2 * Copyright © 2014-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 #include "intel_drv.h"
29 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
30 * ports. DPIO is the name given to such a display PHY. These PHYs
31 * don't follow the standard programming model using direct MMIO
32 * registers, and instead their registers must be accessed trough IOSF
33 * sideband. VLV has one such PHY for driving ports B and C, and CHV
34 * adds another PHY for driving port D. Each PHY responds to specific
37 * Each display PHY is made up of one or two channels. Each channel
38 * houses a common lane part which contains the PLL and other common
39 * logic. CH0 common lane also contains the IOSF-SB logic for the
40 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
41 * must be running when any DPIO registers are accessed.
43 * In addition to having their own registers, the PHYs are also
44 * controlled through some dedicated signals from the display
45 * controller. These include PLL reference clock enable, PLL enable,
46 * and CRI clock selection, for example.
48 * Eeach channel also has two splines (also called data lanes), and
49 * each spline is made up of one Physical Access Coding Sub-Layer
50 * (PCS) block and two TX lanes. So each channel has two PCS blocks
51 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
52 * data/clock pairs depending on the output type.
54 * Additionally the PHY also contains an AUX lane with AUX blocks
55 * for each channel. This is used for DP AUX communication, but
56 * this fact isn't really relevant for the driver since AUX is
57 * controlled from the display controller side. No DPIO registers
58 * need to be accessed during AUX communication,
60 * Generally on VLV/CHV the common lane corresponds to the pipe and
61 * the spline (PCS/TX) corresponds to the port.
63 * For dual channel PHY (VLV/CHV):
65 * pipe A == CMN/PLL/REF CH0
67 * pipe B == CMN/PLL/REF CH1
69 * port B == PCS/TX CH0
71 * port C == PCS/TX CH1
73 * This is especially important when we cross the streams
74 * ie. drive port B with pipe B, or port C with pipe A.
76 * For single channel PHY (CHV):
78 * pipe C == CMN/PLL/REF CH0
80 * port D == PCS/TX CH0
82 * On BXT the entire PHY channel corresponds to the port. That means
83 * the PLL is also now associated with the port rather than the pipe,
84 * and so the clock needs to be routed to the appropriate transcoder.
85 * Port A PLL is directly connected to transcoder EDP and port B/C
86 * PLLs can be routed to any transcoder A/B/C.
88 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
89 * digital port D (CHV) or port A (BXT). ::
92 * Dual channel PHY (VLV/CHV/BXT)
93 * ---------------------------------
95 * | CMN/PLL/REF | CMN/PLL/REF |
96 * |---------------|---------------| Display PHY
97 * | PCS01 | PCS23 | PCS01 | PCS23 |
98 * |-------|-------|-------|-------|
99 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
100 * ---------------------------------
101 * | DDI0 | DDI1 | DP/HDMI ports
102 * ---------------------------------
104 * Single channel PHY (CHV/BXT)
108 * |---------------| Display PHY
113 * | DDI2 | DP/HDMI port
118 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
120 struct bxt_ddi_phy_info
{
122 * @dual_channel: true if this phy has a second channel.
127 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
128 * Otherwise the GRC value will be copied from the phy indicated by
131 enum dpio_phy rcomp_phy
;
134 * @reset_delay: delay in us to wait before setting the common reset
135 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
140 * @pwron_mask: Mask with the appropriate bit set that would cause the
141 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
146 * @channel: struct containing per channel information.
150 * @channel.port: which port maps to this channel.
