2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_errortag.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
30 #include "xfs_log_priv.h"
31 #include "xfs_log_recover.h"
32 #include "xfs_inode.h"
33 #include "xfs_trace.h"
34 #include "xfs_fsops.h"
35 #include "xfs_cksum.h"
36 #include "xfs_sysfs.h"
39 kmem_zone_t
*xfs_log_ticket_zone
;
41 /* Local miscellaneous function prototypes */
45 struct xlog_ticket
*ticket
,
46 struct xlog_in_core
**iclog
,
47 xfs_lsn_t
*commitlsnp
);
52 struct xfs_buftarg
*log_target
,
53 xfs_daddr_t blk_offset
,
62 struct xlog_in_core
*iclog
);
67 /* local state machine functions */
68 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
70 xlog_state_do_callback(
73 struct xlog_in_core
*iclog
);
75 xlog_state_get_iclog_space(
78 struct xlog_in_core
**iclog
,
79 struct xlog_ticket
*ticket
,
83 xlog_state_release_iclog(
85 struct xlog_in_core
*iclog
);
87 xlog_state_switch_iclogs(
89 struct xlog_in_core
*iclog
,
94 struct xlog_in_core
*iclog
);
101 xlog_regrant_reserve_log_space(
103 struct xlog_ticket
*ticket
);
105 xlog_ungrant_log_space(
107 struct xlog_ticket
*ticket
);
111 xlog_verify_dest_ptr(
115 xlog_verify_grant_tail(
120 struct xlog_in_core
*iclog
,
124 xlog_verify_tail_lsn(
126 struct xlog_in_core
*iclog
,
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
140 xlog_grant_sub_space(
145 int64_t head_val
= atomic64_read(head
);
151 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
155 space
+= log
->l_logsize
;
160 new = xlog_assign_grant_head_val(cycle
, space
);
161 head_val
= atomic64_cmpxchg(head
, old
, new);
162 } while (head_val
!= old
);
166 xlog_grant_add_space(
171 int64_t head_val
= atomic64_read(head
);
178 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
180 tmp
= log
->l_logsize
- space
;
189 new = xlog_assign_grant_head_val(cycle
, space
);
190 head_val
= atomic64_cmpxchg(head
, old
, new);
191 } while (head_val
!= old
);
195 xlog_grant_head_init(
196 struct xlog_grant_head
*head
)
198 xlog_assign_grant_head(&head
->grant
, 1, 0);
199 INIT_LIST_HEAD(&head
->waiters
);
200 spin_lock_init(&head
->lock
);
204 xlog_grant_head_wake_all(
205 struct xlog_grant_head
*head
)
207 struct xlog_ticket
*tic
;
209 spin_lock(&head
->lock
);
210 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
211 wake_up_process(tic
->t_task
);
212 spin_unlock(&head
->lock
);
216 xlog_ticket_reservation(
218 struct xlog_grant_head
*head
,
219 struct xlog_ticket
*tic
)
221 if (head
== &log
->l_write_head
) {
222 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
223 return tic
->t_unit_res
;
225 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
226 return tic
->t_unit_res
* tic
->t_cnt
;
228 return tic
->t_unit_res
;
233 xlog_grant_head_wake(
235 struct xlog_grant_head
*head
,
238 struct xlog_ticket
*tic
;
241 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
242 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
243 if (*free_bytes
< need_bytes
)
246 *free_bytes
-= need_bytes
;
247 trace_xfs_log_grant_wake_up(log
, tic
);
248 wake_up_process(tic
->t_task
);
255 xlog_grant_head_wait(
257 struct xlog_grant_head
*head
,
258 struct xlog_ticket
*tic
,
259 int need_bytes
) __releases(&head
->lock
)
260 __acquires(&head
->lock
)
262 list_add_tail(&tic
->t_queue
, &head
->waiters
);
265 if (XLOG_FORCED_SHUTDOWN(log
))
267 xlog_grant_push_ail(log
, need_bytes
);
269 __set_current_state(TASK_UNINTERRUPTIBLE
);
270 spin_unlock(&head
->lock
);
272 XFS_STATS_INC(log
->l_mp
, xs_sleep_logspace
);
274 trace_xfs_log_grant_sleep(log
, tic
);
276 trace_xfs_log_grant_wake(log
, tic
);
278 spin_lock(&head
->lock
);
279 if (XLOG_FORCED_SHUTDOWN(log
))
281 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
283 list_del_init(&tic
->t_queue
);
286 list_del_init(&tic
->t_queue
);
291 * Atomically get the log space required for a log ticket.
293 * Once a ticket gets put onto head->waiters, it will only return after the
294 * needed reservation is satisfied.
296 * This function is structured so that it has a lock free fast path. This is
297 * necessary because every new transaction reservation will come through this
298 * path. Hence any lock will be globally hot if we take it unconditionally on
301 * As tickets are only ever moved on and off head->waiters under head->lock, we
302 * only need to take that lock if we are going to add the ticket to the queue
303 * and sleep. We can avoid taking the lock if the ticket was never added to
304 * head->waiters because the t_queue list head will be empty and we hold the
305 * only reference to it so it can safely be checked unlocked.
308 xlog_grant_head_check(
310 struct xlog_grant_head
*head
,
311 struct xlog_ticket
*tic
,
317 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
320 * If there are other waiters on the queue then give them a chance at
321 * logspace before us. Wake up the first waiters, if we do not wake
322 * up all the waiters then go to sleep waiting for more free space,
323 * otherwise try to get some space for this transaction.
325 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
326 free_bytes
= xlog_space_left(log
, &head
->grant
);
327 if (!list_empty_careful(&head
->waiters
)) {
328 spin_lock(&head
->lock
);
329 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
330 free_bytes
< *need_bytes
) {
331 error
= xlog_grant_head_wait(log
, head
, tic
,
334 spin_unlock(&head
->lock
);
335 } else if (free_bytes
< *need_bytes
) {
336 spin_lock(&head
->lock
);
337 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
338 spin_unlock(&head
->lock
);
345 xlog_tic_reset_res(xlog_ticket_t
*tic
)
348 tic
->t_res_arr_sum
= 0;
349 tic
->t_res_num_ophdrs
= 0;
353 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
355 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
356 /* add to overflow and start again */
357 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
359 tic
->t_res_arr_sum
= 0;
362 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
363 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
364 tic
->t_res_arr_sum
+= len
;
369 * Replenish the byte reservation required by moving the grant write head.
373 struct xfs_mount
*mp
,
374 struct xlog_ticket
*tic
)
376 struct xlog
*log
= mp
->m_log
;
380 if (XLOG_FORCED_SHUTDOWN(log
))
383 XFS_STATS_INC(mp
, xs_try_logspace
);
386 * This is a new transaction on the ticket, so we need to change the
387 * transaction ID so that the next transaction has a different TID in
388 * the log. Just add one to the existing tid so that we can see chains
389 * of rolling transactions in the log easily.
393 xlog_grant_push_ail(log
, tic
->t_unit_res
);
395 tic
->t_curr_res
= tic
->t_unit_res
;
396 xlog_tic_reset_res(tic
);
401 trace_xfs_log_regrant(log
, tic
);
403 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
408 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
409 trace_xfs_log_regrant_exit(log
, tic
);
410 xlog_verify_grant_tail(log
);
415 * If we are failing, make sure the ticket doesn't have any current
416 * reservations. We don't want to add this back when the ticket/
417 * transaction gets cancelled.
420 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
425 * Reserve log space and return a ticket corresponding the reservation.
427 * Each reservation is going to reserve extra space for a log record header.
428 * When writes happen to the on-disk log, we don't subtract the length of the
429 * log record header from any reservation. By wasting space in each
430 * reservation, we prevent over allocation problems.
434 struct xfs_mount
*mp
,
437 struct xlog_ticket
**ticp
,
441 struct xlog
*log
= mp
->m_log
;
442 struct xlog_ticket
*tic
;
446 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
448 if (XLOG_FORCED_SHUTDOWN(log
))
451 XFS_STATS_INC(mp
, xs_try_logspace
);
453 ASSERT(*ticp
== NULL
);
454 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
455 KM_SLEEP
| KM_MAYFAIL
);
461 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
464 trace_xfs_log_reserve(log
, tic
);
466 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
471 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
472 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
473 trace_xfs_log_reserve_exit(log
, tic
);
474 xlog_verify_grant_tail(log
);
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
484 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
512 struct xfs_mount
*mp
,
513 struct xlog_ticket
*ticket
,
514 struct xlog_in_core
**iclog
,
517 struct xlog
*log
= mp
->m_log
;
520 if (XLOG_FORCED_SHUTDOWN(log
) ||
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
525 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
526 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
527 lsn
= (xfs_lsn_t
) -1;
533 trace_xfs_log_done_nonperm(log
, ticket
);
536 * Release ticket if not permanent reservation or a specific
537 * request has been made to release a permanent reservation.
539 xlog_ungrant_log_space(log
, ticket
);
541 trace_xfs_log_done_perm(log
, ticket
);
543 xlog_regrant_reserve_log_space(log
, ticket
);
544 /* If this ticket was a permanent reservation and we aren't
545 * trying to release it, reset the inited flags; so next time
546 * we write, a start record will be written out.
548 ticket
->t_flags
|= XLOG_TIC_INITED
;
551 xfs_log_ticket_put(ticket
);
556 * Attaches a new iclog I/O completion callback routine during
557 * transaction commit. If the log is in error state, a non-zero
558 * return code is handed back and the caller is responsible for
559 * executing the callback at an appropriate time.
563 struct xlog_in_core
*iclog
,
564 xfs_log_callback_t
*cb
)
568 spin_lock(&iclog
->ic_callback_lock
);
569 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
571 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
572 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
574 *(iclog
->ic_callback_tail
) = cb
;
575 iclog
->ic_callback_tail
= &(cb
->cb_next
);
577 spin_unlock(&iclog
->ic_callback_lock
);
582 xfs_log_release_iclog(
583 struct xfs_mount
*mp
,
584 struct xlog_in_core
*iclog
)
586 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
587 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
595 * Mount a log filesystem
597 * mp - ubiquitous xfs mount point structure
598 * log_target - buftarg of on-disk log device
599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
600 * num_bblocks - Number of BBSIZE blocks in on-disk log
602 * Return error or zero.
607 xfs_buftarg_t
*log_target
,
608 xfs_daddr_t blk_offset
,
611 bool fatal
= xfs_sb_version_hascrc(&mp
->m_sb
);
615 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
616 xfs_notice(mp
, "Mounting V%d Filesystem",
617 XFS_SB_VERSION_NUM(&mp
->m_sb
));
620 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
621 XFS_SB_VERSION_NUM(&mp
->m_sb
));
622 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
625 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
626 if (IS_ERR(mp
->m_log
)) {
627 error
= PTR_ERR(mp
->m_log
);
632 * Validate the given log space and drop a critical message via syslog
633 * if the log size is too small that would lead to some unexpected
634 * situations in transaction log space reservation stage.
636 * Note: we can't just reject the mount if the validation fails. This
637 * would mean that people would have to downgrade their kernel just to
638 * remedy the situation as there is no way to grow the log (short of
639 * black magic surgery with xfs_db).
641 * We can, however, reject mounts for CRC format filesystems, as the
642 * mkfs binary being used to make the filesystem should never create a
643 * filesystem with a log that is too small.
645 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
647 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
649 "Log size %d blocks too small, minimum size is %d blocks",
650 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
652 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
654 "Log size %d blocks too large, maximum size is %lld blocks",
655 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
657 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
659 "log size %lld bytes too large, maximum size is %lld bytes",
660 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
663 } else if (mp
->m_sb
.sb_logsunit
> 1 &&
664 mp
->m_sb
.sb_logsunit
% mp
->m_sb
.sb_blocksize
) {
666 "log stripe unit %u bytes must be a multiple of block size",
667 mp
->m_sb
.sb_logsunit
);
673 * Log check errors are always fatal on v5; or whenever bad
674 * metadata leads to a crash.
677 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
681 xfs_crit(mp
, "Log size out of supported range.");
683 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
687 * Initialize the AIL now we have a log.
