2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
32 #define MQD_SIZE_ALIGNED 768
35 * kfd_locked is used to lock the kfd driver during suspend or reset
36 * once locked, kfd driver will stop any further GPU execution.
37 * create process (open) will return -EAGAIN.
39 static atomic_t kfd_locked
= ATOMIC_INIT(0);
41 #ifdef KFD_SUPPORT_IOMMU_V2
42 static const struct kfd_device_info kaveri_device_info
= {
43 .asic_family
= CHIP_KAVERI
,
45 /* max num of queues for KV.TODO should be a dynamic value */
48 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
49 .event_interrupt_class
= &event_interrupt_class_cik
,
50 .num_of_watch_points
= 4,
51 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
52 .supports_cwsr
= false,
53 .needs_iommu_device
= true,
54 .needs_pci_atomics
= false,
55 .num_sdma_engines
= 2,
58 static const struct kfd_device_info carrizo_device_info
= {
59 .asic_family
= CHIP_CARRIZO
,
61 /* max num of queues for CZ.TODO should be a dynamic value */
64 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
65 .event_interrupt_class
= &event_interrupt_class_cik
,
66 .num_of_watch_points
= 4,
67 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
68 .supports_cwsr
= true,
69 .needs_iommu_device
= true,
70 .needs_pci_atomics
= false,
71 .num_sdma_engines
= 2,
74 static const struct kfd_device_info raven_device_info
= {
75 .asic_family
= CHIP_RAVEN
,
79 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
80 .event_interrupt_class
= &event_interrupt_class_v9
,
81 .num_of_watch_points
= 4,
82 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
83 .supports_cwsr
= true,
84 .needs_iommu_device
= true,
85 .needs_pci_atomics
= true,
86 .num_sdma_engines
= 1,
90 static const struct kfd_device_info hawaii_device_info
= {
91 .asic_family
= CHIP_HAWAII
,
93 /* max num of queues for KV.TODO should be a dynamic value */
96 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
97 .event_interrupt_class
= &event_interrupt_class_cik
,
98 .num_of_watch_points
= 4,
99 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
100 .supports_cwsr
= false,
101 .needs_iommu_device
= false,
102 .needs_pci_atomics
= false,
103 .num_sdma_engines
= 2,
106 static const struct kfd_device_info tonga_device_info
= {
107 .asic_family
= CHIP_TONGA
,
108 .max_pasid_bits
= 16,
111 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
112 .event_interrupt_class
= &event_interrupt_class_cik
,
113 .num_of_watch_points
= 4,
114 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
115 .supports_cwsr
= false,
116 .needs_iommu_device
= false,
117 .needs_pci_atomics
= true,
118 .num_sdma_engines
= 2,
121 static const struct kfd_device_info tonga_vf_device_info
= {
122 .asic_family
= CHIP_TONGA
,
123 .max_pasid_bits
= 16,
126 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
127 .event_interrupt_class
= &event_interrupt_class_cik
,
128 .num_of_watch_points
= 4,
129 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
130 .supports_cwsr
= false,
131 .needs_iommu_device
= false,
132 .needs_pci_atomics
= false,
133 .num_sdma_engines
= 2,
136 static const struct kfd_device_info fiji_device_info
= {
137 .asic_family
= CHIP_FIJI
,
138 .max_pasid_bits
= 16,
141 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
142 .event_interrupt_class
= &event_interrupt_class_cik
,
143 .num_of_watch_points
= 4,
144 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
145 .supports_cwsr
= true,
146 .needs_iommu_device
= false,
