2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
26 * Inode locking rules:
28 * inode->i_lock protects:
29 * inode->i_state, inode->i_hash, __iget()
30 * Inode LRU list locks protect:
31 * inode->i_sb->s_inode_lru, inode->i_lru
32 * inode->i_sb->s_inode_list_lock protects:
33 * inode->i_sb->s_inodes, inode->i_sb_list
34 * bdi->wb.list_lock protects:
35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36 * inode_hash_lock protects:
37 * inode_hashtable, inode->i_hash
41 * inode->i_sb->s_inode_list_lock
43 * Inode LRU list locks
49 * inode->i_sb->s_inode_list_lock
56 static unsigned int i_hash_mask __read_mostly
;
57 static unsigned int i_hash_shift __read_mostly
;
58 static struct hlist_head
*inode_hashtable __read_mostly
;
59 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
65 const struct address_space_operations empty_aops
= {
67 EXPORT_SYMBOL(empty_aops
);
70 * Statistics gathering..
72 struct inodes_stat_t inodes_stat
;
74 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
75 static DEFINE_PER_CPU(unsigned long, nr_unused
);
77 static struct kmem_cache
*inode_cachep __read_mostly
;
79 static long get_nr_inodes(void)
83 for_each_possible_cpu(i
)
84 sum
+= per_cpu(nr_inodes
, i
);
85 return sum
< 0 ? 0 : sum
;
88 static inline long get_nr_inodes_unused(void)
92 for_each_possible_cpu(i
)
93 sum
+= per_cpu(nr_unused
, i
);
94 return sum
< 0 ? 0 : sum
;
97 long get_nr_dirty_inodes(void)
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty
> 0 ? nr_dirty
: 0;
105 * Handle nr_inode sysctl
108 int proc_nr_inodes(struct ctl_table
*table
, int write
,
109 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
111 inodes_stat
.nr_inodes
= get_nr_inodes();
112 inodes_stat
.nr_unused
= get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
117 static int no_open(struct inode
*inode
, struct file
*file
)
123 * inode_init_always - perform inode structure initialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
130 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
132 static const struct inode_operations empty_iops
;
133 static const struct file_operations no_open_fops
= {.open
= no_open
};
134 struct address_space
*const mapping
= &inode
->i_data
;
137 inode
->i_blkbits
= sb
->s_blocksize_bits
;
139 atomic_set(&inode
->i_count
, 1);
140 inode
->i_op
= &empty_iops
;
141 inode
->i_fop
= &no_open_fops
;
142 inode
->__i_nlink
= 1;
143 inode
->i_opflags
= 0;
145 inode
->i_opflags
|= IOP_XATTR
;
146 i_uid_write(inode
, 0);
147 i_gid_write(inode
, 0);
148 atomic_set(&inode
->i_writecount
, 0);
150 inode
->i_write_hint
= WRITE_LIFE_NOT_SET
;
153 inode
->i_generation
= 0;
154 inode
->i_pipe
= NULL
;
155 inode
->i_bdev
= NULL
;
156 inode
->i_cdev
= NULL
;
157 inode
->i_link
= NULL
;
158 inode
->i_dir_seq
= 0;
160 inode
->dirtied_when
= 0;
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 inode
->i_wb_frn_winner
= 0;
164 inode
->i_wb_frn_avg_time
= 0;
165 inode
->i_wb_frn_history
= 0;
168 if (security_inode_alloc(inode
))
170 spin_lock_init(&inode
->i_lock
);
171 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
173 init_rwsem(&inode
->i_rwsem
);
174 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
176 atomic_set(&inode
->i_dio_count
, 0);
178 mapping
->a_ops
= &empty_aops
;
179 mapping
->host
= inode
;
181 atomic_set(&mapping
->i_mmap_writable
, 0);
182 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
183 mapping
->private_data
= NULL
;
184 mapping
->writeback_index
= 0;
185 inode
->i_private
= NULL
;
186 inode
->i_mapping
= mapping
;
187 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
188 #ifdef CONFIG_FS_POSIX_ACL
189 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
192 #ifdef CONFIG_FSNOTIFY
193 inode
->i_fsnotify_mask
= 0;
195 inode
->i_flctx
= NULL
;
196 this_cpu_inc(nr_inodes
);
202 EXPORT_SYMBOL(inode_init_always
);
204 static struct inode
*alloc_inode(struct super_block
*sb
)
208 if (sb
->s_op
->alloc_inode
)
209 inode
= sb
->s_op
->alloc_inode(sb
);
211 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
216 if (unlikely(inode_init_always(sb
, inode
))) {
217 if (inode
->i_sb
->s_op
->destroy_inode
)
218 inode
->i_sb
->s_op
->destroy_inode(inode
);
220 kmem_cache_free(inode_cachep
, inode
);
227 void free_inode_nonrcu(struct inode
*inode
)
229 kmem_cache_free(inode_cachep
, inode
);
231 EXPORT_SYMBOL(free_inode_nonrcu
);
233 void __destroy_inode(struct inode
*inode
)
235 BUG_ON(inode_has_buffers(inode
));
236 inode_detach_wb(inode
);
237 security_inode_free(inode
);
238 fsnotify_inode_delete(inode
);
239 locks_free_lock_context(inode
);
240 if (!inode
->i_nlink
) {
241 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
242 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
245 #ifdef CONFIG_FS_POSIX_ACL
246 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
247 posix_acl_release(inode
->i_acl
);
248 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
249 posix_acl_release(inode
->i_default_acl
);
251 this_cpu_dec(nr_inodes
);
253 EXPORT_SYMBOL(__destroy_inode
);
255 static void i_callback(struct rcu_head
*head
)
257 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
258 kmem_cache_free(inode_cachep
, inode
);
261 static void destroy_inode(struct inode
*inode
)
263 BUG_ON(!list_empty(&inode
->i_lru
));
264 __destroy_inode(inode
);
265 if (inode
->i_sb
->s_op
->destroy_inode
)
266 inode
->i_sb
->s_op
->destroy_inode(inode
);
268 call_rcu(&inode
->i_rcu
, i_callback
);
272 * drop_nlink - directly drop an inode's link count
275 * This is a low-level filesystem helper to replace any
276 * direct filesystem manipulation of i_nlink. In cases
277 * where we are attempting to track writes to the
278 * filesystem, a decrement to zero means an imminent
279 * write when the file is truncated and actually unlinked
282 void drop_nlink(struct inode
*inode
)
284 WARN_ON(inode
->i_nlink
== 0);
287 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
289 EXPORT_SYMBOL(drop_nlink
);
292 * clear_nlink - directly zero an inode's link count
295 * This is a low-level filesystem helper to replace any
296 * direct filesystem manipulation of i_nlink. See
297 * drop_nlink() for why we care about i_nlink hitting zero.