689 error
= xfs_trans_ail_init(mp
);
691 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
694 mp
->m_log
->l_ailp
= mp
->m_ail
;
697 * skip log recovery on a norecovery mount. pretend it all
700 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
701 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
704 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
706 error
= xlog_recover(mp
->m_log
);
709 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
711 xfs_warn(mp
, "log mount/recovery failed: error %d",
713 xlog_recover_cancel(mp
->m_log
);
714 goto out_destroy_ail
;
718 error
= xfs_sysfs_init(&mp
->m_log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
721 goto out_destroy_ail
;
723 /* Normal transactions can now occur */
724 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
727 * Now the log has been fully initialised and we know were our
728 * space grant counters are, we can initialise the permanent ticket
729 * needed for delayed logging to work.
731 xlog_cil_init_post_recovery(mp
->m_log
);
736 xfs_trans_ail_destroy(mp
);
738 xlog_dealloc_log(mp
->m_log
);
744 * Finish the recovery of the file system. This is separate from the
745 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
746 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
749 * If we finish recovery successfully, start the background log work. If we are
750 * not doing recovery, then we have a RO filesystem and we don't need to start
754 xfs_log_mount_finish(
755 struct xfs_mount
*mp
)
758 bool readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
759 bool recovered
= mp
->m_log
->l_flags
& XLOG_RECOVERY_NEEDED
;
761 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
) {
762 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
764 } else if (readonly
) {
765 /* Allow unlinked processing to proceed */
766 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
770 * During the second phase of log recovery, we need iget and
771 * iput to behave like they do for an active filesystem.
772 * xfs_fs_drop_inode needs to be able to prevent the deletion
773 * of inodes before we're done replaying log items on those
774 * inodes. Turn it off immediately after recovery finishes
775 * so that we don't leak the quota inodes if subsequent mount
778 * We let all inodes involved in redo item processing end up on
779 * the LRU instead of being evicted immediately so that if we do
780 * something to an unlinked inode, the irele won't cause
781 * premature truncation and freeing of the inode, which results
782 * in log recovery failure. We have to evict the unreferenced
783 * lru inodes after clearing SB_ACTIVE because we don't
784 * otherwise clean up the lru if there's a subsequent failure in
785 * xfs_mountfs, which leads to us leaking the inodes if nothing
786 * else (e.g. quotacheck) references the inodes before the
787 * mount failure occurs.
789 mp
->m_super
->s_flags
|= SB_ACTIVE
;
790 error
= xlog_recover_finish(mp
->m_log
);
792 xfs_log_work_queue(mp
);
793 mp
->m_super
->s_flags
&= ~SB_ACTIVE
;
794 evict_inodes(mp
->m_super
);
797 * Drain the buffer LRU after log recovery. This is required for v4
798 * filesystems to avoid leaving around buffers with NULL verifier ops,
799 * but we do it unconditionally to make sure we're always in a clean
800 * cache state after mount.
802 * Don't push in the error case because the AIL may have pending intents
803 * that aren't removed until recovery is cancelled.
805 if (!error
&& recovered
) {
806 xfs_log_force(mp
, XFS_LOG_SYNC
);
807 xfs_ail_push_all_sync(mp
->m_ail
);
809 xfs_wait_buftarg(mp
->m_ddev_targp
);
812 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
818 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
822 xfs_log_mount_cancel(
823 struct xfs_mount
*mp
)
827 error
= xlog_recover_cancel(mp
->m_log
);
834 * Final log writes as part of unmount.
836 * Mark the filesystem clean as unmount happens. Note that during relocation
837 * this routine needs to be executed as part of source-bag while the
838 * deallocation must not be done until source-end.
842 * Unmount record used to have a string "Unmount filesystem--" in the
843 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
844 * We just write the magic number now since that particular field isn't
845 * currently architecture converted and "Unmount" is a bit foo.
846 * As far as I know, there weren't any dependencies on the old behaviour.
850 xfs_log_unmount_write(xfs_mount_t
*mp
)
852 struct xlog
*log
= mp
->m_log
;
853 xlog_in_core_t
*iclog
;
855 xlog_in_core_t
*first_iclog
;
857 xlog_ticket_t
*tic
= NULL
;
862 * Don't write out unmount record on norecovery mounts or ro devices.
863 * Or, if we are doing a forced umount (typically because of IO errors).
865 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
||
866 xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
867 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
871 error
= xfs_log_force(mp
, XFS_LOG_SYNC
);
872 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
875 first_iclog
= iclog
= log
->l_iclog
;
877 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
878 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
879 ASSERT(iclog
->ic_offset
== 0);
881 iclog
= iclog
->ic_next
;
882 } while (iclog
!= first_iclog
);
884 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
885 error
= xfs_log_reserve(mp
, 600, 1, &tic
, XFS_LOG
, 0);
887 /* the data section must be 32 bit size aligned */
891 uint32_t pad2
; /* may as well make it 64 bits */
893 .magic
= XLOG_UNMOUNT_TYPE
,
895 struct xfs_log_iovec reg
= {
897 .i_len
= sizeof(magic
),
898 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
900 struct xfs_log_vec vec
= {
905 /* remove inited flag, and account for space used */
907 tic
->t_curr_res
-= sizeof(magic
);
908 error
= xlog_write(log
, &vec
, tic
, &lsn
,
909 NULL
, XLOG_UNMOUNT_TRANS
);
911 * At this point, we're umounting anyway,
912 * so there's no point in transitioning log state
913 * to IOERROR. Just continue...
918 xfs_alert(mp
, "%s: unmount record failed", __func__
);
921 spin_lock(&log
->l_icloglock
);
922 iclog
= log
->l_iclog
;
923 atomic_inc(&iclog
->ic_refcnt
);
924 xlog_state_want_sync(log
, iclog
);
925 spin_unlock(&log
->l_icloglock
);
926 error
= xlog_state_release_iclog(log
, iclog
);
928 spin_lock(&log
->l_icloglock
);
929 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
930 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
931 if (!XLOG_FORCED_SHUTDOWN(log
)) {
932 xlog_wait(&iclog
->ic_force_wait
,
935 spin_unlock(&log
->l_icloglock
);
938 spin_unlock(&log
->l_icloglock
);
941 trace_xfs_log_umount_write(log
, tic
);
942 xlog_ungrant_log_space(log
, tic
);
943 xfs_log_ticket_put(tic
);
947 * We're already in forced_shutdown mode, couldn't
948 * even attempt to write out the unmount transaction.
950 * Go through the motions of sync'ing and releasing
951 * the iclog, even though no I/O will actually happen,
952 * we need to wait for other log I/Os that may already
953 * be in progress. Do this as a separate section of
954 * code so we'll know if we ever get stuck here that
955 * we're in this odd situation of trying to unmount
956 * a file system that went into forced_shutdown as
957 * the result of an unmount..
959 spin_lock(&log
->l_icloglock
);
960 iclog
= log
->l_iclog
;
961 atomic_inc(&iclog
->ic_refcnt
);
963 xlog_state_want_sync(log
, iclog
);
964 spin_unlock(&log
->l_icloglock
);
965 error
= xlog_state_release_iclog(log
, iclog
);
967 spin_lock(&log
->l_icloglock
);
969 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
970 || iclog
->ic_state
== XLOG_STATE_DIRTY
971 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
973 xlog_wait(&iclog
->ic_force_wait
,
976 spin_unlock(&log
->l_icloglock
);
981 } /* xfs_log_unmount_write */
984 * Empty the log for unmount/freeze.
986 * To do this, we first need to shut down the background log work so it is not
987 * trying to cover the log as we clean up. We then need to unpin all objects in
988 * the log so we can then flush them out. Once they have completed their IO and
989 * run the callbacks removing themselves from the AIL, we can write the unmount
994 struct xfs_mount
*mp
)
996 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
997 xfs_log_force(mp
, XFS_LOG_SYNC
);
1000 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1001 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1002 * xfs_buf_iowait() cannot be used because it was pushed with the
1003 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1004 * the IO to complete.
1006 xfs_ail_push_all_sync(mp
->m_ail
);
1007 xfs_wait_buftarg(mp
->m_ddev_targp
);
1008 xfs_buf_lock(mp
->m_sb_bp
);
1009 xfs_buf_unlock(mp
->m_sb_bp
);
1011 xfs_log_unmount_write(mp
);
1015 * Shut down and release the AIL and Log.
1017 * During unmount, we need to ensure we flush all the dirty metadata objects
1018 * from the AIL so that the log is empty before we write the unmount record to
1019 * the log. Once this is done, we can tear down the AIL and the log.
1023 struct xfs_mount
*mp
)
1025 xfs_log_quiesce(mp
);
1027 xfs_trans_ail_destroy(mp
);
1029 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
1031 xlog_dealloc_log(mp
->m_log
);
1036 struct xfs_mount
*mp
,
1037 struct xfs_log_item
*item
,
1039 const struct xfs_item_ops
*ops
)
1041 item
->li_mountp
= mp
;
1042 item
->li_ailp
= mp
->m_ail
;
1043 item
->li_type
= type
;
1047 INIT_LIST_HEAD(&item
->li_ail
);
1048 INIT_LIST_HEAD(&item
->li_cil
);
1049 INIT_LIST_HEAD(&item
->li_bio_list
);
1053 * Wake up processes waiting for log space after we have moved the log tail.
1057 struct xfs_mount
*mp
)
1059 struct xlog
*log
= mp
->m_log
;
1062 if (XLOG_FORCED_SHUTDOWN(log
))
1065 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
1066 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1068 spin_lock(&log
->l_write_head
.lock
);
1069 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
1070 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
1071 spin_unlock(&log
->l_write_head
.lock
);
1074 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1075 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1077 spin_lock(&log
->l_reserve_head
.lock
);
1078 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1079 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1080 spin_unlock(&log
->l_reserve_head
.lock
);
1085 * Determine if we have a transaction that has gone to disk that needs to be
1086 * covered. To begin the transition to the idle state firstly the log needs to
1087 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1088 * we start attempting to cover the log.
1090 * Only if we are then in a state where covering is needed, the caller is
1091 * informed that dummy transactions are required to move the log into the idle
1094 * If there are any items in the AIl or CIL, then we do not want to attempt to
1095 * cover the log as we may be in a situation where there isn't log space
1096 * available to run a dummy transaction and this can lead to deadlocks when the
1097 * tail of the log is pinned by an item that is modified in the CIL. Hence
1098 * there's no point in running a dummy transaction at this point because we
1099 * can't start trying to idle the log until both the CIL and AIL are empty.
1102 xfs_log_need_covered(xfs_mount_t
*mp
)
1104 struct xlog
*log
= mp
->m_log
;
1107 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
1110 if (!xlog_cil_empty(log
))
1113 spin_lock(&log
->l_icloglock
);
1114 switch (log
->l_covered_state
) {
1115 case XLOG_STATE_COVER_DONE
:
1116 case XLOG_STATE_COVER_DONE2
:
1117 case XLOG_STATE_COVER_IDLE
:
1119 case XLOG_STATE_COVER_NEED
:
1120 case XLOG_STATE_COVER_NEED2
:
1121 if (xfs_ail_min_lsn(log
->l_ailp
))
1123 if (!xlog_iclogs_empty(log
))
1127 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1128 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1130 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1136 spin_unlock(&log
->l_icloglock
);
1141 * We may be holding the log iclog lock upon entering this routine.
1144 xlog_assign_tail_lsn_locked(
1145 struct xfs_mount
*mp
)
1147 struct xlog
*log
= mp
->m_log
;
1148 struct xfs_log_item
*lip
;
1151 assert_spin_locked(&mp
->m_ail
->ail_lock
);
1154 * To make sure we always have a valid LSN for the log tail we keep
1155 * track of the last LSN which was committed in log->l_last_sync_lsn,
1156 * and use that when the AIL was empty.