156 static const struct bxt_ddi_phy_info bxt_ddi_phy_info
[] = {
158 .dual_channel
= true,
159 .rcomp_phy
= DPIO_PHY1
,
160 .pwron_mask
= BIT(0),
163 [DPIO_CH0
] = { .port
= PORT_B
},
164 [DPIO_CH1
] = { .port
= PORT_C
},
168 .dual_channel
= false,
170 .pwron_mask
= BIT(1),
173 [DPIO_CH0
] = { .port
= PORT_A
},
178 static const struct bxt_ddi_phy_info glk_ddi_phy_info
[] = {
180 .dual_channel
= false,
181 .rcomp_phy
= DPIO_PHY1
,
182 .pwron_mask
= BIT(0),
186 [DPIO_CH0
] = { .port
= PORT_B
},
190 .dual_channel
= false,
192 .pwron_mask
= BIT(3),
196 [DPIO_CH0
] = { .port
= PORT_A
},
200 .dual_channel
= false,
201 .rcomp_phy
= DPIO_PHY1
,
202 .pwron_mask
= BIT(1),
206 [DPIO_CH0
] = { .port
= PORT_C
},
211 static const struct bxt_ddi_phy_info
*
212 bxt_get_phy_list(struct drm_i915_private
*dev_priv
, int *count
)
214 if (IS_GEMINILAKE(dev_priv
)) {
215 *count
= ARRAY_SIZE(glk_ddi_phy_info
);
216 return glk_ddi_phy_info
;
218 *count
= ARRAY_SIZE(bxt_ddi_phy_info
);
219 return bxt_ddi_phy_info
;
223 static const struct bxt_ddi_phy_info
*
224 bxt_get_phy_info(struct drm_i915_private
*dev_priv
, enum dpio_phy phy
)
227 const struct bxt_ddi_phy_info
*phy_list
=
228 bxt_get_phy_list(dev_priv
, &count
);
230 return &phy_list
[phy
];
233 void bxt_port_to_phy_channel(struct drm_i915_private
*dev_priv
, enum port port
,
234 enum dpio_phy
*phy
, enum dpio_channel
*ch
)
236 const struct bxt_ddi_phy_info
*phy_info
, *phys
;
239 phys
= bxt_get_phy_list(dev_priv
, &count
);
241 for (i
= 0; i
< count
; i
++) {
244 if (port
== phy_info
->channel
[DPIO_CH0
].port
) {
250 if (phy_info
->dual_channel
&&
251 port
== phy_info
->channel
[DPIO_CH1
].port
) {
258 WARN(1, "PHY not found for PORT %c", port_name(port
));
263 void bxt_ddi_phy_set_signal_level(struct drm_i915_private
*dev_priv
,
264 enum port port
, u32 margin
, u32 scale
,
265 u32 enable
, u32 deemphasis
)
269 enum dpio_channel ch
;
271 bxt_port_to_phy_channel(dev_priv
, port
, &phy
, &ch
);
274 * While we write to the group register to program all lanes at once we
275 * can read only lane registers and we pick lanes 0/1 for that.
277 val
= I915_READ(BXT_PORT_PCS_DW10_LN01(phy
, ch
));
278 val
&= ~(TX2_SWING_CALC_INIT
| TX1_SWING_CALC_INIT
);
279 I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy
, ch
), val
);
281 val
= I915_READ(BXT_PORT_TX_DW2_LN0(phy
, ch
));
282 val
&= ~(MARGIN_000
| UNIQ_TRANS_SCALE
);
283 val
|= margin
<< MARGIN_000_SHIFT
| scale
<< UNIQ_TRANS_SCALE_SHIFT
;
284 I915_WRITE(BXT_PORT_TX_DW2_GRP(phy
, ch
), val
);
286 val
= I915_READ(BXT_PORT_TX_DW3_LN0(phy
, ch
));
287 val
&= ~SCALE_DCOMP_METHOD
;
289 val
|= SCALE_DCOMP_METHOD
;
291 if ((val
& UNIQUE_TRANGE_EN_METHOD
) && !(val
& SCALE_DCOMP_METHOD
))
292 DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
294 I915_WRITE(BXT_PORT_TX_DW3_GRP(phy
, ch
), val
);
296 val
= I915_READ(BXT_PORT_TX_DW4_LN0(phy
, ch
));
298 val
|= deemphasis
<< DEEMPH_SHIFT
;
299 I915_WRITE(BXT_PORT_TX_DW4_GRP(phy
, ch
), val
);
301 val
= I915_READ(BXT_PORT_PCS_DW10_LN01(phy
, ch
));
302 val
|= TX2_SWING_CALC_INIT
| TX1_SWING_CALC_INIT
;
303 I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy
, ch
), val
);
306 bool bxt_ddi_phy_is_enabled(struct drm_i915_private