299 void clear_nlink(struct inode
*inode
)
301 if (inode
->i_nlink
) {
302 inode
->__i_nlink
= 0;
303 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
306 EXPORT_SYMBOL(clear_nlink
);
309 * set_nlink - directly set an inode's link count
311 * @nlink: new nlink (should be non-zero)
313 * This is a low-level filesystem helper to replace any
314 * direct filesystem manipulation of i_nlink.
316 void set_nlink(struct inode
*inode
, unsigned int nlink
)
321 /* Yes, some filesystems do change nlink from zero to one */
322 if (inode
->i_nlink
== 0)
323 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
325 inode
->__i_nlink
= nlink
;
328 EXPORT_SYMBOL(set_nlink
);
331 * inc_nlink - directly increment an inode's link count
334 * This is a low-level filesystem helper to replace any
335 * direct filesystem manipulation of i_nlink. Currently,
336 * it is only here for parity with dec_nlink().
338 void inc_nlink(struct inode
*inode
)
340 if (unlikely(inode
->i_nlink
== 0)) {
341 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
342 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
347 EXPORT_SYMBOL(inc_nlink
);
349 static void __address_space_init_once(struct address_space
*mapping
)
351 INIT_RADIX_TREE(&mapping
->i_pages
, GFP_ATOMIC
| __GFP_ACCOUNT
);
352 init_rwsem(&mapping
->i_mmap_rwsem
);
353 INIT_LIST_HEAD(&mapping
->private_list
);
354 spin_lock_init(&mapping
->private_lock
);
355 mapping
->i_mmap
= RB_ROOT_CACHED
;
358 void address_space_init_once(struct address_space
*mapping
)
360 memset(mapping
, 0, sizeof(*mapping
));
361 __address_space_init_once(mapping
);
363 EXPORT_SYMBOL(address_space_init_once
);
366 * These are initializations that only need to be done
367 * once, because the fields are idempotent across use
368 * of the inode, so let the slab aware of that.
370 void inode_init_once(struct inode
*inode
)
372 memset(inode
, 0, sizeof(*inode
));
373 INIT_HLIST_NODE(&inode
->i_hash
);
374 INIT_LIST_HEAD(&inode
->i_devices
);
375 INIT_LIST_HEAD(&inode
->i_io_list
);
376 INIT_LIST_HEAD(&inode
->i_wb_list
);
377 INIT_LIST_HEAD(&inode
->i_lru
);
378 __address_space_init_once(&inode
->i_data
);
379 i_size_ordered_init(inode
);
381 EXPORT_SYMBOL(inode_init_once
);
383 static void init_once(void *foo
)
385 struct inode
*inode
= (struct inode
*) foo
;
387 inode_init_once(inode
);
391 * inode->i_lock must be held
393 void __iget(struct inode
*inode
)
395 atomic_inc(&inode
->i_count
);
399 * get additional reference to inode; caller must already hold one.
401 void ihold(struct inode
*inode
)
403 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
405 EXPORT_SYMBOL(ihold
);
407 static void inode_lru_list_add(struct inode
*inode
)
409 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
410 this_cpu_inc(nr_unused
);
412 inode
->i_state
|= I_REFERENCED
;
416 * Add inode to LRU if needed (inode is unused and clean).
418 * Needs inode->i_lock held.
420 void inode_add_lru(struct inode
*inode
)
422 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
423 I_FREEING
| I_WILL_FREE
)) &&
424 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& SB_ACTIVE
)
425 inode_lru_list_add(inode
);
429 static void inode_lru_list_del(struct inode
*inode
)
432 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
433 this_cpu_dec(nr_unused
);
437 * inode_sb_list_add - add inode to the superblock list of inodes
438 * @inode: inode to add
440 void inode_sb_list_add(struct inode
*inode
)
442 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
443 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
444 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
446 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
448 static inline void inode_sb_list_del(struct inode
*inode
)
450 if (!list_empty(&inode
->i_sb_list
)) {
451 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
452 list_del_init(&inode
->i_sb_list
);
453 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
457 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
461 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
463 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
464 return tmp
& i_hash_mask
;
468 * __insert_inode_hash - hash an inode
469 * @inode: unhashed inode
470 * @hashval: unsigned long value used to locate this object in the
473 * Add an inode to the inode hash for this superblock.
475 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
477 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
479 spin_lock(&inode_hash_lock
);
480 spin_lock(&inode
->i_lock
);
481 hlist_add_head(&inode
->i_hash
, b
);
482 spin_unlock(&inode
->i_lock
);
483 spin_unlock(&inode_hash_lock
);
485 EXPORT_SYMBOL(__insert_inode_hash
);
488 * __remove_inode_hash - remove an inode from the hash
489 * @inode: inode to unhash
491 * Remove an inode from the superblock.
493 void __remove_inode_hash(struct inode
*inode
)
495 spin_lock(&inode_hash_lock
);
496 spin_lock(&inode
->i_lock
);
497 hlist_del_init(&inode
->i_hash
);
498 spin_unlock(&inode
->i_lock
);
499 spin_unlock(&inode_hash_lock
);
501 EXPORT_SYMBOL(__remove_inode_hash
);
503 void clear_inode(struct inode
*inode
)
506 * We have to cycle the i_pages lock here because reclaim can be in the
507 * process of removing the last page (in __delete_from_page_cache())
508 * and we must not free the mapping under it.
510 xa_lock_irq(&inode
->i_data
.i_pages
);
511 BUG_ON(inode
->i_data
.nrpages
);
512 BUG_ON(inode
->i_data
.nrexceptional
);
513 xa_unlock_irq(&inode
->i_data
.i_pages
);
514 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
515 BUG_ON(!(inode
->i_state
& I_FREEING
));
516 BUG_ON(inode
->i_state
& I_CLEAR
);
517 BUG_ON(!list_empty(&inode
->i_wb_list
));
518 /* don't need i_lock here, no concurrent mods to i_state */
519 inode
->i_state
= I_FREEING
| I_CLEAR
;
521 EXPORT_SYMBOL(clear_inode
);
524 * Free the inode passed in, removing it from the lists it is still connected
525 * to. We remove any pages still attached to the inode and wait for any IO that
526 * is still in progress before finally destroying the inode.
528 * An inode must already be marked I_FREEING so that we avoid the inode being
529 * moved back onto lists if we race with other code that manipulates the lists
530 * (e.g. writeback_single_inode). The caller is responsible for setting this.
532 * An inode must already be removed from the LRU list before being evicted from
533 * the cache. This should occur atomically with setting the I_FREEING state
534 * flag, so no inodes here should ever be on the LRU when being evicted.