1158 lip
= xfs_ail_min(mp
->m_ail
);
1160 tail_lsn
= lip
->li_lsn
;
1162 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1163 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1164 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1169 xlog_assign_tail_lsn(
1170 struct xfs_mount
*mp
)
1174 spin_lock(&mp
->m_ail
->ail_lock
);
1175 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1176 spin_unlock(&mp
->m_ail
->ail_lock
);
1182 * Return the space in the log between the tail and the head. The head
1183 * is passed in the cycle/bytes formal parms. In the special case where
1184 * the reserve head has wrapped passed the tail, this calculation is no
1185 * longer valid. In this case, just return 0 which means there is no space
1186 * in the log. This works for all places where this function is called
1187 * with the reserve head. Of course, if the write head were to ever
1188 * wrap the tail, we should blow up. Rather than catch this case here,
1189 * we depend on other ASSERTions in other parts of the code. XXXmiken
1191 * This code also handles the case where the reservation head is behind
1192 * the tail. The details of this case are described below, but the end
1193 * result is that we return the size of the log as the amount of space left.
1206 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1207 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1208 tail_bytes
= BBTOB(tail_bytes
);
1209 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1210 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1211 else if (tail_cycle
+ 1 < head_cycle
)
1213 else if (tail_cycle
< head_cycle
) {
1214 ASSERT(tail_cycle
== (head_cycle
- 1));
1215 free_bytes
= tail_bytes
- head_bytes
;
1218 * The reservation head is behind the tail.
1219 * In this case we just want to return the size of the
1220 * log as the amount of space left.
1222 xfs_alert(log
->l_mp
, "xlog_space_left: head behind tail");
1223 xfs_alert(log
->l_mp
,
1224 " tail_cycle = %d, tail_bytes = %d",
1225 tail_cycle
, tail_bytes
);
1226 xfs_alert(log
->l_mp
,
1227 " GH cycle = %d, GH bytes = %d",
1228 head_cycle
, head_bytes
);
1230 free_bytes
= log
->l_logsize
;
1237 * Log function which is called when an io completes.
1239 * The log manager needs its own routine, in order to control what
1240 * happens with the buffer after the write completes.
1243 xlog_iodone(xfs_buf_t
*bp
)
1245 struct xlog_in_core
*iclog
= bp
->b_log_item
;
1246 struct xlog
*l
= iclog
->ic_log
;
1250 * Race to shutdown the filesystem if we see an error or the iclog is in
1251 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1252 * CRC errors into log recovery.
1254 if (XFS_TEST_ERROR(bp
->b_error
, l
->l_mp
, XFS_ERRTAG_IODONE_IOERR
) ||
1255 iclog
->ic_state
& XLOG_STATE_IOABORT
) {
1256 if (iclog
->ic_state
& XLOG_STATE_IOABORT
)
1257 iclog
->ic_state
&= ~XLOG_STATE_IOABORT
;
1259 xfs_buf_ioerror_alert(bp
, __func__
);
1261 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1263 * This flag will be propagated to the trans-committed
1264 * callback routines to let them know that the log-commit
1267 aborted
= XFS_LI_ABORTED
;
1268 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1269 aborted
= XFS_LI_ABORTED
;
1272 /* log I/O is always issued ASYNC */
1273 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1274 xlog_state_done_syncing(iclog
, aborted
);
1277 * drop the buffer lock now that we are done. Nothing references
1278 * the buffer after this, so an unmount waiting on this lock can now
1279 * tear it down safely. As such, it is unsafe to reference the buffer
1280 * (bp) after the unlock as we could race with it being freed.
1286 * Return size of each in-core log record buffer.
1288 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1290 * If the filesystem blocksize is too large, we may need to choose a
1291 * larger size since the directory code currently logs entire blocks.
1295 xlog_get_iclog_buffer_size(
1296 struct xfs_mount
*mp
,
1302 if (mp
->m_logbufs
<= 0)
1303 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1305 log
->l_iclog_bufs
= mp
->m_logbufs
;
1308 * Buffer size passed in from mount system call.
1310 if (mp
->m_logbsize
> 0) {
1311 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1312 log
->l_iclog_size_log
= 0;
1314 log
->l_iclog_size_log
++;
1318 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1319 /* # headers = size / 32k
1320 * one header holds cycles from 32k of data
1323 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1324 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1326 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1327 log
->l_iclog_heads
= xhdrs
;
1329 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1330 log
->l_iclog_hsize
= BBSIZE
;
1331 log
->l_iclog_heads
= 1;
1336 /* All machines use 32kB buffers by default. */
1337 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1338 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1340 /* the default log size is 16k or 32k which is one header sector */
1341 log
->l_iclog_hsize
= BBSIZE
;
1342 log
->l_iclog_heads
= 1;
1345 /* are we being asked to make the sizes selected above visible? */
1346 if (mp
->m_logbufs
== 0)
1347 mp
->m_logbufs
= log
->l_iclog_bufs
;
1348 if (mp
->m_logbsize
== 0)
1349 mp
->m_logbsize
= log
->l_iclog_size
;
1350 } /* xlog_get_iclog_buffer_size */
1355 struct xfs_mount
*mp
)
1357 queue_delayed_work(mp
->m_sync_workqueue
, &mp
->m_log
->l_work
,
1358 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1362 * Every sync period we need to unpin all items in the AIL and push them to
1363 * disk. If there is nothing dirty, then we might need to cover the log to
1364 * indicate that the filesystem is idle.
1368 struct work_struct
*work
)
1370 struct xlog
*log
= container_of(to_delayed_work(work
),
1371 struct xlog
, l_work
);
1372 struct xfs_mount
*mp
= log
->l_mp
;
1374 /* dgc: errors ignored - not fatal and nowhere to report them */
1375 if (xfs_log_need_covered(mp
)) {
1377 * Dump a transaction into the log that contains no real change.
1378 * This is needed to stamp the current tail LSN into the log
1379 * during the covering operation.
1381 * We cannot use an inode here for this - that will push dirty
1382 * state back up into the VFS and then periodic inode flushing
1383 * will prevent log covering from making progress. Hence we
1384 * synchronously log the superblock instead to ensure the
1385 * superblock is immediately unpinned and can be written back.
1387 xfs_sync_sb(mp
, true);
1389 xfs_log_force(mp
, 0);
1391 /* start pushing all the metadata that is currently dirty */
1392 xfs_ail_push_all(mp
->m_ail
);
1394 /* queue us up again */
1395 xfs_log_work_queue(mp
);
1399 * This routine initializes some of the log structure for a given mount point.
1400 * Its primary purpose is to fill in enough, so recovery can occur. However,
1401 * some other stuff may be filled in too.
1403 STATIC
struct xlog
*
1405 struct xfs_mount
*mp
,
1406 struct xfs_buftarg
*log_target
,
1407 xfs_daddr_t blk_offset
,
1411 xlog_rec_header_t
*head
;
1412 xlog_in_core_t
**iclogp
;
1413 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1416 int error
= -ENOMEM
;
1419 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1421 xfs_warn(mp
, "Log allocation failed: No memory!");
1426 log
->l_targ
= log_target
;
1427 log
->l_logsize
= BBTOB(num_bblks
);
1428 log
->l_logBBstart
= blk_offset
;
1429 log
->l_logBBsize
= num_bblks
;
1430 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1431 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1432 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1434 log
->l_prev_block
= -1;
1435 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1436 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1437 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1438 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1440 xlog_grant_head_init(&log
->l_reserve_head
);
1441 xlog_grant_head_init(&log
->l_write_head
);
1443 error
= -EFSCORRUPTED
;
1444 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1445 log2_size
= mp
->m_sb
.sb_logsectlog
;
1446 if (log2_size
< BBSHIFT
) {
1447 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1448 log2_size
, BBSHIFT
);
1452 log2_size
-= BBSHIFT
;
1453 if (log2_size
> mp
->m_sectbb_log
) {
1454 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1455 log2_size
, mp
->m_sectbb_log
);
1459 /* for larger sector sizes, must have v2 or external log */
1460 if (log2_size
&& log
->l_logBBstart
> 0 &&
1461 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1463 "log sector size (0x%x) invalid for configuration.",
1468 log
->l_sectBBsize
= 1 << log2_size
;
1470 xlog_get_iclog_buffer_size(mp
, log
);
1473 * Use a NULL block for the extra log buffer used during splits so that
1474 * it will trigger errors if we ever try to do IO on it without first
1475 * having set it up properly.
1478 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, XFS_BUF_DADDR_NULL
,
1479 BTOBB(log
->l_iclog_size
), XBF_NO_IOACCT
);
1484 * The iclogbuf buffer locks are held over IO but we are not going to do
1485 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1486 * when appropriately.
1488 ASSERT(xfs_buf_islocked(bp
));
1491 /* use high priority wq for log I/O completion */
1492 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1493 bp
->b_iodone
= xlog_iodone
;
1496 spin_lock_init(&log
->l_icloglock
);
1497 init_waitqueue_head(&log
->l_flush_wait
);
1499 iclogp
= &log
->l_iclog
;
1501 * The amount of memory to allocate for the iclog structure is
1502 * rather funky due to the way the structure is defined. It is
1503 * done this way so that we can use different sizes for machines
1504 * with different amounts of memory. See the definition of
1505 * xlog_in_core_t in xfs_log_priv.h for details.
1507 ASSERT(log
->l_iclog_size
>= 4096);
1508 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1509 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1511 goto out_free_iclog
;
1514 iclog
->ic_prev
= prev_iclog
;
1517 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1518 BTOBB(log
->l_iclog_size
),
1521 goto out_free_iclog
;
1523 ASSERT(xfs_buf_islocked(bp
));
1526 /* use high priority wq for log I/O completion */
1527 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1528 bp
->b_iodone
= xlog_iodone
;
1530 iclog
->ic_data
= bp
->b_addr
;
1532 log
->l_iclog_bak
[i
] = &iclog
->ic_header
;
1534 head
= &iclog
->ic_header
;
1535 memset(head
, 0, sizeof(xlog_rec_header_t
));
1536 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1537 head
->h_version
= cpu_to_be32(
1538 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1539 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1541 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1542 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1544 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1545 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1546 iclog
->ic_log
= log
;
1547 atomic_set(&iclog
->ic_refcnt
, 0);
1548 spin_lock_init(&iclog
->ic_callback_lock
);
1549 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1550 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1552 init_waitqueue_head(&iclog
->ic_force_wait
);
1553 init_waitqueue_head(&iclog
->ic_write_wait
);
1555 iclogp
= &iclog
->ic_next
;
1557 *iclogp
= log
->l_iclog
; /* complete ring */
1558 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1560 error
= xlog_cil_init(log
);
1562 goto out_free_iclog
;
1566 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1567 prev_iclog
= iclog
->ic_next
;
1569 xfs_buf_free(iclog
->ic_bp
);
1572 spinlock_destroy(&log
->l_icloglock
);
1573 xfs_buf_free(log
->l_xbuf
);
1577 return ERR_PTR(error
);
1578 } /* xlog_alloc_log */
1582 * Write out the commit record of a transaction associated with the given
1583 * ticket. Return the lsn of the commit record.
1588 struct xlog_ticket
*ticket
,
1589 struct xlog_in_core
**iclog
,
1590 xfs_lsn_t
*commitlsnp
)
1592 struct xfs_mount
*mp
= log
->l_mp
;
1594 struct xfs_log_iovec reg
= {
1597 .i_type
= XLOG_REG_TYPE_COMMIT
,
1599 struct xfs_log_vec vec
= {
1604 ASSERT_ALWAYS(iclog
);
1605 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1608 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1613 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1614 * log space. This code pushes on the lsn which would supposedly free up
1615 * the 25% which we want to leave free. We may need to adopt a policy which
1616 * pushes on an lsn which is further along in the log once we reach the high
1617 * water mark. In this manner, we would be creating a low water mark.
1620 xlog_grant_push_ail(
1624 xfs_lsn_t threshold_lsn
= 0;
1625 xfs_lsn_t last_sync_lsn
;
1628 int threshold_block
;
1629 int threshold_cycle
;
1632 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1634 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1635 free_blocks
= BTOBBT(free_bytes
);
1638 * Set the threshold for the minimum number of free blocks in the
1639 * log to the maximum of what the caller needs, one quarter of the
1640 * log, and 256 blocks.
