2 * Copyright © 2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
31 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
33 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
36 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs
*b
)
38 struct intel_wait
*wait
;
39 unsigned int result
= 0;
41 lockdep_assert_held(&b
->irq_lock
);
46 * N.B. Since task_asleep() and ttwu are not atomic, the
47 * waiter may actually go to sleep after the check, causing
48 * us to suppress a valid wakeup. We prefer to reduce the
49 * number of false positive missed_breadcrumb() warnings
50 * at the expense of a few false negatives, as it it easy
51 * to trigger a false positive under heavy load. Enough
52 * signal should remain from genuine missed_breadcrumb()
53 * for us to detect in CI.
55 bool was_asleep
= task_asleep(wait
->tsk
);
57 result
= ENGINE_WAKEUP_WAITER
;
58 if (wake_up_process(wait
->tsk
) && was_asleep
)
59 result
|= ENGINE_WAKEUP_ASLEEP
;
65 unsigned int intel_engine_wakeup(struct intel_engine_cs
*engine
)
67 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
71 spin_lock_irqsave(&b
->irq_lock
, flags
);
72 result
= __intel_breadcrumbs_wakeup(b
);
73 spin_unlock_irqrestore(&b
->irq_lock
, flags
);
78 static unsigned long wait_timeout(void)
80 return round_jiffies_up(jiffies
+ DRM_I915_HANGCHECK_JIFFIES
);
83 static noinline
void missed_breadcrumb(struct intel_engine_cs
*engine
)
85 if (GEM_SHOW_DEBUG()) {
86 struct drm_printer p
= drm_debug_printer(__func__
);
88 intel_engine_dump(engine
, &p
,
89 "%s missed breadcrumb at %pS\n",
90 engine
->name
, __builtin_return_address(0));
93 set_bit(engine
->id
, &engine
->i915
->gpu_error
.missed_irq_rings
);
96 static void intel_breadcrumbs_hangcheck(struct timer_list
*t
)
98 struct intel_engine_cs
*engine
=
99 from_timer(engine
, t
, breadcrumbs
.hangcheck
);
100 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
101 unsigned int irq_count
;
106 irq_count
= READ_ONCE(b
->irq_count
);
107 if (b
->hangcheck_interrupts
!= irq_count
) {
108 b
->hangcheck_interrupts
= irq_count
;
109 mod_timer(&b
->hangcheck
, wait_timeout());
113 /* We keep the hangcheck timer alive until we disarm the irq, even
114 * if there are no waiters at present.
116 * If the waiter was currently running, assume it hasn't had a chance
117 * to process the pending interrupt (e.g, low priority task on a loaded
118 * system) and wait until it sleeps before declaring a missed interrupt.
120 * If the waiter was asleep (and not even pending a wakeup), then we
121 * must have missed an interrupt as the GPU has stopped advancing
122 * but we still have a waiter. Assuming all batches complete within
123 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
125 if (intel_engine_wakeup(engine
) & ENGINE_WAKEUP_ASLEEP
) {
126 missed_breadcrumb(engine
);
127 mod_timer(&b
->fake_irq
, jiffies
+ 1);
129 mod_timer(&b
->hangcheck
, wait_timeout());
133 static void intel_breadcrumbs_fake_irq(struct timer_list
*t
)
135 struct intel_engine_cs
*engine
=
136 from_timer(engine
, t
, breadcrumbs
.fake_irq
);
137 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
140 * The timer persists in case we cannot enable interrupts,
141 * or if we have previously seen seqno/interrupt incoherency
142 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
143 * Here the worker will wake up every jiffie in order to kick the
144 * oldest waiter to do the coherent seqno check.
