318 static ssize_t regulator_state_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
322 ssize_t ret;
324 mutex_lock(&rdev->mutex);
325 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
326 mutex_unlock(&rdev->mutex);
328 return ret;
330 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
332 static ssize_t regulator_status_show(struct device *dev,
333 struct device_attribute *attr, char *buf)
335 struct regulator_dev *rdev = dev_get_drvdata(dev);
336 int status;
337 char *label;
339 status = rdev->desc->ops->get_status(rdev);
340 if (status < 0)
341 return status;
343 switch (status) {
344 case REGULATOR_STATUS_OFF:
345 label = "off";
346 break;
347 case REGULATOR_STATUS_ON:
348 label = "on";
349 break;
350 case REGULATOR_STATUS_ERROR:
351 label = "error";
352 break;
353 case REGULATOR_STATUS_FAST:
354 label = "fast";
355 break;
356 case REGULATOR_STATUS_NORMAL:
357 label = "normal";
358 break;
359 case REGULATOR_STATUS_IDLE:
360 label = "idle";
361 break;
362 case REGULATOR_STATUS_STANDBY:
363 label = "standby";
364 break;
365 default:
366 return -ERANGE;
369 return sprintf(buf, "%s\n", label);
371 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
373 static ssize_t regulator_min_uA_show(struct device *dev,
374 struct device_attribute *attr, char *buf)
376 struct regulator_dev *rdev = dev_get_drvdata(dev);
378 if (!rdev->constraints)
379 return sprintf(buf, "constraint not defined\n");
381 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
383 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
385 static ssize_t regulator_max_uA_show(struct device *dev,
386 struct device_attribute *attr, char *buf)
388 struct regulator_dev *rdev = dev_get_drvdata(dev);
390 if (!rdev->constraints)
391 return sprintf(buf, "constraint not defined\n");
393 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
395 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
397 static ssize_t regulator_min_uV_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
402 if (!rdev->constraints)
403 return sprintf(buf, "constraint not defined\n");
405 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
407 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
409 static ssize_t regulator_max_uV_show(struct device *dev,
410 struct device_attribute *attr, char *buf)
412 struct regulator_dev *rdev = dev_get_drvdata(dev);
414 if (!rdev->constraints)
415 return sprintf(buf, "constraint not defined\n");
417 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
419 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
421 static ssize_t regulator_total_uA_show(struct device *dev,
422 struct device_attribute *attr, char *buf)
424 struct regulator_dev *rdev = dev_get_drvdata(dev);
425 struct regulator *regulator;
426 int uA = 0;
428 mutex_lock(&rdev->mutex);
429 list_for_each_entry(regulator, &rdev->consumer_list, list)
430 uA += regulator->uA_load;
431 mutex_unlock(&rdev->mutex);
432 return sprintf(buf, "%d\n", uA);
434 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
436 static ssize_t regulator_num_users_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
439 struct regulator_dev *rdev = dev_get_drvdata(dev);
440 return sprintf(buf, "%d\n", rdev->use_count);
443 static ssize_t regulator_type_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
448 switch (rdev->desc->type) {
449 case REGULATOR_VOLTAGE:
450 return sprintf(buf, "voltage\n");
451 case REGULATOR_CURRENT:
452 return sprintf(buf, "current\n");
454 return sprintf(buf, "unknown\n");
457 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
458 struct device_attribute *attr, char *buf)
460 struct regulator_dev *rdev = dev_get_drvdata(dev);
462 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
464 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
465 regulator_suspend_mem_uV_show, NULL);
467 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
472 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
474 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
475 regulator_suspend_disk_uV_show, NULL);
477 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
484 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
485 regulator_suspend_standby_uV_show, NULL);
487 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
488 struct device_attribute *attr, char *buf)
490 struct regulator_dev *rdev = dev_get_drvdata(dev);
492 return regulator_print_opmode(buf,
493 rdev->constraints->state_mem.mode);
495 static DEVICE_ATTR(suspend_mem_mode, 0444,
496 regulator_suspend_mem_mode_show, NULL);
498 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
499 struct device_attribute *attr, char *buf)
501 struct regulator_dev *rdev = dev_get_drvdata(dev);
503 return regulator_print_opmode(buf,
504 rdev->constraints->state_disk.mode);
506 static DEVICE_ATTR(suspend_disk_mode, 0444,
507 regulator_suspend_disk_mode_show, NULL);
509 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
510 struct device_attribute *attr, char *buf)
512 struct regulator_dev *rdev = dev_get_drvdata(dev);
514 return regulator_print_opmode(buf,
515 rdev->constraints->state_standby.mode);
517 static DEVICE_ATTR(suspend_standby_mode, 0444,
518 regulator_suspend_standby_mode_show, NULL);
520 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
521 struct device_attribute *attr, char *buf)
523 struct regulator_dev *rdev = dev_get_drvdata(dev);
525 return regulator_print_state(buf,
526 rdev->constraints->state_mem.enabled);
528 static DEVICE_ATTR(suspend_mem_state, 0444,
529 regulator_suspend_mem_state_show, NULL);
531 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
532 struct device_attribute *attr, char *buf)
534 struct regulator_dev *rdev = dev_get_drvdata(dev);
536 return regulator_print_state(buf,
537 rdev->constraints->state_disk.enabled);
539 static DEVICE_ATTR(suspend_disk_state, 0444,
540 regulator_suspend_disk_state_show, NULL);
542 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
543 struct device_attribute *attr, char *buf)
545 struct regulator_dev *rdev = dev_get_drvdata(dev);
547 return regulator_print_state(buf,
548 rdev->constraints->state_standby.enabled);
550 static DEVICE_ATTR(suspend_standby_state, 0444,
551 regulator_suspend_standby_state_show, NULL);
555 * These are the only attributes are present for all regulators.
556 * Other attributes are a function of regulator functionality.
558 static struct device_attribute regulator_dev_attrs[] = {
559 __ATTR(name, 0444, regulator_name_show, NULL),
560 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
561 __ATTR(type, 0444, regulator_type_show, NULL),
562 __ATTR_NULL,
565 static void regulator_dev_release(struct device *dev)
567 struct regulator_dev *rdev = dev_get_drvdata(dev);
568 kfree(rdev);
571 static struct class regulator_class = {
572 .name = "regulator",
573 .dev_release = regulator_dev_release,
574 .dev_attrs = regulator_dev_attrs,
577 /* Calculate the new optimum regulator operating mode based on the new total
578 * consumer load. All locks held by caller */
579 static void drms_uA_update(struct regulator_dev *rdev)
581 struct regulator *sibling;
582 int current_uA = 0, output_uV, input_uV, err;
583 unsigned int mode;
585 err = regulator_check_drms(rdev);
586 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
587 (!rdev->desc->ops->get_voltage &&
588 !rdev->desc->ops->get_voltage_sel) ||
589 !rdev->desc->ops->set_mode)
590 return;
592 /* get output voltage */
593 output_uV = _regulator_get_voltage(rdev);
594 if (output_uV <= 0)
595 return;
597 /* get input voltage */
598 input_uV = 0;
599 if (rdev->supply)
600 input_uV = _regulator_get_voltage(rdev);
601 if (input_uV <= 0)
602 input_uV = rdev->constraints->input_uV;
603 if (input_uV <= 0)
604 return;
606 /* calc total requested load */
607 list_for_each_entry(sibling, &rdev->consumer_list, list)
608 current_uA += sibling->uA_load;
610 /* now get the optimum mode for our new total regulator load */
611 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
612 output_uV, current_uA);
614 /* check the new mode is allowed */
615 err = regulator_check_mode(rdev, mode);
616 if (err == 0)
617 rdev->desc->ops->set_mode(rdev, mode);
620 static int suspend_set_state(struct regulator_dev *rdev,
621 struct regulator_state *rstate)
623 int ret = 0;
624 bool can_set_state;
626 can_set_state = rdev->desc->ops->set_suspend_enable &&
627 rdev->desc->ops->set_suspend_disable;
629 /* If we have no suspend mode configration don't set anything;
630 * only warn if the driver actually makes the suspend mode
631 * configurable.