1642 free_threshold
= BTOBB(need_bytes
);
1643 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1644 free_threshold
= MAX(free_threshold
, 256);
1645 if (free_blocks
>= free_threshold
)
1648 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1650 threshold_block
+= free_threshold
;
1651 if (threshold_block
>= log
->l_logBBsize
) {
1652 threshold_block
-= log
->l_logBBsize
;
1653 threshold_cycle
+= 1;
1655 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1658 * Don't pass in an lsn greater than the lsn of the last
1659 * log record known to be on disk. Use a snapshot of the last sync lsn
1660 * so that it doesn't change between the compare and the set.
1662 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1663 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1664 threshold_lsn
= last_sync_lsn
;
1667 * Get the transaction layer to kick the dirty buffers out to
1668 * disk asynchronously. No point in trying to do this if
1669 * the filesystem is shutting down.
1671 if (!XLOG_FORCED_SHUTDOWN(log
))
1672 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1676 * Stamp cycle number in every block
1681 struct xlog_in_core
*iclog
,
1685 int size
= iclog
->ic_offset
+ roundoff
;
1689 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1691 dp
= iclog
->ic_datap
;
1692 for (i
= 0; i
< BTOBB(size
); i
++) {
1693 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1695 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1696 *(__be32
*)dp
= cycle_lsn
;
1700 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1701 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1703 for ( ; i
< BTOBB(size
); i
++) {
1704 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1705 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1706 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1707 *(__be32
*)dp
= cycle_lsn
;
1711 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1712 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1717 * Calculate the checksum for a log buffer.
1719 * This is a little more complicated than it should be because the various
1720 * headers and the actual data are non-contiguous.
1725 struct xlog_rec_header
*rhead
,
1731 /* first generate the crc for the record header ... */
1732 crc
= xfs_start_cksum_update((char *)rhead
,
1733 sizeof(struct xlog_rec_header
),
1734 offsetof(struct xlog_rec_header
, h_crc
));
1736 /* ... then for additional cycle data for v2 logs ... */
1737 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1738 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1742 xheads
= size
/ XLOG_HEADER_CYCLE_SIZE
;
1743 if (size
% XLOG_HEADER_CYCLE_SIZE
)
1746 for (i
= 1; i
< xheads
; i
++) {
1747 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1748 sizeof(struct xlog_rec_ext_header
));
1752 /* ... and finally for the payload */
1753 crc
= crc32c(crc
, dp
, size
);
1755 return xfs_end_cksum(crc
);
1759 * The bdstrat callback function for log bufs. This gives us a central
1760 * place to trap bufs in case we get hit by a log I/O error and need to
1761 * shutdown. Actually, in practice, even when we didn't get a log error,
1762 * we transition the iclogs to IOERROR state *after* flushing all existing
1763 * iclogs to disk. This is because we don't want anymore new transactions to be
1764 * started or completed afterwards.
1766 * We lock the iclogbufs here so that we can serialise against IO completion
1767 * during unmount. We might be processing a shutdown triggered during unmount,
1768 * and that can occur asynchronously to the unmount thread, and hence we need to
1769 * ensure that completes before tearing down the iclogbufs. Hence we need to
1770 * hold the buffer lock across the log IO to acheive that.
1776 struct xlog_in_core
*iclog
= bp
->b_log_item
;
1779 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1780 xfs_buf_ioerror(bp
, -EIO
);
1784 * It would seem logical to return EIO here, but we rely on
1785 * the log state machine to propagate I/O errors instead of
1786 * doing it here. Similarly, IO completion will unlock the
1787 * buffer, so we don't do it here.
1797 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1798 * fashion. Previously, we should have moved the current iclog
1799 * ptr in the log to point to the next available iclog. This allows further
1800 * write to continue while this code syncs out an iclog ready to go.
1801 * Before an in-core log can be written out, the data section must be scanned
1802 * to save away the 1st word of each BBSIZE block into the header. We replace
1803 * it with the current cycle count. Each BBSIZE block is tagged with the
1804 * cycle count because there in an implicit assumption that drives will
1805 * guarantee that entire 512 byte blocks get written at once. In other words,
1806 * we can't have part of a 512 byte block written and part not written. By
1807 * tagging each block, we will know which blocks are valid when recovering
1808 * after an unclean shutdown.
1810 * This routine is single threaded on the iclog. No other thread can be in
1811 * this routine with the same iclog. Changing contents of iclog can there-
1812 * fore be done without grabbing the state machine lock. Updating the global
1813 * log will require grabbing the lock though.
1815 * The entire log manager uses a logical block numbering scheme. Only
1816 * log_sync (and then only bwrite()) know about the fact that the log may
1817 * not start with block zero on a given device. The log block start offset
1818 * is added immediately before calling bwrite().
1824 struct xlog_in_core
*iclog
)
1828 uint count
; /* byte count of bwrite */
1829 uint count_init
; /* initial count before roundup */
1830 int roundoff
; /* roundoff to BB or stripe */
1831 int split
= 0; /* split write into two regions */
1833 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1836 XFS_STATS_INC(log
->l_mp
, xs_log_writes
);
1837 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1839 /* Add for LR header */
1840 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1842 /* Round out the log write size */
1843 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1844 /* we have a v2 stripe unit to use */
1845 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1847 count
= BBTOB(BTOBB(count_init
));
1849 roundoff
= count
- count_init
;
1850 ASSERT(roundoff
>= 0);
1851 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1852 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1854 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1855 roundoff
< BBTOB(1)));
1857 /* move grant heads by roundoff in sync */
1858 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1859 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1861 /* put cycle number in every block */
1862 xlog_pack_data(log
, iclog
, roundoff
);
1864 /* real byte length */
1865 size
= iclog
->ic_offset
;
1868 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1871 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1873 XFS_STATS_ADD(log
->l_mp
, xs_log_blocks
, BTOBB(count
));
1875 /* Do we need to split this write into 2 parts? */
1876 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1879 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1880 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1881 iclog
->ic_bwritecnt
= 2;
1884 * Bump the cycle numbers at the start of each block in the
1885 * part of the iclog that ends up in the buffer that gets
1886 * written to the start of the log.
1888 * Watch out for the header magic number case, though.
1890 dptr
= (char *)&iclog
->ic_header
+ count
;
1891 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1892 uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1893 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1895 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1900 iclog
->ic_bwritecnt
= 1;
1903 /* calculcate the checksum */
1904 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1905 iclog
->ic_datap
, size
);
1907 * Intentionally corrupt the log record CRC based on the error injection
1908 * frequency, if defined. This facilitates testing log recovery in the
1909 * event of torn writes. Hence, set the IOABORT state to abort the log
1910 * write on I/O completion and shutdown the fs. The subsequent mount
1911 * detects the bad CRC and attempts to recover.
1913 if (XFS_TEST_ERROR(false, log
->l_mp
, XFS_ERRTAG_LOG_BAD_CRC
)) {
1914 iclog
->ic_header
.h_crc
&= cpu_to_le32(0xAAAAAAAA);
1915 iclog
->ic_state
|= XLOG_STATE_IOABORT
;
1917 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1918 be64_to_cpu(iclog
->ic_header
.h_lsn
));
1921 bp
->b_io_length
= BTOBB(count
);
1922 bp
->b_log_item
= iclog
;
1923 bp
->b_flags
&= ~XBF_FLUSH
;
1924 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1927 * Flush the data device before flushing the log to make sure all meta
1928 * data written back from the AIL actually made it to disk before
1929 * stamping the new log tail LSN into the log buffer. For an external
1930 * log we need to issue the flush explicitly, and unfortunately
1931 * synchronously here; for an internal log we can simply use the block
1932 * layer state machine for preflushes.
1934 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1935 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1937 bp
->b_flags
|= XBF_FLUSH
;
1939 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1940 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1942 xlog_verify_iclog(log
, iclog
, count
, true);
1944 /* account for log which doesn't start at block #0 */
1945 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1948 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1951 error
= xlog_bdstrat(bp
);
1953 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1957 bp
= iclog
->ic_log
->l_xbuf
;
1958 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1959 xfs_buf_associate_memory(bp
,
1960 (char *)&iclog
->ic_header
+ count
, split
);
1961 bp
->b_log_item
= iclog
;
1962 bp
->b_flags
&= ~XBF_FLUSH
;
1963 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1965 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1966 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1968 /* account for internal log which doesn't start at block #0 */
1969 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1970 error
= xlog_bdstrat(bp
);
1972 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1980 * Deallocate a log structure
1986 xlog_in_core_t
*iclog
, *next_iclog
;
1989 xlog_cil_destroy(log
);
1992 * Cycle all the iclogbuf locks to make sure all log IO completion
1993 * is done before we tear down these buffers.
1995 iclog
= log
->l_iclog
;
1996 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1997 xfs_buf_lock(iclog
->ic_bp
);
1998 xfs_buf_unlock(iclog
->ic_bp
);
1999 iclog
= iclog
->ic_next
;
2003 * Always need to ensure that the extra buffer does not point to memory
2004 * owned by another log buffer before we free it. Also, cycle the lock
2005 * first to ensure we've completed IO on it.
2007 xfs_buf_lock(log
->l_xbuf
);
2008 xfs_buf_unlock(log
->l_xbuf
);
2009 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
2010 xfs_buf_free(log
->l_xbuf
);
2012 iclog
= log
->l_iclog
;
2013 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
2014 xfs_buf_free(iclog
->ic_bp
);
2015 next_iclog
= iclog
->ic_next
;
2019 spinlock_destroy(&log
->l_icloglock
);
2021 log
->l_mp
->m_log
= NULL
;
2023 } /* xlog_dealloc_log */
2026 * Update counters atomically now that memcpy is done.
2030 xlog_state_finish_copy(
2032 struct xlog_in_core
*iclog
,
2036 spin_lock(&log
->l_icloglock
);
2038 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
2039 iclog
->ic_offset
+= copy_bytes
;
2041 spin_unlock(&log
->l_icloglock
);
2042 } /* xlog_state_finish_copy */
2048 * print out info relating to regions written which consume
2053 struct xfs_mount
*mp
,
2054 struct xlog_ticket
*ticket
)
2057 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
2059 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2060 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2061 static char *res_type_str
[XLOG_REG_TYPE_MAX
+ 1] = {
2062 REG_TYPE_STR(BFORMAT
, "bformat"),
2063 REG_TYPE_STR(BCHUNK
, "bchunk"),
2064 REG_TYPE_STR(EFI_FORMAT
, "efi_format"),
2065 REG_TYPE_STR(EFD_FORMAT
, "efd_format"),
2066 REG_TYPE_STR(IFORMAT
, "iformat"),
2067 REG_TYPE_STR(ICORE
, "icore"),
2068 REG_TYPE_STR(IEXT
, "iext"),
2069 REG_TYPE_STR(IBROOT
, "ibroot"),
2070 REG_TYPE_STR(ILOCAL
, "ilocal"),
2071 REG_TYPE_STR(IATTR_EXT
, "iattr_ext"),
2072 REG_TYPE_STR(IATTR_BROOT
, "iattr_broot"),
2073 REG_TYPE_STR(IATTR_LOCAL
, "iattr_local"),
2074 REG_TYPE_STR(QFORMAT
, "qformat"),
2075 REG_TYPE_STR(DQUOT
, "dquot"),
2076 REG_TYPE_STR(QUOTAOFF
, "quotaoff"),
2077 REG_TYPE_STR(LRHEADER
, "LR header"),
2078 REG_TYPE_STR(UNMOUNT
, "unmount"),
2079 REG_TYPE_STR(COMMIT
, "commit"),
2080 REG_TYPE_STR(TRANSHDR
, "trans header"),
2081 REG_TYPE_STR(ICREATE
, "inode create")
2085 xfs_warn(mp
, "ticket reservation summary:");
2086 xfs_warn(mp
, " unit res = %d bytes",
2087 ticket
->t_unit_res
);
2088 xfs_warn(mp
, " current res = %d bytes",
2089 ticket
->t_curr_res
);
2090 xfs_warn(mp
, " total reg = %u bytes (o/flow = %u bytes)",
2091 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
);
2092 xfs_warn(mp
, " ophdrs = %u (ophdr space = %u bytes)",
2093 ticket
->t_res_num_ophdrs
, ophdr_spc
);
2094 xfs_warn(mp
, " ophdr + reg = %u bytes",
2095 ticket
->t_res_arr_sum
+ ticket
->t_res_o_flow
+ ophdr_spc
);
2096 xfs_warn(mp
, " num regions = %u",
2099 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
2100 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
2101 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
2102 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2103 "bad-rtype" : res_type_str
[r_type
]),
2104 ticket
->t_res_arr
[i
].r_len
);
2109 * Print a summary of the transaction.