*dev_priv
,
309 const struct bxt_ddi_phy_info
*phy_info
;
311 phy_info
= bxt_get_phy_info(dev_priv
, phy
);
313 if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON
) & phy_info
->pwron_mask
))
316 if ((I915_READ(BXT_PORT_CL1CM_DW0(phy
)) &
317 (PHY_POWER_GOOD
| PHY_RESERVED
)) != PHY_POWER_GOOD
) {
318 DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
324 if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy
)) & COMMON_RESET_DIS
)) {
325 DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
334 static u32
bxt_get_grc(struct drm_i915_private
*dev_priv
, enum dpio_phy phy
)
336 u32 val
= I915_READ(BXT_PORT_REF_DW6(phy
));
338 return (val
& GRC_CODE_MASK
) >> GRC_CODE_SHIFT
;
341 static void bxt_phy_wait_grc_done(struct drm_i915_private
*dev_priv
,
344 if (intel_wait_for_register(dev_priv
,
345 BXT_PORT_REF_DW3(phy
),
348 DRM_ERROR("timeout waiting for PHY%d GRC\n", phy
);
351 static void _bxt_ddi_phy_init(struct drm_i915_private
*dev_priv
,
354 const struct bxt_ddi_phy_info
*phy_info
;
357 phy_info
= bxt_get_phy_info(dev_priv
, phy
);
359 if (bxt_ddi_phy_is_enabled(dev_priv
, phy
)) {
360 /* Still read out the GRC value for state verification */
361 if (phy_info
->rcomp_phy
!= -1)
362 dev_priv
->bxt_phy_grc
= bxt_get_grc(dev_priv
, phy
);
364 if (bxt_ddi_phy_verify_state(dev_priv
, phy
)) {
365 DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
366 "won't reprogram it\n", phy
);
370 DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
371 "force reprogramming it\n", phy
);
374 val
= I915_READ(BXT_P_CR_GT_DISP_PWRON
);
375 val
|= phy_info
->pwron_mask
;
376 I915_WRITE(BXT_P_CR_GT_DISP_PWRON
, val
);
379 * The PHY registers start out inaccessible and respond to reads with
380 * all 1s. Eventually they become accessible as they power up, then
381 * the reserved bit will give the default 0. Poll on the reserved bit
382 * becoming 0 to find when the PHY is accessible.
383 * The flag should get set in 100us according to the HW team, but
384 * use 1ms due to occasional timeouts observed with that.
386 if (intel_wait_for_register_fw(dev_priv
, BXT_PORT_CL1CM_DW0(phy
),
387 PHY_RESERVED
| PHY_POWER_GOOD
,
390 DRM_ERROR("timeout during PHY%d power on\n", phy
);
392 /* Program PLL Rcomp code offset */
393 val
= I915_READ(BXT_PORT_CL1CM_DW9(phy
));
394 val
&= ~IREF0RC_OFFSET_MASK
;
395 val
|= 0xE4 << IREF0RC_OFFSET_SHIFT
;
396 I915_WRITE(BXT_PORT_CL1CM_DW9(phy
), val
);
398 val
= I915_READ(BXT_PORT_CL1CM_DW10(phy
));
399 val
&= ~IREF1RC_OFFSET_MASK
;
400 val
|= 0xE4 << IREF1RC_OFFSET_SHIFT
;
401 I915_WRITE(BXT_PORT_CL1CM_DW10(phy
), val
);
403 /* Program power gating */
404 val
= I915_READ(BXT_PORT_CL1CM_DW28(phy
));
405 val
|= OCL1_POWER_DOWN_EN
| DW28_OLDO_DYN_PWR_DOWN_EN
|
407 I915_WRITE(BXT_PORT_CL1CM_DW28(phy
), val
);
409 if (phy_info
->dual_channel
) {
410 val
= I915_READ(BXT_PORT_CL2CM_DW6(phy
));
411 val
|= DW6_OLDO_DYN_PWR_DOWN_EN
;
412 I915_WRITE(BXT_PORT_CL2CM_DW6(phy
), val
);
415 if (phy_info
->rcomp_phy
!= -1) {
418 bxt_phy_wait_grc_done(dev_priv
, phy_info
->rcomp_phy
);
421 * PHY0 isn't connected to an RCOMP resistor so copy over
422 * the corresponding calibrated value from PHY1, and disable
423 * the automatic calibration on PHY0.