536 static void evict(struct inode
*inode
)
538 const struct super_operations
*op
= inode
->i_sb
->s_op
;
540 BUG_ON(!(inode
->i_state
& I_FREEING
));
541 BUG_ON(!list_empty(&inode
->i_lru
));
543 if (!list_empty(&inode
->i_io_list
))
544 inode_io_list_del(inode
);
546 inode_sb_list_del(inode
);
549 * Wait for flusher thread to be done with the inode so that filesystem
550 * does not start destroying it while writeback is still running. Since
551 * the inode has I_FREEING set, flusher thread won't start new work on
552 * the inode. We just have to wait for running writeback to finish.
554 inode_wait_for_writeback(inode
);
556 if (op
->evict_inode
) {
557 op
->evict_inode(inode
);
559 truncate_inode_pages_final(&inode
->i_data
);
562 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
564 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
567 remove_inode_hash(inode
);
569 spin_lock(&inode
->i_lock
);
570 wake_up_bit(&inode
->i_state
, __I_NEW
);
571 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
572 spin_unlock(&inode
->i_lock
);
574 destroy_inode(inode
);
578 * dispose_list - dispose of the contents of a local list
579 * @head: the head of the list to free
581 * Dispose-list gets a local list with local inodes in it, so it doesn't
582 * need to worry about list corruption and SMP locks.
584 static void dispose_list(struct list_head
*head
)
586 while (!list_empty(head
)) {
589 inode
= list_first_entry(head
, struct inode
, i_lru
);
590 list_del_init(&inode
->i_lru
);
598 * evict_inodes - evict all evictable inodes for a superblock
599 * @sb: superblock to operate on
601 * Make sure that no inodes with zero refcount are retained. This is
602 * called by superblock shutdown after having SB_ACTIVE flag removed,
603 * so any inode reaching zero refcount during or after that call will
604 * be immediately evicted.
606 void evict_inodes(struct super_block
*sb
)
608 struct inode
*inode
, *next
;
612 spin_lock(&sb
->s_inode_list_lock
);
613 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
614 if (atomic_read(&inode
->i_count
))
617 spin_lock(&inode
->i_lock
);
618 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
619 spin_unlock(&inode
->i_lock
);
623 inode
->i_state
|= I_FREEING
;
624 inode_lru_list_del(inode
);
625 spin_unlock(&inode
->i_lock
);
626 list_add(&inode
->i_lru
, &dispose
);
629 * We can have a ton of inodes to evict at unmount time given
630 * enough memory, check to see if we need to go to sleep for a
631 * bit so we don't livelock.
633 if (need_resched()) {
634 spin_unlock(&sb
->s_inode_list_lock
);
636 dispose_list(&dispose
);
640 spin_unlock(&sb
->s_inode_list_lock
);
642 dispose_list(&dispose
);
644 EXPORT_SYMBOL_GPL(evict_inodes
);
647 * invalidate_inodes - attempt to free all inodes on a superblock
648 * @sb: superblock to operate on
649 * @kill_dirty: flag to guide handling of dirty inodes
651 * Attempts to free all inodes for a given superblock. If there were any
652 * busy inodes return a non-zero value, else zero.
653 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
656 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
659 struct inode
*inode
, *next
;
662 spin_lock(&sb
->s_inode_list_lock
);
663 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
664 spin_lock(&inode
->i_lock
);
665 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
666 spin_unlock(&inode
->i_lock
);
669 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
670 spin_unlock(&inode
->i_lock
);
674 if (atomic_read(&inode
->i_count
)) {
675 spin_unlock(&inode
->i_lock
);
680 inode
->i_state
|= I_FREEING
;
681 inode_lru_list_del(inode
);
682 spin_unlock(&inode
->i_lock
);
683 list_add(&inode
->i_lru
, &dispose
);
685 spin_unlock(&sb
->s_inode_list_lock
);
687 dispose_list(&dispose
);
693 * Isolate the inode from the LRU in preparation for freeing it.
695 * Any inodes which are pinned purely because of attached pagecache have their
696 * pagecache removed. If the inode has metadata buffers attached to
697 * mapping->private_list then try to remove them.
699 * If the inode has the I_REFERENCED flag set, then it means that it has been
700 * used recently - the flag is set in iput_final(). When we encounter such an
701 * inode, clear the flag and move it to the back of the LRU so it gets another
702 * pass through the LRU before it gets reclaimed. This is necessary because of
703 * the fact we are doing lazy LRU updates to minimise lock contention so the
704 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
705 * with this flag set because they are the inodes that are out of order.
707 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
708 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
710 struct list_head
*freeable
= arg
;
711 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
714 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
715 * If we fail to get the lock, just skip it.
717 if (!spin_trylock(&inode
->i_lock
))
721 * Referenced or dirty inodes are still in use. Give them another pass
722 * through the LRU as we canot reclaim them now.
724 if (atomic_read(&inode
->i_count
) ||
725 (inode
->i_state
& ~I_REFERENCED
)) {
726 list_lru_isolate(lru
, &inode
->i_lru
);
727 spin_unlock(&inode
->i_lock
);
728 this_cpu_dec(nr_unused
);
732 /* recently referenced inodes get one more pass */
733 if (inode
->i_state
& I_REFERENCED
) {
734 inode
->i_state
&= ~I_REFERENCED
;
735 spin_unlock(&inode
->i_lock
);
739 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
741 spin_unlock(&inode
->i_lock
);
742 spin_unlock(lru_lock
);
743 if (remove_inode_buffers(inode
)) {
745 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
746 if (current_is_kswapd())
747 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
749 __count_vm_events(PGINODESTEAL
, reap
);
750 if (current
->reclaim_state
)
751 current
->reclaim_state
->reclaimed_slab
+= reap
;
758 WARN_ON(inode
->i_state
& I_NEW
);
759 inode
->i_state
|= I_FREEING
;
760 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
761 spin_unlock(&inode
->i_lock
);
763 this_cpu_dec(nr_unused
);
768 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
769 * This is called from the superblock shrinker function with a number of inodes
770 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
771 * then are freed outside inode_lock by dispose_list().
773 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
778 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
779 inode_lru_isolate
, &freeable
);
780 dispose_list(&freeable
);
784 static void __wait_on_freeing_inode(struct inode
*inode
);
786 * Called with the inode lock held.
788 static struct inode
*find_inode(struct super_block
*sb
,
789 struct hlist_head
*head
,
790 int (*test
)(struct inode
*, void *),
793 struct inode
*inode
= NULL
;
796 hlist_for_each_entry(inode
, head
, i_hash
) {
797 if (inode
->i_sb
!= sb
)
799 if (!test(inode
, data
))
801 spin_lock(&inode
->i_lock
);
802 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
803 __wait_on_freeing_inode(inode
);
807 spin_unlock(&inode
->i_lock
);
814 * find_inode_fast is the fast path version of find_inode, see the comment at
815 * iget_locked for details.