2113 struct xfs_trans
*tp
)
2115 struct xfs_mount
*mp
= tp
->t_mountp
;
2116 struct xfs_log_item_desc
*lidp
;
2118 /* dump core transaction and ticket info */
2119 xfs_warn(mp
, "transaction summary:");
2120 xfs_warn(mp
, " log res = %d", tp
->t_log_res
);
2121 xfs_warn(mp
, " log count = %d", tp
->t_log_count
);
2122 xfs_warn(mp
, " flags = 0x%x", tp
->t_flags
);
2124 xlog_print_tic_res(mp
, tp
->t_ticket
);
2126 /* dump each log item */
2127 list_for_each_entry(lidp
, &tp
->t_items
, lid_trans
) {
2128 struct xfs_log_item
*lip
= lidp
->lid_item
;
2129 struct xfs_log_vec
*lv
= lip
->li_lv
;
2130 struct xfs_log_iovec
*vec
;
2133 xfs_warn(mp
, "log item: ");
2134 xfs_warn(mp
, " type = 0x%x", lip
->li_type
);
2135 xfs_warn(mp
, " flags = 0x%x", lip
->li_flags
);
2138 xfs_warn(mp
, " niovecs = %d", lv
->lv_niovecs
);
2139 xfs_warn(mp
, " size = %d", lv
->lv_size
);
2140 xfs_warn(mp
, " bytes = %d", lv
->lv_bytes
);
2141 xfs_warn(mp
, " buf len = %d", lv
->lv_buf_len
);
2143 /* dump each iovec for the log item */
2144 vec
= lv
->lv_iovecp
;
2145 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2146 int dumplen
= min(vec
->i_len
, 32);
2148 xfs_warn(mp
, " iovec[%d]", i
);
2149 xfs_warn(mp
, " type = 0x%x", vec
->i_type
);
2150 xfs_warn(mp
, " len = %d", vec
->i_len
);
2151 xfs_warn(mp
, " first %d bytes of iovec[%d]:", dumplen
, i
);
2152 xfs_hex_dump(vec
->i_addr
, dumplen
);
2160 * Calculate the potential space needed by the log vector. Each region gets
2161 * its own xlog_op_header_t and may need to be double word aligned.
2164 xlog_write_calc_vec_length(
2165 struct xlog_ticket
*ticket
,
2166 struct xfs_log_vec
*log_vector
)
2168 struct xfs_log_vec
*lv
;
2173 /* acct for start rec of xact */
2174 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2177 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2178 /* we don't write ordered log vectors */
2179 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2182 headers
+= lv
->lv_niovecs
;
2184 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2185 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2188 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2192 ticket
->t_res_num_ophdrs
+= headers
;
2193 len
+= headers
* sizeof(struct xlog_op_header
);
2199 * If first write for transaction, insert start record We can't be trying to
2200 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2203 xlog_write_start_rec(
2204 struct xlog_op_header
*ophdr
,
2205 struct xlog_ticket
*ticket
)
2207 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2210 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2211 ophdr
->oh_clientid
= ticket
->t_clientid
;
2213 ophdr
->oh_flags
= XLOG_START_TRANS
;
2216 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2218 return sizeof(struct xlog_op_header
);
2221 static xlog_op_header_t
*
2222 xlog_write_setup_ophdr(
2224 struct xlog_op_header
*ophdr
,
2225 struct xlog_ticket
*ticket
,
2228 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2229 ophdr
->oh_clientid
= ticket
->t_clientid
;
2232 /* are we copying a commit or unmount record? */
2233 ophdr
->oh_flags
= flags
;
2236 * We've seen logs corrupted with bad transaction client ids. This
2237 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2238 * and shut down the filesystem.
2240 switch (ophdr
->oh_clientid
) {
2241 case XFS_TRANSACTION
:
2247 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT
,
2248 ophdr
->oh_clientid
, ticket
);
2256 * Set up the parameters of the region copy into the log. This has
2257 * to handle region write split across multiple log buffers - this
2258 * state is kept external to this function so that this code can
2259 * be written in an obvious, self documenting manner.
2262 xlog_write_setup_copy(
2263 struct xlog_ticket
*ticket
,
2264 struct xlog_op_header
*ophdr
,
2265 int space_available
,
2269 int *last_was_partial_copy
,
2270 int *bytes_consumed
)
2274 still_to_copy
= space_required
- *bytes_consumed
;
2275 *copy_off
= *bytes_consumed
;
2277 if (still_to_copy
<= space_available
) {
2278 /* write of region completes here */
2279 *copy_len
= still_to_copy
;
2280 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2281 if (*last_was_partial_copy
)
2282 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2283 *last_was_partial_copy
= 0;
2284 *bytes_consumed
= 0;
2288 /* partial write of region, needs extra log op header reservation */
2289 *copy_len
= space_available
;
2290 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2291 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2292 if (*last_was_partial_copy
)
2293 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2294 *bytes_consumed
+= *copy_len
;
2295 (*last_was_partial_copy
)++;
2297 /* account for new log op header */
2298 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2299 ticket
->t_res_num_ophdrs
++;
2301 return sizeof(struct xlog_op_header
);
2305 xlog_write_copy_finish(
2307 struct xlog_in_core
*iclog
,
2312 int *partial_copy_len
,
2314 struct xlog_in_core
**commit_iclog
)
2316 if (*partial_copy
) {
2318 * This iclog has already been marked WANT_SYNC by
2319 * xlog_state_get_iclog_space.
2321 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2324 return xlog_state_release_iclog(log
, iclog
);
2328 *partial_copy_len
= 0;
2330 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2331 /* no more space in this iclog - push it. */
2332 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2336 spin_lock(&log
->l_icloglock
);
2337 xlog_state_want_sync(log
, iclog
);
2338 spin_unlock(&log
->l_icloglock
);
2341 return xlog_state_release_iclog(log
, iclog
);
2342 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2343 *commit_iclog
= iclog
;
2350 * Write some region out to in-core log
2352 * This will be called when writing externally provided regions or when
2353 * writing out a commit record for a given transaction.
2355 * General algorithm:
2356 * 1. Find total length of this write. This may include adding to the
2357 * lengths passed in.
2358 * 2. Check whether we violate the tickets reservation.
2359 * 3. While writing to this iclog
2360 * A. Reserve as much space in this iclog as can get
2361 * B. If this is first write, save away start lsn
2362 * C. While writing this region:
2363 * 1. If first write of transaction, write start record
2364 * 2. Write log operation header (header per region)
2365 * 3. Find out if we can fit entire region into this iclog
2366 * 4. Potentially, verify destination memcpy ptr
2367 * 5. Memcpy (partial) region
2368 * 6. If partial copy, release iclog; otherwise, continue
2369 * copying more regions into current iclog
2370 * 4. Mark want sync bit (in simulation mode)
2371 * 5. Release iclog for potential flush to on-disk log.
2374 * 1. Panic if reservation is overrun. This should never happen since
2375 * reservation amounts are generated internal to the filesystem.
2377 * 1. Tickets are single threaded data structures.
2378 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2379 * syncing routine. When a single log_write region needs to span
2380 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2381 * on all log operation writes which don't contain the end of the
2382 * region. The XLOG_END_TRANS bit is used for the in-core log
2383 * operation which contains the end of the continued log_write region.
2384 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2385 * we don't really know exactly how much space will be used. As a result,
2386 * we don't update ic_offset until the end when we know exactly how many
2387 * bytes have been written out.
2392 struct xfs_log_vec
*log_vector
,
2393 struct xlog_ticket
*ticket
,
2394 xfs_lsn_t
*start_lsn
,
2395 struct xlog_in_core
**commit_iclog
,
2398 struct xlog_in_core
*iclog
= NULL
;
2399 struct xfs_log_iovec
*vecp
;
2400 struct xfs_log_vec
*lv
;
2403 int partial_copy
= 0;
2404 int partial_copy_len
= 0;
2412 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2415 * Region headers and bytes are already accounted for.
2416 * We only need to take into account start records and
2417 * split regions in this function.
2419 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2420 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2423 * Commit record headers need to be accounted for. These
2424 * come in as separate writes so are easy to detect.
2426 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2427 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2429 if (ticket
->t_curr_res
< 0) {
2430 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
2431 "ctx ticket reservation ran out. Need to up reservation");
2432 xlog_print_tic_res(log
->l_mp
, ticket
);
2433 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
2438 vecp
= lv
->lv_iovecp
;
2439 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2443 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2444 &contwr
, &log_offset
);
2448 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2449 ptr
= iclog
->ic_datap
+ log_offset
;
2451 /* start_lsn is the first lsn written to. That's all we need. */
2453 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2456 * This loop writes out as many regions as can fit in the amount
2457 * of space which was allocated by xlog_state_get_iclog_space().
2459 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2460 struct xfs_log_iovec
*reg
;
2461 struct xlog_op_header
*ophdr
;
2465 bool ordered
= false;
2467 /* ordered log vectors have no regions to write */
2468 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2469 ASSERT(lv
->lv_niovecs
== 0);
2475 ASSERT(reg
->i_len
% sizeof(int32_t) == 0);
2476 ASSERT((unsigned long)ptr
% sizeof(int32_t) == 0);
2478 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2479 if (start_rec_copy
) {
2481 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2485 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2489 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2490 sizeof(struct xlog_op_header
));
2492 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2493 iclog
->ic_size
-log_offset
,
2495 ©_off
, ©_len
,
2498 xlog_verify_dest_ptr(log
, ptr
);
2503 * Unmount records just log an opheader, so can have
2504 * empty payloads with no data region to copy. Hence we
2505 * only copy the payload if the vector says it has data
2508 ASSERT(copy_len
>= 0);
2510 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2511 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2514 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2516 data_cnt
+= contwr
? copy_len
: 0;
2518 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2519 &record_cnt
, &data_cnt
,
2528 * if we had a partial copy, we need to get more iclog
2529 * space but we don't want to increment the region
2530 * index because there is still more is this region to
2533 * If we completed writing this region, and we flushed
2534 * the iclog (indicated by resetting of the record
2535 * count), then we also need to get more log space. If
2536 * this was the last record, though, we are done and
2542 if (++index
== lv
->lv_niovecs
) {
2547 vecp
= lv
->lv_iovecp
;
2549 if (record_cnt
== 0 && !ordered
) {
2559 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2561 return xlog_state_release_iclog(log
, iclog
);
2563 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2564 *commit_iclog
= iclog
;
2569 /*****************************************************************************
2571 * State Machine functions
2573 *****************************************************************************
2576 /* Clean iclogs starting from the head. This ordering must be
2577 * maintained, so an iclog doesn't become ACTIVE beyond one that
2578 * is SYNCING. This is also required to maintain the notion that we use
2579 * a ordered wait queue to hold off would be writers to the log when every
2580 * iclog is trying to sync to disk.
2582 * State Change: DIRTY -> ACTIVE
2585 xlog_state_clean_log(
2588 xlog_in_core_t
*iclog
;
2591 iclog
= log
->l_iclog
;
2593 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2594 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2595 iclog
->ic_offset
= 0;
2596 ASSERT(iclog
->ic_callback
== NULL
);
2598 * If the number of ops in this iclog indicate it just
2599 * contains the dummy transaction, we can
2600 * change state into IDLE (the second time around).
2601 * Otherwise we should change the state into
2603 * We don't need to cover the dummy.
2606 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2611 * We have two dirty iclogs so start over
2612 * This could also be num of ops indicates
2613 * this is not the dummy going out.
