perf stat: Fix duplicate PMU name for interval print
[linux/fpc-iii.git] / mm / vmscan.c
blob8b920ce3ae02f206f8598d6510986ceef6f0440d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
59 #include "internal.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
71 /* Allocation order */
72 int order;
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
78 nodemask_t *nodemask;
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
84 struct mem_cgroup *target_mem_cgroup;
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage:1;
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
109 unsigned int hibernation_mode:1;
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
120 struct {
121 unsigned int dirty;
122 unsigned int unqueued_dirty;
123 unsigned int congested;
124 unsigned int writeback;
125 unsigned int immediate;
126 unsigned int file_taken;
127 unsigned int taken;
128 } nr;
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field) \
133 do { \
134 if ((_page)->lru.prev != _base) { \
135 struct page *prev; \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetch(&prev->_field); \
140 } while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field) \
147 do { \
148 if ((_page)->lru.prev != _base) { \
149 struct page *prev; \
151 prev = lru_to_page(&(_page->lru)); \
152 prefetchw(&prev->_field); \
154 } while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
160 * From 0 .. 100. Higher means more swappy.
162 int vm_swappiness = 60;
164 * The total number of pages which are beyond the high watermark within all
165 * zones.
167 unsigned long vm_total_pages;
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
172 #ifdef CONFIG_MEMCG
173 static bool global_reclaim(struct scan_control *sc)
175 return !sc->target_mem_cgroup;
179 * sane_reclaim - is the usual dirty throttling mechanism operational?
180 * @sc: scan_control in question
182 * The normal page dirty throttling mechanism in balance_dirty_pages() is
183 * completely broken with the legacy memcg and direct stalling in
184 * shrink_page_list() is used for throttling instead, which lacks all the
185 * niceties such as fairness, adaptive pausing, bandwidth proportional
186 * allocation and configurability.
188 * This function tests whether the vmscan currently in progress can assume
189 * that the normal dirty throttling mechanism is operational.
191 static bool sane_reclaim(struct scan_control *sc)
193 struct mem_cgroup *memcg = sc->target_mem_cgroup;
195 if (!memcg)
196 return true;
197 #ifdef CONFIG_CGROUP_WRITEBACK
198 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
199 return true;
200 #endif
201 return false;
204 static void set_memcg_congestion(pg_data_t *pgdat,
205 struct mem_cgroup *memcg,
206 bool congested)
208 struct mem_cgroup_per_node *mn;
210 if (!memcg)
211 return;
213 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
214 WRITE_ONCE(mn->congested, congested);
217 static bool memcg_congested(pg_data_t *pgdat,
218 struct mem_cgroup *memcg)
220 struct mem_cgroup_per_node *mn;
222 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
223 return READ_ONCE(mn->congested);
226 #else
227 static bool global_reclaim(struct scan_control *sc)
229 return true;
232 static bool sane_reclaim(struct scan_control *sc)
234 return true;
237 static inline void set_memcg_congestion(struct pglist_data *pgdat,
238 struct mem_cgroup *memcg, bool congested)
242 static inline bool memcg_congested(struct pglist_data *pgdat,
243 struct mem_cgroup *memcg)
245 return false;
248 #endif
251 * This misses isolated pages which are not accounted for to save counters.
252 * As the data only determines if reclaim or compaction continues, it is
253 * not expected that isolated pages will be a dominating factor.
255 unsigned long zone_reclaimable_pages(struct zone *zone)
257 unsigned long nr;
259 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
260 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
261 if (get_nr_swap_pages() > 0)
262 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
263 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
265 return nr;
269 * lruvec_lru_size - Returns the number of pages on the given LRU list.
270 * @lruvec: lru vector
271 * @lru: lru to use
272 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
274 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
276 unsigned long lru_size;
277 int zid;
279 if (!mem_cgroup_disabled())
280 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
281 else
282 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
284 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
285 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
286 unsigned long size;
288 if (!managed_zone(zone))
289 continue;
291 if (!mem_cgroup_disabled())
292 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
293 else
294 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
295 NR_ZONE_LRU_BASE + lru);
296 lru_size -= min(size, lru_size);
299 return lru_size;
304 * Add a shrinker callback to be called from the vm.
306 int register_shrinker(struct shrinker *shrinker)
308 size_t size = sizeof(*shrinker->nr_deferred);
310 if (shrinker->flags & SHRINKER_NUMA_AWARE)
311 size *= nr_node_ids;
313 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
314 if (!shrinker->nr_deferred)
315 return -ENOMEM;
317 down_write(&shrinker_rwsem);
318 list_add_tail(&shrinker->list, &shrinker_list);
319 up_write(&shrinker_rwsem);
320 return 0;
322 EXPORT_SYMBOL(register_shrinker);
325 * Remove one
327 void unregister_shrinker(struct shrinker *shrinker)
329 if (!shrinker->nr_deferred)
330 return;
331 down_write(&shrinker_rwsem);
332 list_del(&shrinker->list);
333 up_write(&shrinker_rwsem);
334 kfree(shrinker->nr_deferred);
335 shrinker->nr_deferred = NULL;
337 EXPORT_SYMBOL(unregister_shrinker);
339 #define SHRINK_BATCH 128
341 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
342 struct shrinker *shrinker, int priority)
344 unsigned long freed = 0;
345 unsigned long long delta;
346 long total_scan;
347 long freeable;
348 long nr;
349 long new_nr;
350 int nid = shrinkctl->nid;
351 long batch_size = shrinker->batch ? shrinker->batch
352 : SHRINK_BATCH;
353 long scanned = 0, next_deferred;
355 freeable = shrinker->count_objects(shrinker, shrinkctl);
356 if (freeable == 0)
357 return 0;
360 * copy the current shrinker scan count into a local variable
361 * and zero it so that other concurrent shrinker invocations
362 * don't also do this scanning work.
364 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
366 total_scan = nr;
367 delta = freeable >> priority;
368 delta *= 4;
369 do_div(delta, shrinker->seeks);
370 total_scan += delta;
371 if (total_scan < 0) {
372 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
373 shrinker->scan_objects, total_scan);
374 total_scan = freeable;
375 next_deferred = nr;
376 } else
377 next_deferred = total_scan;
380 * We need to avoid excessive windup on filesystem shrinkers
381 * due to large numbers of GFP_NOFS allocations causing the
382 * shrinkers to return -1 all the time. This results in a large
383 * nr being built up so when a shrink that can do some work
384 * comes along it empties the entire cache due to nr >>>
385 * freeable. This is bad for sustaining a working set in
386 * memory.
388 * Hence only allow the shrinker to scan the entire cache when
389 * a large delta change is calculated directly.
391 if (delta < freeable / 4)
392 total_scan = min(total_scan, freeable / 2);
395 * Avoid risking looping forever due to too large nr value:
396 * never try to free more than twice the estimate number of
397 * freeable entries.
399 if (total_scan > freeable * 2)
400 total_scan = freeable * 2;
402 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
403 freeable, delta, total_scan, priority);
406 * Normally, we should not scan less than batch_size objects in one
407 * pass to avoid too frequent shrinker calls, but if the slab has less
408 * than batch_size objects in total and we are really tight on memory,
409 * we will try to reclaim all available objects, otherwise we can end
410 * up failing allocations although there are plenty of reclaimable
411 * objects spread over several slabs with usage less than the
412 * batch_size.
414 * We detect the "tight on memory" situations by looking at the total
415 * number of objects we want to scan (total_scan). If it is greater
416 * than the total number of objects on slab (freeable), we must be
417 * scanning at high prio and therefore should try to reclaim as much as
418 * possible.
420 while (total_scan >= batch_size ||
421 total_scan >= freeable) {
422 unsigned long ret;
423 unsigned long nr_to_scan = min(batch_size, total_scan);
425 shrinkctl->nr_to_scan = nr_to_scan;
426 shrinkctl->nr_scanned = nr_to_scan;
427 ret = shrinker->scan_objects(shrinker, shrinkctl);
428 if (ret == SHRINK_STOP)
429 break;
430 freed += ret;
432 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
433 total_scan -= shrinkctl->nr_scanned;
434 scanned += shrinkctl->nr_scanned;
436 cond_resched();
439 if (next_deferred >= scanned)
440 next_deferred -= scanned;
441 else
442 next_deferred = 0;
444 * move the unused scan count back into the shrinker in a
445 * manner that handles concurrent updates. If we exhausted the
446 * scan, there is no need to do an update.
448 if (next_deferred > 0)
449 new_nr = atomic_long_add_return(next_deferred,
450 &shrinker->nr_deferred[nid]);
451 else
452 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
454 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
455 return freed;
459 * shrink_slab - shrink slab caches
460 * @gfp_mask: allocation context
461 * @nid: node whose slab caches to target
462 * @memcg: memory cgroup whose slab caches to target
463 * @priority: the reclaim priority
465 * Call the shrink functions to age shrinkable caches.
467 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
468 * unaware shrinkers will receive a node id of 0 instead.
470 * @memcg specifies the memory cgroup to target. If it is not NULL,
471 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
472 * objects from the memory cgroup specified. Otherwise, only unaware
473 * shrinkers are called.
475 * @priority is sc->priority, we take the number of objects and >> by priority
476 * in order to get the scan target.
478 * Returns the number of reclaimed slab objects.
480 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
481 struct mem_cgroup *memcg,
482 int priority)
484 struct shrinker *shrinker;
485 unsigned long freed = 0;
487 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
488 return 0;
490 if (!down_read_trylock(&shrinker_rwsem))
491 goto out;
493 list_for_each_entry(shrinker, &shrinker_list, list) {
494 struct shrink_control sc = {
495 .gfp_mask = gfp_mask,
496 .nid = nid,
497 .memcg = memcg,
501 * If kernel memory accounting is disabled, we ignore
502 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
503 * passing NULL for memcg.
505 if (memcg_kmem_enabled() &&
506 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
507 continue;
509 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
510 sc.nid = 0;
512 freed += do_shrink_slab(&sc, shrinker, priority);
514 * Bail out if someone want to register a new shrinker to
515 * prevent the regsitration from being stalled for long periods
516 * by parallel ongoing shrinking.
518 if (rwsem_is_contended(&shrinker_rwsem)) {
519 freed = freed ? : 1;
520 break;
524 up_read(&shrinker_rwsem);
525 out:
526 cond_resched();
527 return freed;
530 void drop_slab_node(int nid)
532 unsigned long freed;
534 do {
535 struct mem_cgroup *memcg = NULL;
537 freed = 0;
538 do {
539 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
540 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
541 } while (freed > 10);
544 void drop_slab(void)
546 int nid;
548 for_each_online_node(nid)
549 drop_slab_node(nid);
552 static inline int is_page_cache_freeable(struct page *page)
555 * A freeable page cache page is referenced only by the caller
556 * that isolated the page, the page cache radix tree and
557 * optional buffer heads at page->private.
559 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
560 HPAGE_PMD_NR : 1;
561 return page_count(page) - page_has_private(page) == 1 + radix_pins;
564 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
566 if (current->flags & PF_SWAPWRITE)
567 return 1;
568 if (!inode_write_congested(inode))
569 return 1;
570 if (inode_to_bdi(inode) == current->backing_dev_info)
571 return 1;
572 return 0;
576 * We detected a synchronous write error writing a page out. Probably
577 * -ENOSPC. We need to propagate that into the address_space for a subsequent
578 * fsync(), msync() or close().
580 * The tricky part is that after writepage we cannot touch the mapping: nothing
581 * prevents it from being freed up. But we have a ref on the page and once
582 * that page is locked, the mapping is pinned.
584 * We're allowed to run sleeping lock_page() here because we know the caller has
585 * __GFP_FS.
587 static void handle_write_error(struct address_space *mapping,
588 struct page *page, int error)
590 lock_page(page);
591 if (page_mapping(page) == mapping)
592 mapping_set_error(mapping, error);
593 unlock_page(page);
596 /* possible outcome of pageout() */
597 typedef enum {
598 /* failed to write page out, page is locked */
599 PAGE_KEEP,
600 /* move page to the active list, page is locked */
601 PAGE_ACTIVATE,
602 /* page has been sent to the disk successfully, page is unlocked */
603 PAGE_SUCCESS,
604 /* page is clean and locked */
605 PAGE_CLEAN,
606 } pageout_t;
609 * pageout is called by shrink_page_list() for each dirty page.
610 * Calls ->writepage().
612 static pageout_t pageout(struct page *page, struct address_space *mapping,
613 struct scan_control *sc)
616 * If the page is dirty, only perform writeback if that write
617 * will be non-blocking. To prevent this allocation from being
618 * stalled by pagecache activity. But note that there may be
619 * stalls if we need to run get_block(). We could test
620 * PagePrivate for that.
622 * If this process is currently in __generic_file_write_iter() against
623 * this page's queue, we can perform writeback even if that
624 * will block.
626 * If the page is swapcache, write it back even if that would
627 * block, for some throttling. This happens by accident, because
628 * swap_backing_dev_info is bust: it doesn't reflect the
629 * congestion state of the swapdevs. Easy to fix, if needed.
631 if (!is_page_cache_freeable(page))
632 return PAGE_KEEP;
633 if (!mapping) {
635 * Some data journaling orphaned pages can have
636 * page->mapping == NULL while being dirty with clean buffers.