147 spin_lock_irq(&b
->irq_lock
);
148 if (b
->irq_armed
&& !__intel_breadcrumbs_wakeup(b
))
149 __intel_engine_disarm_breadcrumbs(engine
);
150 spin_unlock_irq(&b
->irq_lock
);
154 /* If the user has disabled the fake-irq, restore the hangchecking */
155 if (!test_bit(engine
->id
, &engine
->i915
->gpu_error
.missed_irq_rings
)) {
156 mod_timer(&b
->hangcheck
, wait_timeout());
160 mod_timer(&b
->fake_irq
, jiffies
+ 1);
163 static void irq_enable(struct intel_engine_cs
*engine
)
166 * FIXME: Ideally we want this on the API boundary, but for the
167 * sake of testing with mock breadcrumbs (no HW so unable to
168 * enable irqs) we place it deep within the bowels, at the point
171 GEM_BUG_ON(!intel_irqs_enabled(engine
->i915
));
173 /* Enabling the IRQ may miss the generation of the interrupt, but
174 * we still need to force the barrier before reading the seqno,
177 set_bit(ENGINE_IRQ_BREADCRUMB
, &engine
->irq_posted
);
179 /* Caller disables interrupts */
180 if (engine
->irq_enable
) {
181 spin_lock(&engine
->i915
->irq_lock
);
182 engine
->irq_enable(engine
);
183 spin_unlock(&engine
->i915
->irq_lock
);
187 static void irq_disable(struct intel_engine_cs
*engine
)
189 /* Caller disables interrupts */
190 if (engine
->irq_disable
) {
191 spin_lock(&engine
->i915
->irq_lock
);
192 engine
->irq_disable(engine
);
193 spin_unlock(&engine
->i915
->irq_lock
);
197 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs
*engine
)
199 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
201 lockdep_assert_held(&b
->irq_lock
);
202 GEM_BUG_ON(b
->irq_wait
);
203 GEM_BUG_ON(!b
->irq_armed
);
205 GEM_BUG_ON(!b
->irq_enabled
);
206 if (!--b
->irq_enabled
)
209 b
->irq_armed
= false;
212 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs
*engine
)
214 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
216 spin_lock_irq(&b
->irq_lock
);
217 if (!b
->irq_enabled
++)
219 GEM_BUG_ON(!b
->irq_enabled
); /* no overflow! */
220 spin_unlock_irq(&b
->irq_lock
);
223 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs
*engine
)
225 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
227 spin_lock_irq(&b
->irq_lock
);
228 GEM_BUG_ON(!b
->irq_enabled
); /* no underflow! */
229 if (!--b
->irq_enabled
)
231 spin_unlock_irq(&b
->irq_lock
);
234 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs
*engine
)
236 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
237 struct intel_wait
*wait
, *n
;
243 * We only disarm the irq when we are idle (all requests completed),
244 * so if the bottom-half remains asleep, it missed the request
247 if (intel_engine_wakeup(engine
) & ENGINE_WAKEUP_ASLEEP
)
248 missed_breadcrumb(engine
);
250 spin_lock_irq(&b
->rb_lock
);
252 spin_lock(&b
->irq_lock
);
255 __intel_engine_disarm_breadcrumbs(engine
);
256 spin_unlock(&b
->irq_lock
);
258 rbtree_postorder_for_each_entry_safe(wait
, n
, &b
->waiters
, node
) {
259 GEM_BUG_ON(!i915_seqno_passed(intel_engine_get_seqno(engine
),
261 RB_CLEAR_NODE(&wait
->node
);
262 wake_up_process(wait
->tsk
);
264 b
->waiters
= RB_ROOT
;
266 spin_unlock_irq(&b
->rb_lock
);
269 static bool use_fake_irq(const struct intel_breadcrumbs
*b
)
271 const struct intel_engine_cs
*engine
=
272 container_of(b
, struct intel_engine_cs
, breadcrumbs
);
274 if (!test_bit(engine
->id
, &engine
->i915
->gpu_error
.missed_irq_rings
))
278 * Only start with the heavy weight fake irq timer if we have not
279 * seen any interrupts since enabling it the first time. If the
280 * interrupts are still arriving, it means we made a mistake in our
281 * engine->seqno_barrier(), a timing error that should be transient
282 * and unlikely to reoccur.
