1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
27 **************************************************************************/
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_vma_manager.h>
36 #include <linux/highmem.h>
37 #include <linux/wait.h>
38 #include <linux/slab.h>
39 #include <linux/vmalloc.h>
40 #include <linux/module.h>
41 #include <linux/reservation.h>
43 struct ttm_transfer_obj
{
44 struct ttm_buffer_object base
;
45 struct ttm_buffer_object
*bo
;
48 void ttm_bo_free_old_node(struct ttm_buffer_object
*bo
)
50 ttm_bo_mem_put(bo
, &bo
->mem
);
53 int ttm_bo_move_ttm(struct ttm_buffer_object
*bo
,
54 struct ttm_operation_ctx
*ctx
,
55 struct ttm_mem_reg
*new_mem
)
57 struct ttm_tt
*ttm
= bo
->ttm
;
58 struct ttm_mem_reg
*old_mem
= &bo
->mem
;
61 if (old_mem
->mem_type
!= TTM_PL_SYSTEM
) {
62 ret
= ttm_bo_wait(bo
, ctx
->interruptible
, ctx
->no_wait_gpu
);
64 if (unlikely(ret
!= 0)) {
65 if (ret
!= -ERESTARTSYS
)
66 pr_err("Failed to expire sync object before unbinding TTM\n");
71 ttm_bo_free_old_node(bo
);
72 ttm_flag_masked(&old_mem
->placement
, TTM_PL_FLAG_SYSTEM
,
74 old_mem
->mem_type
= TTM_PL_SYSTEM
;
77 ret
= ttm_tt_set_placement_caching(ttm
, new_mem
->placement
);
78 if (unlikely(ret
!= 0))
81 if (new_mem
->mem_type
!= TTM_PL_SYSTEM
) {
82 ret
= ttm_tt_bind(ttm
, new_mem
, ctx
);
83 if (unlikely(ret
!= 0))
88 new_mem
->mm_node
= NULL
;
92 EXPORT_SYMBOL(ttm_bo_move_ttm
);
94 int ttm_mem_io_lock(struct ttm_mem_type_manager
*man
, bool interruptible
)
96 if (likely(man
->io_reserve_fastpath
))
100 return mutex_lock_interruptible(&man
->io_reserve_mutex
);
102 mutex_lock(&man
->io_reserve_mutex
);
105 EXPORT_SYMBOL(ttm_mem_io_lock
);
107 void ttm_mem_io_unlock(struct ttm_mem_type_manager
*man
)
109 if (likely(man
->io_reserve_fastpath
))
112 mutex_unlock(&man
->io_reserve_mutex
);
114 EXPORT_SYMBOL(ttm_mem_io_unlock
);
116 static int ttm_mem_io_evict(struct ttm_mem_type_manager
*man
)
118 struct ttm_buffer_object
*bo
;
120 if (!man
->use_io_reserve_lru
|| list_empty(&man
->io_reserve_lru
))
123 bo
= list_first_entry(&man
->io_reserve_lru
,
124 struct ttm_buffer_object
,
126 list_del_init(&bo
->io_reserve_lru
);
127 ttm_bo_unmap_virtual_locked(bo
);
133 int ttm_mem_io_reserve(struct ttm_bo_device
*bdev
,
134 struct ttm_mem_reg
*mem
)
136 struct ttm_mem_type_manager
*man
= &bdev
->man
[mem
->mem_type
];
139 if (!bdev
->driver
->io_mem_reserve
)
141 if (likely(man
->io_reserve_fastpath
))
142 return bdev
->driver
->io_mem_reserve(bdev
, mem
);
144 if (bdev
->driver
->io_mem_reserve
&&
145 mem
->bus
.io_reserved_count
++ == 0) {
147 ret
= bdev
->driver
->io_mem_reserve(bdev
, mem
);
148 if (ret
== -EAGAIN
) {
149 ret
= ttm_mem_io_evict(man
);
156 EXPORT_SYMBOL(ttm_mem_io_reserve
);
158 void ttm_mem_io_free(struct ttm_bo_device
*bdev
,
159 struct ttm_mem_reg
*mem
)
161 struct ttm_mem_type_manager
*man
= &bdev
->man
[mem
->mem_type
];
163 if (likely(man
->io_reserve_fastpath
))
166 if (bdev
->driver
->io_mem_reserve
&&
167 --mem
->bus
.io_reserved_count
== 0 &&
168 bdev
->driver
->io_mem_free
)
169 bdev
->driver
->io_mem_free(bdev
, mem
);
172 EXPORT_SYMBOL(ttm_mem_io_free
);