638 if (page_has_private(page)) {
639 if (try_to_free_buffers(page)) {
640 ClearPageDirty(page);
641 pr_info("%s: orphaned page\n", __func__);
642 return PAGE_CLEAN;
645 return PAGE_KEEP;
647 if (mapping->a_ops->writepage == NULL)
648 return PAGE_ACTIVATE;
649 if (!may_write_to_inode(mapping->host, sc))
650 return PAGE_KEEP;
652 if (clear_page_dirty_for_io(page)) {
653 int res;
654 struct writeback_control wbc = {
655 .sync_mode = WB_SYNC_NONE,
656 .nr_to_write = SWAP_CLUSTER_MAX,
657 .range_start = 0,
658 .range_end = LLONG_MAX,
659 .for_reclaim = 1,
662 SetPageReclaim(page);
663 res = mapping->a_ops->writepage(page, &wbc);
664 if (res < 0)
665 handle_write_error(mapping, page, res);
666 if (res == AOP_WRITEPAGE_ACTIVATE) {
667 ClearPageReclaim(page);
668 return PAGE_ACTIVATE;
671 if (!PageWriteback(page)) {
672 /* synchronous write or broken a_ops? */
673 ClearPageReclaim(page);
675 trace_mm_vmscan_writepage(page);
676 inc_node_page_state(page, NR_VMSCAN_WRITE);
677 return PAGE_SUCCESS;
680 return PAGE_CLEAN;
684 * Same as remove_mapping, but if the page is removed from the mapping, it
685 * gets returned with a refcount of 0.
687 static int __remove_mapping(struct address_space *mapping, struct page *page,
688 bool reclaimed)
690 unsigned long flags;
691 int refcount;
693 BUG_ON(!PageLocked(page));
694 BUG_ON(mapping != page_mapping(page));
696 xa_lock_irqsave(&mapping->i_pages, flags);
698 * The non racy check for a busy page.
700 * Must be careful with the order of the tests. When someone has
701 * a ref to the page, it may be possible that they dirty it then
702 * drop the reference. So if PageDirty is tested before page_count
703 * here, then the following race may occur:
705 * get_user_pages(&page);
706 * [user mapping goes away]
707 * write_to(page);
708 * !PageDirty(page) [good]
709 * SetPageDirty(page);
710 * put_page(page);
711 * !page_count(page) [good, discard it]
713 * [oops, our write_to data is lost]
715 * Reversing the order of the tests ensures such a situation cannot
716 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
717 * load is not satisfied before that of page->_refcount.
719 * Note that if SetPageDirty is always performed via set_page_dirty,
720 * and thus under the i_pages lock, then this ordering is not required.
722 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
723 refcount = 1 + HPAGE_PMD_NR;
724 else
725 refcount = 2;
726 if (!page_ref_freeze(page, refcount))
727 goto cannot_free;
728 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
729 if (unlikely(PageDirty(page))) {
730 page_ref_unfreeze(page, refcount);
731 goto cannot_free;
734 if (PageSwapCache(page)) {
735 swp_entry_t swap = { .val = page_private(page) };
736 mem_cgroup_swapout(page, swap);
737 __delete_from_swap_cache(page);
738 xa_unlock_irqrestore(&mapping->i_pages, flags);
739 put_swap_page(page, swap);
740 } else {
741 void (*freepage)(struct page *);
742 void *shadow = NULL;
744 freepage = mapping->a_ops->freepage;
746 * Remember a shadow entry for reclaimed file cache in
747 * order to detect refaults, thus thrashing, later on.
749 * But don't store shadows in an address space that is
750 * already exiting. This is not just an optizimation,
751 * inode reclaim needs to empty out the radix tree or
752 * the nodes are lost. Don't plant shadows behind its
753 * back.
755 * We also don't store shadows for DAX mappings because the
756 * only page cache pages found in these are zero pages
757 * covering holes, and because we don't want to mix DAX
758 * exceptional entries and shadow exceptional entries in the
759 * same address_space.
761 if (reclaimed && page_is_file_cache(page) &&
762 !mapping_exiting(mapping) && !dax_mapping(mapping))
763 shadow = workingset_eviction(mapping, page);
764 __delete_from_page_cache(page, shadow);
765 xa_unlock_irqrestore(&mapping->i_pages, flags);
767 if (freepage != NULL)
768 freepage(page);
771 return 1;
773 cannot_free:
774 xa_unlock_irqrestore(&mapping->i_pages, flags);
775 return 0;
779 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
780 * someone else has a ref on the page, abort and return 0. If it was
781 * successfully detached, return 1. Assumes the caller has a single ref on
782 * this page.
784 int remove_mapping(struct address_space *mapping, struct page *page)
786 if (__remove_mapping(mapping, page, false)) {
788 * Unfreezing the refcount with 1 rather than 2 effectively
789 * drops the pagecache ref for us without requiring another
790 * atomic operation.
792 page_ref_unfreeze(page, 1);
793 return 1;
795 return 0;
799 * putback_lru_page - put previously isolated page onto appropriate LRU list
800 * @page: page to be put back to appropriate lru list
802 * Add previously isolated @page to appropriate LRU list.
803 * Page may still be unevictable for other reasons.
805 * lru_lock must not be held, interrupts must be enabled.
807 void putback_lru_page(struct page *page)
809 lru_cache_add(page);
810 put_page(page); /* drop ref from isolate */
813 enum page_references {
814 PAGEREF_RECLAIM,
815 PAGEREF_RECLAIM_CLEAN,
816 PAGEREF_KEEP,
817 PAGEREF_ACTIVATE,
820 static enum page_references page_check_references(struct page *page,
821 struct scan_control *sc)
823 int referenced_ptes, referenced_page;
824 unsigned long vm_flags;
826 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
827 &vm_flags);
828 referenced_page = TestClearPageReferenced(page);
831 * Mlock lost the isolation race with us. Let try_to_unmap()
832 * move the page to the unevictable list.
834 if (vm_flags & VM_LOCKED)
835 return PAGEREF_RECLAIM;
837 if (referenced_ptes) {
838 if (PageSwapBacked(page))
839 return PAGEREF_ACTIVATE;
841 * All mapped pages start out with page table
842 * references from the instantiating fault, so we need
843 * to look twice if a mapped file page is used more
844 * than once.
846 * Mark it and spare it for another trip around the
847 * inactive list. Another page table reference will
848 * lead to its activation.
850 * Note: the mark is set for activated pages as well
851 * so that recently deactivated but used pages are
852 * quickly recovered.
854 SetPageReferenced(page);
856 if (referenced_page || referenced_ptes > 1)
857 return PAGEREF_ACTIVATE;
860 * Activate file-backed executable pages after first usage.
862 if (vm_flags & VM_EXEC)
863 return PAGEREF_ACTIVATE;
865 return PAGEREF_KEEP;
868 /* Reclaim if clean, defer dirty pages to writeback */
869 if (referenced_page && !PageSwapBacked(page))
870 return PAGEREF_RECLAIM_CLEAN;
872 return PAGEREF_RECLAIM;
875 /* Check if a page is dirty or under writeback */
876 static void page_check_dirty_writeback(struct page *page,
877 bool *dirty, bool *writeback)
879 struct address_space *mapping;
882 * Anonymous pages are not handled by flushers and must be written
883 * from reclaim context. Do not stall reclaim based on them
885 if (!page_is_file_cache(page) ||
886 (PageAnon(page) && !PageSwapBacked(page))) {
887 *dirty = false;
888 *writeback = false;
889 return;
892 /* By default assume that the page flags are accurate */
893 *dirty = PageDirty(page);
894 *writeback = PageWriteback(page);
896 /* Verify dirty/writeback state if the filesystem supports it */
897 if (!page_has_private(page))
898 return;
900 mapping = page_mapping(page);
901 if (mapping && mapping->a_ops->is_dirty_writeback)
902 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
906 * shrink_page_list() returns the number of reclaimed pages
908 static unsigned long shrink_page_list(struct list_head *page_list,
909 struct pglist_data *pgdat,
910 struct scan_control *sc,
911 enum ttu_flags ttu_flags,
912 struct reclaim_stat *stat,
913 bool force_reclaim)
915 LIST_HEAD(ret_pages);
916 LIST_HEAD(free_pages);
917 int pgactivate = 0;
918 unsigned nr_unqueued_dirty = 0;
919 unsigned nr_dirty = 0;
920 unsigned nr_congested = 0;
921 unsigned nr_reclaimed = 0;
922 unsigned nr_writeback = 0;
923 unsigned nr_immediate = 0;
924 unsigned nr_ref_keep = 0;
925 unsigned nr_unmap_fail = 0;
927 cond_resched();
929 while (!list_empty(page_list)) {
930 struct address_space *mapping;
931 struct page *page;
932 int may_enter_fs;
933 enum page_references references = PAGEREF_RECLAIM_CLEAN;
934 bool dirty, writeback;
936 cond_resched();
938 page = lru_to_page(page_list);
939 list_del(&page->lru);
941 if (!trylock_page(page))
942 goto keep;
944 VM_BUG_ON_PAGE(PageActive(page), page);
946 sc->nr_scanned++;
948 if (unlikely(!page_evictable(page)))
949 goto activate_locked;
951 if (!sc->may_unmap && page_mapped(page))
952 goto keep_locked;
954 /* Double the slab pressure for mapped and swapcache pages */
955 if ((page_mapped(page) || PageSwapCache(page)) &&
956 !(PageAnon(page) && !PageSwapBacked(page)))
957 sc->nr_scanned++;
959 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
960 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
963 * The number of dirty pages determines if a node is marked
964 * reclaim_congested which affects wait_iff_congested. kswapd
965 * will stall and start writing pages if the tail of the LRU
966 * is all dirty unqueued pages.
968 page_check_dirty_writeback(page, &dirty, &writeback);
969 if (dirty || writeback)
970 nr_dirty++;
972 if (dirty && !writeback)
973 nr_unqueued_dirty++;
976 * Treat this page as congested if the underlying BDI is or if
977 * pages are cycling through the LRU so quickly that the
978 * pages marked for immediate reclaim are making it to the
979 * end of the LRU a second time.
981 mapping = page_mapping(page);
982 if (((dirty || writeback) && mapping &&
983 inode_write_congested(mapping->host)) ||
984 (writeback && PageReclaim(page)))
985 nr_congested++;
988 * If a page at the tail of the LRU is under writeback, there
989 * are three cases to consider.
991 * 1) If reclaim is encountering an excessive number of pages
992 * under writeback and this page is both under writeback and
993 * PageReclaim then it indicates that pages are being queued
994 * for IO but are being recycled through the LRU before the
995 * IO can complete. Waiting on the page itself risks an
996 * indefinite stall if it is impossible to writeback the
997 * page due to IO error or disconnected storage so instead
998 * note that the LRU is being scanned too quickly and the
999 * caller can stall after page list has been processed.
1001 * 2) Global or new memcg reclaim encounters a page that is
1002 * not marked for immediate reclaim, or the caller does not
1003 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1004 * not to fs). In this case mark the page for immediate
1005 * reclaim and continue scanning.
1007 * Require may_enter_fs because we would wait on fs, which
1008 * may not have submitted IO yet. And the loop driver might
1009 * enter reclaim, and deadlock if it waits on a page for
1010 * which it is needed to do the write (loop masks off
1011 * __GFP_IO|__GFP_FS for this reason); but more thought
1012 * would probably show more reasons.
1014 * 3) Legacy memcg encounters a page that is already marked
1015 * PageReclaim. memcg does not have any dirty pages
1016 * throttling so we could easily OOM just because too many
1017 * pages are in writeback and there is nothing else to
1018 * reclaim. Wait for the writeback to complete.
1020 * In cases 1) and 2) we activate the pages to get them out of
1021 * the way while we continue scanning for clean pages on the
1022 * inactive list and refilling from the active list. The
1023 * observation here is that waiting for disk writes is more
1024 * expensive than potentially causing reloads down the line.
1025 * Since they're marked for immediate reclaim, they won't put
1026 * memory pressure on the cache working set any longer than it
1027 * takes to write them to disk.
1029 if (PageWriteback(page)) {
1030 /* Case 1 above */
1031 if (current_is_kswapd() &&
1032 PageReclaim(page) &&
1033 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1034 nr_immediate++;
1035 goto activate_locked;
1037 /* Case 2 above */
1038 } else if (sane_reclaim(sc) ||
1039 !PageReclaim(page) || !may_enter_fs) {
1041 * This is slightly racy - end_page_writeback()
1042 * might have just cleared PageReclaim, then
1043 * setting PageReclaim here end up interpreted
1044 * as PageReadahead - but that does not matter
1045 * enough to care. What we do want is for this
1046 * page to have PageReclaim set next time memcg
1047 * reclaim reaches the tests above, so it will
1048 * then wait_on_page_writeback() to avoid OOM;
1049 * and it's also appropriate in global reclaim.
1051 SetPageReclaim(page);
1052 nr_writeback++;
1053 goto activate_locked;
1055 /* Case 3 above */
1056 } else {
1057 unlock_page(page);
1058 wait_on_page_writeback(page);
1059 /* then go back and try same page again */
1060 list_add_tail(&page->lru, page_list);
1061 continue;
1065 if (!force_reclaim)
1066 references = page_check_references(page, sc);
1068 switch (references) {
1069 case PAGEREF_ACTIVATE:
1070 goto activate_locked;
1071 case PAGEREF_KEEP:
1072 nr_ref_keep++;
1073 goto keep_locked;
1074 case PAGEREF_RECLAIM:
1075 case PAGEREF_RECLAIM_CLEAN:
1076 ; /* try to reclaim the page below */
1080 * Anonymous process memory has backing store?
1081 * Try to allocate it some swap space here.