633 if (!rstate->enabled && !rstate->disabled) {
634 if (can_set_state)
635 rdev_warn(rdev, "No configuration\n");
636 return 0;
639 if (rstate->enabled && rstate->disabled) {
640 rdev_err(rdev, "invalid configuration\n");
641 return -EINVAL;
644 if (!can_set_state) {
645 rdev_err(rdev, "no way to set suspend state\n");
646 return -EINVAL;
649 if (rstate->enabled)
650 ret = rdev->desc->ops->set_suspend_enable(rdev);
651 else
652 ret = rdev->desc->ops->set_suspend_disable(rdev);
653 if (ret < 0) {
654 rdev_err(rdev, "failed to enabled/disable\n");
655 return ret;
658 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
659 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
660 if (ret < 0) {
661 rdev_err(rdev, "failed to set voltage\n");
662 return ret;
666 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
667 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
668 if (ret < 0) {
669 rdev_err(rdev, "failed to set mode\n");
670 return ret;
673 return ret;
676 /* locks held by caller */
677 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
679 if (!rdev->constraints)
680 return -EINVAL;
682 switch (state) {
683 case PM_SUSPEND_STANDBY:
684 return suspend_set_state(rdev,
685 &rdev->constraints->state_standby);
686 case PM_SUSPEND_MEM:
687 return suspend_set_state(rdev,
688 &rdev->constraints->state_mem);
689 case PM_SUSPEND_MAX:
690 return suspend_set_state(rdev,
691 &rdev->constraints->state_disk);
692 default:
693 return -EINVAL;
697 static void print_constraints(struct regulator_dev *rdev)
699 struct regulation_constraints *constraints = rdev->constraints;
700 char buf[80] = "";
701 int count = 0;
702 int ret;
704 if (constraints->min_uV && constraints->max_uV) {
705 if (constraints->min_uV == constraints->max_uV)
706 count += sprintf(buf + count, "%d mV ",
707 constraints->min_uV / 1000);
708 else
709 count += sprintf(buf + count, "%d <--> %d mV ",
710 constraints->min_uV / 1000,
711 constraints->max_uV / 1000);
714 if (!constraints->min_uV ||
715 constraints->min_uV != constraints->max_uV) {
716 ret = _regulator_get_voltage(rdev);
717 if (ret > 0)
718 count += sprintf(buf + count, "at %d mV ", ret / 1000);
721 if (constraints->min_uA && constraints->max_uA) {
722 if (constraints->min_uA == constraints->max_uA)
723 count += sprintf(buf + count, "%d mA ",
724 constraints->min_uA / 1000);
725 else
726 count += sprintf(buf + count, "%d <--> %d mA ",
727 constraints->min_uA / 1000,
728 constraints->max_uA / 1000);
731 if (!constraints->min_uA ||
732 constraints->min_uA != constraints->max_uA) {
733 ret = _regulator_get_current_limit(rdev);
734 if (ret > 0)
735 count += sprintf(buf + count, "at %d mA ", ret / 1000);
738 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
739 count += sprintf(buf + count, "fast ");
740 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
741 count += sprintf(buf + count, "normal ");
742 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
743 count += sprintf(buf + count, "idle ");
744 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
745 count += sprintf(buf + count, "standby");
747 rdev_info(rdev, "%s\n", buf);
750 static int machine_constraints_voltage(struct regulator_dev *rdev,
751 struct regulation_constraints *constraints)
753 struct regulator_ops *ops = rdev->desc->ops;
754 int ret;
756 /* do we need to apply the constraint voltage */
757 if (rdev->constraints->apply_uV &&
758 rdev->constraints->min_uV == rdev->constraints->max_uV) {
759 ret = _regulator_do_set_voltage(rdev,
760 rdev->constraints->min_uV,
761 rdev->constraints->max_uV);
762 if (ret < 0) {
763 rdev_err(rdev, "failed to apply %duV constraint\n",
764 rdev->constraints->min_uV);
765 rdev->constraints = NULL;
766 return ret;
770 /* constrain machine-level voltage specs to fit
771 * the actual range supported by this regulator.
773 if (ops->list_voltage && rdev->desc->n_voltages) {
774 int count = rdev->desc->n_voltages;
775 int i;
776 int min_uV = INT_MAX;
777 int max_uV = INT_MIN;
778 int cmin = constraints->min_uV;
779 int cmax = constraints->max_uV;
781 /* it's safe to autoconfigure fixed-voltage supplies
782 and the constraints are used by list_voltage. */
783 if (count == 1 && !cmin) {
784 cmin = 1;
785 cmax = INT_MAX;
786 constraints->min_uV = cmin;
787 constraints->max_uV = cmax;
790 /* voltage constraints are optional */
791 if ((cmin == 0) && (cmax == 0))
792 return 0;
794 /* else require explicit machine-level constraints */
795 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
796 rdev_err(rdev, "invalid voltage constraints\n");
797 return -EINVAL;
800 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
801 for (i = 0; i < count; i++) {
802 int value;
804 value = ops->list_voltage(rdev, i);
805 if (value <= 0)
806 continue;
808 /* maybe adjust [min_uV..max_uV] */
809 if (value >= cmin && value < min_uV)
810 min_uV = value;
811 if (value <= cmax && value > max_uV)
812 max_uV = value;
815 /* final: [min_uV..max_uV] valid iff constraints valid */
816 if (max_uV < min_uV) {
817 rdev_err(rdev, "unsupportable voltage constraints\n");
818 return -EINVAL;
821 /* use regulator's subset of machine constraints */
822 if (constraints->min_uV < min_uV) {
823 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
824 constraints->min_uV, min_uV);
825 constraints->min_uV = min_uV;
827 if (constraints->max_uV > max_uV) {
828 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
829 constraints->max_uV, max_uV);
830 constraints->max_uV = max_uV;
834 return 0;
838 * set_machine_constraints - sets regulator constraints
839 * @rdev: regulator source
840 * @constraints: constraints to apply
842 * Allows platform initialisation code to define and constrain
843 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
844 * Constraints *must* be set by platform code in order for some
845 * regulator operations to proceed i.e. set_voltage, set_current_limit,
846 * set_mode.
848 static int set_machine_constraints(struct regulator_dev *rdev,
849 const struct regulation_constraints *constraints)
851 int ret = 0;
852 struct regulator_ops *ops = rdev->desc->ops;
854 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
855 GFP_KERNEL);
856 if (!rdev->constraints)
857 return -ENOMEM;
859 ret = machine_constraints_voltage(rdev, rdev->constraints);
860 if (ret != 0)
861 goto out;
863 /* do we need to setup our suspend state */
864 if (constraints->initial_state) {
865 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
866 if (ret < 0) {
867 rdev_err(rdev, "failed to set suspend state\n");
868 rdev->constraints = NULL;
869 goto out;
873 if (constraints->initial_mode) {
874 if (!ops->set_mode) {
875 rdev_err(rdev, "no set_mode operation\n");
876 ret = -EINVAL;
877 goto out;
880 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
881 if (ret < 0) {
882 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
883 goto out;
887 /* If the constraints say the regulator should be on at this point
888 * and we have control then make sure it is enabled.
890 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
891 ops->enable) {
892 ret = ops->enable(rdev);
893 if (ret < 0) {
894 rdev_err(rdev, "failed to enable\n");
895 rdev->constraints = NULL;
896 goto out;
900 print_constraints(rdev);
901 out:
902 return ret;
906 * set_supply - set regulator supply regulator
907 * @rdev: regulator name
908 * @supply_rdev: supply regulator name
910 * Called by platform initialisation code to set the supply regulator for this
911 * regulator. This ensures that a regulators supply will also be enabled by the
912 * core if it's child is enabled.
914 static int set_supply(struct regulator_dev *rdev,
915 struct regulator_dev *supply_rdev)
917 int err;
919 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
920 "supply");
921 if (err) {
922 rdev_err(rdev, "could not add device link %s err %d\n",
923 supply_rdev->dev.kobj.name, err);
924 goto out;
926 rdev->supply = supply_rdev;
927 list_add(&rdev->slist, &supply_rdev->supply_list);
928 out:
929 return err;
933 * set_consumer_device_supply - Bind a regulator to a symbolic supply
934 * @rdev: regulator source
935 * @consumer_dev: device the supply applies to
936 * @consumer_dev_name: dev_name() string for device supply applies to
937 * @supply: symbolic name for supply
939 * Allows platform initialisation code to map physical regulator
940 * sources to symbolic names for supplies for use by devices. Devices
941 * should use these symbolic names to request regulators, avoiding the
942 * need to provide board-specific regulator names as platform data.
944 * Only one of consumer_dev and consumer_dev_name may be specified.