2617 iclog
->ic_header
.h_num_logops
= 0;
2618 memset(iclog
->ic_header
.h_cycle_data
, 0,
2619 sizeof(iclog
->ic_header
.h_cycle_data
));
2620 iclog
->ic_header
.h_lsn
= 0;
2621 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2624 break; /* stop cleaning */
2625 iclog
= iclog
->ic_next
;
2626 } while (iclog
!= log
->l_iclog
);
2628 /* log is locked when we are called */
2630 * Change state for the dummy log recording.
2631 * We usually go to NEED. But we go to NEED2 if the changed indicates
2632 * we are done writing the dummy record.
2633 * If we are done with the second dummy recored (DONE2), then
2637 switch (log
->l_covered_state
) {
2638 case XLOG_STATE_COVER_IDLE
:
2639 case XLOG_STATE_COVER_NEED
:
2640 case XLOG_STATE_COVER_NEED2
:
2641 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2644 case XLOG_STATE_COVER_DONE
:
2646 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2648 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2651 case XLOG_STATE_COVER_DONE2
:
2653 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2655 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2662 } /* xlog_state_clean_log */
2665 xlog_get_lowest_lsn(
2668 xlog_in_core_t
*lsn_log
;
2669 xfs_lsn_t lowest_lsn
, lsn
;
2671 lsn_log
= log
->l_iclog
;
2674 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2675 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2676 if ((lsn
&& !lowest_lsn
) ||
2677 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2681 lsn_log
= lsn_log
->ic_next
;
2682 } while (lsn_log
!= log
->l_iclog
);
2688 xlog_state_do_callback(
2691 struct xlog_in_core
*ciclog
)
2693 xlog_in_core_t
*iclog
;
2694 xlog_in_core_t
*first_iclog
; /* used to know when we've
2695 * processed all iclogs once */
2696 xfs_log_callback_t
*cb
, *cb_next
;
2698 xfs_lsn_t lowest_lsn
;
2699 int ioerrors
; /* counter: iclogs with errors */
2700 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2701 int funcdidcallbacks
; /* flag: function did callbacks */
2702 int repeats
; /* for issuing console warnings if
2703 * looping too many times */
2706 spin_lock(&log
->l_icloglock
);
2707 first_iclog
= iclog
= log
->l_iclog
;
2709 funcdidcallbacks
= 0;
2714 * Scan all iclogs starting with the one pointed to by the
2715 * log. Reset this starting point each time the log is
2716 * unlocked (during callbacks).
2718 * Keep looping through iclogs until one full pass is made
2719 * without running any callbacks.
2721 first_iclog
= log
->l_iclog
;
2722 iclog
= log
->l_iclog
;
2723 loopdidcallbacks
= 0;
2728 /* skip all iclogs in the ACTIVE & DIRTY states */
2729 if (iclog
->ic_state
&
2730 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2731 iclog
= iclog
->ic_next
;
2736 * Between marking a filesystem SHUTDOWN and stopping
2737 * the log, we do flush all iclogs to disk (if there
2738 * wasn't a log I/O error). So, we do want things to
2739 * go smoothly in case of just a SHUTDOWN w/o a
2742 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2744 * Can only perform callbacks in order. Since
2745 * this iclog is not in the DONE_SYNC/
2746 * DO_CALLBACK state, we skip the rest and
2747 * just try to clean up. If we set our iclog
2748 * to DO_CALLBACK, we will not process it when
2749 * we retry since a previous iclog is in the
2750 * CALLBACK and the state cannot change since
2751 * we are holding the l_icloglock.
2753 if (!(iclog
->ic_state
&
2754 (XLOG_STATE_DONE_SYNC
|
2755 XLOG_STATE_DO_CALLBACK
))) {
2756 if (ciclog
&& (ciclog
->ic_state
==
2757 XLOG_STATE_DONE_SYNC
)) {
2758 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2763 * We now have an iclog that is in either the
2764 * DO_CALLBACK or DONE_SYNC states. The other
2765 * states (WANT_SYNC, SYNCING, or CALLBACK were
2766 * caught by the above if and are going to
2767 * clean (i.e. we aren't doing their callbacks)
2772 * We will do one more check here to see if we
2773 * have chased our tail around.
2776 lowest_lsn
= xlog_get_lowest_lsn(log
);
2778 XFS_LSN_CMP(lowest_lsn
,
2779 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2780 iclog
= iclog
->ic_next
;
2781 continue; /* Leave this iclog for
2785 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2789 * Completion of a iclog IO does not imply that
2790 * a transaction has completed, as transactions
2791 * can be large enough to span many iclogs. We
2792 * cannot change the tail of the log half way
2793 * through a transaction as this may be the only
2794 * transaction in the log and moving th etail to
2795 * point to the middle of it will prevent
2796 * recovery from finding the start of the
2797 * transaction. Hence we should only update the
2798 * last_sync_lsn if this iclog contains
2799 * transaction completion callbacks on it.
2801 * We have to do this before we drop the
2802 * icloglock to ensure we are the only one that
2805 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2806 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2807 if (iclog
->ic_callback
)
2808 atomic64_set(&log
->l_last_sync_lsn
,
2809 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2814 spin_unlock(&log
->l_icloglock
);
2817 * Keep processing entries in the callback list until
2818 * we come around and it is empty. We need to
2819 * atomically see that the list is empty and change the
2820 * state to DIRTY so that we don't miss any more
2821 * callbacks being added.
2823 spin_lock(&iclog
->ic_callback_lock
);
2824 cb
= iclog
->ic_callback
;
2826 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2827 iclog
->ic_callback
= NULL
;
2828 spin_unlock(&iclog
->ic_callback_lock
);
2830 /* perform callbacks in the order given */
2831 for (; cb
; cb
= cb_next
) {
2832 cb_next
= cb
->cb_next
;
2833 cb
->cb_func(cb
->cb_arg
, aborted
);
2835 spin_lock(&iclog
->ic_callback_lock
);
2836 cb
= iclog
->ic_callback
;
2842 spin_lock(&log
->l_icloglock
);
2843 ASSERT(iclog
->ic_callback
== NULL
);
2844 spin_unlock(&iclog
->ic_callback_lock
);
2845 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2846 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2849 * Transition from DIRTY to ACTIVE if applicable.
2850 * NOP if STATE_IOERROR.
2852 xlog_state_clean_log(log
);
2854 /* wake up threads waiting in xfs_log_force() */
2855 wake_up_all(&iclog
->ic_force_wait
);
2857 iclog
= iclog
->ic_next
;
2858 } while (first_iclog
!= iclog
);
2860 if (repeats
> 5000) {
2861 flushcnt
+= repeats
;
2864 "%s: possible infinite loop (%d iterations)",
2865 __func__
, flushcnt
);
2867 } while (!ioerrors
&& loopdidcallbacks
);
2871 * Make one last gasp attempt to see if iclogs are being left in limbo.
2872 * If the above loop finds an iclog earlier than the current iclog and
2873 * in one of the syncing states, the current iclog is put into
2874 * DO_CALLBACK and the callbacks are deferred to the completion of the
2875 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2876 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2879 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2880 * for ic_state == SYNCING.
2882 if (funcdidcallbacks
) {
2883 first_iclog
= iclog
= log
->l_iclog
;
2885 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2887 * Terminate the loop if iclogs are found in states
2888 * which will cause other threads to clean up iclogs.
2890 * SYNCING - i/o completion will go through logs
2891 * DONE_SYNC - interrupt thread should be waiting for
2893 * IOERROR - give up hope all ye who enter here
2895 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2896 iclog
->ic_state
& XLOG_STATE_SYNCING
||
2897 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2898 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2900 iclog
= iclog
->ic_next
;
2901 } while (first_iclog
!= iclog
);
2905 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2907 spin_unlock(&log
->l_icloglock
);
2910 wake_up_all(&log
->l_flush_wait
);
2915 * Finish transitioning this iclog to the dirty state.
2917 * Make sure that we completely execute this routine only when this is
2918 * the last call to the iclog. There is a good chance that iclog flushes,
2919 * when we reach the end of the physical log, get turned into 2 separate
2920 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2921 * routine. By using the reference count bwritecnt, we guarantee that only
2922 * the second completion goes through.
2924 * Callbacks could take time, so they are done outside the scope of the
2925 * global state machine log lock.
2928 xlog_state_done_syncing(
2929 xlog_in_core_t
*iclog
,
2932 struct xlog
*log
= iclog
->ic_log
;
2934 spin_lock(&log
->l_icloglock
);
2936 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2937 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2938 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2939 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2943 * If we got an error, either on the first buffer, or in the case of
2944 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2945 * and none should ever be attempted to be written to disk
2948 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2949 if (--iclog
->ic_bwritecnt
== 1) {
2950 spin_unlock(&log
->l_icloglock
);
2953 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2957 * Someone could be sleeping prior to writing out the next
2958 * iclog buffer, we wake them all, one will get to do the
2959 * I/O, the others get to wait for the result.
2961 wake_up_all(&iclog
->ic_write_wait
);
2962 spin_unlock(&log
->l_icloglock
);
2963 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2964 } /* xlog_state_done_syncing */
2968 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2969 * sleep. We wait on the flush queue on the head iclog as that should be
2970 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2971 * we will wait here and all new writes will sleep until a sync completes.
2973 * The in-core logs are used in a circular fashion. They are not used
2974 * out-of-order even when an iclog past the head is free.
2977 * * log_offset where xlog_write() can start writing into the in-core
2979 * * in-core log pointer to which xlog_write() should write.
2980 * * boolean indicating this is a continued write to an in-core log.
2981 * If this is the last write, then the in-core log's offset field
2982 * needs to be incremented, depending on the amount of data which
2986 xlog_state_get_iclog_space(
2989 struct xlog_in_core
**iclogp
,
2990 struct xlog_ticket
*ticket
,
2991 int *continued_write
,
2995 xlog_rec_header_t
*head
;
2996 xlog_in_core_t
*iclog
;
3000 spin_lock(&log
->l_icloglock
);
3001 if (XLOG_FORCED_SHUTDOWN(log
)) {
3002 spin_unlock(&log
->l_icloglock
);
3006 iclog
= log
->l_iclog
;
3007 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
3008 XFS_STATS_INC(log
->l_mp
, xs_log_noiclogs
);
3010 /* Wait for log writes to have flushed */
3011 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
3015 head
= &iclog
->ic_header
;
3017 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
3018 log_offset
= iclog
->ic_offset
;
3020 /* On the 1st write to an iclog, figure out lsn. This works
3021 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3022 * committing to. If the offset is set, that's how many blocks
3025 if (log_offset
== 0) {
3026 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
3027 xlog_tic_add_region(ticket
,
3029 XLOG_REG_TYPE_LRHEADER
);
3030 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
3031 head
->h_lsn
= cpu_to_be64(
3032 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
3033 ASSERT(log
->l_curr_block
>= 0);
3036 /* If there is enough room to write everything, then do it. Otherwise,
3037 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3038 * bit is on, so this will get flushed out. Don't update ic_offset
3039 * until you know exactly how many bytes get copied. Therefore, wait
3040 * until later to update ic_offset.
3042 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3043 * can fit into remaining data section.
3045 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
3046 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3049 * If I'm the only one writing to this iclog, sync it to disk.
3050 * We need to do an atomic compare and decrement here to avoid
3051 * racing with concurrent atomic_dec_and_lock() calls in
3052 * xlog_state_release_iclog() when there is more than one
3053 * reference to the iclog.
3055 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
3056 /* we are the only one */
3057 spin_unlock(&log
->l_icloglock
);
3058 error
= xlog_state_release_iclog(log
, iclog
);
3062 spin_unlock(&log
->l_icloglock
);
3067 /* Do we have enough room to write the full amount in the remainder
3068 * of this iclog? Or must we continue a write on the next iclog and
3069 * mark this iclog as completely taken? In the case where we switch
3070 * iclogs (to mark it taken), this particular iclog will release/sync
3071 * to disk in xlog_write().
3073 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
3074 *continued_write
= 0;
3075 iclog
->ic_offset
+= len
;
3077 *continued_write
= 1;
3078 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3082 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
3083 spin_unlock(&log
->l_icloglock
);
3085 *logoffsetp
= log_offset
;
3087 } /* xlog_state_get_iclog_space */
3089 /* The first cnt-1 times through here we don't need to
3090 * move the grant write head because the permanent
3091 * reservation has reserved cnt times the unit amount.