147 .needs_pci_atomics
= true,
148 .num_sdma_engines
= 2,
151 static const struct kfd_device_info fiji_vf_device_info
= {
152 .asic_family
= CHIP_FIJI
,
153 .max_pasid_bits
= 16,
156 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
157 .event_interrupt_class
= &event_interrupt_class_cik
,
158 .num_of_watch_points
= 4,
159 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
160 .supports_cwsr
= true,
161 .needs_iommu_device
= false,
162 .needs_pci_atomics
= false,
163 .num_sdma_engines
= 2,
167 static const struct kfd_device_info polaris10_device_info
= {
168 .asic_family
= CHIP_POLARIS10
,
169 .max_pasid_bits
= 16,
172 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
173 .event_interrupt_class
= &event_interrupt_class_cik
,
174 .num_of_watch_points
= 4,
175 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
176 .supports_cwsr
= true,
177 .needs_iommu_device
= false,
178 .needs_pci_atomics
= true,
179 .num_sdma_engines
= 2,
182 static const struct kfd_device_info polaris10_vf_device_info
= {
183 .asic_family
= CHIP_POLARIS10
,
184 .max_pasid_bits
= 16,
187 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
188 .event_interrupt_class
= &event_interrupt_class_cik
,
189 .num_of_watch_points
= 4,
190 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
191 .supports_cwsr
= true,
192 .needs_iommu_device
= false,
193 .needs_pci_atomics
= false,
194 .num_sdma_engines
= 2,
197 static const struct kfd_device_info polaris11_device_info
= {
198 .asic_family
= CHIP_POLARIS11
,
199 .max_pasid_bits
= 16,
202 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
203 .event_interrupt_class
= &event_interrupt_class_cik
,
204 .num_of_watch_points
= 4,
205 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
206 .supports_cwsr
= true,
207 .needs_iommu_device
= false,
208 .needs_pci_atomics
= true,
209 .num_sdma_engines
= 2,
212 static const struct kfd_device_info vega10_device_info
= {
213 .asic_family
= CHIP_VEGA10
,
214 .max_pasid_bits
= 16,
217 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
218 .event_interrupt_class
= &event_interrupt_class_v9
,
219 .num_of_watch_points
= 4,
220 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
221 .supports_cwsr
= true,
222 .needs_iommu_device
= false,
223 .needs_pci_atomics
= false,
224 .num_sdma_engines
= 2,
227 static const struct kfd_device_info vega10_vf_device_info
= {
228 .asic_family
= CHIP_VEGA10
,
229 .max_pasid_bits
= 16,
232 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
233 .event_interrupt_class
= &event_interrupt_class_v9
,
234 .num_of_watch_points
= 4,
235 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
236 .supports_cwsr
= true,
237 .needs_iommu_device
= false,
238 .needs_pci_atomics
= false,
239 .num_sdma_engines
= 2,
243 struct kfd_deviceid
{
245 const struct kfd_device_info
*device_info
;
248 static const struct kfd_deviceid supported_devices
[] = {
249 #ifdef KFD_SUPPORT_IOMMU_V2
250 { 0x1304, &kaveri_device_info
}, /* Kaveri */
251 { 0x1305, &kaveri_device_info
}, /* Kaveri */
252 { 0x1306, &kaveri_device_info
}, /* Kaveri */
253 { 0x1307, &kaveri_device_info
}, /* Kaveri */
254 { 0x1309, &kaveri_device_info
}, /* Kaveri */
255 { 0x130A, &kaveri_device_info
}, /* Kaveri */
256 { 0x130B, &kaveri_device_info
}, /* Kaveri */
257 { 0x130C, &kaveri_device_info
}, /* Kaveri */
258 { 0x130D, &kaveri_device_info
}, /* Kaveri */
259 { 0x130E, &kaveri_device_info
}, /* Kaveri */
260 { 0x130F, &kaveri_device_info
}, /* Kaveri */