817 static struct inode
*find_inode_fast(struct super_block
*sb
,
818 struct hlist_head
*head
, unsigned long ino
)
820 struct inode
*inode
= NULL
;
823 hlist_for_each_entry(inode
, head
, i_hash
) {
824 if (inode
->i_ino
!= ino
)
826 if (inode
->i_sb
!= sb
)
828 spin_lock(&inode
->i_lock
);
829 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
830 __wait_on_freeing_inode(inode
);
834 spin_unlock(&inode
->i_lock
);
841 * Each cpu owns a range of LAST_INO_BATCH numbers.
842 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
843 * to renew the exhausted range.
845 * This does not significantly increase overflow rate because every CPU can
846 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
847 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
848 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
849 * overflow rate by 2x, which does not seem too significant.
851 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
852 * error if st_ino won't fit in target struct field. Use 32bit counter
853 * here to attempt to avoid that.
855 #define LAST_INO_BATCH 1024
856 static DEFINE_PER_CPU(unsigned int, last_ino
);
858 unsigned int get_next_ino(void)
860 unsigned int *p
= &get_cpu_var(last_ino
);
861 unsigned int res
= *p
;
864 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
865 static atomic_t shared_last_ino
;
866 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
868 res
= next
- LAST_INO_BATCH
;
873 /* get_next_ino should not provide a 0 inode number */
877 put_cpu_var(last_ino
);
880 EXPORT_SYMBOL(get_next_ino
);
883 * new_inode_pseudo - obtain an inode
886 * Allocates a new inode for given superblock.
887 * Inode wont be chained in superblock s_inodes list
889 * - fs can't be unmount
890 * - quotas, fsnotify, writeback can't work
892 struct inode
*new_inode_pseudo(struct super_block
*sb
)
894 struct inode
*inode
= alloc_inode(sb
);
897 spin_lock(&inode
->i_lock
);
899 spin_unlock(&inode
->i_lock
);
900 INIT_LIST_HEAD(&inode
->i_sb_list
);
906 * new_inode - obtain an inode
909 * Allocates a new inode for given superblock. The default gfp_mask
910 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
911 * If HIGHMEM pages are unsuitable or it is known that pages allocated
912 * for the page cache are not reclaimable or migratable,
913 * mapping_set_gfp_mask() must be called with suitable flags on the
914 * newly created inode's mapping
917 struct inode
*new_inode(struct super_block
*sb
)
921 spin_lock_prefetch(&sb
->s_inode_list_lock
);
923 inode
= new_inode_pseudo(sb
);
925 inode_sb_list_add(inode
);
928 EXPORT_SYMBOL(new_inode
);
930 #ifdef CONFIG_DEBUG_LOCK_ALLOC
931 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
933 if (S_ISDIR(inode
->i_mode
)) {
934 struct file_system_type
*type
= inode
->i_sb
->s_type
;
936 /* Set new key only if filesystem hasn't already changed it */
937 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
939 * ensure nobody is actually holding i_mutex
941 // mutex_destroy(&inode->i_mutex);
942 init_rwsem(&inode
->i_rwsem
);
943 lockdep_set_class(&inode
->i_rwsem
,
944 &type
->i_mutex_dir_key
);
948 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
952 * unlock_new_inode - clear the I_NEW state and wake up any waiters
953 * @inode: new inode to unlock
955 * Called when the inode is fully initialised to clear the new state of the
956 * inode and wake up anyone waiting for the inode to finish initialisation.
958 void unlock_new_inode(struct inode
*inode
)
960 lockdep_annotate_inode_mutex_key(inode
);
961 spin_lock(&inode
->i_lock
);
962 WARN_ON(!(inode
->i_state
& I_NEW
));
963 inode
->i_state
&= ~I_NEW
;
965 wake_up_bit(&inode
->i_state
, __I_NEW
);
966 spin_unlock(&inode
->i_lock
);
968 EXPORT_SYMBOL(unlock_new_inode
);
971 * lock_two_nondirectories - take two i_mutexes on non-directory objects
973 * Lock any non-NULL argument that is not a directory.
974 * Zero, one or two objects may be locked by this function.
976 * @inode1: first inode to lock
977 * @inode2: second inode to lock
979 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
982 swap(inode1
, inode2
);
984 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
986 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
987 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
989 EXPORT_SYMBOL(lock_two_nondirectories
);
992 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
993 * @inode1: first inode to unlock
994 * @inode2: second inode to unlock
996 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
998 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
999 inode_unlock(inode1
);
1000 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1001 inode_unlock(inode2
);
1003 EXPORT_SYMBOL(unlock_two_nondirectories
);
1006 * iget5_locked - obtain an inode from a mounted file system
1007 * @sb: super block of file system
1008 * @hashval: hash value (usually inode number) to get
1009 * @test: callback used for comparisons between inodes
1010 * @set: callback used to initialize a new struct inode
1011 * @data: opaque data pointer to pass to @test and @set
1013 * Search for the inode specified by @hashval and @data in the inode cache,
1014 * and if present it is return it with an increased reference count. This is
1015 * a generalized version of iget_locked() for file systems where the inode
1016 * number is not sufficient for unique identification of an inode.
1018 * If the inode is not in cache, allocate a new inode and return it locked,
1019 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1020 * before unlocking it via unlock_new_inode().
1022 * Note both @test and @set are called with the inode_hash_lock held, so can't
1025 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1026 int (*test
)(struct inode
*, void *),
1027 int (*set
)(struct inode
*, void *), void *data
)
1029 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1030 struct inode
*inode
;
1032 spin_lock(&inode_hash_lock
);
1033 inode
= find_inode(sb
, head
, test
, data
);
1034 spin_unlock(&inode_hash_lock
);
1037 wait_on_inode(inode
);
1038 if (unlikely(inode_unhashed(inode
))) {
1045 inode
= alloc_inode(sb
);
1049 spin_lock(&inode_hash_lock
);
1050 /* We released the lock, so.. */
1051 old
= find_inode(sb
, head
, test
, data
);
1053 if (set(inode
, data
))
1056 spin_lock(&inode
->i_lock
);
1057 inode
->i_state
= I_NEW
;
1058 hlist_add_head(&inode
->i_hash
, head
);
1059 spin_unlock(&inode
->i_lock
);
1060 inode_sb_list_add(inode
);
1061 spin_unlock(&inode_hash_lock
);
1063 /* Return the locked inode with I_NEW set, the
1064 * caller is responsible for filling in the contents
1070 * Uhhuh, somebody else created the same inode under
1071 * us. Use the old inode instead of the one we just
1074 spin_unlock(&inode_hash_lock
);
1075 destroy_inode(inode
);
1077 wait_on_inode(inode
);
1078 if (unlikely(inode_unhashed(inode
))) {
1086 spin_unlock(&inode_hash_lock
);
1087 destroy_inode(inode
);
1090 EXPORT_SYMBOL(iget5_locked
);
1093 * iget_locked - obtain an inode from a mounted file system
1094 * @sb: super block of file system
1095 * @ino: inode number to get
1097 * Search for the inode specified by @ino in the inode cache and if present
1098 * return it with an increased reference count. This is for file systems
1099 * where the inode number is sufficient for unique identification of an inode.