174 int ttm_mem_io_reserve_vm(struct ttm_buffer_object
*bo
)
176 struct ttm_mem_reg
*mem
= &bo
->mem
;
179 if (!mem
->bus
.io_reserved_vm
) {
180 struct ttm_mem_type_manager
*man
=
181 &bo
->bdev
->man
[mem
->mem_type
];
183 ret
= ttm_mem_io_reserve(bo
->bdev
, mem
);
184 if (unlikely(ret
!= 0))
186 mem
->bus
.io_reserved_vm
= true;
187 if (man
->use_io_reserve_lru
)
188 list_add_tail(&bo
->io_reserve_lru
,
189 &man
->io_reserve_lru
);
194 void ttm_mem_io_free_vm(struct ttm_buffer_object
*bo
)
196 struct ttm_mem_reg
*mem
= &bo
->mem
;
198 if (mem
->bus
.io_reserved_vm
) {
199 mem
->bus
.io_reserved_vm
= false;
200 list_del_init(&bo
->io_reserve_lru
);
201 ttm_mem_io_free(bo
->bdev
, mem
);
205 static int ttm_mem_reg_ioremap(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*mem
,
208 struct ttm_mem_type_manager
*man
= &bdev
->man
[mem
->mem_type
];
213 (void) ttm_mem_io_lock(man
, false);
214 ret
= ttm_mem_io_reserve(bdev
, mem
);
215 ttm_mem_io_unlock(man
);
216 if (ret
|| !mem
->bus
.is_iomem
)
220 addr
= mem
->bus
.addr
;
222 if (mem
->placement
& TTM_PL_FLAG_WC
)
223 addr
= ioremap_wc(mem
->bus
.base
+ mem
->bus
.offset
, mem
->bus
.size
);
225 addr
= ioremap_nocache(mem
->bus
.base
+ mem
->bus
.offset
, mem
->bus
.size
);
227 (void) ttm_mem_io_lock(man
, false);
228 ttm_mem_io_free(bdev
, mem
);
229 ttm_mem_io_unlock(man
);
237 static void ttm_mem_reg_iounmap(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*mem
,
240 struct ttm_mem_type_manager
*man
;
242 man
= &bdev
->man
[mem
->mem_type
];
244 if (virtual && mem
->bus
.addr
== NULL
)
246 (void) ttm_mem_io_lock(man
, false);
247 ttm_mem_io_free(bdev
, mem
);
248 ttm_mem_io_unlock(man
);
251 static int ttm_copy_io_page(void *dst
, void *src
, unsigned long page
)
254 (uint32_t *) ((unsigned long)dst
+ (page
<< PAGE_SHIFT
));
256 (uint32_t *) ((unsigned long)src
+ (page
<< PAGE_SHIFT
));
259 for (i
= 0; i
< PAGE_SIZE
/ sizeof(uint32_t); ++i
)
260 iowrite32(ioread32(srcP
++), dstP
++);
265 #define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
266 #define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
268 #define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0, __prot)
269 #define __ttm_kunmap_atomic(__addr) vunmap(__addr)
274 * ttm_kmap_atomic_prot - Efficient kernel map of a single page with
275 * specified page protection.
277 * @page: The page to map.
278 * @prot: The page protection.
280 * This function maps a TTM page using the kmap_atomic api if available,
281 * otherwise falls back to vmap. The user must make sure that the
282 * specified page does not have an aliased mapping with a different caching
283 * policy unless the architecture explicitly allows it. Also mapping and
284 * unmapping using this api must be correctly nested. Unmapping should
285 * occur in the reverse order of mapping.
287 void *ttm_kmap_atomic_prot(struct page
*page
, pgprot_t prot
)
289 if (pgprot_val(prot
) == pgprot_val(PAGE_KERNEL
))
290 return kmap_atomic(page
);
292 return __ttm_kmap_atomic_prot(page
, prot
);
294 EXPORT_SYMBOL(ttm_kmap_atomic_prot
);
297 * ttm_kunmap_atomic_prot - Unmap a page that was mapped using
298 * ttm_kmap_atomic_prot.