261 { 0x1310, &kaveri_device_info
}, /* Kaveri */
262 { 0x1311, &kaveri_device_info
}, /* Kaveri */
263 { 0x1312, &kaveri_device_info
}, /* Kaveri */
264 { 0x1313, &kaveri_device_info
}, /* Kaveri */
265 { 0x1315, &kaveri_device_info
}, /* Kaveri */
266 { 0x1316, &kaveri_device_info
}, /* Kaveri */
267 { 0x1317, &kaveri_device_info
}, /* Kaveri */
268 { 0x1318, &kaveri_device_info
}, /* Kaveri */
269 { 0x131B, &kaveri_device_info
}, /* Kaveri */
270 { 0x131C, &kaveri_device_info
}, /* Kaveri */
271 { 0x131D, &kaveri_device_info
}, /* Kaveri */
272 { 0x9870, &carrizo_device_info
}, /* Carrizo */
273 { 0x9874, &carrizo_device_info
}, /* Carrizo */
274 { 0x9875, &carrizo_device_info
}, /* Carrizo */
275 { 0x9876, &carrizo_device_info
}, /* Carrizo */
276 { 0x9877, &carrizo_device_info
}, /* Carrizo */
277 { 0x15DD, &raven_device_info
}, /* Raven */
279 { 0x67A0, &hawaii_device_info
}, /* Hawaii */
280 { 0x67A1, &hawaii_device_info
}, /* Hawaii */
281 { 0x67A2, &hawaii_device_info
}, /* Hawaii */
282 { 0x67A8, &hawaii_device_info
}, /* Hawaii */
283 { 0x67A9, &hawaii_device_info
}, /* Hawaii */
284 { 0x67AA, &hawaii_device_info
}, /* Hawaii */
285 { 0x67B0, &hawaii_device_info
}, /* Hawaii */
286 { 0x67B1, &hawaii_device_info
}, /* Hawaii */
287 { 0x67B8, &hawaii_device_info
}, /* Hawaii */
288 { 0x67B9, &hawaii_device_info
}, /* Hawaii */
289 { 0x67BA, &hawaii_device_info
}, /* Hawaii */
290 { 0x67BE, &hawaii_device_info
}, /* Hawaii */
291 { 0x6920, &tonga_device_info
}, /* Tonga */
292 { 0x6921, &tonga_device_info
}, /* Tonga */
293 { 0x6928, &tonga_device_info
}, /* Tonga */
294 { 0x6929, &tonga_device_info
}, /* Tonga */
295 { 0x692B, &tonga_device_info
}, /* Tonga */
296 { 0x692F, &tonga_vf_device_info
}, /* Tonga vf */
297 { 0x6938, &tonga_device_info
}, /* Tonga */
298 { 0x6939, &tonga_device_info
}, /* Tonga */
299 { 0x7300, &fiji_device_info
}, /* Fiji */
300 { 0x730F, &fiji_vf_device_info
}, /* Fiji vf*/
301 { 0x67C0, &polaris10_device_info
}, /* Polaris10 */
302 { 0x67C1, &polaris10_device_info
}, /* Polaris10 */
303 { 0x67C2, &polaris10_device_info
}, /* Polaris10 */
304 { 0x67C4, &polaris10_device_info
}, /* Polaris10 */
305 { 0x67C7, &polaris10_device_info
}, /* Polaris10 */
306 { 0x67C8, &polaris10_device_info
}, /* Polaris10 */
307 { 0x67C9, &polaris10_device_info
}, /* Polaris10 */
308 { 0x67CA, &polaris10_device_info
}, /* Polaris10 */
309 { 0x67CC, &polaris10_device_info
}, /* Polaris10 */
310 { 0x67CF, &polaris10_device_info
}, /* Polaris10 */
311 { 0x67D0, &polaris10_vf_device_info
}, /* Polaris10 vf*/
312 { 0x67DF, &polaris10_device_info
}, /* Polaris10 */
313 { 0x67E0, &polaris11_device_info
}, /* Polaris11 */
314 { 0x67E1, &polaris11_device_info
}, /* Polaris11 */
315 { 0x67E3, &polaris11_device_info
}, /* Polaris11 */
316 { 0x67E7, &polaris11_device_info
}, /* Polaris11 */
317 { 0x67E8, &polaris11_device_info
}, /* Polaris11 */
318 { 0x67E9, &polaris11_device_info
}, /* Polaris11 */
319 { 0x67EB, &polaris11_device_info
}, /* Polaris11 */
320 { 0x67EF, &polaris11_device_info
}, /* Polaris11 */
321 { 0x67FF, &polaris11_device_info
}, /* Polaris11 */
322 { 0x6860, &vega10_device_info
}, /* Vega10 */
323 { 0x6861, &vega10_device_info
}, /* Vega10 */
324 { 0x6862, &vega10_device_info
}, /* Vega10 */
325 { 0x6863, &vega10_device_info
}, /* Vega10 */
326 { 0x6864, &vega10_device_info
}, /* Vega10 */
327 { 0x6867, &vega10_device_info
}, /* Vega10 */
328 { 0x6868, &vega10_device_info
}, /* Vega10 */