1101 * If the inode is not in cache, allocate a new inode and return it locked,
1102 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1103 * before unlocking it via unlock_new_inode().
1105 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1107 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1108 struct inode
*inode
;
1110 spin_lock(&inode_hash_lock
);
1111 inode
= find_inode_fast(sb
, head
, ino
);
1112 spin_unlock(&inode_hash_lock
);
1114 wait_on_inode(inode
);
1115 if (unlikely(inode_unhashed(inode
))) {
1122 inode
= alloc_inode(sb
);
1126 spin_lock(&inode_hash_lock
);
1127 /* We released the lock, so.. */
1128 old
= find_inode_fast(sb
, head
, ino
);
1131 spin_lock(&inode
->i_lock
);
1132 inode
->i_state
= I_NEW
;
1133 hlist_add_head(&inode
->i_hash
, head
);
1134 spin_unlock(&inode
->i_lock
);
1135 inode_sb_list_add(inode
);
1136 spin_unlock(&inode_hash_lock
);
1138 /* Return the locked inode with I_NEW set, the
1139 * caller is responsible for filling in the contents
1145 * Uhhuh, somebody else created the same inode under
1146 * us. Use the old inode instead of the one we just
1149 spin_unlock(&inode_hash_lock
);
1150 destroy_inode(inode
);
1152 wait_on_inode(inode
);
1153 if (unlikely(inode_unhashed(inode
))) {
1160 EXPORT_SYMBOL(iget_locked
);
1163 * search the inode cache for a matching inode number.
1164 * If we find one, then the inode number we are trying to
1165 * allocate is not unique and so we should not use it.
1167 * Returns 1 if the inode number is unique, 0 if it is not.
1169 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1171 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1172 struct inode
*inode
;
1174 spin_lock(&inode_hash_lock
);
1175 hlist_for_each_entry(inode
, b
, i_hash
) {
1176 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1177 spin_unlock(&inode_hash_lock
);
1181 spin_unlock(&inode_hash_lock
);
1187 * iunique - get a unique inode number
1189 * @max_reserved: highest reserved inode number
1191 * Obtain an inode number that is unique on the system for a given
1192 * superblock. This is used by file systems that have no natural
1193 * permanent inode numbering system. An inode number is returned that
1194 * is higher than the reserved limit but unique.
1197 * With a large number of inodes live on the file system this function
1198 * currently becomes quite slow.
1200 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1203 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1204 * error if st_ino won't fit in target struct field. Use 32bit counter
1205 * here to attempt to avoid that.
1207 static DEFINE_SPINLOCK(iunique_lock
);
1208 static unsigned int counter
;
1211 spin_lock(&iunique_lock
);
1213 if (counter
<= max_reserved
)
1214 counter
= max_reserved
+ 1;
1216 } while (!test_inode_iunique(sb
, res
));
1217 spin_unlock(&iunique_lock
);
1221 EXPORT_SYMBOL(iunique
);
1223 struct inode
*igrab(struct inode
*inode
)
1225 spin_lock(&inode
->i_lock
);
1226 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1228 spin_unlock(&inode
->i_lock
);
1230 spin_unlock(&inode
->i_lock
);
1232 * Handle the case where s_op->clear_inode is not been
1233 * called yet, and somebody is calling igrab
1234 * while the inode is getting freed.
1240 EXPORT_SYMBOL(igrab
);
1243 * ilookup5_nowait - search for an inode in the inode cache
1244 * @sb: super block of file system to search
1245 * @hashval: hash value (usually inode number) to search for
1246 * @test: callback used for comparisons between inodes
1247 * @data: opaque data pointer to pass to @test
1249 * Search for the inode specified by @hashval and @data in the inode cache.
1250 * If the inode is in the cache, the inode is returned with an incremented
1253 * Note: I_NEW is not waited upon so you have to be very careful what you do
1254 * with the returned inode. You probably should be using ilookup5() instead.
1256 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1258 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1259 int (*test
)(struct inode
*, void *), void *data
)
1261 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1262 struct inode
*inode
;
1264 spin_lock(&inode_hash_lock
);
1265 inode
= find_inode(sb
, head
, test
, data
);
1266 spin_unlock(&inode_hash_lock
);
1270 EXPORT_SYMBOL(ilookup5_nowait
);
1273 * ilookup5 - search for an inode in the inode cache
1274 * @sb: super block of file system to search
1275 * @hashval: hash value (usually inode number) to search for
1276 * @test: callback used for comparisons between inodes
1277 * @data: opaque data pointer to pass to @test
1279 * Search for the inode specified by @hashval and @data in the inode cache,
1280 * and if the inode is in the cache, return the inode with an incremented
1281 * reference count. Waits on I_NEW before returning the inode.
1282 * returned with an incremented reference count.
1284 * This is a generalized version of ilookup() for file systems where the
1285 * inode number is not sufficient for unique identification of an inode.
1287 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1289 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1290 int (*test
)(struct inode
*, void *), void *data
)
1292 struct inode
*inode
;
1294 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1296 wait_on_inode(inode
);
1297 if (unlikely(inode_unhashed(inode
))) {
1304 EXPORT_SYMBOL(ilookup5
);
1307 * ilookup - search for an inode in the inode cache
1308 * @sb: super block of file system to search
1309 * @ino: inode number to search for
1311 * Search for the inode @ino in the inode cache, and if the inode is in the
1312 * cache, the inode is returned with an incremented reference count.
1314 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1316 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1317 struct inode
*inode
;
1319 spin_lock(&inode_hash_lock
);
1320 inode
= find_inode_fast(sb
, head
, ino
);
1321 spin_unlock(&inode_hash_lock
);
1324 wait_on_inode(inode
);
1325 if (unlikely(inode_unhashed(inode
))) {
1332 EXPORT_SYMBOL(ilookup
);
1335 * find_inode_nowait - find an inode in the inode cache
1336 * @sb: super block of file system to search
1337 * @hashval: hash value (usually inode number) to search for
1338 * @match: callback used for comparisons between inodes
1339 * @data: opaque data pointer to pass to @match
1341 * Search for the inode specified by @hashval and @data in the inode
1342 * cache, where the helper function @match will return 0 if the inode
1343 * does not match, 1 if the inode does match, and -1 if the search
1344 * should be stopped. The @match function must be responsible for
1345 * taking the i_lock spin_lock and checking i_state for an inode being
1346 * freed or being initialized, and incrementing the reference count
1347 * before returning 1. It also must not sleep, since it is called with
1348 * the inode_hash_lock spinlock held.