300 * @addr: The virtual address from the map.
301 * @prot: The page protection.
303 void ttm_kunmap_atomic_prot(void *addr
, pgprot_t prot
)
305 if (pgprot_val(prot
) == pgprot_val(PAGE_KERNEL
))
308 __ttm_kunmap_atomic(addr
);
310 EXPORT_SYMBOL(ttm_kunmap_atomic_prot
);
312 static int ttm_copy_io_ttm_page(struct ttm_tt
*ttm
, void *src
,
316 struct page
*d
= ttm
->pages
[page
];
322 src
= (void *)((unsigned long)src
+ (page
<< PAGE_SHIFT
));
323 dst
= ttm_kmap_atomic_prot(d
, prot
);
327 memcpy_fromio(dst
, src
, PAGE_SIZE
);
329 ttm_kunmap_atomic_prot(dst
, prot
);
334 static int ttm_copy_ttm_io_page(struct ttm_tt
*ttm
, void *dst
,
338 struct page
*s
= ttm
->pages
[page
];
344 dst
= (void *)((unsigned long)dst
+ (page
<< PAGE_SHIFT
));
345 src
= ttm_kmap_atomic_prot(s
, prot
);
349 memcpy_toio(dst
, src
, PAGE_SIZE
);
351 ttm_kunmap_atomic_prot(src
, prot
);
356 int ttm_bo_move_memcpy(struct ttm_buffer_object
*bo
,
357 struct ttm_operation_ctx
*ctx
,
358 struct ttm_mem_reg
*new_mem
)
360 struct ttm_bo_device
*bdev
= bo
->bdev
;
361 struct ttm_mem_type_manager
*man
= &bdev
->man
[new_mem
->mem_type
];
362 struct ttm_tt
*ttm
= bo
->ttm
;
363 struct ttm_mem_reg
*old_mem
= &bo
->mem
;
364 struct ttm_mem_reg old_copy
= *old_mem
;
370 unsigned long add
= 0;
373 ret
= ttm_bo_wait(bo
, ctx
->interruptible
, ctx
->no_wait_gpu
);
377 ret
= ttm_mem_reg_ioremap(bdev
, old_mem
, &old_iomap
);
380 ret
= ttm_mem_reg_ioremap(bdev
, new_mem
, &new_iomap
);
385 * Single TTM move. NOP.
387 if (old_iomap
== NULL
&& new_iomap
== NULL
)
391 * Don't move nonexistent data. Clear destination instead.
393 if (old_iomap
== NULL
&&
394 (ttm
== NULL
|| (ttm
->state
== tt_unpopulated
&&
395 !(ttm
->page_flags
& TTM_PAGE_FLAG_SWAPPED
)))) {
396 memset_io(new_iomap
, 0, new_mem
->num_pages
*PAGE_SIZE
);
401 * TTM might be null for moves within the same region.
404 ret
= ttm_tt_populate(ttm
, ctx
);
412 if ((old_mem
->mem_type
== new_mem
->mem_type
) &&
413 (new_mem
->start
< old_mem
->start
+ old_mem
->size
)) {
415 add
= new_mem
->num_pages
- 1;
418 for (i
= 0; i
< new_mem
->num_pages
; ++i
) {
419 page
= i
* dir
+ add
;
420 if (old_iomap
== NULL
) {
421 pgprot_t prot
= ttm_io_prot(old_mem
->placement
,
423 ret
= ttm_copy_ttm_io_page(ttm
, new_iomap
, page
,
425 } else if (new_iomap
== NULL
) {
426 pgprot_t prot
= ttm_io_prot(new_mem
->placement
,
428 ret
= ttm_copy_io_ttm_page(ttm
, old_iomap
, page
,
431 ret
= ttm_copy_io_page(new_iomap
, old_iomap
, page
);
440 new_mem
->mm_node
= NULL
;
442 if (man
->flags
& TTM_MEMTYPE_FLAG_FIXED
) {
448 ttm_mem_reg_iounmap(bdev
, old_mem
, new_iomap
);
450 ttm_mem_reg_iounmap(bdev
, &old_copy
, old_iomap
);
453 * On error, keep the mm node!