329 { 0x6869, &vega10_device_info
}, /* Vega10 */
330 { 0x686A, &vega10_device_info
}, /* Vega10 */
331 { 0x686B, &vega10_device_info
}, /* Vega10 */
332 { 0x686C, &vega10_vf_device_info
}, /* Vega10 vf*/
333 { 0x686D, &vega10_device_info
}, /* Vega10 */
334 { 0x686E, &vega10_device_info
}, /* Vega10 */
335 { 0x686F, &vega10_device_info
}, /* Vega10 */
336 { 0x687F, &vega10_device_info
}, /* Vega10 */
339 static int kfd_gtt_sa_init(struct kfd_dev
*kfd
, unsigned int buf_size
,
340 unsigned int chunk_size
);
341 static void kfd_gtt_sa_fini(struct kfd_dev
*kfd
);
343 static int kfd_resume(struct kfd_dev
*kfd
);
345 static const struct kfd_device_info
*lookup_device_info(unsigned short did
)
349 for (i
= 0; i
< ARRAY_SIZE(supported_devices
); i
++) {
350 if (supported_devices
[i
].did
== did
) {
351 WARN_ON(!supported_devices
[i
].device_info
);
352 return supported_devices
[i
].device_info
;
356 dev_warn(kfd_device
, "DID %04x is missing in supported_devices\n",
362 struct kfd_dev
*kgd2kfd_probe(struct kgd_dev
*kgd
,
363 struct pci_dev
*pdev
, const struct kfd2kgd_calls
*f2g
)
367 const struct kfd_device_info
*device_info
=
368 lookup_device_info(pdev
->device
);
371 dev_err(kfd_device
, "kgd2kfd_probe failed\n");
375 /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
376 * 32 and 64-bit requests are possible and must be
379 ret
= pci_enable_atomic_ops_to_root(pdev
,
380 PCI_EXP_DEVCAP2_ATOMIC_COMP32
|
381 PCI_EXP_DEVCAP2_ATOMIC_COMP64
);
382 if (device_info
->needs_pci_atomics
&& ret
< 0) {
384 "skipped device %x:%x, PCI rejects atomics\n",
385 pdev
->vendor
, pdev
->device
);
389 kfd
= kzalloc(sizeof(*kfd
), GFP_KERNEL
);
394 kfd
->device_info
= device_info
;
396 kfd
->init_complete
= false;
399 mutex_init(&kfd
->doorbell_mutex
);
400 memset(&kfd
->doorbell_available_index
, 0,
401 sizeof(kfd
->doorbell_available_index
));
406 static void kfd_cwsr_init(struct kfd_dev
*kfd
)
408 if (cwsr_enable
&& kfd
->device_info
->supports_cwsr
) {
409 if (kfd
->device_info
->asic_family
< CHIP_VEGA10
) {
410 BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex
) > PAGE_SIZE
);
411 kfd
->cwsr_isa
= cwsr_trap_gfx8_hex
;
412 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_gfx8_hex
);
414 BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex
) > PAGE_SIZE
);
415 kfd
->cwsr_isa
= cwsr_trap_gfx9_hex
;
416 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_gfx9_hex
);
419 kfd
->cwsr_enabled
= true;
423 bool kgd2kfd_device_init(struct kfd_dev
*kfd
,
424 const struct kgd2kfd_shared_resources
*gpu_resources
)
428 kfd
->shared_resources
= *gpu_resources
;
430 kfd
->vm_info
.first_vmid_kfd
= ffs(gpu_resources
->compute_vmid_bitmap
)-1;
431 kfd
->vm_info
.last_vmid_kfd
= fls(gpu_resources
->compute_vmid_bitmap
)-1;
432 kfd
->vm_info
.vmid_num_kfd
= kfd
->vm_info
.last_vmid_kfd
433 - kfd
->vm_info
.first_vmid_kfd
+ 1;
435 /* Verify module parameters regarding mapped process number*/
436 if ((hws_max_conc_proc
< 0)
437 || (hws_max_conc_proc
> kfd
->vm_info
.vmid_num_kfd
)) {
439 "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
440 hws_max_conc_proc
, kfd
->vm_info
.vmid_num_kfd
,
441 kfd
->vm_info
.vmid_num_kfd
);
442 kfd
->max_proc_per_quantum
= kfd
->vm_info
.vmid_num_kfd
;
444 kfd
->max_proc_per_quantum
= hws_max_conc_proc
;
446 /* calculate max size of mqds needed for queues */
447 size
= max_num_of_queues_per_device
*
448 kfd
->device_info
->mqd_size_aligned
;
451 * calculate max size of runlist packet.
