drm/msm/hdmi: Enable HPD after HDMI IRQ is set up
[linux/fpc-iii.git] / drivers / gpu / drm / ttm / ttm_page_alloc_dma.c
blob507be7ac11655235fe83e50404f5470a01a385a6
1 /*
2 * Copyright 2011 (c) Oracle Corp.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
28 * over the DMA pools:
29 * - Pool collects resently freed pages for reuse (and hooks up to
30 * the shrinker).
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
33 * when freed).
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
47 #include <linux/mm.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #include <drm/ttm/ttm_set_memory.h>
55 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
56 #define SMALL_ALLOCATION 4
57 #define FREE_ALL_PAGES (~0U)
58 #define VADDR_FLAG_HUGE_POOL 1UL
59 #define VADDR_FLAG_UPDATED_COUNT 2UL
61 enum pool_type {
62 IS_UNDEFINED = 0,
63 IS_WC = 1 << 1,
64 IS_UC = 1 << 2,
65 IS_CACHED = 1 << 3,
66 IS_DMA32 = 1 << 4,
67 IS_HUGE = 1 << 5
71 * The pool structure. There are up to nine pools:
72 * - generic (not restricted to DMA32):
73 * - write combined, uncached, cached.
74 * - dma32 (up to 2^32 - so up 4GB):
75 * - write combined, uncached, cached.
76 * - huge (not restricted to DMA32):
77 * - write combined, uncached, cached.
78 * for each 'struct device'. The 'cached' is for pages that are actively used.
79 * The other ones can be shrunk by the shrinker API if neccessary.
80 * @pools: The 'struct device->dma_pools' link.
81 * @type: Type of the pool
82 * @lock: Protects the free_list from concurrnet access. Must be
83 * used with irqsave/irqrestore variants because pool allocator maybe called
84 * from delayed work.
85 * @free_list: Pool of pages that are free to be used. No order requirements.
86 * @dev: The device that is associated with these pools.
87 * @size: Size used during DMA allocation.
88 * @npages_free: Count of available pages for re-use.
89 * @npages_in_use: Count of pages that are in use.
90 * @nfrees: Stats when pool is shrinking.
91 * @nrefills: Stats when the pool is grown.
92 * @gfp_flags: Flags to pass for alloc_page.
93 * @name: Name of the pool.
94 * @dev_name: Name derieved from dev - similar to how dev_info works.
95 * Used during shutdown as the dev_info during release is unavailable.
97 struct dma_pool {
98 struct list_head pools; /* The 'struct device->dma_pools link */
99 enum pool_type type;
100 spinlock_t lock;
101 struct list_head free_list;
102 struct device *dev;
103 unsigned size;
104 unsigned npages_free;
105 unsigned npages_in_use;
106 unsigned long nfrees; /* Stats when shrunk. */
107 unsigned long nrefills; /* Stats when grown. */
108 gfp_t gfp_flags;
109 char name[13]; /* "cached dma32" */
110 char dev_name[64]; /* Constructed from dev */
114 * The accounting page keeping track of the allocated page along with
115 * the DMA address.
116 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
117 * @vaddr: The virtual address of the page and a flag if the page belongs to a
118 * huge pool
119 * @dma: The bus address of the page. If the page is not allocated
120 * via the DMA API, it will be -1.
122 struct dma_page {
123 struct list_head page_list;
124 unsigned long vaddr;
125 struct page *p;
126 dma_addr_t dma;
130 * Limits for the pool. They are handled without locks because only place where
131 * they may change is in sysfs store. They won't have immediate effect anyway
132 * so forcing serialization to access them is pointless.
135 struct ttm_pool_opts {
136 unsigned alloc_size;
137 unsigned max_size;
138 unsigned small;
142 * Contains the list of all of the 'struct device' and their corresponding
143 * DMA pools. Guarded by _mutex->lock.
144 * @pools: The link to 'struct ttm_pool_manager->pools'
145 * @dev: The 'struct device' associated with the 'pool'
146 * @pool: The 'struct dma_pool' associated with the 'dev'
148 struct device_pools {
149 struct list_head pools;
150 struct device *dev;
151 struct dma_pool *pool;
155 * struct ttm_pool_manager - Holds memory pools for fast allocation
157 * @lock: Lock used when adding/removing from pools
158 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
159 * @options: Limits for the pool.