425 val
= dev_priv
->bxt_phy_grc
= bxt_get_grc(dev_priv
,
426 phy_info
->rcomp_phy
);
427 grc_code
= val
<< GRC_CODE_FAST_SHIFT
|
428 val
<< GRC_CODE_SLOW_SHIFT
|
430 I915_WRITE(BXT_PORT_REF_DW6(phy
), grc_code
);
432 val
= I915_READ(BXT_PORT_REF_DW8(phy
));
433 val
|= GRC_DIS
| GRC_RDY_OVRD
;
434 I915_WRITE(BXT_PORT_REF_DW8(phy
), val
);
437 if (phy_info
->reset_delay
)
438 udelay(phy_info
->reset_delay
);
440 val
= I915_READ(BXT_PHY_CTL_FAMILY(phy
));
441 val
|= COMMON_RESET_DIS
;
442 I915_WRITE(BXT_PHY_CTL_FAMILY(phy
), val
);
445 void bxt_ddi_phy_uninit(struct drm_i915_private
*dev_priv
, enum dpio_phy phy
)
447 const struct bxt_ddi_phy_info
*phy_info
;
450 phy_info
= bxt_get_phy_info(dev_priv
, phy
);
452 val
= I915_READ(BXT_PHY_CTL_FAMILY(phy
));
453 val
&= ~COMMON_RESET_DIS
;
454 I915_WRITE(BXT_PHY_CTL_FAMILY(phy
), val
);
456 val
= I915_READ(BXT_P_CR_GT_DISP_PWRON
);
457 val
&= ~phy_info
->pwron_mask
;
458 I915_WRITE(BXT_P_CR_GT_DISP_PWRON
, val
);
461 void bxt_ddi_phy_init(struct drm_i915_private
*dev_priv
, enum dpio_phy phy
)
463 const struct bxt_ddi_phy_info
*phy_info
=
464 bxt_get_phy_info(dev_priv
, phy
);
465 enum dpio_phy rcomp_phy
= phy_info
->rcomp_phy
;
468 lockdep_assert_held(&dev_priv
->power_domains
.lock
);
472 was_enabled
= bxt_ddi_phy_is_enabled(dev_priv
, rcomp_phy
);
475 * We need to copy the GRC calibration value from rcomp_phy,
476 * so make sure it's powered up.
479 _bxt_ddi_phy_init(dev_priv
, rcomp_phy
);
481 _bxt_ddi_phy_init(dev_priv
, phy
);
484 bxt_ddi_phy_uninit(dev_priv
, rcomp_phy
);
487 static bool __printf(6, 7)
488 __phy_reg_verify_state(struct drm_i915_private
*dev_priv
, enum dpio_phy phy
,
489 i915_reg_t reg
, u32 mask
, u32 expected
,
490 const char *reg_fmt
, ...)
492 struct va_format vaf
;
496 val
= I915_READ(reg
);
497 if ((val
& mask
) == expected
)
500 va_start(args
, reg_fmt
);
504 DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
505 "current %08x, expected %08x (mask %08x)\n",
506 phy
, &vaf
, reg
.reg
, val
, (val
& ~mask
) | expected
,
514 bool bxt_ddi_phy_verify_state(struct drm_i915_private
*dev_priv
,
517 const struct bxt_ddi_phy_info
*phy_info
;
521 phy_info
= bxt_get_phy_info(dev_priv
, phy
);
523 #define _CHK(reg, mask, exp, fmt, ...) \
524 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
527 if (!bxt_ddi_phy_is_enabled(dev_priv
, phy
))
532 /* PLL Rcomp code offset */
533 ok
&= _CHK(BXT_PORT_CL1CM_DW9(phy
),
534 IREF0RC_OFFSET_MASK
, 0xe4 << IREF0RC_OFFSET_SHIFT
,
535 "BXT_PORT_CL1CM_DW9(%d)", phy
);
536 ok
&= _CHK(BXT_PORT_CL1CM_DW10(phy
),
537 IREF1RC_OFFSET_MASK
, 0xe4 << IREF1RC_OFFSET_SHIFT
,
538 "BXT_PORT_CL1CM_DW10(%d)", phy
);
541 mask
= OCL1_POWER_DOWN_EN
| DW28_OLDO_DYN_PWR_DOWN_EN
| SUS_CLK_CONFIG
;
542 ok
&= _CHK(BXT_PORT_CL1CM_DW28(phy
), mask
, mask
,
543 "BXT_PORT_CL1CM_DW28(%d)", phy
);
545 if (phy_info
->dual_channel
)
546 ok
&= _CHK(BXT_PORT_CL2CM_DW6(phy
),
547 DW6_OLDO_DYN_PWR_DOWN_EN
, DW6_OLDO_DYN_PWR_DOWN_EN
,
548 "BXT_PORT_CL2CM_DW6(%d)", phy
);
550 if (phy_info
->rcomp_phy
!= -1) {
551 u32 grc_code
= dev_priv
->bxt_phy_grc
;
553 grc_code
= grc_code
<< GRC_CODE_FAST_SHIFT
|
554 grc_code
<< GRC_CODE_SLOW_SHIFT
|
556 mask
= GRC_CODE_FAST_MASK
| GRC_CODE_SLOW_MASK
|
558 ok
&= _CHK(BXT_PORT_REF_DW6(phy
), mask
, grc_code
,
559 "BXT_PORT_REF_DW6(%d)", phy
);
561 mask
= GRC_DIS
| GRC_RDY_OVRD
;
562 ok
&= _CHK(BXT_PORT_REF_DW8(phy
), mask
, mask
,
563 "BXT_PORT_REF_DW8(%d)", phy
);
571 bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count
)
573 switch (lane_count
) {
577 return BIT(2) | BIT(0);
579 return BIT(3) | BIT(2) | BIT(0);
581 MISSING_CASE(lane_count