946 static int set_consumer_device_supply(struct regulator_dev *rdev,
947 struct device *consumer_dev, const char *consumer_dev_name,
948 const char *supply)
950 struct regulator_map *node;
951 int has_dev;
953 if (consumer_dev && consumer_dev_name)
954 return -EINVAL;
956 if (!consumer_dev_name && consumer_dev)
957 consumer_dev_name = dev_name(consumer_dev);
959 if (supply == NULL)
960 return -EINVAL;
962 if (consumer_dev_name != NULL)
963 has_dev = 1;
964 else
965 has_dev = 0;
967 list_for_each_entry(node, &regulator_map_list, list) {
968 if (node->dev_name && consumer_dev_name) {
969 if (strcmp(node->dev_name, consumer_dev_name) != 0)
970 continue;
971 } else if (node->dev_name || consumer_dev_name) {
972 continue;
975 if (strcmp(node->supply, supply) != 0)
976 continue;
978 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
979 dev_name(&node->regulator->dev),
980 node->regulator->desc->name,
981 supply,
982 dev_name(&rdev->dev), rdev_get_name(rdev));
983 return -EBUSY;
986 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
987 if (node == NULL)
988 return -ENOMEM;
990 node->regulator = rdev;
991 node->supply = supply;
993 if (has_dev) {
994 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
995 if (node->dev_name == NULL) {
996 kfree(node);
997 return -ENOMEM;
1001 list_add(&node->list, &regulator_map_list);
1002 return 0;
1005 static void unset_regulator_supplies(struct regulator_dev *rdev)
1007 struct regulator_map *node, *n;
1009 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1010 if (rdev == node->regulator) {
1011 list_del(&node->list);
1012 kfree(node->dev_name);
1013 kfree(node);
1018 #define REG_STR_SIZE 32
1020 static struct regulator *create_regulator(struct regulator_dev *rdev,
1021 struct device *dev,
1022 const char *supply_name)
1024 struct regulator *regulator;
1025 char buf[REG_STR_SIZE];
1026 int err, size;
1028 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1029 if (regulator == NULL)
1030 return NULL;
1032 mutex_lock(&rdev->mutex);
1033 regulator->rdev = rdev;
1034 list_add(&regulator->list, &rdev->consumer_list);
1036 if (dev) {
1037 /* create a 'requested_microamps_name' sysfs entry */
1038 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1039 supply_name);
1040 if (size >= REG_STR_SIZE)
1041 goto overflow_err;
1043 regulator->dev = dev;
1044 sysfs_attr_init(&regulator->dev_attr.attr);
1045 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1046 if (regulator->dev_attr.attr.name == NULL)
1047 goto attr_name_err;
1049 regulator->dev_attr.attr.mode = 0444;
1050 regulator->dev_attr.show = device_requested_uA_show;
1051 err = device_create_file(dev, &regulator->dev_attr);
1052 if (err < 0) {
1053 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1054 goto attr_name_err;
1057 /* also add a link to the device sysfs entry */
1058 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1059 dev->kobj.name, supply_name);
1060 if (size >= REG_STR_SIZE)
1061 goto attr_err;
1063 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1064 if (regulator->supply_name == NULL)
1065 goto attr_err;
1067 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1068 buf);
1069 if (err) {
1070 rdev_warn(rdev, "could not add device link %s err %d\n",
1071 dev->kobj.name, err);
1072 goto link_name_err;
1075 mutex_unlock(&rdev->mutex);
1076 return regulator;
1077 link_name_err:
1078 kfree(regulator->supply_name);
1079 attr_err:
1080 device_remove_file(regulator->dev, &regulator->dev_attr);
1081 attr_name_err:
1082 kfree(regulator->dev_attr.attr.name);
1083 overflow_err:
1084 list_del(&regulator->list);
1085 kfree(regulator);
1086 mutex_unlock(&rdev->mutex);
1087 return NULL;
1090 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1092 if (!rdev->desc->ops->enable_time)
1093 return 0;
1094 return rdev->desc->ops->enable_time(rdev);
1097 /* Internal regulator request function */
1098 static struct regulator *_regulator_get(struct device *dev, const char *id,
1099 int exclusive)
1101 struct regulator_dev *rdev;
1102 struct regulator_map *map;
1103 struct regulator *regulator = ERR_PTR(-ENODEV);
1104 const char *devname = NULL;
1105 int ret;
1107 if (id == NULL) {
1108 pr_err("get() with no identifier\n");
1109 return regulator;
1112 if (dev)
1113 devname = dev_name(dev);
1115 mutex_lock(&regulator_list_mutex);
1117 list_for_each_entry(map, &regulator_map_list, list) {
1118 /* If the mapping has a device set up it must match */
1119 if (map->dev_name &&
1120 (!devname || strcmp(map->dev_name, devname)))
1121 continue;
1123 if (strcmp(map->supply, id) == 0) {
1124 rdev = map->regulator;
1125 goto found;
1129 if (board_wants_dummy_regulator) {
1130 rdev = dummy_regulator_rdev;
1131 goto found;
1134 #ifdef CONFIG_REGULATOR_DUMMY
1135 if (!devname)
1136 devname = "deviceless";
1138 /* If the board didn't flag that it was fully constrained then
1139 * substitute in a dummy regulator so consumers can continue.
1141 if (!has_full_constraints) {
1142 pr_warn("%s supply %s not found, using dummy regulator\n",
1143 devname, id);
1144 rdev = dummy_regulator_rdev;
1145 goto found;
1147 #endif
1149 mutex_unlock(&regulator_list_mutex);
1150 return regulator;
1152 found:
1153 if (rdev->exclusive) {
1154 regulator = ERR_PTR(-EPERM);
1155 goto out;
1158 if (exclusive && rdev->open_count) {
1159 regulator = ERR_PTR(-EBUSY);
1160 goto out;
1163 if (!try_module_get(rdev->owner))
1164 goto out;
1166 regulator = create_regulator(rdev, dev, id);
1167 if (regulator == NULL) {
1168 regulator = ERR_PTR(-ENOMEM);
1169 module_put(rdev->owner);
1172 rdev->open_count++;
1173 if (exclusive) {
1174 rdev->exclusive = 1;
1176 ret = _regulator_is_enabled(rdev);
1177 if (ret > 0)
1178 rdev->use_count = 1;
1179 else
1180 rdev->use_count = 0;
1183 out:
1184 mutex_unlock(&regulator_list_mutex);
1186 return regulator;
1190 * regulator_get - lookup and obtain a reference to a regulator.
1191 * @dev: device for regulator "consumer"
1192 * @id: Supply name or regulator ID.
1194 * Returns a struct regulator corresponding to the regulator producer,
1195 * or IS_ERR() condition containing errno.
1197 * Use of supply names configured via regulator_set_device_supply() is
1198 * strongly encouraged. It is recommended that the supply name used
1199 * should match the name used for the supply and/or the relevant
1200 * device pins in the datasheet.
1202 struct regulator *regulator_get(struct device *dev, const char *id)
1204 return _regulator_get(dev, id, 0);
1206 EXPORT_SYMBOL_GPL(regulator_get);
1209 * regulator_get_exclusive - obtain exclusive access to a regulator.
1210 * @dev: device for regulator "consumer"
1211 * @id: Supply name or regulator ID.
1213 * Returns a struct regulator corresponding to the regulator producer,
1214 * or IS_ERR() condition containing errno. Other consumers will be
1215 * unable to obtain this reference is held and the use count for the
1216 * regulator will be initialised to reflect the current state of the
1217 * regulator.
1219 * This is intended for use by consumers which cannot tolerate shared
1220 * use of the regulator such as those which need to force the
1221 * regulator off for correct operation of the hardware they are
1222 * controlling.
1224 * Use of supply names configured via regulator_set_device_supply() is
1225 * strongly encouraged. It is recommended that the supply name used
1226 * should match the name used for the supply and/or the relevant
1227 * device pins in the datasheet.
1229 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1231 return _regulator_get(dev, id, 1);
1233 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1236 * regulator_put - "free" the regulator source
1237 * @regulator: regulator source
1239 * Note: drivers must ensure that all regulator_enable calls made on this
1240 * regulator source are balanced by regulator_disable calls prior to calling
1241 * this function.
1243 void regulator_put(struct regulator *regulator)
1245 struct regulator_dev *rdev;
1247 if (regulator == NULL || IS_ERR(regulator))
1248 return;
1250 mutex_lock(&regulator_list_mutex);
1251 rdev = regulator->rdev;
1253 /* remove any sysfs entries */
1254 if (regulator->dev) {
1255 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1256 kfree(regulator->supply_name);
1257 device_remove_file(regulator->dev, &regulator->dev_attr);
1258 kfree(regulator->dev_attr.attr.name);
1260 list_del(&regulator->list);
1261 kfree(regulator);
1263 rdev->open_count--;
1264 rdev->exclusive = 0;
1266 module_put(rdev->owner);
1267 mutex_unlock(&regulator_list_mutex);
1269 EXPORT_SYMBOL_GPL(regulator_put);
1271 static int _regulator_can_change_status(struct regulator_dev *rdev)
1273 if (!rdev->constraints)
1274 return 0;
1276 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1277 return 1;
1278 else
1279 return 0;
1282 /* locks held by regulator_enable() */
1283 static int _regulator_enable(struct regulator_dev *rdev)
1285 int ret, delay;
1287 if (rdev->use_count == 0) {
1288 /* do we need to enable the supply regulator first */
1289 if (rdev->supply) {
1290 mutex_lock(&rdev->supply->mutex);
1291 ret = _regulator_enable(rdev->supply);
1292 mutex_unlock(&rdev->supply->mutex);
1293 if (ret < 0) {
1294 rdev_err(rdev, "failed to enable: %d\n", ret);
1295 return ret;
1300 /* check voltage and requested load before enabling */
1301 if (rdev->constraints &&
1302 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1303 drms_uA_update(rdev);
1305 if (rdev->use_count == 0) {
1306 /* The regulator may on if it's not switchable or left on */
1307 ret = _regulator_is_enabled(rdev);
1308 if (ret == -EINVAL || ret == 0) {
1309 if (!_regulator_can_change_status(rdev))
1310 return -EPERM;
1312 if (!rdev->desc->ops->enable)
1313 return -EINVAL;
1315 /* Query before enabling in case configuration
1316 * dependent. */
1317 ret = _regulator_get_enable_time(rdev);
1318 if (ret >= 0) {
1319 delay = ret;
1320 } else {
1321 rdev_warn(rdev, "enable_time() failed: %d\n",
1322 ret);
1323 delay = 0;
1326 trace_regulator_enable(rdev_get_name(rdev));
1328 /* Allow the regulator to ramp; it would be useful
1329 * to extend this for bulk operations so that the
1330 * regulators can ramp together. */
1331 ret = rdev->desc->ops->enable(rdev);
1332 if (ret < 0)
1333 return ret;
1335 trace_regulator_enable_delay(rdev_get_name(rdev));
1337 if (delay >= 1000) {
1338 mdelay(delay / 1000);
1339 udelay(delay % 1000);
1340 } else if (delay) {
1341 udelay(delay);
1344 trace_regulator_enable_complete(rdev_get_name(rdev));
1346 } else if (ret < 0) {
1347 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1348 return ret;
1350 /* Fallthrough on positive return values - already enabled */
1353 rdev->use_count++;
1355 return 0;
1359 * regulator_enable - enable regulator output
1360 * @regulator: regulator source
1362 * Request that the regulator be enabled with the regulator output at
1363 * the predefined voltage or current value. Calls to regulator_enable()
1364 * must be balanced with calls to regulator_disable().