160 * @npools: Total amount of pools in existence.
161 * @shrinker: The structure used by [un|]register_shrinker
163 struct ttm_pool_manager {
164 struct mutex lock;
165 struct list_head pools;
166 struct ttm_pool_opts options;
167 unsigned npools;
168 struct shrinker mm_shrink;
169 struct kobject kobj;
172 static struct ttm_pool_manager *_manager;
174 static struct attribute ttm_page_pool_max = {
175 .name = "pool_max_size",
176 .mode = S_IRUGO | S_IWUSR
178 static struct attribute ttm_page_pool_small = {
179 .name = "pool_small_allocation",
180 .mode = S_IRUGO | S_IWUSR
182 static struct attribute ttm_page_pool_alloc_size = {
183 .name = "pool_allocation_size",
184 .mode = S_IRUGO | S_IWUSR
187 static struct attribute *ttm_pool_attrs[] = {
188 &ttm_page_pool_max,
189 &ttm_page_pool_small,
190 &ttm_page_pool_alloc_size,
191 NULL
194 static void ttm_pool_kobj_release(struct kobject *kobj)
196 struct ttm_pool_manager *m =
197 container_of(kobj, struct ttm_pool_manager, kobj);
198 kfree(m);
201 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
202 const char *buffer, size_t size)
204 struct ttm_pool_manager *m =
205 container_of(kobj, struct ttm_pool_manager, kobj);
206 int chars;
207 unsigned val;
209 chars = sscanf(buffer, "%u", &val);
210 if (chars == 0)
211 return size;
213 /* Convert kb to number of pages */
214 val = val / (PAGE_SIZE >> 10);
216 if (attr == &ttm_page_pool_max) {
217 m->options.max_size = val;
218 } else if (attr == &ttm_page_pool_small) {
219 m->options.small = val;
220 } else if (attr == &ttm_page_pool_alloc_size) {
221 if (val > NUM_PAGES_TO_ALLOC*8) {
222 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
223 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
224 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
225 return size;
226 } else if (val > NUM_PAGES_TO_ALLOC) {
227 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
228 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
230 m->options.alloc_size = val;
233 return size;
236 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
237 char *buffer)
239 struct ttm_pool_manager *m =
240 container_of(kobj, struct ttm_pool_manager, kobj);
241 unsigned val = 0;
243 if (attr == &ttm_page_pool_max)
244 val = m->options.max_size;
245 else if (attr == &ttm_page_pool_small)
246 val = m->options.small;
247 else if (attr == &ttm_page_pool_alloc_size)
248 val = m->options.alloc_size;
250 val = val * (PAGE_SIZE >> 10);
252 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
255 static const struct sysfs_ops ttm_pool_sysfs_ops = {
256 .show = &ttm_pool_show,
257 .store = &ttm_pool_store,
260 static struct kobj_type ttm_pool_kobj_type = {
261 .release = &ttm_pool_kobj_release,
262 .sysfs_ops = &ttm_pool_sysfs_ops,
263 .default_attrs = ttm_pool_attrs,
266 static int ttm_set_pages_caching(struct dma_pool *pool,
267 struct page **pages, unsigned cpages)
269 int r = 0;
270 /* Set page caching */
271 if (pool->type & IS_UC) {
272 r = ttm_set_pages_array_uc(pages, cpages);
273 if (r)
274 pr_err("%s: Failed to set %d pages to uc!\n",
275 pool->dev_name, cpages);
277 if (pool->type & IS_WC) {
278 r = ttm_set_pages_array_wc(pages, cpages);
279 if (r)
280 pr_err("%s: Failed to set %d pages to wc!\n",
281 pool->dev_name, cpages);
283 return r;
286 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
288 dma_addr_t dma = d_page->dma;
289 d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
290 dma_free_coherent(pool->dev, pool->size, (void *)d_page->vaddr, dma);
292 kfree(d_page);
293 d_page = NULL;
295 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
297 struct dma_page *d_page;
298 unsigned long attrs = 0;
299 void *vaddr;
301 d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
302 if (!d_page)
303 return NULL;
305 if (pool->type & IS_HUGE)
306 attrs = DMA_ATTR_NO_WARN;