1350 * This is a even more generalized version of ilookup5() when the
1351 * function must never block --- find_inode() can block in
1352 * __wait_on_freeing_inode() --- or when the caller can not increment
1353 * the reference count because the resulting iput() might cause an
1354 * inode eviction. The tradeoff is that the @match funtion must be
1355 * very carefully implemented.
1357 struct inode
*find_inode_nowait(struct super_block
*sb
,
1358 unsigned long hashval
,
1359 int (*match
)(struct inode
*, unsigned long,
1363 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1364 struct inode
*inode
, *ret_inode
= NULL
;
1367 spin_lock(&inode_hash_lock
);
1368 hlist_for_each_entry(inode
, head
, i_hash
) {
1369 if (inode
->i_sb
!= sb
)
1371 mval
= match(inode
, hashval
, data
);
1379 spin_unlock(&inode_hash_lock
);
1382 EXPORT_SYMBOL(find_inode_nowait
);
1384 int insert_inode_locked(struct inode
*inode
)
1386 struct super_block
*sb
= inode
->i_sb
;
1387 ino_t ino
= inode
->i_ino
;
1388 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1391 struct inode
*old
= NULL
;
1392 spin_lock(&inode_hash_lock
);
1393 hlist_for_each_entry(old
, head
, i_hash
) {
1394 if (old
->i_ino
!= ino
)
1396 if (old
->i_sb
!= sb
)
1398 spin_lock(&old
->i_lock
);
1399 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1400 spin_unlock(&old
->i_lock
);
1406 spin_lock(&inode
->i_lock
);
1407 inode
->i_state
|= I_NEW
;
1408 hlist_add_head(&inode
->i_hash
, head
);
1409 spin_unlock(&inode
->i_lock
);
1410 spin_unlock(&inode_hash_lock
);
1414 spin_unlock(&old
->i_lock
);
1415 spin_unlock(&inode_hash_lock
);
1417 if (unlikely(!inode_unhashed(old
))) {
1424 EXPORT_SYMBOL(insert_inode_locked
);
1426 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1427 int (*test
)(struct inode
*, void *), void *data
)
1429 struct super_block
*sb
= inode
->i_sb
;
1430 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1433 struct inode
*old
= NULL
;
1435 spin_lock(&inode_hash_lock
);
1436 hlist_for_each_entry(old
, head
, i_hash
) {
1437 if (old
->i_sb
!= sb
)
1439 if (!test(old
, data
))
1441 spin_lock(&old
->i_lock
);
1442 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1443 spin_unlock(&old
->i_lock
);
1449 spin_lock(&inode
->i_lock
);
1450 inode
->i_state
|= I_NEW
;
1451 hlist_add_head(&inode
->i_hash
, head
);
1452 spin_unlock(&inode
->i_lock
);
1453 spin_unlock(&inode_hash_lock
);
1457 spin_unlock(&old
->i_lock
);
1458 spin_unlock(&inode_hash_lock
);
1460 if (unlikely(!inode_unhashed(old
))) {
1467 EXPORT_SYMBOL(insert_inode_locked4
);
1470 int generic_delete_inode(struct inode
*inode
)
1474 EXPORT_SYMBOL(generic_delete_inode
);
1477 * Called when we're dropping the last reference
1480 * Call the FS "drop_inode()" function, defaulting to
1481 * the legacy UNIX filesystem behaviour. If it tells
1482 * us to evict inode, do so. Otherwise, retain inode
1483 * in cache if fs is alive, sync and evict if fs is
1486 static void iput_final(struct inode
*inode
)
1488 struct super_block
*sb
= inode
->i_sb
;
1489 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1492 WARN_ON(inode
->i_state
& I_NEW
);
1495 drop
= op
->drop_inode(inode
);
1497 drop
= generic_drop_inode(inode
);
1499 if (!drop
&& (sb
->s_flags
& SB_ACTIVE
)) {
1500 inode_add_lru(inode
);
1501 spin_unlock(&inode
->i_lock
);
1506 inode
->i_state
|= I_WILL_FREE
;
1507 spin_unlock(&inode
->i_lock
);
1508 write_inode_now(inode
, 1);
1509 spin_lock(&inode
->i_lock
);
1510 WARN_ON(inode
->i_state
& I_NEW
);
1511 inode
->i_state
&= ~I_WILL_FREE
;
1514 inode
->i_state
|= I_FREEING
;
1515 if (!list_empty(&inode
->i_lru
))
1516 inode_lru_list_del(inode
);
1517 spin_unlock(&inode
->i_lock
);
1523 * iput - put an inode
1524 * @inode: inode to put
1526 * Puts an inode, dropping its usage count. If the inode use count hits
1527 * zero, the inode is then freed and may also be destroyed.
1529 * Consequently, iput() can sleep.
1531 void iput(struct inode
*inode
)
1535 BUG_ON(inode
->i_state
& I_CLEAR
);
1537 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1538 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1539 atomic_inc(&inode
->i_count
);
1540 spin_unlock(&inode
->i_lock
);
1541 trace_writeback_lazytime_iput(inode
);
1542 mark_inode_dirty_sync(inode
);
1548 EXPORT_SYMBOL(iput
);
1551 * bmap - find a block number in a file
1552 * @inode: inode of file
1553 * @block: block to find
1555 * Returns the block number on the device holding the inode that
1556 * is the disk block number for the block of the file requested.
1557 * That is, asked for block 4 of inode 1 the function will return the
1558 * disk block relative to the disk start that holds that block of the
1561 sector_t
bmap(struct inode
*inode
, sector_t block
)
1564 if (inode
->i_mapping
->a_ops
->bmap
)
1565 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1568 EXPORT_SYMBOL(bmap
);
1571 * Update times in overlayed inode from underlying real inode
1573 static void update_ovl_inode_times(struct dentry
*dentry
, struct inode
*inode
,
1576 struct dentry
*upperdentry
;
1579 * Nothing to do if in rcu or if non-overlayfs
1581 if (rcu
|| likely(!(dentry
->d_flags
& DCACHE_OP_REAL
)))
1584 upperdentry
= d_real(dentry
, NULL
, 0, D_REAL_UPPER
);
1587 * If file is on lower then we can't update atime, so no worries about
1588 * stale mtime/ctime.
1591 struct inode
*realinode
= d_inode(upperdentry
);
1593 if ((!timespec_equal(&inode
->i_mtime
, &realinode
->i_mtime
) ||
1594 !timespec_equal(&inode
->i_ctime
, &realinode
->i_ctime
))) {
1595 inode
->i_mtime
= realinode
->i_mtime
;
1596 inode
->i_ctime
= realinode
->i_ctime
;
1602 * With relative atime, only update atime if the previous atime is
1603 * earlier than either the ctime or mtime or if at least a day has
1604 * passed since the last atime update.