1366 * NOTE: the output value can be set by other drivers, boot loader or may be
1367 * hardwired in the regulator.
1369 int regulator_enable(struct regulator *regulator)
1371 struct regulator_dev *rdev = regulator->rdev;
1372 int ret = 0;
1374 mutex_lock(&rdev->mutex);
1375 ret = _regulator_enable(rdev);
1376 mutex_unlock(&rdev->mutex);
1377 return ret;
1379 EXPORT_SYMBOL_GPL(regulator_enable);
1381 /* locks held by regulator_disable() */
1382 static int _regulator_disable(struct regulator_dev *rdev,
1383 struct regulator_dev **supply_rdev_ptr)
1385 int ret = 0;
1386 *supply_rdev_ptr = NULL;
1388 if (WARN(rdev->use_count <= 0,
1389 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1390 return -EIO;
1392 /* are we the last user and permitted to disable ? */
1393 if (rdev->use_count == 1 &&
1394 (rdev->constraints && !rdev->constraints->always_on)) {
1396 /* we are last user */
1397 if (_regulator_can_change_status(rdev) &&
1398 rdev->desc->ops->disable) {
1399 trace_regulator_disable(rdev_get_name(rdev));
1401 ret = rdev->desc->ops->disable(rdev);
1402 if (ret < 0) {
1403 rdev_err(rdev, "failed to disable\n");
1404 return ret;
1407 trace_regulator_disable_complete(rdev_get_name(rdev));
1409 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1410 NULL);
1413 /* decrease our supplies ref count and disable if required */
1414 *supply_rdev_ptr = rdev->supply;
1416 rdev->use_count = 0;
1417 } else if (rdev->use_count > 1) {
1419 if (rdev->constraints &&
1420 (rdev->constraints->valid_ops_mask &
1421 REGULATOR_CHANGE_DRMS))
1422 drms_uA_update(rdev);
1424 rdev->use_count--;
1426 return ret;
1430 * regulator_disable - disable regulator output
1431 * @regulator: regulator source
1433 * Disable the regulator output voltage or current. Calls to
1434 * regulator_enable() must be balanced with calls to
1435 * regulator_disable().
1437 * NOTE: this will only disable the regulator output if no other consumer
1438 * devices have it enabled, the regulator device supports disabling and
1439 * machine constraints permit this operation.
1441 int regulator_disable(struct regulator *regulator)
1443 struct regulator_dev *rdev = regulator->rdev;
1444 struct regulator_dev *supply_rdev = NULL;
1445 int ret = 0;
1447 mutex_lock(&rdev->mutex);
1448 ret = _regulator_disable(rdev, &supply_rdev);
1449 mutex_unlock(&rdev->mutex);
1451 /* decrease our supplies ref count and disable if required */
1452 while (supply_rdev != NULL) {
1453 rdev = supply_rdev;
1455 mutex_lock(&rdev->mutex);
1456 _regulator_disable(rdev, &supply_rdev);
1457 mutex_unlock(&rdev->mutex);
1460 return ret;
1462 EXPORT_SYMBOL_GPL(regulator_disable);
1464 /* locks held by regulator_force_disable() */
1465 static int _regulator_force_disable(struct regulator_dev *rdev,
1466 struct regulator_dev **supply_rdev_ptr)
1468 int ret = 0;
1470 /* force disable */
1471 if (rdev->desc->ops->disable) {
1472 /* ah well, who wants to live forever... */
1473 ret = rdev->desc->ops->disable(rdev);
1474 if (ret < 0) {
1475 rdev_err(rdev, "failed to force disable\n");
1476 return ret;
1478 /* notify other consumers that power has been forced off */
1479 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1480 REGULATOR_EVENT_DISABLE, NULL);
1483 /* decrease our supplies ref count and disable if required */
1484 *supply_rdev_ptr = rdev->supply;
1486 rdev->use_count = 0;
1487 return ret;
1491 * regulator_force_disable - force disable regulator output
1492 * @regulator: regulator source
1494 * Forcibly disable the regulator output voltage or current.
1495 * NOTE: this *will* disable the regulator output even if other consumer
1496 * devices have it enabled. This should be used for situations when device
1497 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1499 int regulator_force_disable(struct regulator *regulator)
1501 struct regulator_dev *supply_rdev = NULL;
1502 int ret;
1504 mutex_lock(&regulator->rdev->mutex);
1505 regulator->uA_load = 0;
1506 ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1507 mutex_unlock(&regulator->rdev->mutex);
1509 if (supply_rdev)
1510 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1512 return ret;
1514 EXPORT_SYMBOL_GPL(regulator_force_disable);
1516 static int _regulator_is_enabled(struct regulator_dev *rdev)
1518 /* If we don't know then assume that the regulator is always on */
1519 if (!rdev->desc->ops->is_enabled)
1520 return 1;
1522 return rdev->desc->ops->is_enabled(rdev);
1526 * regulator_is_enabled - is the regulator output enabled
1527 * @regulator: regulator source
1529 * Returns positive if the regulator driver backing the source/client
1530 * has requested that the device be enabled, zero if it hasn't, else a
1531 * negative errno code.
1533 * Note that the device backing this regulator handle can have multiple
1534 * users, so it might be enabled even if regulator_enable() was never
1535 * called for this particular source.
1537 int regulator_is_enabled(struct regulator *regulator)
1539 int ret;
1541 mutex_lock(&regulator->rdev->mutex);
1542 ret = _regulator_is_enabled(regulator->rdev);
1543 mutex_unlock(&regulator->rdev->mutex);
1545 return ret;
1547 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1550 * regulator_count_voltages - count regulator_list_voltage() selectors
1551 * @regulator: regulator source
1553 * Returns number of selectors, or negative errno. Selectors are
1554 * numbered starting at zero, and typically correspond to bitfields
1555 * in hardware registers.
1557 int regulator_count_voltages(struct regulator *regulator)
1559 struct regulator_dev *rdev = regulator->rdev;
1561 return rdev->desc->n_voltages ? : -EINVAL;
1563 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1566 * regulator_list_voltage - enumerate supported voltages
1567 * @regulator: regulator source
1568 * @selector: identify voltage to list
1569 * Context: can sleep
1571 * Returns a voltage that can be passed to @regulator_set_voltage(),
1572 * zero if this selector code can't be used on this system, or a
1573 * negative errno.
1575 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1577 struct regulator_dev *rdev = regulator->rdev;
1578 struct regulator_ops *ops = rdev->desc->ops;
1579 int ret;
1581 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1582 return -EINVAL;
1584 mutex_lock(&rdev->mutex);
1585 ret = ops->list_voltage(rdev, selector);
1586 mutex_unlock(&rdev->mutex);
1588 if (ret > 0) {
1589 if (ret < rdev->constraints->min_uV)
1590 ret = 0;
1591 else if (ret > rdev->constraints->max_uV)
1592 ret = 0;
1595 return ret;
1597 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1600 * regulator_is_supported_voltage - check if a voltage range can be supported
1602 * @regulator: Regulator to check.
1603 * @min_uV: Minimum required voltage in uV.
1604 * @max_uV: Maximum required voltage in uV.
1606 * Returns a boolean or a negative error code.
1608 int regulator_is_supported_voltage(struct regulator *regulator,
1609 int min_uV, int max_uV)
1611 int i, voltages, ret;
1613 ret = regulator_count_voltages(regulator);
1614 if (ret < 0)
1615 return ret;
1616 voltages = ret;
1618 for (i = 0; i < voltages; i++) {
1619 ret = regulator_list_voltage(regulator, i);
1621 if (ret >= min_uV && ret <= max_uV)
1622 return 1;
1625 return 0;
1628 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1629 int min_uV, int max_uV)
1631 int ret;
1632 int delay = 0;
1633 unsigned int selector;
1635 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1637 if (rdev->desc->ops->set_voltage) {
1638 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1639 &selector);
1641 if (rdev->desc->ops->list_voltage)
1642 selector = rdev->desc->ops->list_voltage(rdev,
1643 selector);
1644 else
1645 selector = -1;
1646 } else if (rdev->desc->ops->set_voltage_sel) {
1647 int best_val = INT_MAX;
1648 int i;
1650 selector = 0;
1652 /* Find the smallest voltage that falls within the specified
1653 * range.