284 return READ_ONCE(b
->irq_count
) == b
->hangcheck_interrupts
;
287 static void enable_fake_irq(struct intel_breadcrumbs
*b
)
289 /* Ensure we never sleep indefinitely */
290 if (!b
->irq_enabled
|| use_fake_irq(b
))
291 mod_timer(&b
->fake_irq
, jiffies
+ 1);
293 mod_timer(&b
->hangcheck
, wait_timeout());
296 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs
*b
)
298 struct intel_engine_cs
*engine
=
299 container_of(b
, struct intel_engine_cs
, breadcrumbs
);
300 struct drm_i915_private
*i915
= engine
->i915
;
303 lockdep_assert_held(&b
->irq_lock
);
307 /* The breadcrumb irq will be disarmed on the interrupt after the
308 * waiters are signaled. This gives us a single interrupt window in
309 * which we can add a new waiter and avoid the cost of re-enabling
314 if (I915_SELFTEST_ONLY(b
->mock
)) {
315 /* For our mock objects we want to avoid interaction
316 * with the real hardware (which is not set up). So
317 * we simply pretend we have enabled the powerwell
318 * and the irq, and leave it up to the mock
319 * implementation to call intel_engine_wakeup()
320 * itself when it wants to simulate a user interrupt,
325 /* Since we are waiting on a request, the GPU should be busy
326 * and should have its own rpm reference. This is tracked
327 * by i915->gt.awake, we can forgo holding our own wakref
328 * for the interrupt as before i915->gt.awake is released (when
329 * the driver is idle) we disarm the breadcrumbs.
332 /* No interrupts? Kick the waiter every jiffie! */
334 if (!b
->irq_enabled
++ &&
335 !test_bit(engine
->id
, &i915
->gpu_error
.test_irq_rings
)) {
344 static inline struct intel_wait
*to_wait(struct rb_node
*node
)
346 return rb_entry(node
, struct intel_wait
, node
);
349 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs
*b
,
350 struct intel_wait
*wait
)
352 lockdep_assert_held(&b
->rb_lock
);
353 GEM_BUG_ON(b
->irq_wait
== wait
);
356 * This request is completed, so remove it from the tree, mark it as
357 * complete, and *then* wake up the associated task. N.B. when the
358 * task wakes up, it will find the empty rb_node, discern that it
359 * has already been removed from the tree and skip the serialisation
360 * of the b->rb_lock and b->irq_lock. This means that the destruction
361 * of the intel_wait is not serialised with the interrupt handler
362 * by the waiter - it must instead be serialised by the caller.
364 rb_erase(&wait
->node
, &b
->waiters
);
365 RB_CLEAR_NODE(&wait
->node
);
367 if (wait
->tsk
->state
!= TASK_RUNNING
)
368 wake_up_process(wait
->tsk
); /* implicit smp_wmb() */
371 static inline void __intel_breadcrumbs_next(struct intel_engine_cs
*engine
,
372 struct rb_node
*next
)
374 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
376 spin_lock(&b
->irq_lock
);
377 GEM_BUG_ON(!b
->irq_armed
);
378 GEM_BUG_ON(!b
->irq_wait
);
379 b
->irq_wait
= to_wait(next
);
380 spin_unlock(&b
->irq_lock
);
382 /* We always wake up the next waiter that takes over as the bottom-half
383 * as we may delegate not only the irq-seqno barrier to the next waiter
384 * but also the task of waking up concurrent waiters.
387 wake_up_process(to_wait(next
)->tsk
);
390 static bool __intel_engine_add_wait(struct intel_engine_cs
*engine
,
391 struct intel_wait
*wait
)
393 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
394 struct rb_node
**p
, *parent
, *completed
;
398 GEM_BUG_ON(!wait
->seqno
);
400 /* Insert the request into the retirement ordered list
401 * of waiters by walking the rbtree. If we are the oldest
402 * seqno in the tree (the first to be retired), then
403 * set ourselves as the bottom-half.