456 ttm_bo_mem_put(bo
, &old_copy
);
459 EXPORT_SYMBOL(ttm_bo_move_memcpy
);
461 static void ttm_transfered_destroy(struct ttm_buffer_object
*bo
)
463 struct ttm_transfer_obj
*fbo
;
465 fbo
= container_of(bo
, struct ttm_transfer_obj
, base
);
471 * ttm_buffer_object_transfer
473 * @bo: A pointer to a struct ttm_buffer_object.
474 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
475 * holding the data of @bo with the old placement.
477 * This is a utility function that may be called after an accelerated move
478 * has been scheduled. A new buffer object is created as a placeholder for
479 * the old data while it's being copied. When that buffer object is idle,
480 * it can be destroyed, releasing the space of the old placement.
485 static int ttm_buffer_object_transfer(struct ttm_buffer_object
*bo
,
486 struct ttm_buffer_object
**new_obj
)
488 struct ttm_transfer_obj
*fbo
;
491 fbo
= kmalloc(sizeof(*fbo
), GFP_KERNEL
);
496 fbo
->base
.mem
.placement
|= TTM_PL_FLAG_NO_EVICT
;
502 * Fix up members that we shouldn't copy directly:
503 * TODO: Explicit member copy would probably be better here.
506 atomic_inc(&bo
->bdev
->glob
->bo_count
);
507 INIT_LIST_HEAD(&fbo
->base
.ddestroy
);
508 INIT_LIST_HEAD(&fbo
->base
.lru
);
509 INIT_LIST_HEAD(&fbo
->base
.swap
);
510 INIT_LIST_HEAD(&fbo
->base
.io_reserve_lru
);
511 mutex_init(&fbo
->base
.wu_mutex
);
512 fbo
->base
.moving
= NULL
;
513 drm_vma_node_reset(&fbo
->base
.vma_node
);
514 atomic_set(&fbo
->base
.cpu_writers
, 0);
516 kref_init(&fbo
->base
.list_kref
);
517 kref_init(&fbo
->base
.kref
);
518 fbo
->base
.destroy
= &ttm_transfered_destroy
;
519 fbo
->base
.acc_size
= 0;
520 fbo
->base
.resv
= &fbo
->base
.ttm_resv
;
521 reservation_object_init(fbo
->base
.resv
);
522 ret
= reservation_object_trylock(fbo
->base
.resv
);
525 *new_obj
= &fbo
->base
;
529 pgprot_t
ttm_io_prot(uint32_t caching_flags
, pgprot_t tmp
)
531 /* Cached mappings need no adjustment */
532 if (caching_flags
& TTM_PL_FLAG_CACHED
)
535 #if defined(__i386__) || defined(__x86_64__)
536 if (caching_flags
& TTM_PL_FLAG_WC
)
537 tmp
= pgprot_writecombine(tmp
);
538 else if (boot_cpu_data
.x86
> 3)
539 tmp
= pgprot_noncached(tmp
);
541 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
543 if (caching_flags
& TTM_PL_FLAG_WC
)
544 tmp
= pgprot_writecombine(tmp
);
546 tmp
= pgprot_noncached(tmp
);
548 #if defined(__sparc__) || defined(__mips__)
549 tmp
= pgprot_noncached(tmp
);
553 EXPORT_SYMBOL(ttm_io_prot
);
555 static int ttm_bo_ioremap(struct ttm_buffer_object
*bo
,
556 unsigned long offset
,
558 struct ttm_bo_kmap_obj
*map
)
560 struct ttm_mem_reg
*mem
= &bo
->mem
;
562 if (bo
->mem
.bus
.addr
) {
563 map
->bo_kmap_type
= ttm_bo_map_premapped
;
564 map
->virtual = (void *)(((u8
*)bo
->mem
.bus
.addr
) + offset
);
566 map
->bo_kmap_type
= ttm_bo_map_iomap
;
567 if (mem
->placement
& TTM_PL_FLAG_WC
)
568 map
->virtual = ioremap_wc(bo
->mem
.bus
.base
+ bo
->mem
.bus
.offset
+ offset
,
571 map
->virtual = ioremap_nocache(bo
->mem
.bus
.base
+ bo
->mem
.bus
.offset
+ offset
,
574 return (!map
->virtual) ? -ENOMEM
: 0;
577 static int ttm_bo_kmap_ttm(struct ttm_buffer_object
*bo
,
578 unsigned long start_page
,
579 unsigned long num_pages
,
580 struct ttm_bo_kmap_obj
*map
)
582 struct ttm_mem_reg
*mem
= &bo
->mem
;
583 struct ttm_operation_ctx ctx
= {
584 .interruptible
= false,
587 struct ttm_tt
*ttm
= bo
->ttm
;
593 ret
= ttm_tt_populate(ttm
, &ctx
);
597 if (num_pages
== 1 && (mem
->placement
& TTM_PL_FLAG_CACHED
)) {
599 * We're mapping a single page, and the desired
600 * page protection is consistent with the bo.