1082 * Lazyfree page could be freed directly
1084 if (PageAnon(page) && PageSwapBacked(page)) {
1085 if (!PageSwapCache(page)) {
1086 if (!(sc->gfp_mask & __GFP_IO))
1087 goto keep_locked;
1088 if (PageTransHuge(page)) {
1089 /* cannot split THP, skip it */
1090 if (!can_split_huge_page(page, NULL))
1091 goto activate_locked;
1093 * Split pages without a PMD map right
1094 * away. Chances are some or all of the
1095 * tail pages can be freed without IO.
1097 if (!compound_mapcount(page) &&
1098 split_huge_page_to_list(page,
1099 page_list))
1100 goto activate_locked;
1102 if (!add_to_swap(page)) {
1103 if (!PageTransHuge(page))
1104 goto activate_locked;
1105 /* Fallback to swap normal pages */
1106 if (split_huge_page_to_list(page,
1107 page_list))
1108 goto activate_locked;
1109 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1110 count_vm_event(THP_SWPOUT_FALLBACK);
1111 #endif
1112 if (!add_to_swap(page))
1113 goto activate_locked;
1116 may_enter_fs = 1;
1118 /* Adding to swap updated mapping */
1119 mapping = page_mapping(page);
1121 } else if (unlikely(PageTransHuge(page))) {
1122 /* Split file THP */
1123 if (split_huge_page_to_list(page, page_list))
1124 goto keep_locked;
1128 * The page is mapped into the page tables of one or more
1129 * processes. Try to unmap it here.
1131 if (page_mapped(page)) {
1132 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1134 if (unlikely(PageTransHuge(page)))
1135 flags |= TTU_SPLIT_HUGE_PMD;
1136 if (!try_to_unmap(page, flags)) {
1137 nr_unmap_fail++;
1138 goto activate_locked;
1142 if (PageDirty(page)) {
1144 * Only kswapd can writeback filesystem pages
1145 * to avoid risk of stack overflow. But avoid
1146 * injecting inefficient single-page IO into
1147 * flusher writeback as much as possible: only
1148 * write pages when we've encountered many
1149 * dirty pages, and when we've already scanned
1150 * the rest of the LRU for clean pages and see
1151 * the same dirty pages again (PageReclaim).
1153 if (page_is_file_cache(page) &&
1154 (!current_is_kswapd() || !PageReclaim(page) ||
1155 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1157 * Immediately reclaim when written back.
1158 * Similar in principal to deactivate_page()
1159 * except we already have the page isolated
1160 * and know it's dirty
1162 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1163 SetPageReclaim(page);
1165 goto activate_locked;
1168 if (references == PAGEREF_RECLAIM_CLEAN)
1169 goto keep_locked;
1170 if (!may_enter_fs)
1171 goto keep_locked;
1172 if (!sc->may_writepage)
1173 goto keep_locked;
1176 * Page is dirty. Flush the TLB if a writable entry
1177 * potentially exists to avoid CPU writes after IO
1178 * starts and then write it out here.
1180 try_to_unmap_flush_dirty();
1181 switch (pageout(page, mapping, sc)) {
1182 case PAGE_KEEP:
1183 goto keep_locked;
1184 case PAGE_ACTIVATE:
1185 goto activate_locked;
1186 case PAGE_SUCCESS:
1187 if (PageWriteback(page))
1188 goto keep;
1189 if (PageDirty(page))
1190 goto keep;
1193 * A synchronous write - probably a ramdisk. Go
1194 * ahead and try to reclaim the page.
1196 if (!trylock_page(page))
1197 goto keep;
1198 if (PageDirty(page) || PageWriteback(page))
1199 goto keep_locked;
1200 mapping = page_mapping(page);
1201 case PAGE_CLEAN:
1202 ; /* try to free the page below */
1207 * If the page has buffers, try to free the buffer mappings
1208 * associated with this page. If we succeed we try to free
1209 * the page as well.
1211 * We do this even if the page is PageDirty().
1212 * try_to_release_page() does not perform I/O, but it is
1213 * possible for a page to have PageDirty set, but it is actually
1214 * clean (all its buffers are clean). This happens if the
1215 * buffers were written out directly, with submit_bh(). ext3
1216 * will do this, as well as the blockdev mapping.
1217 * try_to_release_page() will discover that cleanness and will
1218 * drop the buffers and mark the page clean - it can be freed.
1220 * Rarely, pages can have buffers and no ->mapping. These are
1221 * the pages which were not successfully invalidated in
1222 * truncate_complete_page(). We try to drop those buffers here
1223 * and if that worked, and the page is no longer mapped into
1224 * process address space (page_count == 1) it can be freed.
1225 * Otherwise, leave the page on the LRU so it is swappable.
1227 if (page_has_private(page)) {
1228 if (!try_to_release_page(page, sc->gfp_mask))
1229 goto activate_locked;
1230 if (!mapping && page_count(page) == 1) {
1231 unlock_page(page);
1232 if (put_page_testzero(page))
1233 goto free_it;
1234 else {
1236 * rare race with speculative reference.
1237 * the speculative reference will free
1238 * this page shortly, so we may
1239 * increment nr_reclaimed here (and
1240 * leave it off the LRU).
1242 nr_reclaimed++;
1243 continue;
1248 if (PageAnon(page) && !PageSwapBacked(page)) {
1249 /* follow __remove_mapping for reference */
1250 if (!page_ref_freeze(page, 1))
1251 goto keep_locked;
1252 if (PageDirty(page)) {
1253 page_ref_unfreeze(page, 1);
1254 goto keep_locked;
1257 count_vm_event(PGLAZYFREED);
1258 count_memcg_page_event(page, PGLAZYFREED);
1259 } else if (!mapping || !__remove_mapping(mapping, page, true))
1260 goto keep_locked;
1262 * At this point, we have no other references and there is
1263 * no way to pick any more up (removed from LRU, removed
1264 * from pagecache). Can use non-atomic bitops now (and
1265 * we obviously don't have to worry about waking up a process
1266 * waiting on the page lock, because there are no references.
1268 __ClearPageLocked(page);
1269 free_it:
1270 nr_reclaimed++;
1273 * Is there need to periodically free_page_list? It would
1274 * appear not as the counts should be low
1276 if (unlikely(PageTransHuge(page))) {
1277 mem_cgroup_uncharge(page);
1278 (*get_compound_page_dtor(page))(page);
1279 } else
1280 list_add(&page->lru, &free_pages);
1281 continue;
1283 activate_locked:
1284 /* Not a candidate for swapping, so reclaim swap space. */
1285 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1286 PageMlocked(page)))
1287 try_to_free_swap(page);
1288 VM_BUG_ON_PAGE(PageActive(page), page);
1289 if (!PageMlocked(page)) {
1290 SetPageActive(page);
1291 pgactivate++;
1292 count_memcg_page_event(page, PGACTIVATE);
1294 keep_locked:
1295 unlock_page(page);
1296 keep:
1297 list_add(&page->lru, &ret_pages);
1298 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1301 mem_cgroup_uncharge_list(&free_pages);
1302 try_to_unmap_flush();
1303 free_unref_page_list(&free_pages);
1305 list_splice(&ret_pages, page_list);
1306 count_vm_events(PGACTIVATE, pgactivate);
1308 if (stat) {
1309 stat->nr_dirty = nr_dirty;
1310 stat->nr_congested = nr_congested;
1311 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1312 stat->nr_writeback = nr_writeback;
1313 stat->nr_immediate = nr_immediate;
1314 stat->nr_activate = pgactivate;
1315 stat->nr_ref_keep = nr_ref_keep;
1316 stat->nr_unmap_fail = nr_unmap_fail;
1318 return nr_reclaimed;
1321 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1322 struct list_head *page_list)
1324 struct scan_control sc = {
1325 .gfp_mask = GFP_KERNEL,
1326 .priority = DEF_PRIORITY,
1327 .may_unmap = 1,
1329 unsigned long ret;
1330 struct page *page, *next;
1331 LIST_HEAD(clean_pages);
1333 list_for_each_entry_safe(page, next, page_list, lru) {
1334 if (page_is_file_cache(page) && !PageDirty(page) &&
1335 !__PageMovable(page)) {
1336 ClearPageActive(page);
1337 list_move(&page->lru, &clean_pages);
1341 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1342 TTU_IGNORE_ACCESS, NULL, true);
1343 list_splice(&clean_pages, page_list);
1344 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1345 return ret;
1349 * Attempt to remove the specified page from its LRU. Only take this page
1350 * if it is of the appropriate PageActive status. Pages which are being
1351 * freed elsewhere are also ignored.
1353 * page: page to consider
1354 * mode: one of the LRU isolation modes defined above
1356 * returns 0 on success, -ve errno on failure.
1358 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1360 int ret = -EINVAL;
1362 /* Only take pages on the LRU. */
1363 if (!PageLRU(page))
1364 return ret;
1366 /* Compaction should not handle unevictable pages but CMA can do so */
1367 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1368 return ret;
1370 ret = -EBUSY;
1373 * To minimise LRU disruption, the caller can indicate that it only
1374 * wants to isolate pages it will be able to operate on without
1375 * blocking - clean pages for the most part.
1377 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1378 * that it is possible to migrate without blocking
1380 if (mode & ISOLATE_ASYNC_MIGRATE) {
1381 /* All the caller can do on PageWriteback is block */
1382 if (PageWriteback(page))
1383 return ret;
1385 if (PageDirty(page)) {
1386 struct address_space *mapping;
1387 bool migrate_dirty;
1390 * Only pages without mappings or that have a
1391 * ->migratepage callback are possible to migrate
1392 * without blocking. However, we can be racing with
1393 * truncation so it's necessary to lock the page
1394 * to stabilise the mapping as truncation holds
1395 * the page lock until after the page is removed
1396 * from the page cache.
1398 if (!trylock_page(page))
1399 return ret;
1401 mapping = page_mapping(page);
1402 migrate_dirty = mapping && mapping->a_ops->migratepage;
1403 unlock_page(page);
1404 if (!migrate_dirty)
1405 return ret;
1409 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1410 return ret;
1412 if (likely(get_page_unless_zero(page))) {
1414 * Be careful not to clear PageLRU until after we're
1415 * sure the page is not being freed elsewhere -- the
1416 * page release code relies on it.
1418 ClearPageLRU(page);
1419 ret = 0;
1422 return ret;
1427 * Update LRU sizes after isolating pages. The LRU size updates must
1428 * be complete before mem_cgroup_update_lru_size due to a santity check.
1430 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1431 enum lru_list lru, unsigned long *nr_zone_taken)
1433 int zid;
1435 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1436 if (!nr_zone_taken[zid])
1437 continue;
1439 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1440 #ifdef CONFIG_MEMCG
1441 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1442 #endif
1448 * zone_lru_lock is heavily contended. Some of the functions that
1449 * shrink the lists perform better by taking out a batch of pages
1450 * and working on them outside the LRU lock.
1452 * For pagecache intensive workloads, this function is the hottest
1453 * spot in the kernel (apart from copy_*_user functions).
1455 * Appropriate locks must be held before calling this function.
1457 * @nr_to_scan: The number of eligible pages to look through on the list.
1458 * @lruvec: The LRU vector to pull pages from.
1459 * @dst: The temp list to put pages on to.
1460 * @nr_scanned: The number of pages that were scanned.
1461 * @sc: The scan_control struct for this reclaim session
1462 * @mode: One of the LRU isolation modes
1463 * @lru: LRU list id for isolating
1465 * returns how many pages were moved onto *@dst.
1467 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1468 struct lruvec *lruvec, struct list_head *dst,
1469 unsigned long *nr_scanned, struct scan_control *sc,
1470 isolate_mode_t mode, enum lru_list lru)
1472 struct list_head *src = &lruvec->lists[lru];
1473 unsigned long nr_taken = 0;
1474 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1475 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1476 unsigned long skipped = 0;
1477 unsigned long scan, total_scan, nr_pages;
1478 LIST_HEAD(pages_skipped);
1480 scan = 0;
1481 for (total_scan = 0;
1482 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1483 total_scan++) {
1484 struct page *page;
1486 page = lru_to_page(src);
1487 prefetchw_prev_lru_page(page, src, flags);
1489 VM_BUG_ON_PAGE(!PageLRU(page), page);
1491 if (page_zonenum(page) > sc->reclaim_idx) {
1492 list_move(&page->lru, &pages_skipped);
1493 nr_skipped[page_zonenum(page)]++;
1494 continue;
1498 * Do not count skipped pages because that makes the function
1499 * return with no isolated pages if the LRU mostly contains
1500 * ineligible pages. This causes the VM to not reclaim any
1501 * pages, triggering a premature OOM.
1503 scan++;
1504 switch (__isolate_lru_page(page, mode)) {
1505 case 0:
1506 nr_pages = hpage_nr_pages(page);
1507 nr_taken += nr_pages;
1508 nr_zone_taken[page_zonenum(page)] += nr_pages;
1509 list_move(&page->lru, dst);
1510 break;
1512 case -EBUSY:
1513 /* else it is being freed elsewhere */
1514 list_move(&page->lru, src);
1515 continue;
1517 default:
1518 BUG();
1523 * Splice any skipped pages to the start of the LRU list. Note that
1524 * this disrupts the LRU order when reclaiming for lower zones but
1525 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1526 * scanning would soon rescan the same pages to skip and put the
1527 * system at risk of premature OOM.