405 * As we descend the tree, prune completed branches since we hold the
406 * spinlock we know that the first_waiter must be delayed and can
407 * reduce some of the sequential wake up latency if we take action
408 * ourselves and wake up the completed tasks in parallel. Also, by
409 * removing stale elements in the tree, we may be able to reduce the
410 * ping-pong between the old bottom-half and ourselves as first-waiter.
416 seqno
= intel_engine_get_seqno(engine
);
418 /* If the request completed before we managed to grab the spinlock,
419 * return now before adding ourselves to the rbtree. We let the
420 * current bottom-half handle any pending wakeups and instead
421 * try and get out of the way quickly.
423 if (i915_seqno_passed(seqno
, wait
->seqno
)) {
424 RB_CLEAR_NODE(&wait
->node
);
428 p
= &b
->waiters
.rb_node
;
431 if (wait
->seqno
== to_wait(parent
)->seqno
) {
432 /* We have multiple waiters on the same seqno, select
433 * the highest priority task (that with the smallest
434 * task->prio) to serve as the bottom-half for this
437 if (wait
->tsk
->prio
> to_wait(parent
)->tsk
->prio
) {
438 p
= &parent
->rb_right
;
441 p
= &parent
->rb_left
;
443 } else if (i915_seqno_passed(wait
->seqno
,
444 to_wait(parent
)->seqno
)) {
445 p
= &parent
->rb_right
;
446 if (i915_seqno_passed(seqno
, to_wait(parent
)->seqno
))
451 p
= &parent
->rb_left
;
454 rb_link_node(&wait
->node
, parent
, p
);
455 rb_insert_color(&wait
->node
, &b
->waiters
);
458 spin_lock(&b
->irq_lock
);
460 /* After assigning ourselves as the new bottom-half, we must
461 * perform a cursory check to prevent a missed interrupt.
462 * Either we miss the interrupt whilst programming the hardware,
463 * or if there was a previous waiter (for a later seqno) they
464 * may be woken instead of us (due to the inherent race
465 * in the unlocked read of b->irq_seqno_bh in the irq handler)
466 * and so we miss the wake up.
468 armed
= __intel_breadcrumbs_enable_irq(b
);
469 spin_unlock(&b
->irq_lock
);
473 /* Advance the bottom-half (b->irq_wait) before we wake up
474 * the waiters who may scribble over their intel_wait
475 * just as the interrupt handler is dereferencing it via
479 struct rb_node
*next
= rb_next(completed
);
480 GEM_BUG_ON(next
== &wait
->node
);
481 __intel_breadcrumbs_next(engine
, next
);
485 struct intel_wait
*crumb
= to_wait(completed
);
486 completed
= rb_prev(completed
);
487 __intel_breadcrumbs_finish(b
, crumb
);
491 GEM_BUG_ON(!b
->irq_wait
);
492 GEM_BUG_ON(!b
->irq_armed
);
493 GEM_BUG_ON(rb_first(&b
->waiters
) != &b
->irq_wait
->node
);
498 bool intel_engine_add_wait(struct intel_engine_cs
*engine
,
499 struct intel_wait
*wait
)
501 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
504 spin_lock_irq(&b
->rb_lock
);
505 armed
= __intel_engine_add_wait(engine
, wait
);
506 spin_unlock_irq(&b
->rb_lock
);
510 /* Make the caller recheck if its request has already started. */
511 return i915_seqno_passed(intel_engine_get_seqno(engine
),
515 static inline bool chain_wakeup(struct rb_node
*rb
, int priority
)
517 return rb
&& to_wait(rb
)->tsk
->prio
<= priority
;
520 static inline int wakeup_priority(struct intel_breadcrumbs
*b
,
521 struct task_struct
*tsk
)
523 if (tsk
== b
->signaler
)
529 static void __intel_engine_remove_wait(struct intel_engine_cs
*engine
,
530 struct intel_wait
*wait
)
532 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
534 lockdep_assert_held(&b
->rb_lock
);
536 if (RB_EMPTY_NODE(&wait
->node
))
539 if (b
->irq_wait
== wait
) {
540 const int priority
= wakeup_priority(b
, wait
->tsk
);
541 struct rb_node
*next
;
543 /* We are the current bottom-half. Find the next candidate,
544 * the first waiter in the queue on the remaining oldest
545 * request. As multiple seqnos may complete in the time it
546 * takes us to wake up and find the next waiter, we have to
547 * wake up that waiter for it to perform its own coherent
550 next
= rb_next(&wait
->node
);
551 if (chain_wakeup(next
, priority
)) {
552 /* If the next waiter is already complete,
553 * wake it up and continue onto the next waiter. So
554 * if have a small herd, they will wake up in parallel
555 * rather than sequentially, which should reduce
556 * the overall latency in waking all the completed
559 * However, waking up a chain adds extra latency to
560 * the first_waiter. This is undesirable if that
561 * waiter is a high priority task.