3092 * Release part of current permanent unit reservation and
3093 * reset current reservation to be one units worth. Also
3094 * move grant reservation head forward.
3097 xlog_regrant_reserve_log_space(
3099 struct xlog_ticket
*ticket
)
3101 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
3103 if (ticket
->t_cnt
> 0)
3106 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
3107 ticket
->t_curr_res
);
3108 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
3109 ticket
->t_curr_res
);
3110 ticket
->t_curr_res
= ticket
->t_unit_res
;
3111 xlog_tic_reset_res(ticket
);
3113 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
3115 /* just return if we still have some of the pre-reserved space */
3116 if (ticket
->t_cnt
> 0)
3119 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
3120 ticket
->t_unit_res
);
3122 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
3124 ticket
->t_curr_res
= ticket
->t_unit_res
;
3125 xlog_tic_reset_res(ticket
);
3126 } /* xlog_regrant_reserve_log_space */
3130 * Give back the space left from a reservation.
3132 * All the information we need to make a correct determination of space left
3133 * is present. For non-permanent reservations, things are quite easy. The
3134 * count should have been decremented to zero. We only need to deal with the
3135 * space remaining in the current reservation part of the ticket. If the
3136 * ticket contains a permanent reservation, there may be left over space which
3137 * needs to be released. A count of N means that N-1 refills of the current
3138 * reservation can be done before we need to ask for more space. The first
3139 * one goes to fill up the first current reservation. Once we run out of
3140 * space, the count will stay at zero and the only space remaining will be
3141 * in the current reservation field.
3144 xlog_ungrant_log_space(
3146 struct xlog_ticket
*ticket
)
3150 if (ticket
->t_cnt
> 0)
3153 trace_xfs_log_ungrant_enter(log
, ticket
);
3154 trace_xfs_log_ungrant_sub(log
, ticket
);
3157 * If this is a permanent reservation ticket, we may be able to free
3158 * up more space based on the remaining count.
3160 bytes
= ticket
->t_curr_res
;
3161 if (ticket
->t_cnt
> 0) {
3162 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3163 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3166 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3167 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3169 trace_xfs_log_ungrant_exit(log
, ticket
);
3171 xfs_log_space_wake(log
->l_mp
);
3175 * Flush iclog to disk if this is the last reference to the given iclog and
3176 * the WANT_SYNC bit is set.
3178 * When this function is entered, the iclog is not necessarily in the
3179 * WANT_SYNC state. It may be sitting around waiting to get filled.
3184 xlog_state_release_iclog(
3186 struct xlog_in_core
*iclog
)
3188 int sync
= 0; /* do we sync? */
3190 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3193 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
3194 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
3197 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3198 spin_unlock(&log
->l_icloglock
);
3201 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3202 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
3204 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
3205 /* update tail before writing to iclog */
3206 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
3208 iclog
->ic_state
= XLOG_STATE_SYNCING
;
3209 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
3210 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
3211 /* cycle incremented when incrementing curr_block */
3213 spin_unlock(&log
->l_icloglock
);
3216 * We let the log lock go, so it's possible that we hit a log I/O
3217 * error or some other SHUTDOWN condition that marks the iclog
3218 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3219 * this iclog has consistent data, so we ignore IOERROR
3220 * flags after this point.
3223 return xlog_sync(log
, iclog
);
3225 } /* xlog_state_release_iclog */
3229 * This routine will mark the current iclog in the ring as WANT_SYNC
3230 * and move the current iclog pointer to the next iclog in the ring.
3231 * When this routine is called from xlog_state_get_iclog_space(), the
3232 * exact size of the iclog has not yet been determined. All we know is
3233 * that every data block. We have run out of space in this log record.
3236 xlog_state_switch_iclogs(
3238 struct xlog_in_core
*iclog
,
3241 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3243 eventual_size
= iclog
->ic_offset
;
3244 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3245 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3246 log
->l_prev_block
= log
->l_curr_block
;
3247 log
->l_prev_cycle
= log
->l_curr_cycle
;
3249 /* roll log?: ic_offset changed later */
3250 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3252 /* Round up to next log-sunit */
3253 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3254 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3255 uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3256 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3259 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3261 * Rewind the current block before the cycle is bumped to make
3262 * sure that the combined LSN never transiently moves forward
3263 * when the log wraps to the next cycle. This is to support the
3264 * unlocked sample of these fields from xlog_valid_lsn(). Most
3265 * other cases should acquire l_icloglock.
3267 log
->l_curr_block
-= log
->l_logBBsize
;
3268 ASSERT(log
->l_curr_block
>= 0);
3270 log
->l_curr_cycle
++;
3271 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3272 log
->l_curr_cycle
++;
3274 ASSERT(iclog
== log
->l_iclog
);
3275 log
->l_iclog
= iclog
->ic_next
;
3276 } /* xlog_state_switch_iclogs */
3279 * Write out all data in the in-core log as of this exact moment in time.
3281 * Data may be written to the in-core log during this call. However,
3282 * we don't guarantee this data will be written out. A change from past
3283 * implementation means this routine will *not* write out zero length LRs.
3285 * Basically, we try and perform an intelligent scan of the in-core logs.
3286 * If we determine there is no flushable data, we just return. There is no
3287 * flushable data if:
3289 * 1. the current iclog is active and has no data; the previous iclog
3290 * is in the active or dirty state.
3291 * 2. the current iclog is drity, and the previous iclog is in the
3292 * active or dirty state.
3296 * 1. the current iclog is not in the active nor dirty state.
3297 * 2. the current iclog dirty, and the previous iclog is not in the
3298 * active nor dirty state.
3299 * 3. the current iclog is active, and there is another thread writing
3300 * to this particular iclog.
3301 * 4. a) the current iclog is active and has no other writers
3302 * b) when we return from flushing out this iclog, it is still
3303 * not in the active nor dirty state.
3307 struct xfs_mount
*mp
,
3310 struct xlog
*log
= mp
->m_log
;
3311 struct xlog_in_core
*iclog
;
3314 XFS_STATS_INC(mp
, xs_log_force
);
3315 trace_xfs_log_force(mp
, 0, _RET_IP_
);
3317 xlog_cil_force(log
);
3319 spin_lock(&log
->l_icloglock
);
3320 iclog
= log
->l_iclog
;
3321 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3324 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3325 (iclog
->ic_state
== XLOG_STATE_ACTIVE
&&
3326 atomic_read(&iclog
->ic_refcnt
) == 0 && iclog
->ic_offset
== 0)) {
3328 * If the head is dirty or (active and empty), then we need to
3329 * look at the previous iclog.
3331 * If the previous iclog is active or dirty we are done. There
3332 * is nothing to sync out. Otherwise, we attach ourselves to the
3333 * previous iclog and go to sleep.
3335 iclog
= iclog
->ic_prev
;
3336 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3337 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3339 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3340 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3342 * We are the only one with access to this iclog.
3344 * Flush it out now. There should be a roundoff of zero
3345 * to show that someone has already taken care of the
3346 * roundoff from the previous sync.
3348 atomic_inc(&iclog
->ic_refcnt
);
3349 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3350 xlog_state_switch_iclogs(log
, iclog
, 0);
3351 spin_unlock(&log
->l_icloglock
);
3353 if (xlog_state_release_iclog(log
, iclog
))
3356 spin_lock(&log
->l_icloglock
);
3357 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
||
3358 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3362 * Someone else is writing to this iclog.
3364 * Use its call to flush out the data. However, the
3365 * other thread may not force out this LR, so we mark
3368 xlog_state_switch_iclogs(log
, iclog
, 0);
3372 * If the head iclog is not active nor dirty, we just attach
3373 * ourselves to the head and go to sleep if necessary.
3378 if (!(flags
& XFS_LOG_SYNC
))
3381 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3383 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3384 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3385 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3390 spin_unlock(&log
->l_icloglock
);
3393 spin_unlock(&log
->l_icloglock
);
3398 __xfs_log_force_lsn(
3399 struct xfs_mount
*mp
,
3405 struct xlog
*log
= mp
->m_log
;
3406 struct xlog_in_core
*iclog
;
3408 spin_lock(&log
->l_icloglock
);
3409 iclog
= log
->l_iclog
;
3410 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3413 while (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3414 iclog
= iclog
->ic_next
;
3415 if (iclog
== log
->l_iclog
)
3419 if (iclog
->ic_state
== XLOG_STATE_DIRTY
)
3422 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3424 * We sleep here if we haven't already slept (e.g. this is the
3425 * first time we've looked at the correct iclog buf) and the
3426 * buffer before us is going to be sync'ed. The reason for this
3427 * is that if we are doing sync transactions here, by waiting
3428 * for the previous I/O to complete, we can allow a few more
3429 * transactions into this iclog before we close it down.
3431 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3432 * refcnt so we can release the log (which drops the ref count).
3433 * The state switch keeps new transaction commits from using
3434 * this buffer. When the current commits finish writing into
3435 * the buffer, the refcount will drop to zero and the buffer
3438 if (!already_slept
&&
3439 (iclog
->ic_prev
->ic_state
&
3440 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3441 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3443 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3445 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3449 atomic_inc(&iclog
->ic_refcnt
);
3450 xlog_state_switch_iclogs(log
, iclog
, 0);
3451 spin_unlock(&log
->l_icloglock
);
3452 if (xlog_state_release_iclog(log
, iclog
))
3456 spin_lock(&log
->l_icloglock
);
3459 if (!(flags
& XFS_LOG_SYNC
) ||
3460 (iclog
->ic_state
& (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
)))
3463 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3466 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3467 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3468 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3473 spin_unlock(&log
->l_icloglock
);
3476 spin_unlock(&log
->l_icloglock
);
3481 * Force the in-core log to disk for a specific LSN.
3483 * Find in-core log with lsn.
3484 * If it is in the DIRTY state, just return.
3485 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3486 * state and go to sleep or return.
3487 * If it is in any other state, go to sleep or return.
3489 * Synchronous forces are implemented with a wait queue. All callers trying
3490 * to force a given lsn to disk must wait on the queue attached to the
3491 * specific in-core log. When given in-core log finally completes its write
3492 * to disk, that thread will wake up all threads waiting on the queue.
3496 struct xfs_mount
*mp
,
3504 XFS_STATS_INC(mp
, xs_log_force
);
3505 trace_xfs_log_force(mp
, lsn
, _RET_IP_
);
3507 lsn
= xlog_cil_force_lsn(mp
->m_log
, lsn
);
3508 if (lsn
== NULLCOMMITLSN
)
3511 ret
= __xfs_log_force_lsn(mp
, lsn
, flags
, log_flushed
, false);
3513 ret
= __xfs_log_force_lsn(mp
, lsn
, flags
, log_flushed
, true);
3518 * Called when we want to mark the current iclog as being ready to sync to
3522 xlog_state_want_sync(
3524 struct xlog_in_core
*iclog
)
3526 assert_spin_locked(&log
->l_icloglock
);
3528 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3529 xlog_state_switch_iclogs(log
, iclog
, 0);
3531 ASSERT(iclog
->ic_state
&
3532 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3537 /*****************************************************************************
3541 *****************************************************************************
3545 * Free a used ticket when its refcount falls to zero.
3549 xlog_ticket_t
*ticket
)
3551 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3552 if (atomic_dec_and_test(&ticket
->t_ref
))
3553 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3558 xlog_ticket_t
*ticket
)
3560 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3561 atomic_inc(&ticket
->t_ref
);
3566 * Figure out the total log space unit (in bytes) that would be
3567 * required for a log ticket.
3570 xfs_log_calc_unit_res(
3571 struct xfs_mount
*mp
,
3574 struct xlog
*log
= mp
->m_log
;
3579 * Permanent reservations have up to 'cnt'-1 active log operations
3580 * in the log. A unit in this case is the amount of space for one
3581 * of these log operations. Normal reservations have a cnt of 1
3582 * and their unit amount is the total amount of space required.
3584 * The following lines of code account for non-transaction data
3585 * which occupy space in the on-disk log.