1529 if (!list_empty(&pages_skipped)) {
1530 int zid;
1532 list_splice(&pages_skipped, src);
1533 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1534 if (!nr_skipped[zid])
1535 continue;
1537 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1538 skipped += nr_skipped[zid];
1541 *nr_scanned = total_scan;
1542 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1543 total_scan, skipped, nr_taken, mode, lru);
1544 update_lru_sizes(lruvec, lru, nr_zone_taken);
1545 return nr_taken;
1549 * isolate_lru_page - tries to isolate a page from its LRU list
1550 * @page: page to isolate from its LRU list
1552 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1553 * vmstat statistic corresponding to whatever LRU list the page was on.
1555 * Returns 0 if the page was removed from an LRU list.
1556 * Returns -EBUSY if the page was not on an LRU list.
1558 * The returned page will have PageLRU() cleared. If it was found on
1559 * the active list, it will have PageActive set. If it was found on
1560 * the unevictable list, it will have the PageUnevictable bit set. That flag
1561 * may need to be cleared by the caller before letting the page go.
1563 * The vmstat statistic corresponding to the list on which the page was
1564 * found will be decremented.
1566 * Restrictions:
1568 * (1) Must be called with an elevated refcount on the page. This is a
1569 * fundamentnal difference from isolate_lru_pages (which is called
1570 * without a stable reference).
1571 * (2) the lru_lock must not be held.
1572 * (3) interrupts must be enabled.
1574 int isolate_lru_page(struct page *page)
1576 int ret = -EBUSY;
1578 VM_BUG_ON_PAGE(!page_count(page), page);
1579 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1581 if (PageLRU(page)) {
1582 struct zone *zone = page_zone(page);
1583 struct lruvec *lruvec;
1585 spin_lock_irq(zone_lru_lock(zone));
1586 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1587 if (PageLRU(page)) {
1588 int lru = page_lru(page);
1589 get_page(page);
1590 ClearPageLRU(page);
1591 del_page_from_lru_list(page, lruvec, lru);
1592 ret = 0;
1594 spin_unlock_irq(zone_lru_lock(zone));
1596 return ret;
1600 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1601 * then get resheduled. When there are massive number of tasks doing page
1602 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1603 * the LRU list will go small and be scanned faster than necessary, leading to
1604 * unnecessary swapping, thrashing and OOM.
1606 static int too_many_isolated(struct pglist_data *pgdat, int file,
1607 struct scan_control *sc)
1609 unsigned long inactive, isolated;
1611 if (current_is_kswapd())
1612 return 0;
1614 if (!sane_reclaim(sc))
1615 return 0;
1617 if (file) {
1618 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1619 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1620 } else {
1621 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1622 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1626 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1627 * won't get blocked by normal direct-reclaimers, forming a circular
1628 * deadlock.
1630 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1631 inactive >>= 3;
1633 return isolated > inactive;
1636 static noinline_for_stack void
1637 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1639 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1640 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1641 LIST_HEAD(pages_to_free);
1644 * Put back any unfreeable pages.
1646 while (!list_empty(page_list)) {
1647 struct page *page = lru_to_page(page_list);
1648 int lru;
1650 VM_BUG_ON_PAGE(PageLRU(page), page);
1651 list_del(&page->lru);
1652 if (unlikely(!page_evictable(page))) {
1653 spin_unlock_irq(&pgdat->lru_lock);
1654 putback_lru_page(page);
1655 spin_lock_irq(&pgdat->lru_lock);
1656 continue;
1659 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1661 SetPageLRU(page);
1662 lru = page_lru(page);
1663 add_page_to_lru_list(page, lruvec, lru);
1665 if (is_active_lru(lru)) {
1666 int file = is_file_lru(lru);
1667 int numpages = hpage_nr_pages(page);
1668 reclaim_stat->recent_rotated[file] += numpages;
1670 if (put_page_testzero(page)) {
1671 __ClearPageLRU(page);
1672 __ClearPageActive(page);
1673 del_page_from_lru_list(page, lruvec, lru);
1675 if (unlikely(PageCompound(page))) {
1676 spin_unlock_irq(&pgdat->lru_lock);
1677 mem_cgroup_uncharge(page);
1678 (*get_compound_page_dtor(page))(page);
1679 spin_lock_irq(&pgdat->lru_lock);
1680 } else
1681 list_add(&page->lru, &pages_to_free);
1686 * To save our caller's stack, now use input list for pages to free.
1688 list_splice(&pages_to_free, page_list);
1692 * If a kernel thread (such as nfsd for loop-back mounts) services
1693 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1694 * In that case we should only throttle if the backing device it is
1695 * writing to is congested. In other cases it is safe to throttle.
1697 static int current_may_throttle(void)
1699 return !(current->flags & PF_LESS_THROTTLE) ||
1700 current->backing_dev_info == NULL ||
1701 bdi_write_congested(current->backing_dev_info);
1705 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1706 * of reclaimed pages
1708 static noinline_for_stack unsigned long
1709 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1710 struct scan_control *sc, enum lru_list lru)
1712 LIST_HEAD(page_list);
1713 unsigned long nr_scanned;
1714 unsigned long nr_reclaimed = 0;
1715 unsigned long nr_taken;
1716 struct reclaim_stat stat = {};
1717 isolate_mode_t isolate_mode = 0;
1718 int file = is_file_lru(lru);
1719 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1720 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1721 bool stalled = false;
1723 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1724 if (stalled)
1725 return 0;
1727 /* wait a bit for the reclaimer. */
1728 msleep(100);
1729 stalled = true;
1731 /* We are about to die and free our memory. Return now. */
1732 if (fatal_signal_pending(current))
1733 return SWAP_CLUSTER_MAX;
1736 lru_add_drain();
1738 if (!sc->may_unmap)
1739 isolate_mode |= ISOLATE_UNMAPPED;
1741 spin_lock_irq(&pgdat->lru_lock);
1743 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1744 &nr_scanned, sc, isolate_mode, lru);
1746 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1747 reclaim_stat->recent_scanned[file] += nr_taken;
1749 if (current_is_kswapd()) {
1750 if (global_reclaim(sc))
1751 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1752 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1753 nr_scanned);
1754 } else {
1755 if (global_reclaim(sc))
1756 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1757 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1758 nr_scanned);
1760 spin_unlock_irq(&pgdat->lru_lock);
1762 if (nr_taken == 0)
1763 return 0;
1765 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1766 &stat, false);
1768 spin_lock_irq(&pgdat->lru_lock);
1770 if (current_is_kswapd()) {
1771 if (global_reclaim(sc))
1772 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1773 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1774 nr_reclaimed);
1775 } else {
1776 if (global_reclaim(sc))
1777 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1778 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1779 nr_reclaimed);
1782 putback_inactive_pages(lruvec, &page_list);
1784 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1786 spin_unlock_irq(&pgdat->lru_lock);
1788 mem_cgroup_uncharge_list(&page_list);
1789 free_unref_page_list(&page_list);
1792 * If dirty pages are scanned that are not queued for IO, it
1793 * implies that flushers are not doing their job. This can
1794 * happen when memory pressure pushes dirty pages to the end of
1795 * the LRU before the dirty limits are breached and the dirty
1796 * data has expired. It can also happen when the proportion of
1797 * dirty pages grows not through writes but through memory
1798 * pressure reclaiming all the clean cache. And in some cases,
1799 * the flushers simply cannot keep up with the allocation
1800 * rate. Nudge the flusher threads in case they are asleep.
1802 if (stat.nr_unqueued_dirty == nr_taken)
1803 wakeup_flusher_threads(WB_REASON_VMSCAN);
1805 sc->nr.dirty += stat.nr_dirty;
1806 sc->nr.congested += stat.nr_congested;
1807 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1808 sc->nr.writeback += stat.nr_writeback;
1809 sc->nr.immediate += stat.nr_immediate;
1810 sc->nr.taken += nr_taken;
1811 if (file)
1812 sc->nr.file_taken += nr_taken;
1814 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1815 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1816 return nr_reclaimed;
1820 * This moves pages from the active list to the inactive list.
1822 * We move them the other way if the page is referenced by one or more
1823 * processes, from rmap.
1825 * If the pages are mostly unmapped, the processing is fast and it is
1826 * appropriate to hold zone_lru_lock across the whole operation. But if
1827 * the pages are mapped, the processing is slow (page_referenced()) so we
1828 * should drop zone_lru_lock around each page. It's impossible to balance
1829 * this, so instead we remove the pages from the LRU while processing them.
1830 * It is safe to rely on PG_active against the non-LRU pages in here because
1831 * nobody will play with that bit on a non-LRU page.
1833 * The downside is that we have to touch page->_refcount against each page.
1834 * But we had to alter page->flags anyway.
1836 * Returns the number of pages moved to the given lru.
1839 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1840 struct list_head *list,
1841 struct list_head *pages_to_free,
1842 enum lru_list lru)
1844 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1845 struct page *page;
1846 int nr_pages;
1847 int nr_moved = 0;
1849 while (!list_empty(list)) {
1850 page = lru_to_page(list);
1851 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1853 VM_BUG_ON_PAGE(PageLRU(page), page);
1854 SetPageLRU(page);
1856 nr_pages = hpage_nr_pages(page);
1857 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1858 list_move(&page->lru, &lruvec->lists[lru]);
1860 if (put_page_testzero(page)) {
1861 __ClearPageLRU(page);
1862 __ClearPageActive(page);
1863 del_page_from_lru_list(page, lruvec, lru);
1865 if (unlikely(PageCompound(page))) {
1866 spin_unlock_irq(&pgdat->lru_lock);
1867 mem_cgroup_uncharge(page);
1868 (*get_compound_page_dtor(page))(page);
1869 spin_lock_irq(&pgdat->lru_lock);
1870 } else
1871 list_add(&page->lru, pages_to_free);
1872 } else {
1873 nr_moved += nr_pages;
1877 if (!is_active_lru(lru)) {
1878 __count_vm_events(PGDEACTIVATE, nr_moved);
1879 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1880 nr_moved);
1883 return nr_moved;
1886 static void shrink_active_list(unsigned long nr_to_scan,
1887 struct lruvec *lruvec,
1888 struct scan_control *sc,
1889 enum lru_list lru)
1891 unsigned long nr_taken;
1892 unsigned long nr_scanned;
1893 unsigned long vm_flags;
1894 LIST_HEAD(l_hold); /* The pages which were snipped off */
1895 LIST_HEAD(l_active);
1896 LIST_HEAD(l_inactive);
1897 struct page *page;
1898 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1899 unsigned nr_deactivate, nr_activate;
1900 unsigned nr_rotated = 0;
1901 isolate_mode_t isolate_mode = 0;
1902 int file = is_file_lru(lru);
1903 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1905 lru_add_drain();
1907 if (!sc->may_unmap)
1908 isolate_mode |= ISOLATE_UNMAPPED;
1910 spin_lock_irq(&pgdat->lru_lock);
1912 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1913 &nr_scanned, sc, isolate_mode, lru);
1915 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1916 reclaim_stat->recent_scanned[file] += nr_taken;
1918 __count_vm_events(PGREFILL, nr_scanned);
1919 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1921 spin_unlock_irq(&pgdat->lru_lock);
1923 while (!list_empty(&l_hold)) {
1924 cond_resched();
1925 page = lru_to_page(&l_hold);
1926 list_del(&page->lru);
1928 if (unlikely(!page_evictable(page))) {
1929 putback_lru_page(page);
1930 continue;
1933 if (unlikely(buffer_heads_over_limit)) {
1934 if (page_has_private(page) && trylock_page(page)) {
1935 if (page_has_private(page))
1936 try_to_release_page(page, 0);
1937 unlock_page(page);
1941 if (page_referenced(page, 0, sc->target_mem_cgroup,
1942 &vm_flags)) {
1943 nr_rotated += hpage_nr_pages(page);
1945 * Identify referenced, file-backed active pages and
1946 * give them one more trip around the active list. So
1947 * that executable code get better chances to stay in
1948 * memory under moderate memory pressure. Anon pages
1949 * are not likely to be evicted by use-once streaming
1950 * IO, plus JVM can create lots of anon VM_EXEC pages,
1951 * so we ignore them here.
1953 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1954 list_add(&page->lru, &l_active);
1955 continue;
1959 ClearPageActive(page); /* we are de-activating */
1960 list_add(&page->lru, &l_inactive);
1964 * Move pages back to the lru list.
1966 spin_lock_irq(&pgdat->lru_lock);
1968 * Count referenced pages from currently used mappings as rotated,
1969 * even though only some of them are actually re-activated. This
1970 * helps balance scan pressure between file and anonymous pages in
1971 * get_scan_count.
1973 reclaim_stat->recent_rotated[file] += nr_rotated;
1975 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1976 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1977 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1978 spin_unlock_irq(&pgdat->lru_lock);
1980 mem_cgroup_uncharge_list(&l_hold);
1981 free_unref_page_list(&l_hold);
1982 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
1983 nr_deactivate, nr_rotated, sc->priority, file);
1987 * The inactive anon list should be small enough that the VM never has
1988 * to do too much work.
1990 * The inactive file list should be small enough to leave most memory
1991 * to the established workingset on the scan-resistant active list,
1992 * but large enough to avoid thrashing the aggregate readahead window.
1994 * Both inactive lists should also be large enough that each inactive
1995 * page has a chance to be referenced again before it is reclaimed.
1997 * If that fails and refaulting is observed, the inactive list grows.
1999 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2000 * on this LRU, maintained by the pageout code. An inactive_ratio
2001 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2003 * total target max
2004 * memory ratio inactive
2005 * -------------------------------------
2006 * 10MB 1 5MB
2007 * 100MB 1 50MB
2008 * 1GB 3 250MB
2009 * 10GB 10 0.9GB
2010 * 100GB 31 3GB
2011 * 1TB 101 10GB
2012 * 10TB 320 32GB
2014 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2015 struct mem_cgroup *memcg,
2016 struct scan_control *sc, bool actual_reclaim)
2018 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2019 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2020 enum lru_list inactive_lru = file * LRU_FILE;
2021 unsigned long inactive, active;
2022 unsigned long inactive_ratio;
2023 unsigned long refaults;
2024 unsigned long gb;
2027 * If we don't have swap space, anonymous page deactivation
2028 * is pointless.