308 vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
309 pool->gfp_flags, attrs);
310 if (vaddr) {
311 if (is_vmalloc_addr(vaddr))
312 d_page->p = vmalloc_to_page(vaddr);
313 else
314 d_page->p = virt_to_page(vaddr);
315 d_page->vaddr = (unsigned long)vaddr;
316 if (pool->type & IS_HUGE)
317 d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
318 } else {
319 kfree(d_page);
320 d_page = NULL;
322 return d_page;
324 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
326 enum pool_type type = IS_UNDEFINED;
328 if (flags & TTM_PAGE_FLAG_DMA32)
329 type |= IS_DMA32;
330 if (cstate == tt_cached)
331 type |= IS_CACHED;
332 else if (cstate == tt_uncached)
333 type |= IS_UC;
334 else
335 type |= IS_WC;
337 return type;
340 static void ttm_pool_update_free_locked(struct dma_pool *pool,
341 unsigned freed_pages)
343 pool->npages_free -= freed_pages;
344 pool->nfrees += freed_pages;
348 /* set memory back to wb and free the pages. */
349 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
351 struct page *page = d_page->p;
352 unsigned num_pages;
354 /* Don't set WB on WB page pool. */
355 if (!(pool->type & IS_CACHED)) {
356 num_pages = pool->size / PAGE_SIZE;
357 if (ttm_set_pages_wb(page, num_pages))
358 pr_err("%s: Failed to set %d pages to wb!\n",
359 pool->dev_name, num_pages);
362 list_del(&d_page->page_list);
363 __ttm_dma_free_page(pool, d_page);
366 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
367 struct page *pages[], unsigned npages)
369 struct dma_page *d_page, *tmp;
371 if (pool->type & IS_HUGE) {
372 list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
373 ttm_dma_page_put(pool, d_page);
375 return;
378 /* Don't set WB on WB page pool. */
379 if (npages && !(pool->type & IS_CACHED) &&
380 ttm_set_pages_array_wb(pages, npages))
381 pr_err("%s: Failed to set %d pages to wb!\n",
382 pool->dev_name, npages);
384 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
385 list_del(&d_page->page_list);
386 __ttm_dma_free_page(pool, d_page);
391 * Free pages from pool.
393 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
394 * number of pages in one go.
396 * @pool: to free the pages from
397 * @nr_free: If set to true will free all pages in pool
398 * @use_static: Safe to use static buffer
400 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
401 bool use_static)
403 static struct page *static_buf[NUM_PAGES_TO_ALLOC];
404 unsigned long irq_flags;
405 struct dma_page *dma_p, *tmp;
406 struct page **pages_to_free;
407 struct list_head d_pages;
408 unsigned freed_pages = 0,
409 npages_to_free = nr_free;
411 if (NUM_PAGES_TO_ALLOC < nr_free)
412 npages_to_free = NUM_PAGES_TO_ALLOC;
413 #if 0
414 if (nr_free > 1) {
415 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
416 pool->dev_name, pool->name, current->pid,
417 npages_to_free, nr_free);
419 #endif
420 if (use_static)
421 pages_to_free = static_buf;
422 else
423 pages_to_free = kmalloc_array(npages_to_free,
424 sizeof(struct page *),
425 GFP_KERNEL);
427 if (!pages_to_free) {
428 pr_debug("%s: Failed to allocate memory for pool free operation\n",
429 pool->dev_name);
430 return 0;
432 INIT_LIST_HEAD(&d_pages);
433 restart:
434 spin_lock_irqsave(&pool->lock, irq_flags);
436 /* We picking the oldest ones off the list */
437 list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
438 page_list) {
439 if (freed_pages >= npages_to_free)
440 break;
442 /* Move the dma_page from one list to another. */
443 list_move(&dma_p->page_list, &d_pages);
445 pages_to_free[freed_pages++] = dma_p->p;
446 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
447 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
449 ttm_pool_update_free_locked(pool, freed_pages);
451 * Because changing page caching is costly
452 * we unlock the pool to prevent stalling.