);
587 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder
*encoder
,
588 uint8_t lane_lat_optim_mask
)
590 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
591 enum port port
= encoder
->port
;
593 enum dpio_channel ch
;
596 bxt_port_to_phy_channel(dev_priv
, port
, &phy
, &ch
);
598 for (lane
= 0; lane
< 4; lane
++) {
599 u32 val
= I915_READ(BXT_PORT_TX_DW14_LN(phy
, ch
, lane
));
602 * Note that on CHV this flag is called UPAR, but has
605 val
&= ~LATENCY_OPTIM
;
606 if (lane_lat_optim_mask
& BIT(lane
))
607 val
|= LATENCY_OPTIM
;
609 I915_WRITE(BXT_PORT_TX_DW14_LN(phy
, ch
, lane
), val
);
614 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder
*encoder
)
616 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
617 enum port port
= encoder
->port
;
619 enum dpio_channel ch
;
623 bxt_port_to_phy_channel(dev_priv
, port
, &phy
, &ch
);
626 for (lane
= 0; lane
< 4; lane
++) {
627 u32 val
= I915_READ(BXT_PORT_TX_DW14_LN(phy
, ch
, lane
));
629 if (val
& LATENCY_OPTIM
)
637 void chv_set_phy_signal_level(struct intel_encoder
*encoder
,
638 u32 deemph_reg_value
, u32 margin_reg_value
,
639 bool uniq_trans_scale
)
641 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
642 struct intel_digital_port
*dport
= enc_to_dig_port(&encoder
->base
);
643 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->base
.crtc
);
644 enum dpio_channel ch
= vlv_dport_to_channel(dport
);
645 enum pipe pipe
= intel_crtc
->pipe
;
649 mutex_lock(&dev_priv
->sb_lock
);
651 /* Clear calc init */
652 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW10(ch
));
653 val
&= ~(DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
);
654 val
&= ~(DPIO_PCS_TX1DEEMP_MASK
| DPIO_PCS_TX2DEEMP_MASK
);
655 val
|= DPIO_PCS_TX1DEEMP_9P5
| DPIO_PCS_TX2DEEMP_9P5
;
656 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW10(ch
), val
);
658 if (intel_crtc
->config
->lane_count
> 2) {
659 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW10(ch
));
660 val
&= ~(DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
);
661 val
&= ~(DPIO_PCS_TX1DEEMP_MASK
| DPIO_PCS_TX2DEEMP_MASK
);
662 val
|= DPIO_PCS_TX1DEEMP_9P5
| DPIO_PCS_TX2DEEMP_9P5
;
663 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW10(ch
), val
);
666 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW9(ch
));
667 val
&= ~(DPIO_PCS_TX1MARGIN_MASK
| DPIO_PCS_TX2MARGIN_MASK
);
668 val
|= DPIO_PCS_TX1MARGIN_000
| DPIO_PCS_TX2MARGIN_000
;
669 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW9(ch
), val
);
671 if (intel_crtc
->config
->lane_count
> 2) {
672 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW9(ch
));
673 val
&= ~(DPIO_PCS_TX1MARGIN_MASK
| DPIO_PCS_TX2MARGIN_MASK
);
674 val
|= DPIO_PCS_TX1MARGIN_000
| DPIO_PCS_TX2MARGIN_000
;
675 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW9(ch
), val
);
678 /* Program swing deemph */
679 for (i
= 0; i
< intel_crtc
->config
->lane_count
; i
++) {
680 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_TX_DW4(ch
, i
));
681 val
&= ~DPIO_SWING_DEEMPH9P5_MASK
;
682 val
|= deemph_reg_value
<< DPIO_SWING_DEEMPH9P5_SHIFT
;
683 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW4(ch
, i
), val
);
686 /* Program swing margin */
687 for (i
= 0; i
< intel_crtc
->config
->lane_count
; i
++) {
688 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_TX_DW2(ch
, i
));
690 val
&= ~DPIO_SWING_MARGIN000_MASK
;
691 val
|= margin_reg_value
<< DPIO_SWING_MARGIN000_SHIFT
;
694 * Supposedly this value shouldn't matter when unique transition
695 * scale is disabled, but in fact it does matter. Let's just
696 * always program the same value and hope it's OK.