2030 if (!file && !total_swap_pages)
2031 return false;
2033 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2034 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2036 if (memcg)
2037 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2038 else
2039 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2042 * When refaults are being observed, it means a new workingset
2043 * is being established. Disable active list protection to get
2044 * rid of the stale workingset quickly.
2046 if (file && actual_reclaim && lruvec->refaults != refaults) {
2047 inactive_ratio = 0;
2048 } else {
2049 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2050 if (gb)
2051 inactive_ratio = int_sqrt(10 * gb);
2052 else
2053 inactive_ratio = 1;
2056 if (actual_reclaim)
2057 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2058 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2059 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2060 inactive_ratio, file);
2062 return inactive * inactive_ratio < active;
2065 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2066 struct lruvec *lruvec, struct mem_cgroup *memcg,
2067 struct scan_control *sc)
2069 if (is_active_lru(lru)) {
2070 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2071 memcg, sc, true))
2072 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2073 return 0;
2076 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2079 enum scan_balance {
2080 SCAN_EQUAL,
2081 SCAN_FRACT,
2082 SCAN_ANON,
2083 SCAN_FILE,
2087 * Determine how aggressively the anon and file LRU lists should be
2088 * scanned. The relative value of each set of LRU lists is determined
2089 * by looking at the fraction of the pages scanned we did rotate back
2090 * onto the active list instead of evict.
2092 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2093 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2095 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2096 struct scan_control *sc, unsigned long *nr,
2097 unsigned long *lru_pages)
2099 int swappiness = mem_cgroup_swappiness(memcg);
2100 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2101 u64 fraction[2];
2102 u64 denominator = 0; /* gcc */
2103 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2104 unsigned long anon_prio, file_prio;
2105 enum scan_balance scan_balance;
2106 unsigned long anon, file;
2107 unsigned long ap, fp;
2108 enum lru_list lru;
2110 /* If we have no swap space, do not bother scanning anon pages. */
2111 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2112 scan_balance = SCAN_FILE;
2113 goto out;
2117 * Global reclaim will swap to prevent OOM even with no
2118 * swappiness, but memcg users want to use this knob to
2119 * disable swapping for individual groups completely when
2120 * using the memory controller's swap limit feature would be
2121 * too expensive.
2123 if (!global_reclaim(sc) && !swappiness) {
2124 scan_balance = SCAN_FILE;
2125 goto out;
2129 * Do not apply any pressure balancing cleverness when the
2130 * system is close to OOM, scan both anon and file equally
2131 * (unless the swappiness setting disagrees with swapping).
2133 if (!sc->priority && swappiness) {
2134 scan_balance = SCAN_EQUAL;
2135 goto out;
2139 * Prevent the reclaimer from falling into the cache trap: as
2140 * cache pages start out inactive, every cache fault will tip
2141 * the scan balance towards the file LRU. And as the file LRU
2142 * shrinks, so does the window for rotation from references.
2143 * This means we have a runaway feedback loop where a tiny
2144 * thrashing file LRU becomes infinitely more attractive than
2145 * anon pages. Try to detect this based on file LRU size.
2147 if (global_reclaim(sc)) {
2148 unsigned long pgdatfile;
2149 unsigned long pgdatfree;
2150 int z;
2151 unsigned long total_high_wmark = 0;
2153 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2154 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2155 node_page_state(pgdat, NR_INACTIVE_FILE);
2157 for (z = 0; z < MAX_NR_ZONES; z++) {
2158 struct zone *zone = &pgdat->node_zones[z];
2159 if (!managed_zone(zone))
2160 continue;
2162 total_high_wmark += high_wmark_pages(zone);
2165 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2167 * Force SCAN_ANON if there are enough inactive
2168 * anonymous pages on the LRU in eligible zones.
2169 * Otherwise, the small LRU gets thrashed.
2171 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2172 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2173 >> sc->priority) {
2174 scan_balance = SCAN_ANON;
2175 goto out;
2181 * If there is enough inactive page cache, i.e. if the size of the
2182 * inactive list is greater than that of the active list *and* the
2183 * inactive list actually has some pages to scan on this priority, we
2184 * do not reclaim anything from the anonymous working set right now.
2185 * Without the second condition we could end up never scanning an
2186 * lruvec even if it has plenty of old anonymous pages unless the
2187 * system is under heavy pressure.
2189 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2190 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2191 scan_balance = SCAN_FILE;
2192 goto out;
2195 scan_balance = SCAN_FRACT;
2198 * With swappiness at 100, anonymous and file have the same priority.
2199 * This scanning priority is essentially the inverse of IO cost.
2201 anon_prio = swappiness;
2202 file_prio = 200 - anon_prio;
2205 * OK, so we have swap space and a fair amount of page cache
2206 * pages. We use the recently rotated / recently scanned
2207 * ratios to determine how valuable each cache is.
2209 * Because workloads change over time (and to avoid overflow)
2210 * we keep these statistics as a floating average, which ends
2211 * up weighing recent references more than old ones.
2213 * anon in [0], file in [1]
2216 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2217 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2218 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2219 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2221 spin_lock_irq(&pgdat->lru_lock);
2222 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2223 reclaim_stat->recent_scanned[0] /= 2;
2224 reclaim_stat->recent_rotated[0] /= 2;
2227 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2228 reclaim_stat->recent_scanned[1] /= 2;
2229 reclaim_stat->recent_rotated[1] /= 2;
2233 * The amount of pressure on anon vs file pages is inversely
2234 * proportional to the fraction of recently scanned pages on
2235 * each list that were recently referenced and in active use.
2237 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2238 ap /= reclaim_stat->recent_rotated[0] + 1;
2240 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2241 fp /= reclaim_stat->recent_rotated[1] + 1;
2242 spin_unlock_irq(&pgdat->lru_lock);
2244 fraction[0] = ap;
2245 fraction[1] = fp;
2246 denominator = ap + fp + 1;
2247 out:
2248 *lru_pages = 0;
2249 for_each_evictable_lru(lru) {
2250 int file = is_file_lru(lru);
2251 unsigned long size;
2252 unsigned long scan;
2254 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2255 scan = size >> sc->priority;
2257 * If the cgroup's already been deleted, make sure to
2258 * scrape out the remaining cache.
2260 if (!scan && !mem_cgroup_online(memcg))
2261 scan = min(size, SWAP_CLUSTER_MAX);
2263 switch (scan_balance) {
2264 case SCAN_EQUAL:
2265 /* Scan lists relative to size */
2266 break;
2267 case SCAN_FRACT:
2269 * Scan types proportional to swappiness and
2270 * their relative recent reclaim efficiency.
2272 scan = div64_u64(scan * fraction[file],
2273 denominator);
2274 break;
2275 case SCAN_FILE:
2276 case SCAN_ANON:
2277 /* Scan one type exclusively */
2278 if ((scan_balance == SCAN_FILE) != file) {
2279 size = 0;
2280 scan = 0;
2282 break;
2283 default:
2284 /* Look ma, no brain */
2285 BUG();
2288 *lru_pages += size;
2289 nr[lru] = scan;
2294 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2296 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2297 struct scan_control *sc, unsigned long *lru_pages)
2299 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2300 unsigned long nr[NR_LRU_LISTS];
2301 unsigned long targets[NR_LRU_LISTS];
2302 unsigned long nr_to_scan;
2303 enum lru_list lru;
2304 unsigned long nr_reclaimed = 0;
2305 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2306 struct blk_plug plug;
2307 bool scan_adjusted;
2309 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2311 /* Record the original scan target for proportional adjustments later */
2312 memcpy(targets, nr, sizeof(nr));
2315 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2316 * event that can occur when there is little memory pressure e.g.
2317 * multiple streaming readers/writers. Hence, we do not abort scanning
2318 * when the requested number of pages are reclaimed when scanning at
2319 * DEF_PRIORITY on the assumption that the fact we are direct
2320 * reclaiming implies that kswapd is not keeping up and it is best to
2321 * do a batch of work at once. For memcg reclaim one check is made to
2322 * abort proportional reclaim if either the file or anon lru has already
2323 * dropped to zero at the first pass.
2325 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2326 sc->priority == DEF_PRIORITY);
2328 blk_start_plug(&plug);
2329 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2330 nr[LRU_INACTIVE_FILE]) {
2331 unsigned long nr_anon, nr_file, percentage;
2332 unsigned long nr_scanned;
2334 for_each_evictable_lru(lru) {
2335 if (nr[lru]) {
2336 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2337 nr[lru] -= nr_to_scan;
2339 nr_reclaimed += shrink_list(lru, nr_to_scan,
2340 lruvec, memcg, sc);
2344 cond_resched();
2346 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2347 continue;
2350 * For kswapd and memcg, reclaim at least the number of pages
2351 * requested. Ensure that the anon and file LRUs are scanned
2352 * proportionally what was requested by get_scan_count(). We
2353 * stop reclaiming one LRU and reduce the amount scanning
2354 * proportional to the original scan target.
2356 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2357 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2360 * It's just vindictive to attack the larger once the smaller
2361 * has gone to zero. And given the way we stop scanning the
2362 * smaller below, this makes sure that we only make one nudge
2363 * towards proportionality once we've got nr_to_reclaim.
2365 if (!nr_file || !nr_anon)
2366 break;
2368 if (nr_file > nr_anon) {
2369 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2370 targets[LRU_ACTIVE_ANON] + 1;
2371 lru = LRU_BASE;
2372 percentage = nr_anon * 100 / scan_target;
2373 } else {
2374 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2375 targets[LRU_ACTIVE_FILE] + 1;
2376 lru = LRU_FILE;
2377 percentage = nr_file * 100 / scan_target;
2380 /* Stop scanning the smaller of the LRU */
2381 nr[lru] = 0;
2382 nr[lru + LRU_ACTIVE] = 0;
2385 * Recalculate the other LRU scan count based on its original
2386 * scan target and the percentage scanning already complete
2388 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2389 nr_scanned = targets[lru] - nr[lru];
2390 nr[lru] = targets[lru] * (100 - percentage) / 100;
2391 nr[lru] -= min(nr[lru], nr_scanned);
2393 lru += LRU_ACTIVE;
2394 nr_scanned = targets[lru] - nr[lru];
2395 nr[lru] = targets[lru] * (100 - percentage) / 100;
2396 nr[lru] -= min(nr[lru], nr_scanned);
2398 scan_adjusted = true;
2400 blk_finish_plug(&plug);
2401 sc->nr_reclaimed += nr_reclaimed;
2404 * Even if we did not try to evict anon pages at all, we want to
2405 * rebalance the anon lru active/inactive ratio.
2407 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2408 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2409 sc, LRU_ACTIVE_ANON);
2412 /* Use reclaim/compaction for costly allocs or under memory pressure */
2413 static bool in_reclaim_compaction(struct scan_control *sc)
2415 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2416 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2417 sc->priority < DEF_PRIORITY - 2))
2418 return true;
2420 return false;
2424 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2425 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2426 * true if more pages should be reclaimed such that when the page allocator
2427 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2428 * It will give up earlier than that if there is difficulty reclaiming pages.
2430 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2431 unsigned long nr_reclaimed,
2432 unsigned long nr_scanned,
2433 struct scan_control *sc)
2435 unsigned long pages_for_compaction;
2436 unsigned long inactive_lru_pages;
2437 int z;
2439 /* If not in reclaim/compaction mode, stop */
2440 if (!in_reclaim_compaction(sc))
2441 return false;
2443 /* Consider stopping depending on scan and reclaim activity */
2444 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2446 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2447 * full LRU list has been scanned and we are still failing
2448 * to reclaim pages. This full LRU scan is potentially
2449 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2451 if (!nr_reclaimed && !nr_scanned)
2452 return false;
2453 } else {
2455 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2456 * fail without consequence, stop if we failed to reclaim
2457 * any pages from the last SWAP_CLUSTER_MAX number of
2458 * pages that were scanned. This will return to the
2459 * caller faster at the risk reclaim/compaction and
2460 * the resulting allocation attempt fails
2462 if (!nr_reclaimed)
2463 return false;
2467 * If we have not reclaimed enough pages for compaction and the
2468 * inactive lists are large enough, continue reclaiming
2470 pages_for_compaction = compact_gap(sc->order);
2471 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2472 if (get_nr_swap_pages() > 0)
2473 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2474 if (sc->nr_reclaimed < pages_for_compaction &&
2475 inactive_lru_pages > pages_for_compaction)
2476 return true;
2478 /* If compaction would go ahead or the allocation would succeed, stop */
2479 for (z = 0; z <= sc->reclaim_idx; z++) {
2480 struct zone *zone = &pgdat->node_zones[z];
2481 if (!managed_zone(zone))
2482 continue;
2484 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2485 case COMPACT_SUCCESS:
2486 case COMPACT_CONTINUE:
2487 return false;
2488 default:
2489 /* check next zone */
2493 return true;
2496 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2498 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2499 (memcg && memcg_congested(pgdat, memcg));
2502 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2504 struct reclaim_state *reclaim_state = current->reclaim_state;
2505 unsigned long nr_reclaimed, nr_scanned;
2506 bool reclaimable = false;
2508 do {
2509 struct mem_cgroup *root = sc->target_mem_cgroup;
2510 struct mem_cgroup_reclaim_cookie reclaim = {
2511 .pgdat = pgdat,
2512 .priority = sc->priority,
2514 unsigned long node_lru_pages = 0;
2515 struct mem_cgroup *memcg;
2517 memset(&sc->nr, 0, sizeof(sc->nr));
2519 nr_reclaimed = sc->nr_reclaimed;
2520 nr_scanned = sc->nr_scanned;
2522 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2523 do {
2524 unsigned long lru_pages;
2525 unsigned long reclaimed;
2526 unsigned long scanned;
2528 if (mem_cgroup_low(root, memcg)) {
2529 if (!sc->memcg_low_reclaim) {
2530 sc->memcg_low_skipped = 1;
2531 continue;
2533 memcg_memory_event(memcg, MEMCG_LOW);
2536 reclaimed = sc->nr_reclaimed;
2537 scanned = sc->nr_scanned;
2538 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2539 node_lru_pages += lru_pages;
2541 if (memcg)
2542 shrink_slab(sc->gfp_mask, pgdat->node_id,
2543 memcg, sc->priority);
2545 /* Record the group's reclaim efficiency */
2546 vmpressure(sc->gfp_mask, memcg, false,
2547 sc->nr_scanned - scanned,
2548 sc->nr_reclaimed - reclaimed);
2551 * Direct reclaim and kswapd have to scan all memory
2552 * cgroups to fulfill the overall scan target for the
2553 * node.