563 u32 seqno
= intel_engine_get_seqno(engine
);
565 while (i915_seqno_passed(seqno
, to_wait(next
)->seqno
)) {
566 struct rb_node
*n
= rb_next(next
);
568 __intel_breadcrumbs_finish(b
, to_wait(next
));
570 if (!chain_wakeup(next
, priority
))
575 __intel_breadcrumbs_next(engine
, next
);
577 GEM_BUG_ON(rb_first(&b
->waiters
) == &wait
->node
);
580 GEM_BUG_ON(RB_EMPTY_NODE(&wait
->node
));
581 rb_erase(&wait
->node
, &b
->waiters
);
582 RB_CLEAR_NODE(&wait
->node
);
585 GEM_BUG_ON(b
->irq_wait
== wait
);
586 GEM_BUG_ON(rb_first(&b
->waiters
) !=
587 (b
->irq_wait
? &b
->irq_wait
->node
: NULL
));
590 void intel_engine_remove_wait(struct intel_engine_cs
*engine
,
591 struct intel_wait
*wait
)
593 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
595 /* Quick check to see if this waiter was already decoupled from
596 * the tree by the bottom-half to avoid contention on the spinlock
599 if (RB_EMPTY_NODE(&wait
->node
)) {
600 GEM_BUG_ON(READ_ONCE(b
->irq_wait
) == wait
);
604 spin_lock_irq(&b
->rb_lock
);
605 __intel_engine_remove_wait(engine
, wait
);
606 spin_unlock_irq(&b
->rb_lock
);
609 static void signaler_set_rtpriority(void)
611 struct sched_param param
= { .sched_priority
= 1 };
613 sched_setscheduler_nocheck(current
, SCHED_FIFO
, ¶m
);
616 static int intel_breadcrumbs_signaler(void *arg
)
618 struct intel_engine_cs
*engine
= arg
;
619 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
620 struct i915_request
*rq
, *n
;
622 /* Install ourselves with high priority to reduce signalling latency */
623 signaler_set_rtpriority();
626 bool do_schedule
= true;
630 set_current_state(TASK_INTERRUPTIBLE
);
631 if (list_empty(&b
->signals
))
635 * We are either woken up by the interrupt bottom-half,
636 * or by a client adding a new signaller. In both cases,
637 * the GPU seqno may have advanced beyond our oldest signal.