1655 for (i = 0; i < rdev->desc->n_voltages; i++) {
1656 ret = rdev->desc->ops->list_voltage(rdev, i);
1657 if (ret < 0)
1658 continue;
1660 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1661 best_val = ret;
1662 selector = i;
1667 * If we can't obtain the old selector there is not enough
1668 * info to call set_voltage_time_sel().
1670 if (rdev->desc->ops->set_voltage_time_sel &&
1671 rdev->desc->ops->get_voltage_sel) {
1672 unsigned int old_selector = 0;
1674 ret = rdev->desc->ops->get_voltage_sel(rdev);
1675 if (ret < 0)
1676 return ret;
1677 old_selector = ret;
1678 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1679 old_selector, selector);
1682 if (best_val != INT_MAX) {
1683 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1684 selector = best_val;
1685 } else {
1686 ret = -EINVAL;
1688 } else {
1689 ret = -EINVAL;
1692 /* Insert any necessary delays */
1693 if (delay >= 1000) {
1694 mdelay(delay / 1000);
1695 udelay(delay % 1000);
1696 } else if (delay) {
1697 udelay(delay);
1700 if (ret == 0)
1701 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1702 NULL);
1704 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1706 return ret;
1710 * regulator_set_voltage - set regulator output voltage
1711 * @regulator: regulator source
1712 * @min_uV: Minimum required voltage in uV
1713 * @max_uV: Maximum acceptable voltage in uV
1715 * Sets a voltage regulator to the desired output voltage. This can be set
1716 * during any regulator state. IOW, regulator can be disabled or enabled.
1718 * If the regulator is enabled then the voltage will change to the new value
1719 * immediately otherwise if the regulator is disabled the regulator will
1720 * output at the new voltage when enabled.
1722 * NOTE: If the regulator is shared between several devices then the lowest
1723 * request voltage that meets the system constraints will be used.
1724 * Regulator system constraints must be set for this regulator before
1725 * calling this function otherwise this call will fail.
1727 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1729 struct regulator_dev *rdev = regulator->rdev;
1730 int ret = 0;
1732 mutex_lock(&rdev->mutex);
1734 /* If we're setting the same range as last time the change
1735 * should be a noop (some cpufreq implementations use the same
1736 * voltage for multiple frequencies, for example).
1738 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1739 goto out;
1741 /* sanity check */
1742 if (!rdev->desc->ops->set_voltage &&
1743 !rdev->desc->ops->set_voltage_sel) {
1744 ret = -EINVAL;
1745 goto out;
1748 /* constraints check */
1749 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1750 if (ret < 0)
1751 goto out;
1752 regulator->min_uV = min_uV;
1753 regulator->max_uV = max_uV;
1755 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1756 if (ret < 0)
1757 goto out;
1759 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1761 out:
1762 mutex_unlock(&rdev->mutex);
1763 return ret;
1765 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1768 * regulator_set_voltage_time - get raise/fall time
1769 * @regulator: regulator source
1770 * @old_uV: starting voltage in microvolts
1771 * @new_uV: target voltage in microvolts
1773 * Provided with the starting and ending voltage, this function attempts to
1774 * calculate the time in microseconds required to rise or fall to this new
1775 * voltage.
1777 int regulator_set_voltage_time(struct regulator *regulator,
1778 int old_uV, int new_uV)
1780 struct regulator_dev *rdev = regulator->rdev;
1781 struct regulator_ops *ops = rdev->desc->ops;
1782 int old_sel = -1;
1783 int new_sel = -1;
1784 int voltage;
1785 int i;
1787 /* Currently requires operations to do this */
1788 if (!ops->list_voltage || !ops->set_voltage_time_sel
1789 || !rdev->desc->n_voltages)
1790 return -EINVAL;
1792 for (i = 0; i < rdev->desc->n_voltages; i++) {
1793 /* We only look for exact voltage matches here */
1794 voltage = regulator_list_voltage(regulator, i);
1795 if (voltage < 0)
1796 return -EINVAL;
1797 if (voltage == 0)
1798 continue;
1799 if (voltage == old_uV)
1800 old_sel = i;
1801 if (voltage == new_uV)
1802 new_sel = i;
1805 if (old_sel < 0 || new_sel < 0)
1806 return -EINVAL;
1808 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1810 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1813 * regulator_sync_voltage - re-apply last regulator output voltage
1814 * @regulator: regulator source
1816 * Re-apply the last configured voltage. This is intended to be used
1817 * where some external control source the consumer is cooperating with
1818 * has caused the configured voltage to change.
1820 int regulator_sync_voltage(struct regulator *regulator)
1822 struct regulator_dev *rdev = regulator->rdev;
1823 int ret, min_uV, max_uV;
1825 mutex_lock(&rdev->mutex);
1827 if (!rdev->desc->ops->set_voltage &&
1828 !rdev->desc->ops->set_voltage_sel) {
1829 ret = -EINVAL;
1830 goto out;
1833 /* This is only going to work if we've had a voltage configured. */
1834 if (!regulator->min_uV && !regulator->max_uV) {
1835 ret = -EINVAL;
1836 goto out;
1839 min_uV = regulator->min_uV;
1840 max_uV = regulator->max_uV;
1842 /* This should be a paranoia check... */
1843 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1844 if (ret < 0)
1845 goto out;
1847 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1848 if (ret < 0)
1849 goto out;
1851 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1853 out:
1854 mutex_unlock(&rdev->mutex);
1855 return ret;
1857 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1859 static int _regulator_get_voltage(struct regulator_dev *rdev)
1861 int sel;
1863 if (rdev->desc->ops->get_voltage_sel) {
1864 sel = rdev->desc->ops->get_voltage_sel(rdev);
1865 if (sel < 0)
1866 return sel;
1867 return rdev->desc->ops->list_voltage(rdev, sel);
1869 if (rdev->desc->ops->get_voltage)
1870 return rdev->desc->ops->get_voltage(rdev);
1871 else
1872 return -EINVAL;
1876 * regulator_get_voltage - get regulator output voltage
1877 * @regulator: regulator source
1879 * This returns the current regulator voltage in uV.
1881 * NOTE: If the regulator is disabled it will return the voltage value. This
1882 * function should not be used to determine regulator state.
1884 int regulator_get_voltage(struct regulator *regulator)
1886 int ret;
1888 mutex_lock(&regulator->rdev->mutex);
1890 ret = _regulator_get_voltage(regulator->rdev);
1892 mutex_unlock(&regulator->rdev->mutex);
1894 return ret;
1896 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1899 * regulator_set_current_limit - set regulator output current limit
1900 * @regulator: regulator source
1901 * @min_uA: Minimuum supported current in uA
1902 * @max_uA: Maximum supported current in uA
1904 * Sets current sink to the desired output current. This can be set during
1905 * any regulator state. IOW, regulator can be disabled or enabled.
1907 * If the regulator is enabled then the current will change to the new value
1908 * immediately otherwise if the regulator is disabled the regulator will
1909 * output at the new current when enabled.
1911 * NOTE: Regulator system constraints must be set for this regulator before
1912 * calling this function otherwise this call will fail.
1914 int regulator_set_current_limit(struct regulator *regulator,
1915 int min_uA, int max_uA)
1917 struct regulator_dev *rdev = regulator->rdev;
1918 int ret;
1920 mutex_lock(&rdev->mutex);
1922 /* sanity check */
1923 if (!rdev->desc->ops->set_current_limit) {
1924 ret = -EINVAL;
1925 goto out;
1928 /* constraints check */
1929 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1930 if (ret < 0)
1931 goto out;
1933 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1934 out:
1935 mutex_unlock(&rdev->mutex);
1936 return ret;
1938 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1940 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1942 int ret;
1944 mutex_lock(&rdev->mutex);
1946 /* sanity check */
1947 if (!rdev->desc->ops->get_current_limit) {
1948 ret = -EINVAL;
1949 goto out;
1952 ret = rdev->desc->ops->get_current_limit(rdev);
1953 out:
1954 mutex_unlock(&rdev->mutex);
1955 return ret;
1959 * regulator_get_current_limit - get regulator output current
1960 * @regulator: regulator source
1962 * This returns the current supplied by the specified current sink in uA.
1964 * NOTE: If the regulator is disabled it will return the current value. This
1965 * function should not be used to determine regulator state.
1967 int regulator_get_current_limit(struct regulator *regulator)
1969 return _regulator_get_current_limit(regulator->rdev);
1971 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1974 * regulator_set_mode - set regulator operating mode
1975 * @regulator: regulator source
1976 * @mode: operating mode - one of the REGULATOR_MODE constants
1978 * Set regulator operating mode to increase regulator efficiency or improve
1979 * regulation performance.