452 * There can be only 2 packets at once
454 size
+= (KFD_MAX_NUM_OF_PROCESSES
* sizeof(struct pm4_mes_map_process
) +
455 max_num_of_queues_per_device
* sizeof(struct pm4_mes_map_queues
)
456 + sizeof(struct pm4_mes_runlist
)) * 2;
458 /* Add size of HIQ & DIQ */
459 size
+= KFD_KERNEL_QUEUE_SIZE
* 2;
461 /* add another 512KB for all other allocations on gart (HPD, fences) */
464 if (kfd
->kfd2kgd
->init_gtt_mem_allocation(
465 kfd
->kgd
, size
, &kfd
->gtt_mem
,
466 &kfd
->gtt_start_gpu_addr
, &kfd
->gtt_start_cpu_ptr
,
468 dev_err(kfd_device
, "Could not allocate %d bytes\n", size
);
472 dev_info(kfd_device
, "Allocated %d bytes on gart\n", size
);
474 /* Initialize GTT sa with 512 byte chunk size */
475 if (kfd_gtt_sa_init(kfd
, size
, 512) != 0) {
476 dev_err(kfd_device
, "Error initializing gtt sub-allocator\n");
477 goto kfd_gtt_sa_init_error
;
480 if (kfd_doorbell_init(kfd
)) {
482 "Error initializing doorbell aperture\n");
483 goto kfd_doorbell_error
;
486 if (kfd_topology_add_device(kfd
)) {
487 dev_err(kfd_device
, "Error adding device to topology\n");
488 goto kfd_topology_add_device_error
;
491 if (kfd_interrupt_init(kfd
)) {
492 dev_err(kfd_device
, "Error initializing interrupts\n");
493 goto kfd_interrupt_error
;
496 kfd
->dqm
= device_queue_manager_init(kfd
);
498 dev_err(kfd_device
, "Error initializing queue manager\n");
499 goto device_queue_manager_error
;
502 if (kfd_iommu_device_init(kfd
)) {
503 dev_err(kfd_device
, "Error initializing iommuv2\n");
504 goto device_iommu_error
;
510 goto kfd_resume_error
;
514 kfd
->init_complete
= true;
515 dev_info(kfd_device
, "added device %x:%x\n", kfd
->pdev
->vendor
,
518 pr_debug("Starting kfd with the following scheduling policy %d\n",
519 kfd
->dqm
->sched_policy
);
525 device_queue_manager_uninit(kfd
->dqm
);
526 device_queue_manager_error
:
527 kfd_interrupt_exit(kfd
);
529 kfd_topology_remove_device(kfd
);
530 kfd_topology_add_device_error
:
531 kfd_doorbell_fini(kfd
);
533 kfd_gtt_sa_fini(kfd
);
534 kfd_gtt_sa_init_error
:
535 kfd
->kfd2kgd
->free_gtt_mem(kfd
->kgd
, kfd
->gtt_mem
);
537 "device %x:%x NOT added due to errors\n",
538 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
540 return kfd
->init_complete
;
543 void kgd2kfd_device_exit(struct kfd_dev
*kfd
)
545 if (kfd
->init_complete
) {
546 kgd2kfd_suspend(kfd
);
547 device_queue_manager_uninit(kfd
->dqm
);
548 kfd_interrupt_exit(kfd
);
549 kfd_topology_remove_device(kfd
);
550 kfd_doorbell_fini(kfd
);
551 kfd_gtt_sa_fini(kfd
);
552 kfd
->kfd2kgd
->free_gtt_mem(kfd
->kgd
, kfd
->gtt_mem
);
558 int kgd2kfd_pre_reset(struct kfd_dev
*kfd
)
560 if (!kfd
->init_complete
)
562 kgd2kfd_suspend(kfd
);
564 /* hold dqm->lock to prevent further execution*/
567 kfd_signal_reset_event(kfd
);
572 * Fix me. KFD won't be able to resume existing process for now.