698 val
&= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT
);
699 val
|= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT
;
701 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW2(ch
, i
), val
);
705 * The document said it needs to set bit 27 for ch0 and bit 26
706 * for ch1. Might be a typo in the doc.
707 * For now, for this unique transition scale selection, set bit
708 * 27 for ch0 and ch1.
710 for (i
= 0; i
< intel_crtc
->config
->lane_count
; i
++) {
711 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_TX_DW3(ch
, i
));
712 if (uniq_trans_scale
)
713 val
|= DPIO_TX_UNIQ_TRANS_SCALE_EN
;
715 val
&= ~DPIO_TX_UNIQ_TRANS_SCALE_EN
;
716 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW3(ch
, i
), val
);
719 /* Start swing calculation */
720 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW10(ch
));
721 val
|= DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
;
722 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW10(ch
), val
);
724 if (intel_crtc
->config
->lane_count
> 2) {
725 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW10(ch
));
726 val
|= DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
;
727 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW10(ch
), val
);
730 mutex_unlock(&dev_priv
->sb_lock
);
734 void chv_data_lane_soft_reset(struct intel_encoder
*encoder
,
735 const struct intel_crtc_state
*crtc_state
,
738 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
739 enum dpio_channel ch
= vlv_dport_to_channel(enc_to_dig_port(&encoder
->base
));
740 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
741 enum pipe pipe
= crtc
->pipe
;
744 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW0(ch
));
746 val
&= ~(DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
);
748 val
|= DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
;
749 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW0(ch
), val
);
751 if (crtc
->config
->lane_count
> 2) {
752 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW0(ch
));
754 val
&= ~(DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
);
756 val
|= DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
;
757 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW0(ch
), val
);
760 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW1(ch
));
761 val
|= CHV_PCS_REQ_SOFTRESET_EN
;
763 val
&= ~DPIO_PCS_CLK_SOFT_RESET
;
765 val
|= DPIO_PCS_CLK_SOFT_RESET
;
766 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW1(ch
), val
);
768 if (crtc
->config
->lane_count
> 2) {
769 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW1(ch
));
770 val
|= CHV_PCS_REQ_SOFTRESET_EN
;
772 val
&= ~DPIO_PCS_CLK_SOFT_RESET
;
774 val
|= DPIO_PCS_CLK_SOFT_RESET
;
775 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW1(ch
), val
);
779 void chv_phy_pre_pll_enable(struct intel_encoder
*encoder
,
780 const struct intel_crtc_state
*crtc_state
)
782 struct intel_digital_port
*dport
= enc_to_dig_port(&encoder
->base
);
783 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
784 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
785 enum dpio_channel ch
= vlv_dport_to_channel(dport
);
786 enum pipe pipe
= crtc
->pipe
;
787 unsigned int lane_mask
=
788 intel_dp_unused_lane_mask(crtc_state
->lane_count
);
792 * Must trick the second common lane into life.
793 * Otherwise we can't even access the PLL.
795 if (ch
== DPIO_CH0
&& pipe
== PIPE_B
)
796 dport
->release_cl2_override
=
797 !chv_phy_powergate_ch(dev_priv
, DPIO_PHY0
, DPIO_CH1
, true);
799 chv_phy_powergate_lanes(encoder
, true, lane_mask
);
801 mutex_lock(&dev_priv
->sb_lock
);
803 /* Assert data lane reset */
804 chv_data_lane_soft_reset(encoder
, crtc_state
, true);
806 /* program left/right clock distribution */
807 if (pipe
!= PIPE_B
) {
808 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
);
809 val
&= ~(CHV_BUFLEFTENA1_MASK
| CHV_BUFRIGHTENA1_MASK
);
811 val
|= CHV_BUFLEFTENA1_FORCE
;
813 val
|= CHV_BUFRIGHTENA1_FORCE
;
814 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
, val
);
816 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
);
817 val
&= ~(CHV_BUFLEFTENA2_MASK
| CHV_BUFRIGHTENA2_MASK
);
819 val
|= CHV_BUFLEFTENA2_FORCE
;
821 val
|= CHV_BUFRIGHTENA2_FORCE
;
822 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
, val
);
825 /* program clock channel usage */
826 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW8(ch
));
827 val
|= CHV_PCS_USEDCLKCHANNEL_OVRRIDE
;
829 val
&= ~CHV_PCS_USEDCLKCHANNEL
;
831 val
|= CHV_PCS_USEDCLKCHANNEL
;
832 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW8(ch
), val
);
834 if (crtc_state
->lane_count
> 2) {
835 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW8(ch
));
836 val
|= CHV_PCS_USEDCLKCHANNEL_OVRRIDE
;
838 val
&= ~CHV_PCS_USEDCLKCHANNEL
;
840 val
|= CHV_PCS_USEDCLKCHANNEL
;
841 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW8(ch
), val
);
845 * This a a bit weird since generally CL
846 * matches the pipe, but here we need to
847 * pick the CL based on the port.