454 spin_unlock_irqrestore(&pool->lock, irq_flags);
456 ttm_dma_pages_put(pool, &d_pages, pages_to_free,
457 freed_pages);
459 INIT_LIST_HEAD(&d_pages);
461 if (likely(nr_free != FREE_ALL_PAGES))
462 nr_free -= freed_pages;
464 if (NUM_PAGES_TO_ALLOC >= nr_free)
465 npages_to_free = nr_free;
466 else
467 npages_to_free = NUM_PAGES_TO_ALLOC;
469 freed_pages = 0;
471 /* free all so restart the processing */
472 if (nr_free)
473 goto restart;
475 /* Not allowed to fall through or break because
476 * following context is inside spinlock while we are
477 * outside here.
479 goto out;
484 /* remove range of pages from the pool */
485 if (freed_pages) {
486 ttm_pool_update_free_locked(pool, freed_pages);
487 nr_free -= freed_pages;
490 spin_unlock_irqrestore(&pool->lock, irq_flags);
492 if (freed_pages)
493 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
494 out:
495 if (pages_to_free != static_buf)
496 kfree(pages_to_free);
497 return nr_free;
500 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
502 struct device_pools *p;
503 struct dma_pool *pool;
505 if (!dev)
506 return;
508 mutex_lock(&_manager->lock);
509 list_for_each_entry_reverse(p, &_manager->pools, pools) {
510 if (p->dev != dev)
511 continue;
512 pool = p->pool;
513 if (pool->type != type)
514 continue;
516 list_del(&p->pools);
517 kfree(p);
518 _manager->npools--;
519 break;
521 list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
522 if (pool->type != type)
523 continue;
524 /* Takes a spinlock.. */
525 /* OK to use static buffer since global mutex is held. */
526 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
527 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
528 /* This code path is called after _all_ references to the
529 * struct device has been dropped - so nobody should be
530 * touching it. In case somebody is trying to _add_ we are
531 * guarded by the mutex. */
532 list_del(&pool->pools);
533 kfree(pool);
534 break;
536 mutex_unlock(&_manager->lock);
540 * On free-ing of the 'struct device' this deconstructor is run.
541 * Albeit the pool might have already been freed earlier.
543 static void ttm_dma_pool_release(struct device *dev, void *res)
545 struct dma_pool *pool = *(struct dma_pool **)res;
547 if (pool)
548 ttm_dma_free_pool(dev, pool->type);
551 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
553 return *(struct dma_pool **)res == match_data;
556 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
557 enum pool_type type)
559 const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
560 enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
561 struct device_pools *sec_pool = NULL;
562 struct dma_pool *pool = NULL, **ptr;
563 unsigned i;
564 int ret = -ENODEV;
565 char *p;
567 if (!dev)
568 return NULL;
570 ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
571 if (!ptr)
572 return NULL;
574 ret = -ENOMEM;
576 pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
577 dev_to_node(dev));
578 if (!pool)
579 goto err_mem;
581 sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
582 dev_to_node(dev));
583 if (!sec_pool)
584 goto err_mem;
586 INIT_LIST_HEAD(&sec_pool->pools);
587 sec_pool->dev = dev;
588 sec_pool->pool = pool;
590 INIT_LIST_HEAD(&pool->free_list);
591 INIT_LIST_HEAD(&pool->pools);
592 spin_lock_init(&pool->lock);
593 pool->dev = dev;
594 pool->npages_free = pool->npages_in_use = 0;
595 pool->nfrees = 0;
596 pool->gfp_flags = flags;
597 if (type & IS_HUGE)
598 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
599 pool->size = HPAGE_PMD_SIZE;
600 #else
601 BUG();
602 #endif
603 else
604 pool->size = PAGE_SIZE;
605 pool->type = type;
606 pool->nrefills = 0;
607 p = pool->name;
608 for (i = 0; i < ARRAY_SIZE(t); i++) {
609 if (type & t[i]) {
610 p += snprintf(p, sizeof(pool->name) - (p - pool->name),
611 "%s", n[i]);
614 *p = 0;
615 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
616 * - the kobj->name has already been deallocated.*/
617 snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
618 dev_driver_string(dev), dev_name(dev));
619 mutex_lock(&_manager->lock);
620 /* You can get the dma_pool from either the global: */
621 list_add(&sec_pool->pools, &_manager->pools);
622 _manager->npools++;
623 /* or from 'struct device': */
624 list_add(&pool->pools, &dev->dma_pools);
625 mutex_unlock(&_manager->lock);
627 *ptr = pool;
628 devres_add(dev, ptr);
630 return pool;
631 err_mem:
632 devres_free(ptr);
633 kfree(sec_pool);
634 kfree(pool);
635 return ERR_PTR(ret);
638 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
639 enum pool_type type)
641 struct dma_pool *pool, *tmp;
643 if (type == IS_UNDEFINED)
644 return NULL;
646 /* NB: We iterate on the 'struct dev' which has no spinlock, but
647 * it does have a kref which we have taken. The kref is taken during
648 * graphic driver loading - in the drm_pci_init it calls either
649 * pci_dev_get or pci_register_driver which both end up taking a kref
650 * on 'struct device'.