573 * We will keep all existing process in a evicted state and
574 * wait the process to be terminated.
577 int kgd2kfd_post_reset(struct kfd_dev
*kfd
)
581 if (!kfd
->init_complete
)
584 dqm_unlock(kfd
->dqm
);
586 ret
= kfd_resume(kfd
);
589 count
= atomic_dec_return(&kfd_locked
);
590 WARN_ONCE(count
!= 0, "KFD reset ref. error");
594 bool kfd_is_locked(void)
596 return (atomic_read(&kfd_locked
) > 0);
599 void kgd2kfd_suspend(struct kfd_dev
*kfd
)
601 if (!kfd
->init_complete
)
604 /* For first KFD device suspend all the KFD processes */
605 if (atomic_inc_return(&kfd_locked
) == 1)
606 kfd_suspend_all_processes();
608 kfd
->dqm
->ops
.stop(kfd
->dqm
);
610 kfd_iommu_suspend(kfd
);
613 int kgd2kfd_resume(struct kfd_dev
*kfd
)
617 if (!kfd
->init_complete
)
620 ret
= kfd_resume(kfd
);
624 count
= atomic_dec_return(&kfd_locked
);
625 WARN_ONCE(count
< 0, "KFD suspend / resume ref. error");
627 ret
= kfd_resume_all_processes();
632 static int kfd_resume(struct kfd_dev
*kfd
)
636 err
= kfd_iommu_resume(kfd
);
639 "Failed to resume IOMMU for device %x:%x\n",
640 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
644 err
= kfd
->dqm
->ops
.start(kfd
->dqm
);
647 "Error starting queue manager for device %x:%x\n",
648 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
649 goto dqm_start_error
;
655 kfd_iommu_suspend(kfd
);
659 /* This is called directly from KGD at ISR. */
660 void kgd2kfd_interrupt(struct kfd_dev
*kfd
, const void *ih_ring_entry
)
662 uint32_t patched_ihre
[KFD_MAX_RING_ENTRY_SIZE
];
663 bool is_patched
= false;
665 if (!kfd
->init_complete
)
668 if (kfd
->device_info
->ih_ring_entry_size
> sizeof(patched_ihre
)) {
669 dev_err_once(kfd_device
, "Ring entry too small\n");
673 spin_lock(&kfd
->interrupt_lock
);
675 if (kfd
->interrupts_active
676 && interrupt_is_wanted(kfd
, ih_ring_entry
,
677 patched_ihre
, &is_patched
)
678 && enqueue_ih_ring_entry(kfd
,
679 is_patched
? patched_ihre
: ih_ring_entry
))
680 queue_work(kfd
->ih_wq
, &kfd
->interrupt_work
);
682 spin_unlock(&kfd
->interrupt_lock
);
685 int kgd2kfd_quiesce_mm(struct mm_struct
*mm
)
687 struct kfd_process
*p
;
690 /* Because we are called from arbitrary context (workqueue) as opposed
691 * to process context, kfd_process could attempt to exit while we are
692 * running so the lookup function increments the process ref count.