603 map
->bo_kmap_type
= ttm_bo_map_kmap
;
604 map
->page
= ttm
->pages
[start_page
];
605 map
->virtual = kmap(map
->page
);
608 * We need to use vmap to get the desired page protection
609 * or to make the buffer object look contiguous.
611 prot
= ttm_io_prot(mem
->placement
, PAGE_KERNEL
);
612 map
->bo_kmap_type
= ttm_bo_map_vmap
;
613 map
->virtual = vmap(ttm
->pages
+ start_page
, num_pages
,
616 return (!map
->virtual) ? -ENOMEM
: 0;
619 int ttm_bo_kmap(struct ttm_buffer_object
*bo
,
620 unsigned long start_page
, unsigned long num_pages
,
621 struct ttm_bo_kmap_obj
*map
)
623 struct ttm_mem_type_manager
*man
=
624 &bo
->bdev
->man
[bo
->mem
.mem_type
];
625 unsigned long offset
, size
;
630 if (num_pages
> bo
->num_pages
)
632 if (start_page
> bo
->num_pages
)
635 if (num_pages
> 1 && !capable(CAP_SYS_ADMIN
))
638 (void) ttm_mem_io_lock(man
, false);
639 ret
= ttm_mem_io_reserve(bo
->bdev
, &bo
->mem
);
640 ttm_mem_io_unlock(man
);
643 if (!bo
->mem
.bus
.is_iomem
) {
644 return ttm_bo_kmap_ttm(bo
, start_page
, num_pages
, map
);
646 offset
= start_page
<< PAGE_SHIFT
;
647 size
= num_pages
<< PAGE_SHIFT
;
648 return ttm_bo_ioremap(bo
, offset
, size
, map
);
651 EXPORT_SYMBOL(ttm_bo_kmap
);
653 void ttm_bo_kunmap(struct ttm_bo_kmap_obj
*map
)
655 struct ttm_buffer_object
*bo
= map
->bo
;
656 struct ttm_mem_type_manager
*man
=
657 &bo
->bdev
->man
[bo
->mem
.mem_type
];
661 switch (map
->bo_kmap_type
) {
662 case ttm_bo_map_iomap
:
663 iounmap(map
->virtual);
665 case ttm_bo_map_vmap
:
666 vunmap(map
->virtual);
668 case ttm_bo_map_kmap
:
671 case ttm_bo_map_premapped
:
676 (void) ttm_mem_io_lock(man
, false);
677 ttm_mem_io_free(map
->bo
->bdev
, &map
->bo
->mem
);
678 ttm_mem_io_unlock(man
);
682 EXPORT_SYMBOL(ttm_bo_kunmap
);
684 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object
*bo
,
685 struct dma_fence
*fence
,
687 struct ttm_mem_reg
*new_mem
)
689 struct ttm_bo_device
*bdev
= bo
->bdev
;
690 struct ttm_mem_type_manager
*man
= &bdev
->man
[new_mem
->mem_type
];
691 struct ttm_mem_reg
*old_mem
= &bo
->mem
;
693 struct ttm_buffer_object
*ghost_obj
;
695 reservation_object_add_excl_fence(bo
->resv
, fence
);
697 ret
= ttm_bo_wait(bo
, false, false);
701 if (man
->flags
& TTM_MEMTYPE_FLAG_FIXED
) {
702 ttm_tt_destroy(bo
->ttm
);
705 ttm_bo_free_old_node(bo
);
708 * This should help pipeline ordinary buffer moves.