849 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_CMN_DW19(ch
));
851 val
&= ~CHV_CMN_USEDCLKCHANNEL
;
853 val
|= CHV_CMN_USEDCLKCHANNEL
;
854 vlv_dpio_write(dev_priv
, pipe
, CHV_CMN_DW19(ch
), val
);
856 mutex_unlock(&dev_priv
->sb_lock
);
859 void chv_phy_pre_encoder_enable(struct intel_encoder
*encoder
,
860 const struct intel_crtc_state
*crtc_state
)
862 struct intel_dp
*intel_dp
= enc_to_intel_dp(&encoder
->base
);
863 struct intel_digital_port
*dport
= dp_to_dig_port(intel_dp
);
864 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
865 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
866 enum dpio_channel ch
= vlv_dport_to_channel(dport
);
867 enum pipe pipe
= crtc
->pipe
;
868 int data
, i
, stagger
;
871 mutex_lock(&dev_priv
->sb_lock
);
873 /* allow hardware to manage TX FIFO reset source */
874 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW11(ch
));
875 val
&= ~DPIO_LANEDESKEW_STRAP_OVRD
;
876 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW11(ch
), val
);
878 if (crtc_state
->lane_count
> 2) {
879 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW11(ch
));
880 val
&= ~DPIO_LANEDESKEW_STRAP_OVRD
;
881 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW11(ch
), val
);
884 /* Program Tx lane latency optimal setting*/
885 for (i
= 0; i
< crtc_state
->lane_count
; i
++) {
886 /* Set the upar bit */
887 if (crtc_state
->lane_count
== 1)
890 data
= (i
== 1) ? 0x0 : 0x1;
891 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW14(ch
, i
),
892 data
<< DPIO_UPAR_SHIFT
);
895 /* Data lane stagger programming */
896 if (crtc_state
->port_clock
> 270000)
898 else if (crtc_state
->port_clock
> 135000)
900 else if (crtc_state
->port_clock
> 67500)
902 else if (crtc_state
->port_clock
> 33750)
907 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW11(ch
));
908 val
|= DPIO_TX2_STAGGER_MASK(0x1f);
909 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW11(ch
), val
);
911 if (crtc_state
->lane_count
> 2) {
912 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW11(ch
));
913 val
|= DPIO_TX2_STAGGER_MASK(0x1f);
914 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW11(ch
), val
);
917 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW12(ch
),
918 DPIO_LANESTAGGER_STRAP(stagger
) |
919 DPIO_LANESTAGGER_STRAP_OVRD
|
920 DPIO_TX1_STAGGER_MASK(0x1f) |
921 DPIO_TX1_STAGGER_MULT(6) |
922 DPIO_TX2_STAGGER_MULT(0));
924 if (crtc_state
->lane_count
> 2) {
925 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW12(ch
),
926 DPIO_LANESTAGGER_STRAP(stagger
) |
927 DPIO_LANESTAGGER_STRAP_OVRD
|
928 DPIO_TX1_STAGGER_MASK(0x1f) |
929 DPIO_TX1_STAGGER_MULT(7) |
930 DPIO_TX2_STAGGER_MULT(5));
933 /* Deassert data lane reset */
934 chv_data_lane_soft_reset(encoder
, crtc_state
, false);
936 mutex_unlock(&dev_priv
->sb_lock
);
939 void chv_phy_release_cl2_override(struct intel_encoder
*encoder
)
941 struct intel_digital_port
*dport
= enc_to_dig_port(&encoder
->base
);
942 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
944 if (dport
->release_cl2_override
) {
945 chv_phy_powergate_ch(dev_priv
, DPIO_PHY0
, DPIO_CH1
, false);
946 dport
->release_cl2_override
= false;
950 void chv_phy_post_pll_disable(struct intel_encoder
*encoder
,
951 const struct intel_crtc_state
*old_crtc_state
)
953 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
954 enum pipe pipe
= to_intel_crtc(old_crtc_state
->base
.crtc
)->pipe
;
957 mutex_lock(&dev_priv
->sb_lock
);
959 /* disable left/right clock distribution */
960 if (pipe
!= PIPE_B
) {
961 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
);
962 val
&= ~(CHV_BUFLEFTENA1_MASK
| CHV_BUFRIGHTENA1_MASK
);
963 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
, val
);
965 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
);
966 val
&= ~(CHV_BUFLEFTENA2_MASK
| CHV_BUFRIGHTENA2_MASK
);
967 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
, val
);
970 mutex_unlock(&dev_priv
->sb_lock
);
973 * Leave the power down bit cleared for at least one
974 * lane so that chv_powergate_phy_ch() will power
975 * on something when the channel is otherwise unused.