2555 * Limit reclaim, on the other hand, only cares about
2556 * nr_to_reclaim pages to be reclaimed and it will
2557 * retry with decreasing priority if one round over the
2558 * whole hierarchy is not sufficient.
2560 if (!global_reclaim(sc) &&
2561 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2562 mem_cgroup_iter_break(root, memcg);
2563 break;
2565 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2567 if (global_reclaim(sc))
2568 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2569 sc->priority);
2571 if (reclaim_state) {
2572 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2573 reclaim_state->reclaimed_slab = 0;
2576 /* Record the subtree's reclaim efficiency */
2577 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2578 sc->nr_scanned - nr_scanned,
2579 sc->nr_reclaimed - nr_reclaimed);
2581 if (sc->nr_reclaimed - nr_reclaimed)
2582 reclaimable = true;
2584 if (current_is_kswapd()) {
2586 * If reclaim is isolating dirty pages under writeback,
2587 * it implies that the long-lived page allocation rate
2588 * is exceeding the page laundering rate. Either the
2589 * global limits are not being effective at throttling
2590 * processes due to the page distribution throughout
2591 * zones or there is heavy usage of a slow backing
2592 * device. The only option is to throttle from reclaim
2593 * context which is not ideal as there is no guarantee
2594 * the dirtying process is throttled in the same way
2595 * balance_dirty_pages() manages.
2597 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2598 * count the number of pages under pages flagged for
2599 * immediate reclaim and stall if any are encountered
2600 * in the nr_immediate check below.
2602 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2603 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2606 * Tag a node as congested if all the dirty pages
2607 * scanned were backed by a congested BDI and
2608 * wait_iff_congested will stall.
2610 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2611 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2613 /* Allow kswapd to start writing pages during reclaim.*/
2614 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2615 set_bit(PGDAT_DIRTY, &pgdat->flags);
2618 * If kswapd scans pages marked marked for immediate
2619 * reclaim and under writeback (nr_immediate), it
2620 * implies that pages are cycling through the LRU
2621 * faster than they are written so also forcibly stall.
2623 if (sc->nr.immediate)
2624 congestion_wait(BLK_RW_ASYNC, HZ/10);
2628 * Legacy memcg will stall in page writeback so avoid forcibly
2629 * stalling in wait_iff_congested().
2631 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2632 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2633 set_memcg_congestion(pgdat, root, true);
2636 * Stall direct reclaim for IO completions if underlying BDIs
2637 * and node is congested. Allow kswapd to continue until it
2638 * starts encountering unqueued dirty pages or cycling through
2639 * the LRU too quickly.
2641 if (!sc->hibernation_mode && !current_is_kswapd() &&
2642 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2643 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2645 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2646 sc->nr_scanned - nr_scanned, sc));
2649 * Kswapd gives up on balancing particular nodes after too
2650 * many failures to reclaim anything from them and goes to
2651 * sleep. On reclaim progress, reset the failure counter. A
2652 * successful direct reclaim run will revive a dormant kswapd.
2654 if (reclaimable)
2655 pgdat->kswapd_failures = 0;
2657 return reclaimable;
2661 * Returns true if compaction should go ahead for a costly-order request, or
2662 * the allocation would already succeed without compaction. Return false if we
2663 * should reclaim first.
2665 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2667 unsigned long watermark;
2668 enum compact_result suitable;
2670 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2671 if (suitable == COMPACT_SUCCESS)
2672 /* Allocation should succeed already. Don't reclaim. */
2673 return true;
2674 if (suitable == COMPACT_SKIPPED)
2675 /* Compaction cannot yet proceed. Do reclaim. */
2676 return false;
2679 * Compaction is already possible, but it takes time to run and there
2680 * are potentially other callers using the pages just freed. So proceed
2681 * with reclaim to make a buffer of free pages available to give
2682 * compaction a reasonable chance of completing and allocating the page.
2683 * Note that we won't actually reclaim the whole buffer in one attempt
2684 * as the target watermark in should_continue_reclaim() is lower. But if
2685 * we are already above the high+gap watermark, don't reclaim at all.
2687 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2689 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2693 * This is the direct reclaim path, for page-allocating processes. We only
2694 * try to reclaim pages from zones which will satisfy the caller's allocation
2695 * request.
2697 * If a zone is deemed to be full of pinned pages then just give it a light
2698 * scan then give up on it.
2700 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2702 struct zoneref *z;
2703 struct zone *zone;
2704 unsigned long nr_soft_reclaimed;
2705 unsigned long nr_soft_scanned;
2706 gfp_t orig_mask;
2707 pg_data_t *last_pgdat = NULL;
2710 * If the number of buffer_heads in the machine exceeds the maximum
2711 * allowed level, force direct reclaim to scan the highmem zone as
2712 * highmem pages could be pinning lowmem pages storing buffer_heads
2714 orig_mask = sc->gfp_mask;
2715 if (buffer_heads_over_limit) {
2716 sc->gfp_mask |= __GFP_HIGHMEM;
2717 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2720 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2721 sc->reclaim_idx, sc->nodemask) {
2723 * Take care memory controller reclaiming has small influence
2724 * to global LRU.
2726 if (global_reclaim(sc)) {
2727 if (!cpuset_zone_allowed(zone,
2728 GFP_KERNEL | __GFP_HARDWALL))
2729 continue;
2732 * If we already have plenty of memory free for
2733 * compaction in this zone, don't free any more.
2734 * Even though compaction is invoked for any
2735 * non-zero order, only frequent costly order
2736 * reclamation is disruptive enough to become a
2737 * noticeable problem, like transparent huge
2738 * page allocations.
2740 if (IS_ENABLED(CONFIG_COMPACTION) &&
2741 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2742 compaction_ready(zone, sc)) {
2743 sc->compaction_ready = true;
2744 continue;
2748 * Shrink each node in the zonelist once. If the
2749 * zonelist is ordered by zone (not the default) then a
2750 * node may be shrunk multiple times but in that case
2751 * the user prefers lower zones being preserved.
2753 if (zone->zone_pgdat == last_pgdat)
2754 continue;
2757 * This steals pages from memory cgroups over softlimit
2758 * and returns the number of reclaimed pages and
2759 * scanned pages. This works for global memory pressure
2760 * and balancing, not for a memcg's limit.
2762 nr_soft_scanned = 0;
2763 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2764 sc->order, sc->gfp_mask,
2765 &nr_soft_scanned);
2766 sc->nr_reclaimed += nr_soft_reclaimed;
2767 sc->nr_scanned += nr_soft_scanned;
2768 /* need some check for avoid more shrink_zone() */
2771 /* See comment about same check for global reclaim above */
2772 if (zone->zone_pgdat == last_pgdat)
2773 continue;
2774 last_pgdat = zone->zone_pgdat;
2775 shrink_node(zone->zone_pgdat, sc);
2779 * Restore to original mask to avoid the impact on the caller if we
2780 * promoted it to __GFP_HIGHMEM.
2782 sc->gfp_mask = orig_mask;
2785 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2787 struct mem_cgroup *memcg;
2789 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2790 do {
2791 unsigned long refaults;
2792 struct lruvec *lruvec;
2794 if (memcg)
2795 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2796 else
2797 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2799 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2800 lruvec->refaults = refaults;
2801 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2805 * This is the main entry point to direct page reclaim.
2807 * If a full scan of the inactive list fails to free enough memory then we
2808 * are "out of memory" and something needs to be killed.
2810 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2811 * high - the zone may be full of dirty or under-writeback pages, which this
2812 * caller can't do much about. We kick the writeback threads and take explicit
2813 * naps in the hope that some of these pages can be written. But if the
2814 * allocating task holds filesystem locks which prevent writeout this might not
2815 * work, and the allocation attempt will fail.
2817 * returns: 0, if no pages reclaimed
2818 * else, the number of pages reclaimed
2820 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2821 struct scan_control *sc)
2823 int initial_priority = sc->priority;
2824 pg_data_t *last_pgdat;
2825 struct zoneref *z;
2826 struct zone *zone;
2827 retry:
2828 delayacct_freepages_start();
2830 if (global_reclaim(sc))
2831 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2833 do {
2834 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2835 sc->priority);
2836 sc->nr_scanned = 0;
2837 shrink_zones(zonelist, sc);
2839 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2840 break;
2842 if (sc->compaction_ready)
2843 break;
2846 * If we're getting trouble reclaiming, start doing
2847 * writepage even in laptop mode.
2849 if (sc->priority < DEF_PRIORITY - 2)
2850 sc->may_writepage = 1;
2851 } while (--sc->priority >= 0);
2853 last_pgdat = NULL;
2854 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2855 sc->nodemask) {
2856 if (zone->zone_pgdat == last_pgdat)
2857 continue;
2858 last_pgdat = zone->zone_pgdat;
2859 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2860 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2863 delayacct_freepages_end();
2865 if (sc->nr_reclaimed)
2866 return sc->nr_reclaimed;
2868 /* Aborted reclaim to try compaction? don't OOM, then */
2869 if (sc->compaction_ready)
2870 return 1;
2872 /* Untapped cgroup reserves? Don't OOM, retry. */
2873 if (sc->memcg_low_skipped) {
2874 sc->priority = initial_priority;
2875 sc->memcg_low_reclaim = 1;
2876 sc->memcg_low_skipped = 0;
2877 goto retry;
2880 return 0;
2883 static bool allow_direct_reclaim(pg_data_t *pgdat)
2885 struct zone *zone;
2886 unsigned long pfmemalloc_reserve = 0;
2887 unsigned long free_pages = 0;
2888 int i;
2889 bool wmark_ok;
2891 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2892 return true;
2894 for (i = 0; i <= ZONE_NORMAL; i++) {
2895 zone = &pgdat->node_zones[i];
2896 if (!managed_zone(zone))
2897 continue;
2899 if (!zone_reclaimable_pages(zone))
2900 continue;
2902 pfmemalloc_reserve += min_wmark_pages(zone);
2903 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2906 /* If there are no reserves (unexpected config) then do not throttle */
2907 if (!pfmemalloc_reserve)
2908 return true;
2910 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2912 /* kswapd must be awake if processes are being throttled */
2913 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2914 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2915 (enum zone_type)ZONE_NORMAL);
2916 wake_up_interruptible(&pgdat->kswapd_wait);
2919 return wmark_ok;
2923 * Throttle direct reclaimers if backing storage is backed by the network
2924 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2925 * depleted. kswapd will continue to make progress and wake the processes
2926 * when the low watermark is reached.
2928 * Returns true if a fatal signal was delivered during throttling. If this
2929 * happens, the page allocator should not consider triggering the OOM killer.
2931 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2932 nodemask_t *nodemask)
2934 struct zoneref *z;
2935 struct zone *zone;
2936 pg_data_t *pgdat = NULL;
2939 * Kernel threads should not be throttled as they may be indirectly
2940 * responsible for cleaning pages necessary for reclaim to make forward
2941 * progress. kjournald for example may enter direct reclaim while
2942 * committing a transaction where throttling it could forcing other
2943 * processes to block on log_wait_commit().
2945 if (current->flags & PF_KTHREAD)
2946 goto out;
2949 * If a fatal signal is pending, this process should not throttle.
2950 * It should return quickly so it can exit and free its memory
2952 if (fatal_signal_pending(current))
2953 goto out;
2956 * Check if the pfmemalloc reserves are ok by finding the first node
2957 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2958 * GFP_KERNEL will be required for allocating network buffers when
2959 * swapping over the network so ZONE_HIGHMEM is unusable.
2961 * Throttling is based on the first usable node and throttled processes
2962 * wait on a queue until kswapd makes progress and wakes them. There
2963 * is an affinity then between processes waking up and where reclaim
2964 * progress has been made assuming the process wakes on the same node.
2965 * More importantly, processes running on remote nodes will not compete
2966 * for remote pfmemalloc reserves and processes on different nodes
2967 * should make reasonable progress.