1981 * NOTE: Regulator system constraints must be set for this regulator before
1982 * calling this function otherwise this call will fail.
1984 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1986 struct regulator_dev *rdev = regulator->rdev;
1987 int ret;
1988 int regulator_curr_mode;
1990 mutex_lock(&rdev->mutex);
1992 /* sanity check */
1993 if (!rdev->desc->ops->set_mode) {
1994 ret = -EINVAL;
1995 goto out;
1998 /* return if the same mode is requested */
1999 if (rdev->desc->ops->get_mode) {
2000 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2001 if (regulator_curr_mode == mode) {
2002 ret = 0;
2003 goto out;
2007 /* constraints check */
2008 ret = regulator_check_mode(rdev, mode);
2009 if (ret < 0)
2010 goto out;
2012 ret = rdev->desc->ops->set_mode(rdev, mode);
2013 out:
2014 mutex_unlock(&rdev->mutex);
2015 return ret;
2017 EXPORT_SYMBOL_GPL(regulator_set_mode);
2019 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2021 int ret;
2023 mutex_lock(&rdev->mutex);
2025 /* sanity check */
2026 if (!rdev->desc->ops->get_mode) {
2027 ret = -EINVAL;
2028 goto out;
2031 ret = rdev->desc->ops->get_mode(rdev);
2032 out:
2033 mutex_unlock(&rdev->mutex);
2034 return ret;
2038 * regulator_get_mode - get regulator operating mode
2039 * @regulator: regulator source
2041 * Get the current regulator operating mode.
2043 unsigned int regulator_get_mode(struct regulator *regulator)
2045 return _regulator_get_mode(regulator->rdev);
2047 EXPORT_SYMBOL_GPL(regulator_get_mode);
2050 * regulator_set_optimum_mode - set regulator optimum operating mode
2051 * @regulator: regulator source
2052 * @uA_load: load current
2054 * Notifies the regulator core of a new device load. This is then used by
2055 * DRMS (if enabled by constraints) to set the most efficient regulator
2056 * operating mode for the new regulator loading.
2058 * Consumer devices notify their supply regulator of the maximum power
2059 * they will require (can be taken from device datasheet in the power
2060 * consumption tables) when they change operational status and hence power
2061 * state. Examples of operational state changes that can affect power
2062 * consumption are :-
2064 * o Device is opened / closed.
2065 * o Device I/O is about to begin or has just finished.
2066 * o Device is idling in between work.
2068 * This information is also exported via sysfs to userspace.
2070 * DRMS will sum the total requested load on the regulator and change
2071 * to the most efficient operating mode if platform constraints allow.
2073 * Returns the new regulator mode or error.
2075 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2077 struct regulator_dev *rdev = regulator->rdev;
2078 struct regulator *consumer;
2079 int ret, output_uV, input_uV, total_uA_load = 0;
2080 unsigned int mode;
2082 mutex_lock(&rdev->mutex);
2084 regulator->uA_load = uA_load;
2085 ret = regulator_check_drms(rdev);
2086 if (ret < 0)
2087 goto out;
2088 ret = -EINVAL;
2090 /* sanity check */
2091 if (!rdev->desc->ops->get_optimum_mode)
2092 goto out;
2094 /* get output voltage */
2095 output_uV = _regulator_get_voltage(rdev);
2096 if (output_uV <= 0) {
2097 rdev_err(rdev, "invalid output voltage found\n");
2098 goto out;
2101 /* get input voltage */
2102 input_uV = 0;
2103 if (rdev->supply)
2104 input_uV = _regulator_get_voltage(rdev->supply);
2105 if (input_uV <= 0)
2106 input_uV = rdev->constraints->input_uV;
2107 if (input_uV <= 0) {
2108 rdev_err(rdev, "invalid input voltage found\n");
2109 goto out;
2112 /* calc total requested load for this regulator */
2113 list_for_each_entry(consumer, &rdev->consumer_list, list)
2114 total_uA_load += consumer->uA_load;
2116 mode = rdev->desc->ops->get_optimum_mode(rdev,
2117 input_uV, output_uV,
2118 total_uA_load);
2119 ret = regulator_check_mode(rdev, mode);
2120 if (ret < 0) {
2121 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2122 total_uA_load, input_uV, output_uV);
2123 goto out;
2126 ret = rdev->desc->ops->set_mode(rdev, mode);
2127 if (ret < 0) {
2128 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2129 goto out;
2131 ret = mode;
2132 out:
2133 mutex_unlock(&rdev->mutex);
2134 return ret;
2136 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2139 * regulator_register_notifier - register regulator event notifier
2140 * @regulator: regulator source
2141 * @nb: notifier block
2143 * Register notifier block to receive regulator events.
2145 int regulator_register_notifier(struct regulator *regulator,
2146 struct notifier_block *nb)
2148 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2149 nb);
2151 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2154 * regulator_unregister_notifier - unregister regulator event notifier
2155 * @regulator: regulator source
2156 * @nb: notifier block
2158 * Unregister regulator event notifier block.
2160 int regulator_unregister_notifier(struct regulator *regulator,
2161 struct notifier_block *nb)
2163 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2164 nb);
2166 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2168 /* notify regulator consumers and downstream regulator consumers.
2169 * Note mutex must be held by caller.
2171 static void _notifier_call_chain(struct regulator_dev *rdev,
2172 unsigned long event, void *data)
2174 struct regulator_dev *_rdev;
2176 /* call rdev chain first */
2177 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2179 /* now notify regulator we supply */
2180 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2181 mutex_lock(&_rdev->mutex);
2182 _notifier_call_chain(_rdev, event, data);
2183 mutex_unlock(&_rdev->mutex);
2188 * regulator_bulk_get - get multiple regulator consumers
2190 * @dev: Device to supply
2191 * @num_consumers: Number of consumers to register
2192 * @consumers: Configuration of consumers; clients are stored here.
2194 * @return 0 on success, an errno on failure.
2196 * This helper function allows drivers to get several regulator
2197 * consumers in one operation. If any of the regulators cannot be
2198 * acquired then any regulators that were allocated will be freed
2199 * before returning to the caller.
2201 int regulator_bulk_get(struct device *dev, int num_consumers,
2202 struct regulator_bulk_data *consumers)
2204 int i;
2205 int ret;
2207 for (i = 0; i < num_consumers; i++)
2208 consumers[i].consumer = NULL;
2210 for (i = 0; i < num_consumers; i++) {
2211 consumers[i].consumer = regulator_get(dev,
2212 consumers[i].supply);
2213 if (IS_ERR(consumers[i].consumer)) {
2214 ret = PTR_ERR(consumers[i].consumer);
2215 dev_err(dev, "Failed to get supply '%s': %d\n",
2216 consumers[i].supply, ret);
2217 consumers[i].consumer = NULL;
2218 goto err;
2222 return 0;
2224 err:
2225 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2226 regulator_put(consumers[i].consumer);
2228 return ret;
2230 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2233 * regulator_bulk_enable - enable multiple regulator consumers
2235 * @num_consumers: Number of consumers
2236 * @consumers: Consumer data; clients are stored here.
2237 * @return 0 on success, an errno on failure
2239 * This convenience API allows consumers to enable multiple regulator
2240 * clients in a single API call. If any consumers cannot be enabled
2241 * then any others that were enabled will be disabled again prior to
2242 * return.
2244 int regulator_bulk_enable(int num_consumers,
2245 struct regulator_bulk_data *consumers)
2247 int i;
2248 int ret;
2250 for (i = 0; i < num_consumers; i++) {
2251 ret = regulator_enable(consumers[i].consumer);
2252 if (ret != 0)
2253 goto err;
2256 return 0;
2258 err:
2259 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2260 for (--i; i >= 0; --i)
2261 regulator_disable(consumers[i].consumer);
2263 return ret;
2265 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2268 * regulator_bulk_disable - disable multiple regulator consumers
2270 * @num_consumers: Number of consumers
2271 * @consumers: Consumer data; clients are stored here.
2272 * @return 0 on success, an errno on failure
2274 * This convenience API allows consumers to disable multiple regulator
2275 * clients in a single API call. If any consumers cannot be enabled
2276 * then any others that were disabled will be disabled again prior to
2277 * return.
2279 int regulator_bulk_disable(int num_consumers,
2280 struct regulator_bulk_data *consumers)
2282 int i;
2283 int ret;
2285 for (i = 0; i < num_consumers; i++) {
2286 ret = regulator_disable(consumers[i].consumer);
2287 if (ret != 0)
2288 goto err;
2291 return 0;
2293 err:
2294 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2295 for (--i; i >= 0; --i)
2296 regulator_enable(consumers[i].consumer);
2298 return ret;
2300 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2303 * regulator_bulk_free - free multiple regulator consumers
2305 * @num_consumers: Number of consumers
2306 * @consumers: Consumer data; clients are stored here.
2308 * This convenience API allows consumers to free multiple regulator
2309 * clients in a single API call.