638 * If it has, propagate the signal, remove the waiter and
639 * check again with the next oldest signal. Otherwise we
640 * need to wait for a new interrupt from the GPU or for
643 seqno
= intel_engine_get_seqno(engine
);
645 spin_lock_irq(&b
->rb_lock
);
646 list_for_each_entry_safe(rq
, n
, &b
->signals
, signaling
.link
) {
647 u32
this = rq
->signaling
.wait
.seqno
;
649 GEM_BUG_ON(!rq
->signaling
.wait
.seqno
);
651 if (!i915_seqno_passed(seqno
, this))
654 if (likely(this == i915_request_global_seqno(rq
))) {
655 __intel_engine_remove_wait(engine
,
656 &rq
->signaling
.wait
);
658 rq
->signaling
.wait
.seqno
= 0;
659 __list_del_entry(&rq
->signaling
.link
);
661 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
,
663 list_add_tail(&rq
->signaling
.link
,
665 i915_request_get(rq
);
669 spin_unlock_irq(&b
->rb_lock
);
671 if (!list_empty(&list
)) {
673 list_for_each_entry_safe(rq
, n
, &list
, signaling
.link
) {
674 dma_fence_signal(&rq
->fence
);
675 GEM_BUG_ON(!i915_request_completed(rq
));
676 i915_request_put(rq
);
678 local_bh_enable(); /* kick start the tasklets */
681 * If the engine is saturated we may be continually
682 * processing completed requests. This angers the
683 * NMI watchdog if we never let anything else
684 * have access to the CPU. Let's pretend to be nice
685 * and relinquish the CPU if we burn through the
686 * entire RT timeslice!
688 do_schedule
= need_resched();
691 if (unlikely(do_schedule
)) {
692 /* Before we sleep, check for a missed seqno */
693 if (current
->state
& TASK_NORMAL
&&
694 !list_empty(&b
->signals
) &&
695 engine
->irq_seqno_barrier
&&
696 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB
,
697 &engine
->irq_posted
)) {
698 engine
->irq_seqno_barrier(engine
);
699 intel_engine_wakeup(engine
);
703 if (kthread_should_park())
706 if (unlikely(kthread_should_stop()))
712 __set_current_state(TASK_RUNNING
);
717 static void insert_signal(struct intel_breadcrumbs
*b
,
718 struct i915_request
*request
,
721 struct i915_request
*iter
;
723 lockdep_assert_held(&b
->rb_lock
);
726 * A reasonable assumption is that we are called to add signals
727 * in sequence, as the requests are submitted for execution and
728 * assigned a global_seqno. This will be the case for the majority
729 * of internally generated signals (inter-engine signaling).
731 * Out of order waiters triggering random signaling enabling will
732 * be more problematic, but hopefully rare enough and the list
733 * small enough that the O(N) insertion sort is not an issue.
736 list_for_each_entry_reverse(iter
, &b
->signals
, signaling
.link
)
737 if (i915_seqno_passed(seqno
, iter
->signaling
.wait
.seqno
))
740 list_add(&request
->signaling
.link
, &iter
->signaling
.link
);
743 bool intel_engine_enable_signaling(struct i915_request
*request
, bool wakeup
)
745 struct intel_engine_cs
*engine
= request
->engine
;
746 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
747 struct intel_wait
*wait
= &request
->signaling
.wait
;
751 * Note that we may be called from an interrupt handler on another
752 * device (e.g. nouveau signaling a fence completion causing us
753 * to submit a request, and so enable signaling). As such,
754 * we need to make sure that all other users of b->rb_lock protect
755 * against interrupts, i.e. use spin_lock_irqsave.
758 /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
759 GEM_BUG_ON(!irqs_disabled());
760 lockdep_assert_held(&request
->lock
);
762 seqno
= i915_request_global_seqno(request
);
763 if (!seqno
) /* will be enabled later upon execution */
766 GEM_BUG_ON(wait
->seqno
);
767 wait
->tsk
= b
->signaler
;
768 wait
->request
= request
;
772 * Add ourselves into the list of waiters, but registering our
773 * bottom-half as the signaller thread. As per usual, only the oldest
774 * waiter (not just signaller) is tasked as the bottom-half waking
775 * up all completed waiters after the user interrupt.
777 * If we are the oldest waiter, enable the irq (after which we
778 * must double check that the seqno did not complete).