710 * Hang old buffer memory on a new buffer object,
711 * and leave it to be released when the GPU
712 * operation has completed.
715 dma_fence_put(bo
->moving
);
716 bo
->moving
= dma_fence_get(fence
);
718 ret
= ttm_buffer_object_transfer(bo
, &ghost_obj
);
722 reservation_object_add_excl_fence(ghost_obj
->resv
, fence
);
725 * If we're not moving to fixed memory, the TTM object
726 * needs to stay alive. Otherwhise hang it on the ghost
727 * bo to be unbound and destroyed.
730 if (!(man
->flags
& TTM_MEMTYPE_FLAG_FIXED
))
731 ghost_obj
->ttm
= NULL
;
735 ttm_bo_unreserve(ghost_obj
);
736 ttm_bo_put(ghost_obj
);
740 new_mem
->mm_node
= NULL
;
744 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup
);
746 int ttm_bo_pipeline_move(struct ttm_buffer_object
*bo
,
747 struct dma_fence
*fence
, bool evict
,
748 struct ttm_mem_reg
*new_mem
)
750 struct ttm_bo_device
*bdev
= bo
->bdev
;
751 struct ttm_mem_reg
*old_mem
= &bo
->mem
;
753 struct ttm_mem_type_manager
*from
= &bdev
->man
[old_mem
->mem_type
];
754 struct ttm_mem_type_manager
*to
= &bdev
->man
[new_mem
->mem_type
];
758 reservation_object_add_excl_fence(bo
->resv
, fence
);
761 struct ttm_buffer_object
*ghost_obj
;
764 * This should help pipeline ordinary buffer moves.
766 * Hang old buffer memory on a new buffer object,
767 * and leave it to be released when the GPU
768 * operation has completed.
771 dma_fence_put(bo
->moving
);
772 bo
->moving
= dma_fence_get(fence
);
774 ret
= ttm_buffer_object_transfer(bo
, &ghost_obj
);
778 reservation_object_add_excl_fence(ghost_obj
->resv
, fence
);
781 * If we're not moving to fixed memory, the TTM object
782 * needs to stay alive. Otherwhise hang it on the ghost
783 * bo to be unbound and destroyed.
786 if (!(to
->flags
& TTM_MEMTYPE_FLAG_FIXED
))
787 ghost_obj
->ttm
= NULL
;
791 ttm_bo_unreserve(ghost_obj
);
792 ttm_bo_put(ghost_obj
);
794 } else if (from
->flags
& TTM_MEMTYPE_FLAG_FIXED
) {
797 * BO doesn't have a TTM we need to bind/unbind. Just remember
798 * this eviction and free up the allocation
801 spin_lock(&from
->move_lock
);
802 if (!from
->move
|| dma_fence_is_later(fence
, from
->move
)) {
803 dma_fence_put(from
->move
);
804 from
->move
= dma_fence_get(fence
);
806 spin_unlock(&from
->move_lock
);
808 ttm_bo_free_old_node(bo
);
810 dma_fence_put(bo
->moving
);
811 bo
->moving
= dma_fence_get(fence
);
815 * Last resort, wait for the move to be completed.
817 * Should never happen in pratice.
820 ret
= ttm_bo_wait(bo
, false, false);
824 if (to
->flags
& TTM_MEMTYPE_FLAG_FIXED
) {
825 ttm_tt_destroy(bo
->ttm
);
828 ttm_bo_free_old_node(bo
);
832 new_mem
->mm_node
= NULL
;
836 EXPORT_SYMBOL(ttm_bo_pipeline_move
);
838 int ttm_bo_pipeline_gutting(struct ttm_buffer_object
*bo
)
840 struct ttm_buffer_object
*ghost
;
843 ret
= ttm_buffer_object_transfer(bo
, &ghost
);
847 ret
= reservation_object_copy_fences(ghost
->resv
, bo
->resv
);
848 /* Last resort, wait for the BO to be idle when we are OOM */
850 ttm_bo_wait(bo
, false, false);
852 memset(&bo
->mem
, 0, sizeof(bo
->mem
));
853 bo
->mem
.mem_type
= TTM_PL_SYSTEM
;
856 ttm_bo_unreserve(ghost
);