2969 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2970 gfp_zone(gfp_mask), nodemask) {
2971 if (zone_idx(zone) > ZONE_NORMAL)
2972 continue;
2974 /* Throttle based on the first usable node */
2975 pgdat = zone->zone_pgdat;
2976 if (allow_direct_reclaim(pgdat))
2977 goto out;
2978 break;
2981 /* If no zone was usable by the allocation flags then do not throttle */
2982 if (!pgdat)
2983 goto out;
2985 /* Account for the throttling */
2986 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2989 * If the caller cannot enter the filesystem, it's possible that it
2990 * is due to the caller holding an FS lock or performing a journal
2991 * transaction in the case of a filesystem like ext[3|4]. In this case,
2992 * it is not safe to block on pfmemalloc_wait as kswapd could be
2993 * blocked waiting on the same lock. Instead, throttle for up to a
2994 * second before continuing.
2996 if (!(gfp_mask & __GFP_FS)) {
2997 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2998 allow_direct_reclaim(pgdat), HZ);
3000 goto check_pending;
3003 /* Throttle until kswapd wakes the process */
3004 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3005 allow_direct_reclaim(pgdat));
3007 check_pending:
3008 if (fatal_signal_pending(current))
3009 return true;
3011 out:
3012 return false;
3015 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3016 gfp_t gfp_mask, nodemask_t *nodemask)
3018 unsigned long nr_reclaimed;
3019 struct scan_control sc = {
3020 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3021 .gfp_mask = current_gfp_context(gfp_mask),
3022 .reclaim_idx = gfp_zone(gfp_mask),
3023 .order = order,
3024 .nodemask = nodemask,
3025 .priority = DEF_PRIORITY,
3026 .may_writepage = !laptop_mode,
3027 .may_unmap = 1,
3028 .may_swap = 1,
3032 * Do not enter reclaim if fatal signal was delivered while throttled.
3033 * 1 is returned so that the page allocator does not OOM kill at this
3034 * point.
3036 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3037 return 1;
3039 trace_mm_vmscan_direct_reclaim_begin(order,
3040 sc.may_writepage,
3041 sc.gfp_mask,
3042 sc.reclaim_idx);
3044 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3046 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3048 return nr_reclaimed;
3051 #ifdef CONFIG_MEMCG
3053 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3054 gfp_t gfp_mask, bool noswap,
3055 pg_data_t *pgdat,
3056 unsigned long *nr_scanned)
3058 struct scan_control sc = {
3059 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3060 .target_mem_cgroup = memcg,
3061 .may_writepage = !laptop_mode,
3062 .may_unmap = 1,
3063 .reclaim_idx = MAX_NR_ZONES - 1,
3064 .may_swap = !noswap,
3066 unsigned long lru_pages;
3068 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3069 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3071 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3072 sc.may_writepage,
3073 sc.gfp_mask,
3074 sc.reclaim_idx);
3077 * NOTE: Although we can get the priority field, using it
3078 * here is not a good idea, since it limits the pages we can scan.
3079 * if we don't reclaim here, the shrink_node from balance_pgdat
3080 * will pick up pages from other mem cgroup's as well. We hack
3081 * the priority and make it zero.
3083 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3085 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3087 *nr_scanned = sc.nr_scanned;
3088 return sc.nr_reclaimed;
3091 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3092 unsigned long nr_pages,
3093 gfp_t gfp_mask,
3094 bool may_swap)
3096 struct zonelist *zonelist;
3097 unsigned long nr_reclaimed;
3098 int nid;
3099 unsigned int noreclaim_flag;
3100 struct scan_control sc = {
3101 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3102 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3103 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3104 .reclaim_idx = MAX_NR_ZONES - 1,
3105 .target_mem_cgroup = memcg,
3106 .priority = DEF_PRIORITY,
3107 .may_writepage = !laptop_mode,
3108 .may_unmap = 1,
3109 .may_swap = may_swap,
3113 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3114 * take care of from where we get pages. So the node where we start the
3115 * scan does not need to be the current node.
3117 nid = mem_cgroup_select_victim_node(memcg);
3119 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3121 trace_mm_vmscan_memcg_reclaim_begin(0,
3122 sc.may_writepage,
3123 sc.gfp_mask,
3124 sc.reclaim_idx);
3126 noreclaim_flag = memalloc_noreclaim_save();
3127 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3128 memalloc_noreclaim_restore(noreclaim_flag);
3130 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3132 return nr_reclaimed;
3134 #endif
3136 static void age_active_anon(struct pglist_data *pgdat,
3137 struct scan_control *sc)
3139 struct mem_cgroup *memcg;
3141 if (!total_swap_pages)
3142 return;
3144 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3145 do {
3146 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3148 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3149 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3150 sc, LRU_ACTIVE_ANON);
3152 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3153 } while (memcg);
3157 * Returns true if there is an eligible zone balanced for the request order
3158 * and classzone_idx
3160 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3162 int i;
3163 unsigned long mark = -1;
3164 struct zone *zone;
3166 for (i = 0; i <= classzone_idx; i++) {
3167 zone = pgdat->node_zones + i;
3169 if (!managed_zone(zone))
3170 continue;
3172 mark = high_wmark_pages(zone);
3173 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3174 return true;
3178 * If a node has no populated zone within classzone_idx, it does not
3179 * need balancing by definition. This can happen if a zone-restricted
3180 * allocation tries to wake a remote kswapd.
3182 if (mark == -1)
3183 return true;
3185 return false;
3188 /* Clear pgdat state for congested, dirty or under writeback. */
3189 static void clear_pgdat_congested(pg_data_t *pgdat)
3191 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3192 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3193 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3197 * Prepare kswapd for sleeping. This verifies that there are no processes
3198 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3200 * Returns true if kswapd is ready to sleep
3202 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3205 * The throttled processes are normally woken up in balance_pgdat() as
3206 * soon as allow_direct_reclaim() is true. But there is a potential
3207 * race between when kswapd checks the watermarks and a process gets
3208 * throttled. There is also a potential race if processes get
3209 * throttled, kswapd wakes, a large process exits thereby balancing the
3210 * zones, which causes kswapd to exit balance_pgdat() before reaching
3211 * the wake up checks. If kswapd is going to sleep, no process should
3212 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3213 * the wake up is premature, processes will wake kswapd and get
3214 * throttled again. The difference from wake ups in balance_pgdat() is
3215 * that here we are under prepare_to_wait().
3217 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3218 wake_up_all(&pgdat->pfmemalloc_wait);
3220 /* Hopeless node, leave it to direct reclaim */
3221 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3222 return true;
3224 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3225 clear_pgdat_congested(pgdat);
3226 return true;
3229 return false;
3233 * kswapd shrinks a node of pages that are at or below the highest usable
3234 * zone that is currently unbalanced.
3236 * Returns true if kswapd scanned at least the requested number of pages to
3237 * reclaim or if the lack of progress was due to pages under writeback.
3238 * This is used to determine if the scanning priority needs to be raised.
3240 static bool kswapd_shrink_node(pg_data_t *pgdat,
3241 struct scan_control *sc)
3243 struct zone *zone;
3244 int z;
3246 /* Reclaim a number of pages proportional to the number of zones */
3247 sc->nr_to_reclaim = 0;
3248 for (z = 0; z <= sc->reclaim_idx; z++) {
3249 zone = pgdat->node_zones + z;
3250 if (!managed_zone(zone))
3251 continue;
3253 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3257 * Historically care was taken to put equal pressure on all zones but
3258 * now pressure is applied based on node LRU order.
3260 shrink_node(pgdat, sc);
3263 * Fragmentation may mean that the system cannot be rebalanced for
3264 * high-order allocations. If twice the allocation size has been
3265 * reclaimed then recheck watermarks only at order-0 to prevent
3266 * excessive reclaim. Assume that a process requested a high-order
3267 * can direct reclaim/compact.
3269 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3270 sc->order = 0;
3272 return sc->nr_scanned >= sc->nr_to_reclaim;
3276 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3277 * that are eligible for use by the caller until at least one zone is
3278 * balanced.
3280 * Returns the order kswapd finished reclaiming at.
3282 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3283 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3284 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3285 * or lower is eligible for reclaim until at least one usable zone is
3286 * balanced.
3288 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3290 int i;
3291 unsigned long nr_soft_reclaimed;
3292 unsigned long nr_soft_scanned;
3293 struct zone *zone;
3294 struct scan_control sc = {
3295 .gfp_mask = GFP_KERNEL,
3296 .order = order,
3297 .priority = DEF_PRIORITY,
3298 .may_writepage = !laptop_mode,
3299 .may_unmap = 1,
3300 .may_swap = 1,
3302 count_vm_event(PAGEOUTRUN);
3304 do {
3305 unsigned long nr_reclaimed = sc.nr_reclaimed;
3306 bool raise_priority = true;
3308 sc.reclaim_idx = classzone_idx;
3311 * If the number of buffer_heads exceeds the maximum allowed
3312 * then consider reclaiming from all zones. This has a dual
3313 * purpose -- on 64-bit systems it is expected that
3314 * buffer_heads are stripped during active rotation. On 32-bit
3315 * systems, highmem pages can pin lowmem memory and shrinking
3316 * buffers can relieve lowmem pressure. Reclaim may still not
3317 * go ahead if all eligible zones for the original allocation
3318 * request are balanced to avoid excessive reclaim from kswapd.
3320 if (buffer_heads_over_limit) {
3321 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3322 zone = pgdat->node_zones + i;
3323 if (!managed_zone(zone))
3324 continue;
3326 sc.reclaim_idx = i;
3327 break;
3332 * Only reclaim if there are no eligible zones. Note that
3333 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3334 * have adjusted it.
3336 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3337 goto out;
3340 * Do some background aging of the anon list, to give
3341 * pages a chance to be referenced before reclaiming. All
3342 * pages are rotated regardless of classzone as this is
3343 * about consistent aging.
3345 age_active_anon(pgdat, &sc);
3348 * If we're getting trouble reclaiming, start doing writepage
3349 * even in laptop mode.
3351 if (sc.priority < DEF_PRIORITY - 2)
3352 sc.may_writepage = 1;
3354 /* Call soft limit reclaim before calling shrink_node. */
3355 sc.nr_scanned = 0;
3356 nr_soft_scanned = 0;
3357 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3358 sc.gfp_mask, &nr_soft_scanned);
3359 sc.nr_reclaimed += nr_soft_reclaimed;
3362 * There should be no need to raise the scanning priority if
3363 * enough pages are already being scanned that that high
3364 * watermark would be met at 100% efficiency.
3366 if (kswapd_shrink_node(pgdat, &sc))
3367 raise_priority = false;
3370 * If the low watermark is met there is no need for processes
3371 * to be throttled on pfmemalloc_wait as they should not be
3372 * able to safely make forward progress. Wake them
3374 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3375 allow_direct_reclaim(pgdat))
3376 wake_up_all(&pgdat->pfmemalloc_wait);
3378 /* Check if kswapd should be suspending */
3379 if (try_to_freeze() || kthread_should_stop())
3380 break;
3383 * Raise priority if scanning rate is too low or there was no
3384 * progress in reclaiming pages
3386 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3387 if (raise_priority || !nr_reclaimed)
3388 sc.priority--;
3389 } while (sc.priority >= 1);
3391 if (!sc.nr_reclaimed)
3392 pgdat->kswapd_failures++;
3394 out:
3395 snapshot_refaults(NULL, pgdat);
3397 * Return the order kswapd stopped reclaiming at as
3398 * prepare_kswapd_sleep() takes it into account. If another caller
3399 * entered the allocator slow path while kswapd was awake, order will
3400 * remain at the higher level.
3402 return sc.order;
3406 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3407 * allocation request woke kswapd for. When kswapd has not woken recently,
3408 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3409 * given classzone and returns it or the highest classzone index kswapd
3410 * was recently woke for.
3412 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3413 enum zone_type classzone_idx)
3415 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3416 return classzone_idx;
3418 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3421 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3422 unsigned int classzone_idx)
3424 long remaining = 0;
3425 DEFINE_WAIT(wait);
3427 if (freezing(current) || kthread_should_stop())
3428 return;
3430 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3433 * Try to sleep for a short interval. Note that kcompactd will only be
3434 * woken if it is possible to sleep for a short interval. This is
3435 * deliberate on the assumption that if reclaim cannot keep an
3436 * eligible zone balanced that it's also unlikely that compaction will
3437 * succeed.
3439 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3441 * Compaction records what page blocks it recently failed to
3442 * isolate pages from and skips them in the future scanning.
3443 * When kswapd is going to sleep, it is reasonable to assume
3444 * that pages and compaction may succeed so reset the cache.
3446 reset_isolation_suitable(pgdat);
3449 * We have freed the memory, now we should compact it to make
3450 * allocation of the requested order possible.
3452 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3454 remaining = schedule_timeout(HZ/10);
3457 * If woken prematurely then reset kswapd_classzone_idx and
3458 * order. The values will either be from a wakeup request or
3459 * the previous request that slept prematurely.
3461 if (remaining) {
3462 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3463 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3466 finish_wait(&pgdat->kswapd_wait, &wait);
3467 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3471 * After a short sleep, check if it was a premature sleep. If not, then
3472 * go fully to sleep until explicitly woken up.
3474 if (!remaining &&
3475 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3476 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3479 * vmstat counters are not perfectly accurate and the estimated
3480 * value for counters such as NR_FREE_PAGES can deviate from the
3481 * true value by nr_online_cpus * threshold. To avoid the zone
3482 * watermarks being breached while under pressure, we reduce the
3483 * per-cpu vmstat threshold while kswapd is awake and restore
3484 * them before going back to sleep.
3486 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3488 if (!kthread_should_stop())
3489 schedule();
3491 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3492 } else {
3493 if (remaining)
3494 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3495 else
3496 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3498 finish_wait(&pgdat->kswapd_wait, &wait);
3502 * The background pageout daemon, started as a kernel thread
3503 * from the init process.