780 spin_lock(&b
->rb_lock
);
781 insert_signal(b
, request
, seqno
);
782 wakeup
&= __intel_engine_add_wait(engine
, wait
);
783 spin_unlock(&b
->rb_lock
);
786 wake_up_process(b
->signaler
);
787 return !intel_wait_complete(wait
);
793 void intel_engine_cancel_signaling(struct i915_request
*request
)
795 struct intel_engine_cs
*engine
= request
->engine
;
796 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
798 GEM_BUG_ON(!irqs_disabled());
799 lockdep_assert_held(&request
->lock
);
801 if (!READ_ONCE(request
->signaling
.wait
.seqno
))
804 spin_lock(&b
->rb_lock
);
805 __intel_engine_remove_wait(engine
, &request
->signaling
.wait
);
806 if (fetch_and_zero(&request
->signaling
.wait
.seqno
))
807 __list_del_entry(&request
->signaling
.link
);
808 spin_unlock(&b
->rb_lock
);
811 int intel_engine_init_breadcrumbs(struct intel_engine_cs
*engine
)
813 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
814 struct task_struct
*tsk
;
816 spin_lock_init(&b
->rb_lock
);
817 spin_lock_init(&b
->irq_lock
);
819 timer_setup(&b
->fake_irq
, intel_breadcrumbs_fake_irq
, 0);
820 timer_setup(&b
->hangcheck
, intel_breadcrumbs_hangcheck
, 0);
822 INIT_LIST_HEAD(&b
->signals
);
824 /* Spawn a thread to provide a common bottom-half for all signals.
825 * As this is an asynchronous interface we cannot steal the current
826 * task for handling the bottom-half to the user interrupt, therefore
827 * we create a thread to do the coherent seqno dance after the
828 * interrupt and then signal the waitqueue (via the dma-buf/fence).
830 tsk
= kthread_run(intel_breadcrumbs_signaler
, engine
,
831 "i915/signal:%d", engine
->id
);
840 static void cancel_fake_irq(struct intel_engine_cs
*engine
)
842 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
844 del_timer_sync(&b
->fake_irq
); /* may queue b->hangcheck */
845 del_timer_sync(&b
->hangcheck
);
846 clear_bit(engine
->id
, &engine
->i915
->gpu_error
.missed_irq_rings
);
849 void intel_engine_reset_breadcrumbs(struct intel_engine_cs
*engine
)
851 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
854 spin_lock_irqsave(&b
->irq_lock
, flags
);
857 * Leave the fake_irq timer enabled (if it is running), but clear the
858 * bit so that it turns itself off on its next wake up and goes back
859 * to the long hangcheck interval if still required.
861 clear_bit(engine
->id
, &engine
->i915
->gpu_error
.missed_irq_rings
);
869 * We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
870 * GPU is active and may have already executed the MI_USER_INTERRUPT
871 * before the CPU is ready to receive. However, the engine is currently
872 * idle (we haven't started it yet), there is no possibility for a
873 * missed interrupt as we enabled the irq and so we can clear the
874 * immediate wakeup (until a real interrupt arrives for the waiter).
876 clear_bit(ENGINE_IRQ_BREADCRUMB
, &engine
->irq_posted
);
878 spin_unlock_irqrestore(&b
->irq_lock
, flags
);
881 void intel_engine_fini_breadcrumbs(struct intel_engine_cs
*engine
)
883 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
885 /* The engines should be idle and all requests accounted for! */
886 WARN_ON(READ_ONCE(b
->irq_wait
));
887 WARN_ON(!RB_EMPTY_ROOT(&b
->waiters
));
888 WARN_ON(!list_empty(&b
->signals
));
890 if (!IS_ERR_OR_NULL(b
->signaler
))
891 kthread_stop(b
->signaler
);
893 cancel_fake_irq(engine
);
896 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
897 #include "selftests/intel_breadcrumbs.c"