1606 static int relatime_need_update(const struct path
*path
, struct inode
*inode
,
1607 struct timespec now
, bool rcu
)
1610 if (!(path
->mnt
->mnt_flags
& MNT_RELATIME
))
1613 update_ovl_inode_times(path
->dentry
, inode
, rcu
);
1615 * Is mtime younger than atime? If yes, update atime:
1617 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1620 * Is ctime younger than atime? If yes, update atime:
1622 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1626 * Is the previous atime value older than a day? If yes,
1629 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1632 * Good, we can skip the atime update:
1637 int generic_update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1639 int iflags
= I_DIRTY_TIME
;
1642 if (flags
& S_ATIME
)
1643 inode
->i_atime
= *time
;
1644 if (flags
& S_VERSION
)
1645 dirty
= inode_maybe_inc_iversion(inode
, false);
1646 if (flags
& S_CTIME
)
1647 inode
->i_ctime
= *time
;
1648 if (flags
& S_MTIME
)
1649 inode
->i_mtime
= *time
;
1650 if ((flags
& (S_ATIME
| S_CTIME
| S_MTIME
)) &&
1651 !(inode
->i_sb
->s_flags
& SB_LAZYTIME
))
1655 iflags
|= I_DIRTY_SYNC
;
1656 __mark_inode_dirty(inode
, iflags
);
1659 EXPORT_SYMBOL(generic_update_time
);
1662 * This does the actual work of updating an inodes time or version. Must have
1663 * had called mnt_want_write() before calling this.
1665 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1667 int (*update_time
)(struct inode
*, struct timespec
*, int);
1669 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1670 generic_update_time
;
1672 return update_time(inode
, time
, flags
);
1676 * touch_atime - update the access time
1677 * @path: the &struct path to update
1678 * @inode: inode to update
1680 * Update the accessed time on an inode and mark it for writeback.
1681 * This function automatically handles read only file systems and media,
1682 * as well as the "noatime" flag and inode specific "noatime" markers.
1684 bool __atime_needs_update(const struct path
*path
, struct inode
*inode
,
1687 struct vfsmount
*mnt
= path
->mnt
;
1688 struct timespec now
;
1690 if (inode
->i_flags
& S_NOATIME
)
1693 /* Atime updates will likely cause i_uid and i_gid to be written
1694 * back improprely if their true value is unknown to the vfs.
1696 if (HAS_UNMAPPED_ID(inode
))
1699 if (IS_NOATIME(inode
))
1701 if ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1704 if (mnt
->mnt_flags
& MNT_NOATIME
)
1706 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1709 now
= current_time(inode
);
1711 if (!relatime_need_update(path
, inode
, now
, rcu
))
1714 if (timespec_equal(&inode
->i_atime
, &now
))
1720 void touch_atime(const struct path
*path
)
1722 struct vfsmount
*mnt
= path
->mnt
;
1723 struct inode
*inode
= d_inode(path
->dentry
);
1724 struct timespec now
;
1726 if (!__atime_needs_update(path
, inode
, false))
1729 if (!sb_start_write_trylock(inode
->i_sb
))
1732 if (__mnt_want_write(mnt
) != 0)
1735 * File systems can error out when updating inodes if they need to
1736 * allocate new space to modify an inode (such is the case for
1737 * Btrfs), but since we touch atime while walking down the path we
1738 * really don't care if we failed to update the atime of the file,
1739 * so just ignore the return value.
1740 * We may also fail on filesystems that have the ability to make parts
1741 * of the fs read only, e.g. subvolumes in Btrfs.
1743 now
= current_time(inode
);
1744 update_time(inode
, &now
, S_ATIME
);
1745 __mnt_drop_write(mnt
);
1747 sb_end_write(inode
->i_sb
);
1749 EXPORT_SYMBOL(touch_atime
);
1752 * The logic we want is
1754 * if suid or (sgid and xgrp)
1757 int should_remove_suid(struct dentry
*dentry
)
1759 umode_t mode
= d_inode(dentry
)->i_mode
;
1762 /* suid always must be killed */
1763 if (unlikely(mode
& S_ISUID
))
1764 kill
= ATTR_KILL_SUID
;
1767 * sgid without any exec bits is just a mandatory locking mark; leave
1768 * it alone. If some exec bits are set, it's a real sgid; kill it.
1770 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1771 kill
|= ATTR_KILL_SGID
;
1773 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1778 EXPORT_SYMBOL(should_remove_suid
);
1781 * Return mask of changes for notify_change() that need to be done as a
1782 * response to write or truncate. Return 0 if nothing has to be changed.
1783 * Negative value on error (change should be denied).
1785 int dentry_needs_remove_privs(struct dentry
*dentry
)
1787 struct inode
*inode
= d_inode(dentry
);
1791 if (IS_NOSEC(inode
))
1794 mask
= should_remove_suid(dentry
);
1795 ret
= security_inode_need_killpriv(dentry
);
1799 mask
|= ATTR_KILL_PRIV
;
1803 static int __remove_privs(struct dentry
*dentry
, int kill
)
1805 struct iattr newattrs
;
1807 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1809 * Note we call this on write, so notify_change will not
1810 * encounter any conflicting delegations:
1812 return notify_change(dentry
, &newattrs
, NULL
);
1816 * Remove special file priviledges (suid, capabilities) when file is written
1819 int file_remove_privs(struct file
*file
)
1821 struct dentry
*dentry
= file_dentry(file
);
1822 struct inode
*inode
= file_inode(file
);
1826 /* Fast path for nothing security related */
1827 if (IS_NOSEC(inode
))
1830 kill
= dentry_needs_remove_privs(dentry
);
1834 error
= __remove_privs(dentry
, kill
);
1836 inode_has_no_xattr(inode
);
1840 EXPORT_SYMBOL(file_remove_privs
);
1843 * file_update_time - update mtime and ctime time
1844 * @file: file accessed
1846 * Update the mtime and ctime members of an inode and mark the inode
1847 * for writeback. Note that this function is meant exclusively for
1848 * usage in the file write path of filesystems, and filesystems may
1849 * choose to explicitly ignore update via this function with the
1850 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1851 * timestamps are handled by the server. This can return an error for
1852 * file systems who need to allocate space in order to update an inode.