2311 void regulator_bulk_free(int num_consumers,
2312 struct regulator_bulk_data *consumers)
2314 int i;
2316 for (i = 0; i < num_consumers; i++) {
2317 regulator_put(consumers[i].consumer);
2318 consumers[i].consumer = NULL;
2321 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2324 * regulator_notifier_call_chain - call regulator event notifier
2325 * @rdev: regulator source
2326 * @event: notifier block
2327 * @data: callback-specific data.
2329 * Called by regulator drivers to notify clients a regulator event has
2330 * occurred. We also notify regulator clients downstream.
2331 * Note lock must be held by caller.
2333 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2334 unsigned long event, void *data)
2336 _notifier_call_chain(rdev, event, data);
2337 return NOTIFY_DONE;
2340 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2343 * regulator_mode_to_status - convert a regulator mode into a status
2345 * @mode: Mode to convert
2347 * Convert a regulator mode into a status.
2349 int regulator_mode_to_status(unsigned int mode)
2351 switch (mode) {
2352 case REGULATOR_MODE_FAST:
2353 return REGULATOR_STATUS_FAST;
2354 case REGULATOR_MODE_NORMAL:
2355 return REGULATOR_STATUS_NORMAL;
2356 case REGULATOR_MODE_IDLE:
2357 return REGULATOR_STATUS_IDLE;
2358 case REGULATOR_STATUS_STANDBY:
2359 return REGULATOR_STATUS_STANDBY;
2360 default:
2361 return 0;
2364 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2367 * To avoid cluttering sysfs (and memory) with useless state, only
2368 * create attributes that can be meaningfully displayed.
2370 static int add_regulator_attributes(struct regulator_dev *rdev)
2372 struct device *dev = &rdev->dev;
2373 struct regulator_ops *ops = rdev->desc->ops;
2374 int status = 0;
2376 /* some attributes need specific methods to be displayed */
2377 if (ops->get_voltage || ops->get_voltage_sel) {
2378 status = device_create_file(dev, &dev_attr_microvolts);
2379 if (status < 0)
2380 return status;
2382 if (ops->get_current_limit) {
2383 status = device_create_file(dev, &dev_attr_microamps);
2384 if (status < 0)
2385 return status;
2387 if (ops->get_mode) {
2388 status = device_create_file(dev, &dev_attr_opmode);
2389 if (status < 0)
2390 return status;
2392 if (ops->is_enabled) {
2393 status = device_create_file(dev, &dev_attr_state);
2394 if (status < 0)
2395 return status;
2397 if (ops->get_status) {
2398 status = device_create_file(dev, &dev_attr_status);
2399 if (status < 0)
2400 return status;
2403 /* some attributes are type-specific */
2404 if (rdev->desc->type == REGULATOR_CURRENT) {
2405 status = device_create_file(dev, &dev_attr_requested_microamps);
2406 if (status < 0)
2407 return status;
2410 /* all the other attributes exist to support constraints;
2411 * don't show them if there are no constraints, or if the
2412 * relevant supporting methods are missing.
2414 if (!rdev->constraints)
2415 return status;
2417 /* constraints need specific supporting methods */
2418 if (ops->set_voltage || ops->set_voltage_sel) {
2419 status = device_create_file(dev, &dev_attr_min_microvolts);
2420 if (status < 0)
2421 return status;
2422 status = device_create_file(dev, &dev_attr_max_microvolts);
2423 if (status < 0)
2424 return status;
2426 if (ops->set_current_limit) {
2427 status = device_create_file(dev, &dev_attr_min_microamps);
2428 if (status < 0)
2429 return status;
2430 status = device_create_file(dev, &dev_attr_max_microamps);
2431 if (status < 0)
2432 return status;
2435 /* suspend mode constraints need multiple supporting methods */
2436 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2437 return status;
2439 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2440 if (status < 0)
2441 return status;
2442 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2443 if (status < 0)
2444 return status;
2445 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2446 if (status < 0)
2447 return status;
2449 if (ops->set_suspend_voltage) {
2450 status = device_create_file(dev,
2451 &dev_attr_suspend_standby_microvolts);
2452 if (status < 0)
2453 return status;
2454 status = device_create_file(dev,
2455 &dev_attr_suspend_mem_microvolts);
2456 if (status < 0)
2457 return status;
2458 status = device_create_file(dev,
2459 &dev_attr_suspend_disk_microvolts);
2460 if (status < 0)
2461 return status;
2464 if (ops->set_suspend_mode) {
2465 status = device_create_file(dev,
2466 &dev_attr_suspend_standby_mode);
2467 if (status < 0)
2468 return status;
2469 status = device_create_file(dev,
2470 &dev_attr_suspend_mem_mode);
2471 if (status < 0)
2472 return status;
2473 status = device_create_file(dev,
2474 &dev_attr_suspend_disk_mode);
2475 if (status < 0)
2476 return status;
2479 return status;
2482 static void rdev_init_debugfs(struct regulator_dev *rdev)
2484 #ifdef CONFIG_DEBUG_FS
2485 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2486 if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2487 rdev_warn(rdev, "Failed to create debugfs directory\n");
2488 rdev->debugfs = NULL;
2489 return;
2492 debugfs_create_u32("use_count", 0444, rdev->debugfs,
2493 &rdev->use_count);
2494 debugfs_create_u32("open_count", 0444, rdev->debugfs,
2495 &rdev->open_count);
2496 #endif
2500 * regulator_register - register regulator
2501 * @regulator_desc: regulator to register
2502 * @dev: struct device for the regulator
2503 * @init_data: platform provided init data, passed through by driver
2504 * @driver_data: private regulator data
2506 * Called by regulator drivers to register a regulator.
2507 * Returns 0 on success.
2509 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2510 struct device *dev, const struct regulator_init_data *init_data,
2511 void *driver_data)
2513 static atomic_t regulator_no = ATOMIC_INIT(0);
2514 struct regulator_dev *rdev;
2515 int ret, i;
2517 if (regulator_desc == NULL)
2518 return ERR_PTR(-EINVAL);
2520 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2521 return ERR_PTR(-EINVAL);
2523 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2524 regulator_desc->type != REGULATOR_CURRENT)
2525 return ERR_PTR(-EINVAL);
2527 if (!init_data)
2528 return ERR_PTR(-EINVAL);
2530 /* Only one of each should be implemented */
2531 WARN_ON(regulator_desc->ops->get_voltage &&
2532 regulator_desc->ops->get_voltage_sel);
2533 WARN_ON(regulator_desc->ops->set_voltage &&
2534 regulator_desc->ops->set_voltage_sel);
2536 /* If we're using selectors we must implement list_voltage. */
2537 if (regulator_desc->ops->get_voltage_sel &&
2538 !regulator_desc->ops->list_voltage) {
2539 return ERR_PTR(-EINVAL);
2541 if (regulator_desc->ops->set_voltage_sel &&
2542 !regulator_desc->ops->list_voltage) {
2543 return ERR_PTR(-EINVAL);
2546 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2547 if (rdev == NULL)
2548 return ERR_PTR(-ENOMEM);
2550 mutex_lock(&regulator_list_mutex);
2552 mutex_init(&rdev->mutex);
2553 rdev->reg_data = driver_data;
2554 rdev->owner = regulator_desc->owner;
2555 rdev->desc = regulator_desc;
2556 INIT_LIST_HEAD(&rdev->consumer_list);
2557 INIT_LIST_HEAD(&rdev->supply_list);
2558 INIT_LIST_HEAD(&rdev->list);
2559 INIT_LIST_HEAD(&rdev->slist);
2560 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2562 /* preform any regulator specific init */
2563 if (init_data->regulator_init) {
2564 ret = init_data->regulator_init(rdev->reg_data);
2565 if (ret < 0)
2566 goto clean;
2569 /* register with sysfs */
2570 rdev->dev.class = &regulator_class;
2571 rdev->dev.parent = dev;
2572 dev_set_name(&rdev->dev, "regulator.%d",
2573 atomic_inc_return(&regulator_no) - 1);
2574 ret = device_register(&rdev->dev);
2575 if (ret != 0) {
2576 put_device(&rdev->dev);
2577 goto clean;
2580 dev_set_drvdata(&rdev->dev, rdev);
2582 /* set regulator constraints */
2583 ret = set_machine_constraints(rdev, &init_data->constraints);
2584 if (ret < 0)
2585 goto scrub;
2587 /* add attributes supported by this regulator */
2588 ret = add_regulator_attributes(rdev);
2589 if (ret < 0)
2590 goto scrub;
2592 /* set supply regulator if it exists */
2593 if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2594 dev_err(dev,
2595 "Supply regulator specified by both name and dev\n");
2596 ret = -EINVAL;
2597 goto scrub;
2600 if (init_data->supply_regulator) {
2601 struct regulator_dev *r;
2602 int found = 0;
2604 list_for_each_entry(r, &regulator_list, list) {
2605 if (strcmp(rdev_get_name(r),
2606 init_data->supply_regulator) == 0) {
2607 found = 1;
2608 break;
2612 if (!found) {
2613 dev_err(dev, "Failed to find supply %s\n",
2614 init_data->supply_regulator);
2615 ret = -ENODEV;
2616 goto scrub;
2619 ret = set_supply(rdev, r);
2620 if (ret < 0)
2621 goto scrub;
2624 if (init_data->supply_regulator_dev) {
2625 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2626 ret = set_supply(rdev,
2627 dev_get_drvdata(init_data->supply_regulator_dev));
2628 if (ret < 0)
2629 goto scrub;
2632 /* add consumers devices */
2633 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2634 ret = set_consumer_device_supply(rdev,
2635 init_data->consumer_supplies[i].dev,
2636 init_data->consumer_supplies[i].dev_name,
2637 init_data->consumer_supplies[i].supply);
2638 if (ret < 0) {
2639 dev_err(dev, "Failed to set supply %s\n",
2640 init_data->consumer_supplies[i].supply);
2641 goto unset_supplies;
2645 list_add(&rdev->list, &regulator_list);
2647 rdev_init_debugfs(rdev);
2648 out:
2649 mutex_unlock(&regulator_list_mutex);
2650 return rdev;
2652 unset_supplies:
2653 unset_regulator_supplies(rdev);
2655 scrub:
2656 device_unregister(&rdev->dev);
2657 /* device core frees rdev */
2658 rdev = ERR_PTR(ret);
2659 goto out;
2661 clean:
2662 kfree(rdev);
2663 rdev = ERR_PTR(ret);
2664 goto out;
2666 EXPORT_SYMBOL_GPL(regulator_register);
2669 * regulator_unregister - unregister regulator
2670 * @rdev: regulator to unregister
2672 * Called by regulator drivers to unregister a regulator.