694 p
= kfd_lookup_process_by_mm(mm
);
698 r
= kfd_process_evict_queues(p
);
700 kfd_unref_process(p
);
704 int kgd2kfd_resume_mm(struct mm_struct
*mm
)
706 struct kfd_process
*p
;
709 /* Because we are called from arbitrary context (workqueue) as opposed
710 * to process context, kfd_process could attempt to exit while we are
711 * running so the lookup function increments the process ref count.
713 p
= kfd_lookup_process_by_mm(mm
);
717 r
= kfd_process_restore_queues(p
);
719 kfd_unref_process(p
);
723 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
724 * prepare for safe eviction of KFD BOs that belong to the specified
727 * @mm: mm_struct that identifies the specified KFD process
728 * @fence: eviction fence attached to KFD process BOs
731 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct
*mm
,
732 struct dma_fence
*fence
)
734 struct kfd_process
*p
;
735 unsigned long active_time
;
736 unsigned long delay_jiffies
= msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS
);
741 if (dma_fence_is_signaled(fence
))
744 p
= kfd_lookup_process_by_mm(mm
);
748 if (fence
->seqno
== p
->last_eviction_seqno
)
751 p
->last_eviction_seqno
= fence
->seqno
;
753 /* Avoid KFD process starvation. Wait for at least
754 * PROCESS_ACTIVE_TIME_MS before evicting the process again
756 active_time
= get_jiffies_64() - p
->last_restore_timestamp
;
757 if (delay_jiffies
> active_time
)
758 delay_jiffies
-= active_time
;
762 /* During process initialization eviction_work.dwork is initialized
763 * to kfd_evict_bo_worker
765 schedule_delayed_work(&p
->eviction_work
, delay_jiffies
);
767 kfd_unref_process(p
);
771 static int kfd_gtt_sa_init(struct kfd_dev
*kfd
, unsigned int buf_size
,
772 unsigned int chunk_size
)
774 unsigned int num_of_longs
;
776 if (WARN_ON(buf_size
< chunk_size
))
778 if (WARN_ON(buf_size
== 0))
780 if (WARN_ON(chunk_size
== 0))
783 kfd
->gtt_sa_chunk_size
= chunk_size
;
784 kfd
->gtt_sa_num_of_chunks
= buf_size
/ chunk_size
;
786 num_of_longs
= (kfd
->gtt_sa_num_of_chunks
+ BITS_PER_LONG
- 1) /
789 kfd
->gtt_sa_bitmap
= kcalloc(num_of_longs
, sizeof(long), GFP_KERNEL
);
791 if (!kfd
->gtt_sa_bitmap
)
794 pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
795 kfd
->gtt_sa_num_of_chunks
, kfd
->gtt_sa_bitmap
);
797 mutex_init(&kfd
->gtt_sa_lock
);
803 static void kfd_gtt_sa_fini(struct kfd_dev
*kfd
)
805 mutex_destroy(&kfd
->gtt_sa_lock
);
806 kfree(kfd
->gtt_sa_bitmap
);
809 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr
,
810 unsigned int bit_num
,
811 unsigned int chunk_size
)
813 return start_addr
+ bit_num
* chunk_size
;
816 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr
,
817 unsigned int bit_num
,
818 unsigned int chunk_size
)
820 return (uint32_t *) ((uint64_t) start_addr
+ bit_num
* chunk_size
);
823 int kfd_gtt_sa_allocate(struct kfd_dev
*kfd
, unsigned int size
,
824 struct kfd_mem_obj
**mem_obj
)
826 unsigned int found
, start_search
, cur_size
;
831 if (size
> kfd
->gtt_sa_num_of_chunks
* kfd
->gtt_sa_chunk_size
)
834 *mem_obj
= kzalloc(sizeof(struct kfd_mem_obj
), GFP_KERNEL
);
838 pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj
, size
);