976 * When the port is off and the override is removed
977 * the lanes power down anyway, so otherwise it doesn't
978 * really matter what the state of power down bits is
981 chv_phy_powergate_lanes(encoder
, false, 0x0);
984 void vlv_set_phy_signal_level(struct intel_encoder
*encoder
,
985 u32 demph_reg_value
, u32 preemph_reg_value
,
986 u32 uniqtranscale_reg_value
, u32 tx3_demph
)
988 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
989 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->base
.crtc
);
990 struct intel_digital_port
*dport
= enc_to_dig_port(&encoder
->base
);
991 enum dpio_channel port
= vlv_dport_to_channel(dport
);
992 enum pipe pipe
= intel_crtc
->pipe
;
994 mutex_lock(&dev_priv
->sb_lock
);
995 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW5(port
), 0x00000000);
996 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW4(port
), demph_reg_value
);
997 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW2(port
),
998 uniqtranscale_reg_value
);
999 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW3(port
), 0x0C782040);
1002 vlv_dpio_write(dev_priv
, pipe
, VLV_TX3_DW4(port
), tx3_demph
);
1004 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW11(port
), 0x00030000);
1005 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW9(port
), preemph_reg_value
);
1006 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW5(port
), DPIO_TX_OCALINIT_EN
);
1007 mutex_unlock(&dev_priv
->sb_lock
);
1010 void vlv_phy_pre_pll_enable(struct intel_encoder
*encoder
,
1011 const struct intel_crtc_state
*crtc_state
)
1013 struct intel_digital_port
*dport
= enc_to_dig_port(&encoder
->base
);
1014 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
1015 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
1016 enum dpio_channel port
= vlv_dport_to_channel(dport
);
1017 enum pipe pipe
= crtc
->pipe
;
1019 /* Program Tx lane resets to default */
1020 mutex_lock(&dev_priv
->sb_lock
);
1021 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW0(port
),
1022 DPIO_PCS_TX_LANE2_RESET
|
1023 DPIO_PCS_TX_LANE1_RESET
);
1024 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW1(port
),
1025 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN
|
1026 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN
|
1027 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT
) |
1028 DPIO_PCS_CLK_SOFT_RESET
);
1030 /* Fix up inter-pair skew failure */
1031 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW12(port
), 0x00750f00);
1032 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW11(port
), 0x00001500);
1033 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW14(port
), 0x40400000);
1034 mutex_unlock(&dev_priv
->sb_lock
);
1037 void vlv_phy_pre_encoder_enable(struct intel_encoder
*encoder
,
1038 const struct intel_crtc_state
*crtc_state
)
1040 struct intel_dp
*intel_dp
= enc_to_intel_dp(&encoder
->base
);
1041 struct intel_digital_port
*dport
= dp_to_dig_port(intel_dp
);
1042 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
1043 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
1044 enum dpio_channel port
= vlv_dport_to_channel(dport
);
1045 enum pipe pipe
= crtc
->pipe
;
1048 mutex_lock(&dev_priv
->sb_lock
);
1050 /* Enable clock channels for this port */
1051 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW8(port
));
1058 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW8(port
), val
);
1060 /* Program lane clock */
1061 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW14(port
), 0x00760018);
1062 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW23(port
), 0x00400888);
1064 mutex_unlock(&dev_priv
->sb_lock
);
1067 void vlv_phy_reset_lanes(struct intel_encoder
*encoder
,
1068 const struct intel_crtc_state
*old_crtc_state
)
1070 struct intel_digital_port
*dport
= enc_to_dig_port(&encoder
->base
);
1071 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
1072 struct intel_crtc
*crtc
= to_intel_crtc(old_crtc_state
->base
.crtc
);
1073 enum dpio_channel port
= vlv_dport_to_channel(dport
);
1074 enum pipe pipe
= crtc
->pipe
;
1076 mutex_lock(&dev_priv
->sb_lock
);
1077 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW0(port
), 0x00000000);
1078 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW1(port
), 0x00e00060);
1079 mutex_unlock(&dev_priv
->sb_lock
);