3505 * This basically trickles out pages so that we have _some_
3506 * free memory available even if there is no other activity
3507 * that frees anything up. This is needed for things like routing
3508 * etc, where we otherwise might have all activity going on in
3509 * asynchronous contexts that cannot page things out.
3511 * If there are applications that are active memory-allocators
3512 * (most normal use), this basically shouldn't matter.
3514 static int kswapd(void *p)
3516 unsigned int alloc_order, reclaim_order;
3517 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3518 pg_data_t *pgdat = (pg_data_t*)p;
3519 struct task_struct *tsk = current;
3521 struct reclaim_state reclaim_state = {
3522 .reclaimed_slab = 0,
3524 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3526 if (!cpumask_empty(cpumask))
3527 set_cpus_allowed_ptr(tsk, cpumask);
3528 current->reclaim_state = &reclaim_state;
3531 * Tell the memory management that we're a "memory allocator",
3532 * and that if we need more memory we should get access to it
3533 * regardless (see "__alloc_pages()"). "kswapd" should
3534 * never get caught in the normal page freeing logic.
3536 * (Kswapd normally doesn't need memory anyway, but sometimes
3537 * you need a small amount of memory in order to be able to
3538 * page out something else, and this flag essentially protects
3539 * us from recursively trying to free more memory as we're
3540 * trying to free the first piece of memory in the first place).
3542 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3543 set_freezable();
3545 pgdat->kswapd_order = 0;
3546 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3547 for ( ; ; ) {
3548 bool ret;
3550 alloc_order = reclaim_order = pgdat->kswapd_order;
3551 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3553 kswapd_try_sleep:
3554 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3555 classzone_idx);
3557 /* Read the new order and classzone_idx */
3558 alloc_order = reclaim_order = pgdat->kswapd_order;
3559 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3560 pgdat->kswapd_order = 0;
3561 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3563 ret = try_to_freeze();
3564 if (kthread_should_stop())
3565 break;
3568 * We can speed up thawing tasks if we don't call balance_pgdat
3569 * after returning from the refrigerator
3571 if (ret)
3572 continue;
3575 * Reclaim begins at the requested order but if a high-order
3576 * reclaim fails then kswapd falls back to reclaiming for
3577 * order-0. If that happens, kswapd will consider sleeping
3578 * for the order it finished reclaiming at (reclaim_order)
3579 * but kcompactd is woken to compact for the original
3580 * request (alloc_order).
3582 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3583 alloc_order);
3584 fs_reclaim_acquire(GFP_KERNEL);
3585 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3586 fs_reclaim_release(GFP_KERNEL);
3587 if (reclaim_order < alloc_order)
3588 goto kswapd_try_sleep;
3591 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3592 current->reclaim_state = NULL;
3594 return 0;
3598 * A zone is low on free memory or too fragmented for high-order memory. If
3599 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3600 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3601 * has failed or is not needed, still wake up kcompactd if only compaction is
3602 * needed.
3604 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3605 enum zone_type classzone_idx)
3607 pg_data_t *pgdat;
3609 if (!managed_zone(zone))
3610 return;
3612 if (!cpuset_zone_allowed(zone, gfp_flags))
3613 return;
3614 pgdat = zone->zone_pgdat;
3615 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3616 classzone_idx);
3617 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3618 if (!waitqueue_active(&pgdat->kswapd_wait))
3619 return;
3621 /* Hopeless node, leave it to direct reclaim if possible */
3622 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3623 pgdat_balanced(pgdat, order, classzone_idx)) {
3625 * There may be plenty of free memory available, but it's too
3626 * fragmented for high-order allocations. Wake up kcompactd
3627 * and rely on compaction_suitable() to determine if it's
3628 * needed. If it fails, it will defer subsequent attempts to
3629 * ratelimit its work.
3631 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3632 wakeup_kcompactd(pgdat, order, classzone_idx);
3633 return;
3636 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3637 gfp_flags);
3638 wake_up_interruptible(&pgdat->kswapd_wait);
3641 #ifdef CONFIG_HIBERNATION
3643 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3644 * freed pages.
3646 * Rather than trying to age LRUs the aim is to preserve the overall
3647 * LRU order by reclaiming preferentially
3648 * inactive > active > active referenced > active mapped
3650 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3652 struct reclaim_state reclaim_state;
3653 struct scan_control sc = {
3654 .nr_to_reclaim = nr_to_reclaim,
3655 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3656 .reclaim_idx = MAX_NR_ZONES - 1,
3657 .priority = DEF_PRIORITY,
3658 .may_writepage = 1,
3659 .may_unmap = 1,
3660 .may_swap = 1,
3661 .hibernation_mode = 1,
3663 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3664 struct task_struct *p = current;
3665 unsigned long nr_reclaimed;
3666 unsigned int noreclaim_flag;
3668 noreclaim_flag = memalloc_noreclaim_save();
3669 fs_reclaim_acquire(sc.gfp_mask);
3670 reclaim_state.reclaimed_slab = 0;
3671 p->reclaim_state = &reclaim_state;
3673 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3675 p->reclaim_state = NULL;
3676 fs_reclaim_release(sc.gfp_mask);
3677 memalloc_noreclaim_restore(noreclaim_flag);
3679 return nr_reclaimed;
3681 #endif /* CONFIG_HIBERNATION */
3683 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3684 not required for correctness. So if the last cpu in a node goes
3685 away, we get changed to run anywhere: as the first one comes back,
3686 restore their cpu bindings. */
3687 static int kswapd_cpu_online(unsigned int cpu)
3689 int nid;
3691 for_each_node_state(nid, N_MEMORY) {
3692 pg_data_t *pgdat = NODE_DATA(nid);
3693 const struct cpumask *mask;
3695 mask = cpumask_of_node(pgdat->node_id);
3697 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3698 /* One of our CPUs online: restore mask */
3699 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3701 return 0;
3705 * This kswapd start function will be called by init and node-hot-add.
3706 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3708 int kswapd_run(int nid)
3710 pg_data_t *pgdat = NODE_DATA(nid);
3711 int ret = 0;
3713 if (pgdat->kswapd)
3714 return 0;
3716 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3717 if (IS_ERR(pgdat->kswapd)) {
3718 /* failure at boot is fatal */
3719 BUG_ON(system_state < SYSTEM_RUNNING);
3720 pr_err("Failed to start kswapd on node %d\n", nid);
3721 ret = PTR_ERR(pgdat->kswapd);
3722 pgdat->kswapd = NULL;
3724 return ret;
3728 * Called by memory hotplug when all memory in a node is offlined. Caller must
3729 * hold mem_hotplug_begin/end().
3731 void kswapd_stop(int nid)
3733 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3735 if (kswapd) {
3736 kthread_stop(kswapd);
3737 NODE_DATA(nid)->kswapd = NULL;
3741 static int __init kswapd_init(void)
3743 int nid, ret;
3745 swap_setup();
3746 for_each_node_state(nid, N_MEMORY)
3747 kswapd_run(nid);
3748 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3749 "mm/vmscan:online", kswapd_cpu_online,
3750 NULL);
3751 WARN_ON(ret < 0);
3752 return 0;
3755 module_init(kswapd_init)
3757 #ifdef CONFIG_NUMA
3759 * Node reclaim mode
3761 * If non-zero call node_reclaim when the number of free pages falls below
3762 * the watermarks.
3764 int node_reclaim_mode __read_mostly;
3766 #define RECLAIM_OFF 0
3767 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3768 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3769 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3772 * Priority for NODE_RECLAIM. This determines the fraction of pages
3773 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3774 * a zone.
3776 #define NODE_RECLAIM_PRIORITY 4
3779 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3780 * occur.
3782 int sysctl_min_unmapped_ratio = 1;
3785 * If the number of slab pages in a zone grows beyond this percentage then
3786 * slab reclaim needs to occur.
3788 int sysctl_min_slab_ratio = 5;
3790 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3792 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3793 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3794 node_page_state(pgdat, NR_ACTIVE_FILE);
3797 * It's possible for there to be more file mapped pages than
3798 * accounted for by the pages on the file LRU lists because
3799 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3801 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3804 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3805 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3807 unsigned long nr_pagecache_reclaimable;
3808 unsigned long delta = 0;
3811 * If RECLAIM_UNMAP is set, then all file pages are considered
3812 * potentially reclaimable. Otherwise, we have to worry about
3813 * pages like swapcache and node_unmapped_file_pages() provides
3814 * a better estimate
3816 if (node_reclaim_mode & RECLAIM_UNMAP)
3817 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3818 else
3819 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3821 /* If we can't clean pages, remove dirty pages from consideration */
3822 if (!(node_reclaim_mode & RECLAIM_WRITE))
3823 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3825 /* Watch for any possible underflows due to delta */
3826 if (unlikely(delta > nr_pagecache_reclaimable))
3827 delta = nr_pagecache_reclaimable;
3829 return nr_pagecache_reclaimable - delta;
3833 * Try to free up some pages from this node through reclaim.
3835 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3837 /* Minimum pages needed in order to stay on node */
3838 const unsigned long nr_pages = 1 << order;
3839 struct task_struct *p = current;
3840 struct reclaim_state reclaim_state;
3841 unsigned int noreclaim_flag;
3842 struct scan_control sc = {
3843 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3844 .gfp_mask = current_gfp_context(gfp_mask),
3845 .order = order,
3846 .priority = NODE_RECLAIM_PRIORITY,
3847 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3848 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3849 .may_swap = 1,
3850 .reclaim_idx = gfp_zone(gfp_mask),
3853 cond_resched();
3855 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3856 * and we also need to be able to write out pages for RECLAIM_WRITE
3857 * and RECLAIM_UNMAP.
3859 noreclaim_flag = memalloc_noreclaim_save();
3860 p->flags |= PF_SWAPWRITE;
3861 fs_reclaim_acquire(sc.gfp_mask);
3862 reclaim_state.reclaimed_slab = 0;
3863 p->reclaim_state = &reclaim_state;
3865 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3867 * Free memory by calling shrink node with increasing
3868 * priorities until we have enough memory freed.
3870 do {
3871 shrink_node(pgdat, &sc);
3872 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3875 p->reclaim_state = NULL;
3876 fs_reclaim_release(gfp_mask);
3877 current->flags &= ~PF_SWAPWRITE;
3878 memalloc_noreclaim_restore(noreclaim_flag);
3879 return sc.nr_reclaimed >= nr_pages;
3882 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3884 int ret;
3887 * Node reclaim reclaims unmapped file backed pages and
3888 * slab pages if we are over the defined limits.
3890 * A small portion of unmapped file backed pages is needed for
3891 * file I/O otherwise pages read by file I/O will be immediately
3892 * thrown out if the node is overallocated. So we do not reclaim
3893 * if less than a specified percentage of the node is used by
3894 * unmapped file backed pages.
3896 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3897 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3898 return NODE_RECLAIM_FULL;
3901 * Do not scan if the allocation should not be delayed.
3903 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3904 return NODE_RECLAIM_NOSCAN;
3907 * Only run node reclaim on the local node or on nodes that do not
3908 * have associated processors. This will favor the local processor
3909 * over remote processors and spread off node memory allocations
3910 * as wide as possible.
3912 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3913 return NODE_RECLAIM_NOSCAN;
3915 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3916 return NODE_RECLAIM_NOSCAN;
3918 ret = __node_reclaim(pgdat, gfp_mask, order);
3919 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3921 if (!ret)
3922 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3924 return ret;
3926 #endif
3929 * page_evictable - test whether a page is evictable
3930 * @page: the page to test
3932 * Test whether page is evictable--i.e., should be placed on active/inactive
3933 * lists vs unevictable list.
3935 * Reasons page might not be evictable:
3936 * (1) page's mapping marked unevictable
3937 * (2) page is part of an mlocked VMA
3940 int page_evictable(struct page *page)
3942 int ret;
3944 /* Prevent address_space of inode and swap cache from being freed */
3945 rcu_read_lock();
3946 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3947 rcu_read_unlock();
3948 return ret;
3951 #ifdef CONFIG_SHMEM
3953 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3954 * @pages: array of pages to check
3955 * @nr_pages: number of pages to check
3957 * Checks pages for evictability and moves them to the appropriate lru list.
3959 * This function is only used for SysV IPC SHM_UNLOCK.
3961 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3963 struct lruvec *lruvec;
3964 struct pglist_data *pgdat = NULL;
3965 int pgscanned = 0;
3966 int pgrescued = 0;
3967 int i;
3969 for (i = 0; i < nr_pages; i++) {
3970 struct page *page = pages[i];
3971 struct pglist_data *pagepgdat = page_pgdat(page);
3973 pgscanned++;
3974 if (pagepgdat != pgdat) {
3975 if (pgdat)
3976 spin_unlock_irq(&pgdat->lru_lock);
3977 pgdat = pagepgdat;
3978 spin_lock_irq(&pgdat->lru_lock);
3980 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3982 if (!PageLRU(page) || !PageUnevictable(page))
3983 continue;
3985 if (page_evictable(page)) {
3986 enum lru_list lru = page_lru_base_type(page);
3988 VM_BUG_ON_PAGE(PageActive(page), page);
3989 ClearPageUnevictable(page);
3990 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3991 add_page_to_lru_list(page, lruvec, lru);
3992 pgrescued++;
3996 if (pgdat) {
3997 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3998 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3999 spin_unlock_irq(&pgdat->lru_lock);
4002 #endif /* CONFIG_SHMEM */