1855 int file_update_time(struct file
*file
)
1857 struct inode
*inode
= file_inode(file
);
1858 struct timespec now
;
1862 /* First try to exhaust all avenues to not sync */
1863 if (IS_NOCMTIME(inode
))
1866 now
= current_time(inode
);
1867 if (!timespec_equal(&inode
->i_mtime
, &now
))
1870 if (!timespec_equal(&inode
->i_ctime
, &now
))
1873 if (IS_I_VERSION(inode
) && inode_iversion_need_inc(inode
))
1874 sync_it
|= S_VERSION
;
1879 /* Finally allowed to write? Takes lock. */
1880 if (__mnt_want_write_file(file
))
1883 ret
= update_time(inode
, &now
, sync_it
);
1884 __mnt_drop_write_file(file
);
1888 EXPORT_SYMBOL(file_update_time
);
1890 int inode_needs_sync(struct inode
*inode
)
1894 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1898 EXPORT_SYMBOL(inode_needs_sync
);
1901 * If we try to find an inode in the inode hash while it is being
1902 * deleted, we have to wait until the filesystem completes its
1903 * deletion before reporting that it isn't found. This function waits
1904 * until the deletion _might_ have completed. Callers are responsible
1905 * to recheck inode state.
1907 * It doesn't matter if I_NEW is not set initially, a call to
1908 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1911 static void __wait_on_freeing_inode(struct inode
*inode
)
1913 wait_queue_head_t
*wq
;
1914 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1915 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1916 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
1917 spin_unlock(&inode
->i_lock
);
1918 spin_unlock(&inode_hash_lock
);
1920 finish_wait(wq
, &wait
.wq_entry
);
1921 spin_lock(&inode_hash_lock
);
1924 static __initdata
unsigned long ihash_entries
;
1925 static int __init
set_ihash_entries(char *str
)
1929 ihash_entries
= simple_strtoul(str
, &str
, 0);
1932 __setup("ihash_entries=", set_ihash_entries
);
1935 * Initialize the waitqueues and inode hash table.
1937 void __init
inode_init_early(void)
1939 /* If hashes are distributed across NUMA nodes, defer
1940 * hash allocation until vmalloc space is available.
1946 alloc_large_system_hash("Inode-cache",
1947 sizeof(struct hlist_head
),
1950 HASH_EARLY
| HASH_ZERO
,
1957 void __init
inode_init(void)
1959 /* inode slab cache */
1960 inode_cachep
= kmem_cache_create("inode_cache",
1961 sizeof(struct inode
),
1963 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1964 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
),
1967 /* Hash may have been set up in inode_init_early */
1972 alloc_large_system_hash("Inode-cache",
1973 sizeof(struct hlist_head
),
1983 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1985 inode
->i_mode
= mode
;
1986 if (S_ISCHR(mode
)) {
1987 inode
->i_fop
= &def_chr_fops
;
1988 inode
->i_rdev
= rdev
;
1989 } else if (S_ISBLK(mode
)) {
1990 inode
->i_fop
= &def_blk_fops
;
1991 inode
->i_rdev
= rdev
;
1992 } else if (S_ISFIFO(mode
))
1993 inode
->i_fop
= &pipefifo_fops
;
1994 else if (S_ISSOCK(mode
))
1995 ; /* leave it no_open_fops */
1997 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1998 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
2001 EXPORT_SYMBOL(init_special_inode
);
2004 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2006 * @dir: Directory inode
2007 * @mode: mode of the new inode
2009 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
2012 inode
->i_uid
= current_fsuid();
2013 if (dir
&& dir
->i_mode
& S_ISGID
) {
2014 inode
->i_gid
= dir
->i_gid
;
2018 inode
->i_gid
= current_fsgid();
2019 inode
->i_mode
= mode
;
2021 EXPORT_SYMBOL(inode_init_owner
);
2024 * inode_owner_or_capable - check current task permissions to inode
2025 * @inode: inode being checked
2027 * Return true if current either has CAP_FOWNER in a namespace with the
2028 * inode owner uid mapped, or owns the file.
2030 bool inode_owner_or_capable(const struct inode
*inode
)
2032 struct user_namespace
*ns
;
2034 if (uid_eq(current_fsuid(), inode
->i_uid
))
2037 ns
= current_user_ns();
2038 if (kuid_has_mapping(ns
, inode
->i_uid
) && ns_capable(ns
, CAP_FOWNER
))
2042 EXPORT_SYMBOL(inode_owner_or_capable
);
2045 * Direct i/o helper functions
2047 static void __inode_dio_wait(struct inode
*inode
)
2049 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
2050 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
2053 prepare_to_wait(wq
, &q
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2054 if (atomic_read(&inode
->i_dio_count
))
2056 } while (atomic_read(&inode
->i_dio_count
));
2057 finish_wait(wq
, &q
.wq_entry
);
2061 * inode_dio_wait - wait for outstanding DIO requests to finish
2062 * @inode: inode to wait for
2064 * Waits for all pending direct I/O requests to finish so that we can
2065 * proceed with a truncate or equivalent operation.
2067 * Must be called under a lock that serializes taking new references
2068 * to i_dio_count, usually by inode->i_mutex.
2070 void inode_dio_wait(struct inode
*inode
)
2072 if (atomic_read(&inode
->i_dio_count
))
2073 __inode_dio_wait(inode
);
2075 EXPORT_SYMBOL(inode_dio_wait
);
2078 * inode_set_flags - atomically set some inode flags
2080 * Note: the caller should be holding i_mutex, or else be sure that
2081 * they have exclusive access to the inode structure (i.e., while the
2082 * inode is being instantiated). The reason for the cmpxchg() loop
2083 * --- which wouldn't be necessary if all code paths which modify
2084 * i_flags actually followed this rule, is that there is at least one
2085 * code path which doesn't today so we use cmpxchg() out of an abundance
2088 * In the long run, i_mutex is overkill, and we should probably look
2089 * at using the i_lock spinlock to protect i_flags, and then make sure
2090 * it is so documented in include/linux/fs.h and that all code follows
2091 * the locking convention!!
2093 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2096 unsigned int old_flags
, new_flags
;
2098 WARN_ON_ONCE(flags
& ~mask
);
2100 old_flags
= READ_ONCE(inode
->i_flags
);
2101 new_flags
= (old_flags
& ~mask
) | flags
;
2102 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
2103 new_flags
) != old_flags
));
2105 EXPORT_SYMBOL(inode_set_flags
);
2107 void inode_nohighmem(struct inode
*inode
)
2109 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2111 EXPORT_SYMBOL(inode_nohighmem
);
2114 * current_time - Return FS time
2117 * Return the current time truncated to the time granularity supported by
2120 * Note that inode and inode->sb cannot be NULL.
2121 * Otherwise, the function warns and returns time without truncation.
2123 struct timespec
current_time(struct inode
*inode
)
2125 struct timespec now
= current_kernel_time();
2127 if (unlikely(!inode
->i_sb
)) {
2128 WARN(1, "current_time() called with uninitialized super_block in the inode");
2132 return timespec_trunc(now
, inode
->i_sb
->s_time_gran
);
2134 EXPORT_SYMBOL(current_time
);