2674 void regulator_unregister(struct regulator_dev *rdev)
2676 if (rdev == NULL)
2677 return;
2679 mutex_lock(&regulator_list_mutex);
2680 #ifdef CONFIG_DEBUG_FS
2681 debugfs_remove_recursive(rdev->debugfs);
2682 #endif
2683 WARN_ON(rdev->open_count);
2684 unset_regulator_supplies(rdev);
2685 list_del(&rdev->list);
2686 if (rdev->supply)
2687 sysfs_remove_link(&rdev->dev.kobj, "supply");
2688 device_unregister(&rdev->dev);
2689 kfree(rdev->constraints);
2690 mutex_unlock(&regulator_list_mutex);
2692 EXPORT_SYMBOL_GPL(regulator_unregister);
2695 * regulator_suspend_prepare - prepare regulators for system wide suspend
2696 * @state: system suspend state
2698 * Configure each regulator with it's suspend operating parameters for state.
2699 * This will usually be called by machine suspend code prior to supending.
2701 int regulator_suspend_prepare(suspend_state_t state)
2703 struct regulator_dev *rdev;
2704 int ret = 0;
2706 /* ON is handled by regulator active state */
2707 if (state == PM_SUSPEND_ON)
2708 return -EINVAL;
2710 mutex_lock(&regulator_list_mutex);
2711 list_for_each_entry(rdev, &regulator_list, list) {
2713 mutex_lock(&rdev->mutex);
2714 ret = suspend_prepare(rdev, state);
2715 mutex_unlock(&rdev->mutex);
2717 if (ret < 0) {
2718 rdev_err(rdev, "failed to prepare\n");
2719 goto out;
2722 out:
2723 mutex_unlock(&regulator_list_mutex);
2724 return ret;
2726 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2729 * regulator_suspend_finish - resume regulators from system wide suspend
2731 * Turn on regulators that might be turned off by regulator_suspend_prepare
2732 * and that should be turned on according to the regulators properties.
2734 int regulator_suspend_finish(void)
2736 struct regulator_dev *rdev;
2737 int ret = 0, error;
2739 mutex_lock(&regulator_list_mutex);
2740 list_for_each_entry(rdev, &regulator_list, list) {
2741 struct regulator_ops *ops = rdev->desc->ops;
2743 mutex_lock(&rdev->mutex);
2744 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
2745 ops->enable) {
2746 error = ops->enable(rdev);
2747 if (error)
2748 ret = error;
2749 } else {
2750 if (!has_full_constraints)
2751 goto unlock;
2752 if (!ops->disable)
2753 goto unlock;
2754 if (ops->is_enabled && !ops->is_enabled(rdev))
2755 goto unlock;
2757 error = ops->disable(rdev);
2758 if (error)
2759 ret = error;
2761 unlock:
2762 mutex_unlock(&rdev->mutex);
2764 mutex_unlock(&regulator_list_mutex);
2765 return ret;
2767 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2770 * regulator_has_full_constraints - the system has fully specified constraints
2772 * Calling this function will cause the regulator API to disable all
2773 * regulators which have a zero use count and don't have an always_on
2774 * constraint in a late_initcall.
2776 * The intention is that this will become the default behaviour in a
2777 * future kernel release so users are encouraged to use this facility
2778 * now.
2780 void regulator_has_full_constraints(void)
2782 has_full_constraints = 1;
2784 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2787 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2789 * Calling this function will cause the regulator API to provide a
2790 * dummy regulator to consumers if no physical regulator is found,
2791 * allowing most consumers to proceed as though a regulator were
2792 * configured. This allows systems such as those with software
2793 * controllable regulators for the CPU core only to be brought up more
2794 * readily.
2796 void regulator_use_dummy_regulator(void)
2798 board_wants_dummy_regulator = true;
2800 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2803 * rdev_get_drvdata - get rdev regulator driver data
2804 * @rdev: regulator
2806 * Get rdev regulator driver private data. This call can be used in the
2807 * regulator driver context.
2809 void *rdev_get_drvdata(struct regulator_dev *rdev)
2811 return rdev->reg_data;
2813 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2816 * regulator_get_drvdata - get regulator driver data
2817 * @regulator: regulator
2819 * Get regulator driver private data. This call can be used in the consumer
2820 * driver context when non API regulator specific functions need to be called.
2822 void *regulator_get_drvdata(struct regulator *regulator)
2824 return regulator->rdev->reg_data;
2826 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2829 * regulator_set_drvdata - set regulator driver data
2830 * @regulator: regulator
2831 * @data: data
2833 void regulator_set_drvdata(struct regulator *regulator, void *data)
2835 regulator->rdev->reg_data = data;
2837 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2840 * regulator_get_id - get regulator ID
2841 * @rdev: regulator
2843 int rdev_get_id(struct regulator_dev *rdev)
2845 return rdev->desc->id;
2847 EXPORT_SYMBOL_GPL(rdev_get_id);
2849 struct device *rdev_get_dev(struct regulator_dev *rdev)
2851 return &rdev->dev;
2853 EXPORT_SYMBOL_GPL(rdev_get_dev);
2855 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2857 return reg_init_data->driver_data;
2859 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2861 static int __init regulator_init(void)
2863 int ret;
2865 ret = class_register(&regulator_class);
2867 #ifdef CONFIG_DEBUG_FS
2868 debugfs_root = debugfs_create_dir("regulator", NULL);
2869 if (IS_ERR(debugfs_root) || !debugfs_root) {
2870 pr_warn("regulator: Failed to create debugfs directory\n");
2871 debugfs_root = NULL;
2873 #endif
2875 regulator_dummy_init();
2877 return ret;
2880 /* init early to allow our consumers to complete system booting */
2881 core_initcall(regulator_init);
2883 static int __init regulator_init_complete(void)
2885 struct regulator_dev *rdev;
2886 struct regulator_ops *ops;
2887 struct regulation_constraints *c;
2888 int enabled, ret;
2890 mutex_lock(&regulator_list_mutex);
2892 /* If we have a full configuration then disable any regulators
2893 * which are not in use or always_on. This will become the
2894 * default behaviour in the future.
2896 list_for_each_entry(rdev, &regulator_list, list) {
2897 ops = rdev->desc->ops;
2898 c = rdev->constraints;
2900 if (!ops->disable || (c && c->always_on))
2901 continue;
2903 mutex_lock(&rdev->mutex);
2905 if (rdev->use_count)
2906 goto unlock;
2908 /* If we can't read the status assume it's on. */
2909 if (ops->is_enabled)
2910 enabled = ops->is_enabled(rdev);
2911 else
2912 enabled = 1;
2914 if (!enabled)
2915 goto unlock;
2917 if (has_full_constraints) {
2918 /* We log since this may kill the system if it
2919 * goes wrong. */
2920 rdev_info(rdev, "disabling\n");
2921 ret = ops->disable(rdev);
2922 if (ret != 0) {
2923 rdev_err(rdev, "couldn't disable: %d\n", ret);
2925 } else {
2926 /* The intention is that in future we will
2927 * assume that full constraints are provided
2928 * so warn even if we aren't going to do
2929 * anything here.
2931 rdev_warn(rdev, "incomplete constraints, leaving on\n");
2934 unlock:
2935 mutex_unlock(&rdev->mutex);
2938 mutex_unlock(&regulator_list_mutex);
2940 return 0;
2942 late_initcall(regulator_init_complete);