842 mutex_lock(&kfd
->gtt_sa_lock
);
844 kfd_gtt_restart_search
:
845 /* Find the first chunk that is free */
846 found
= find_next_zero_bit(kfd
->gtt_sa_bitmap
,
847 kfd
->gtt_sa_num_of_chunks
,
850 pr_debug("Found = %d\n", found
);
852 /* If there wasn't any free chunk, bail out */
853 if (found
== kfd
->gtt_sa_num_of_chunks
)
854 goto kfd_gtt_no_free_chunk
;
856 /* Update fields of mem_obj */
857 (*mem_obj
)->range_start
= found
;
858 (*mem_obj
)->range_end
= found
;
859 (*mem_obj
)->gpu_addr
= kfd_gtt_sa_calc_gpu_addr(
860 kfd
->gtt_start_gpu_addr
,
862 kfd
->gtt_sa_chunk_size
);
863 (*mem_obj
)->cpu_ptr
= kfd_gtt_sa_calc_cpu_addr(
864 kfd
->gtt_start_cpu_ptr
,
866 kfd
->gtt_sa_chunk_size
);
868 pr_debug("gpu_addr = %p, cpu_addr = %p\n",
869 (uint64_t *) (*mem_obj
)->gpu_addr
, (*mem_obj
)->cpu_ptr
);
871 /* If we need only one chunk, mark it as allocated and get out */
872 if (size
<= kfd
->gtt_sa_chunk_size
) {
873 pr_debug("Single bit\n");
874 set_bit(found
, kfd
->gtt_sa_bitmap
);
878 /* Otherwise, try to see if we have enough contiguous chunks */
879 cur_size
= size
- kfd
->gtt_sa_chunk_size
;
881 (*mem_obj
)->range_end
=
882 find_next_zero_bit(kfd
->gtt_sa_bitmap
,
883 kfd
->gtt_sa_num_of_chunks
, ++found
);
885 * If next free chunk is not contiguous than we need to
886 * restart our search from the last free chunk we found (which
887 * wasn't contiguous to the previous ones
889 if ((*mem_obj
)->range_end
!= found
) {
890 start_search
= found
;
891 goto kfd_gtt_restart_search
;
895 * If we reached end of buffer, bail out with error
897 if (found
== kfd
->gtt_sa_num_of_chunks
)
898 goto kfd_gtt_no_free_chunk
;
900 /* Check if we don't need another chunk */
901 if (cur_size
<= kfd
->gtt_sa_chunk_size
)
904 cur_size
-= kfd
->gtt_sa_chunk_size
;
906 } while (cur_size
> 0);
908 pr_debug("range_start = %d, range_end = %d\n",
909 (*mem_obj
)->range_start
, (*mem_obj
)->range_end
);
911 /* Mark the chunks as allocated */
912 for (found
= (*mem_obj
)->range_start
;
913 found
<= (*mem_obj
)->range_end
;
915 set_bit(found
, kfd
->gtt_sa_bitmap
);
918 mutex_unlock(&kfd
->gtt_sa_lock
);
921 kfd_gtt_no_free_chunk
:
922 pr_debug("Allocation failed with mem_obj = %p\n", mem_obj
);
923 mutex_unlock(&kfd
->gtt_sa_lock
);
928 int kfd_gtt_sa_free(struct kfd_dev
*kfd
, struct kfd_mem_obj
*mem_obj
)
932 /* Act like kfree when trying to free a NULL object */
936 pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
937 mem_obj
, mem_obj
->range_start
, mem_obj
->range_end
);
939 mutex_lock(&kfd
->gtt_sa_lock
);
941 /* Mark the chunks as free */
942 for (bit
= mem_obj
->range_start
;
943 bit
<= mem_obj
->range_end
;
945 clear_bit(bit
, kfd
->gtt_sa_bitmap
);
947 mutex_unlock(&kfd
->gtt_sa_lock
);
953 #if defined(CONFIG_DEBUG_FS)
955 /* This function will send a package to HIQ to hang the HWS
956 * which will trigger a GPU reset and bring the HWS back to normal state
958 int kfd_debugfs_hang_hws(struct kfd_dev
*dev
)
962 if (dev
->dqm
->sched_policy
!= KFD_SCHED_POLICY_HWS
) {
963 pr_err("HWS is not enabled");
967 r
= pm_debugfs_hang_hws(&dev
->dqm
->packets
);
969 r
= dqm_debugfs_execute_queues(dev
->dqm
);