3587 * Normal form of a transaction is:
3588 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3589 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3591 * We need to account for all the leadup data and trailer data
3592 * around the transaction data.
3593 * And then we need to account for the worst case in terms of using
3595 * The worst case will happen if:
3596 * - the placement of the transaction happens to be such that the
3597 * roundoff is at its maximum
3598 * - the transaction data is synced before the commit record is synced
3599 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3600 * Therefore the commit record is in its own Log Record.
3601 * This can happen as the commit record is called with its
3602 * own region to xlog_write().
3603 * This then means that in the worst case, roundoff can happen for
3604 * the commit-rec as well.
3605 * The commit-rec is smaller than padding in this scenario and so it is
3606 * not added separately.
3609 /* for trans header */
3610 unit_bytes
+= sizeof(xlog_op_header_t
);
3611 unit_bytes
+= sizeof(xfs_trans_header_t
);
3614 unit_bytes
+= sizeof(xlog_op_header_t
);
3617 * for LR headers - the space for data in an iclog is the size minus
3618 * the space used for the headers. If we use the iclog size, then we
3619 * undercalculate the number of headers required.
3621 * Furthermore - the addition of op headers for split-recs might
3622 * increase the space required enough to require more log and op
3623 * headers, so take that into account too.
3625 * IMPORTANT: This reservation makes the assumption that if this
3626 * transaction is the first in an iclog and hence has the LR headers
3627 * accounted to it, then the remaining space in the iclog is
3628 * exclusively for this transaction. i.e. if the transaction is larger
3629 * than the iclog, it will be the only thing in that iclog.
3630 * Fundamentally, this means we must pass the entire log vector to
3631 * xlog_write to guarantee this.
3633 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3634 num_headers
= howmany(unit_bytes
, iclog_space
);
3636 /* for split-recs - ophdrs added when data split over LRs */
3637 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3639 /* add extra header reservations if we overrun */
3640 while (!num_headers
||
3641 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3642 unit_bytes
+= sizeof(xlog_op_header_t
);
3645 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3647 /* for commit-rec LR header - note: padding will subsume the ophdr */
3648 unit_bytes
+= log
->l_iclog_hsize
;
3650 /* for roundoff padding for transaction data and one for commit record */
3651 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3652 /* log su roundoff */
3653 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3656 unit_bytes
+= 2 * BBSIZE
;
3663 * Allocate and initialise a new log ticket.
3665 struct xlog_ticket
*
3672 xfs_km_flags_t alloc_flags
)
3674 struct xlog_ticket
*tic
;
3677 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3681 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3683 atomic_set(&tic
->t_ref
, 1);
3684 tic
->t_task
= current
;
3685 INIT_LIST_HEAD(&tic
->t_queue
);
3686 tic
->t_unit_res
= unit_res
;
3687 tic
->t_curr_res
= unit_res
;
3690 tic
->t_tid
= prandom_u32();
3691 tic
->t_clientid
= client
;
3692 tic
->t_flags
= XLOG_TIC_INITED
;
3694 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3696 xlog_tic_reset_res(tic
);
3702 /******************************************************************************
3704 * Log debug routines
3706 ******************************************************************************
3710 * Make sure that the destination ptr is within the valid data region of
3711 * one of the iclogs. This uses backup pointers stored in a different
3712 * part of the log in case we trash the log structure.
3715 xlog_verify_dest_ptr(
3722 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3723 if (ptr
>= log
->l_iclog_bak
[i
] &&
3724 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3729 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3733 * Check to make sure the grant write head didn't just over lap the tail. If
3734 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3735 * the cycles differ by exactly one and check the byte count.
3737 * This check is run unlocked, so can give false positives. Rather than assert
3738 * on failures, use a warn-once flag and a panic tag to allow the admin to
3739 * determine if they want to panic the machine when such an error occurs. For
3740 * debug kernels this will have the same effect as using an assert but, unlinke
3741 * an assert, it can be turned off at runtime.
3744 xlog_verify_grant_tail(
3747 int tail_cycle
, tail_blocks
;
3750 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3751 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3752 if (tail_cycle
!= cycle
) {
3753 if (cycle
- 1 != tail_cycle
&&
3754 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3755 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3756 "%s: cycle - 1 != tail_cycle", __func__
);
3757 log
->l_flags
|= XLOG_TAIL_WARN
;
3760 if (space
> BBTOB(tail_blocks
) &&
3761 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3762 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3763 "%s: space > BBTOB(tail_blocks)", __func__
);
3764 log
->l_flags
|= XLOG_TAIL_WARN
;
3769 /* check if it will fit */
3771 xlog_verify_tail_lsn(
3773 struct xlog_in_core
*iclog
,
3778 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3780 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3781 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3782 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3784 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3786 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3787 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3789 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3790 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3791 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3793 } /* xlog_verify_tail_lsn */
3796 * Perform a number of checks on the iclog before writing to disk.
3798 * 1. Make sure the iclogs are still circular
3799 * 2. Make sure we have a good magic number
3800 * 3. Make sure we don't have magic numbers in the data
3801 * 4. Check fields of each log operation header for:
3802 * A. Valid client identifier
3803 * B. tid ptr value falls in valid ptr space (user space code)
3804 * C. Length in log record header is correct according to the
3805 * individual operation headers within record.
3806 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3807 * log, check the preceding blocks of the physical log to make sure all
3808 * the cycle numbers agree with the current cycle number.
3813 struct xlog_in_core
*iclog
,
3817 xlog_op_header_t
*ophead
;
3818 xlog_in_core_t
*icptr
;
3819 xlog_in_core_2_t
*xhdr
;
3820 void *base_ptr
, *ptr
, *p
;
3821 ptrdiff_t field_offset
;
3823 int len
, i
, j
, k
, op_len
;
3826 /* check validity of iclog pointers */
3827 spin_lock(&log
->l_icloglock
);
3828 icptr
= log
->l_iclog
;
3829 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3832 if (icptr
!= log
->l_iclog
)
3833 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3834 spin_unlock(&log
->l_icloglock
);
3836 /* check log magic numbers */
3837 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3838 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3840 base_ptr
= ptr
= &iclog
->ic_header
;
3841 p
= &iclog
->ic_header
;
3842 for (ptr
+= BBSIZE
; ptr
< base_ptr
+ count
; ptr
+= BBSIZE
) {
3843 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3844 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3849 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3850 base_ptr
= ptr
= iclog
->ic_datap
;
3852 xhdr
= iclog
->ic_data
;
3853 for (i
= 0; i
< len
; i
++) {
3856 /* clientid is only 1 byte */
3857 p
= &ophead
->oh_clientid
;
3858 field_offset
= p
- base_ptr
;
3859 if (!syncing
|| (field_offset
& 0x1ff)) {
3860 clientid
= ophead
->oh_clientid
;
3862 idx
= BTOBBT((char *)&ophead
->oh_clientid
- iclog
->ic_datap
);
3863 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3864 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3865 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3866 clientid
= xlog_get_client_id(
3867 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3869 clientid
= xlog_get_client_id(
3870 iclog
->ic_header
.h_cycle_data
[idx
]);
3873 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3875 "%s: invalid clientid %d op "PTR_FMT
" offset 0x%lx",
3876 __func__
, clientid
, ophead
,
3877 (unsigned long)field_offset
);
3880 p
= &ophead
->oh_len
;
3881 field_offset
= p
- base_ptr
;
3882 if (!syncing
|| (field_offset
& 0x1ff)) {
3883 op_len
= be32_to_cpu(ophead
->oh_len
);
3885 idx
= BTOBBT((uintptr_t)&ophead
->oh_len
-
3886 (uintptr_t)iclog
->ic_datap
);
3887 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3888 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3889 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3890 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3892 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3895 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3897 } /* xlog_verify_iclog */
3901 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3907 xlog_in_core_t
*iclog
, *ic
;
3909 iclog
= log
->l_iclog
;
3910 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3912 * Mark all the incore logs IOERROR.
3913 * From now on, no log flushes will result.
3917 ic
->ic_state
= XLOG_STATE_IOERROR
;
3919 } while (ic
!= iclog
);
3923 * Return non-zero, if state transition has already happened.
3929 * This is called from xfs_force_shutdown, when we're forcibly
3930 * shutting down the filesystem, typically because of an IO error.
3931 * Our main objectives here are to make sure that:
3932 * a. if !logerror, flush the logs to disk. Anything modified
3933 * after this is ignored.
3934 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3935 * parties to find out, 'atomically'.
3936 * c. those who're sleeping on log reservations, pinned objects and
3937 * other resources get woken up, and be told the bad news.
3938 * d. nothing new gets queued up after (b) and (c) are done.
3940 * Note: for the !logerror case we need to flush the regions held in memory out
3941 * to disk first. This needs to be done before the log is marked as shutdown,
3942 * otherwise the iclog writes will fail.
3945 xfs_log_force_umount(
3946 struct xfs_mount
*mp
,
3955 * If this happens during log recovery, don't worry about
3956 * locking; the log isn't open for business yet.
3959 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3960 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3962 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3967 * Somebody could've already done the hard work for us.
3968 * No need to get locks for this.
3970 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3971 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3976 * Flush all the completed transactions to disk before marking the log
3977 * being shut down. We need to do it in this order to ensure that
3978 * completed operations are safely on disk before we shut down, and that
3979 * we don't have to issue any buffer IO after the shutdown flags are set
3980 * to guarantee this.
3983 xfs_log_force(mp
, XFS_LOG_SYNC
);
3986 * mark the filesystem and the as in a shutdown state and wake
3987 * everybody up to tell them the bad news.
3989 spin_lock(&log
->l_icloglock
);
3990 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3992 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3995 * Mark the log and the iclogs with IO error flags to prevent any
3996 * further log IO from being issued or completed.
3998 log
->l_flags
|= XLOG_IO_ERROR
;
3999 retval
= xlog_state_ioerror(log
);
4000 spin_unlock(&log
->l_icloglock
);
4003 * We don't want anybody waiting for log reservations after this. That
4004 * means we have to wake up everybody queued up on reserveq as well as
4005 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4006 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4007 * action is protected by the grant locks.
4009 xlog_grant_head_wake_all(&log
->l_reserve_head
);
4010 xlog_grant_head_wake_all(&log
->l_write_head
);
4013 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4014 * as if the log writes were completed. The abort handling in the log
4015 * item committed callback functions will do this again under lock to
4018 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
4019 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
4021 #ifdef XFSERRORDEBUG
4023 xlog_in_core_t
*iclog
;
4025 spin_lock(&log
->l_icloglock
);
4026 iclog
= log
->l_iclog
;
4028 ASSERT(iclog
->ic_callback
== 0);
4029 iclog
= iclog
->ic_next
;
4030 } while (iclog
!= log
->l_iclog
);
4031 spin_unlock(&log
->l_icloglock
);
4034 /* return non-zero if log IOERROR transition had already happened */
4042 xlog_in_core_t
*iclog
;
4044 iclog
= log
->l_iclog
;
4046 /* endianness does not matter here, zero is zero in
4049 if (iclog
->ic_header
.h_num_logops
)
4051 iclog
= iclog
->ic_next
;
4052 } while (iclog
!= log
->l_iclog
);
4057 * Verify that an LSN stamped into a piece of metadata is valid. This is
4058 * intended for use in read verifiers on v5 superblocks.
4062 struct xfs_mount
*mp
,
4065 struct xlog
*log
= mp
->m_log
;
4069 * norecovery mode skips mount-time log processing and unconditionally
4070 * resets the in-core LSN. We can't validate in this mode, but
4071 * modifications are not allowed anyways so just return true.
4073 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
)
4077 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4078 * handled by recovery and thus safe to ignore here.
4080 if (lsn
== NULLCOMMITLSN
)
4083 valid
= xlog_valid_lsn(mp
->m_log
, lsn
);
4085 /* warn the user about what's gone wrong before verifier failure */
4087 spin_lock(&log
->l_icloglock
);
4089 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4090 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4091 CYCLE_LSN(lsn
), BLOCK_LSN(lsn
),
4092 log
->l_curr_cycle
, log
->l_curr_block
);
4093 spin_unlock(&log
->l_icloglock
);