652 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
653 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
654 * thing is at that point of time there are no pages associated with the
655 * driver so this function will not be called.
657 list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
658 if (pool->type == type)
659 return pool;
660 return NULL;
664 * Free pages the pages that failed to change the caching state. If there
665 * are pages that have changed their caching state already put them to the
666 * pool.
668 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
669 struct list_head *d_pages,
670 struct page **failed_pages,
671 unsigned cpages)
673 struct dma_page *d_page, *tmp;
674 struct page *p;
675 unsigned i = 0;
677 p = failed_pages[0];
678 if (!p)
679 return;
680 /* Find the failed page. */
681 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
682 if (d_page->p != p)
683 continue;
684 /* .. and then progress over the full list. */
685 list_del(&d_page->page_list);
686 __ttm_dma_free_page(pool, d_page);
687 if (++i < cpages)
688 p = failed_pages[i];
689 else
690 break;
696 * Allocate 'count' pages, and put 'need' number of them on the
697 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
698 * The full list of pages should also be on 'd_pages'.
699 * We return zero for success, and negative numbers as errors.
701 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
702 struct list_head *d_pages,
703 unsigned count)
705 struct page **caching_array;
706 struct dma_page *dma_p;
707 struct page *p;
708 int r = 0;
709 unsigned i, j, npages, cpages;
710 unsigned max_cpages = min(count,
711 (unsigned)(PAGE_SIZE/sizeof(struct page *)));
713 /* allocate array for page caching change */
714 caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
715 GFP_KERNEL);
717 if (!caching_array) {
718 pr_debug("%s: Unable to allocate table for new pages\n",
719 pool->dev_name);
720 return -ENOMEM;
723 if (count > 1)
724 pr_debug("%s: (%s:%d) Getting %d pages\n",
725 pool->dev_name, pool->name, current->pid, count);
727 for (i = 0, cpages = 0; i < count; ++i) {
728 dma_p = __ttm_dma_alloc_page(pool);
729 if (!dma_p) {
730 pr_debug("%s: Unable to get page %u\n",
731 pool->dev_name, i);
733 /* store already allocated pages in the pool after
734 * setting the caching state */
735 if (cpages) {
736 r = ttm_set_pages_caching(pool, caching_array,
737 cpages);
738 if (r)
739 ttm_dma_handle_caching_state_failure(
740 pool, d_pages, caching_array,
741 cpages);
743 r = -ENOMEM;
744 goto out;
746 p = dma_p->p;
747 list_add(&dma_p->page_list, d_pages);
749 #ifdef CONFIG_HIGHMEM
750 /* gfp flags of highmem page should never be dma32 so we
751 * we should be fine in such case
753 if (PageHighMem(p))
754 continue;
755 #endif
757 npages = pool->size / PAGE_SIZE;
758 for (j = 0; j < npages; ++j) {
759 caching_array[cpages++] = p + j;
760 if (cpages == max_cpages) {
761 /* Note: Cannot hold the spinlock */
762 r = ttm_set_pages_caching(pool, caching_array,
763 cpages);
764 if (r) {
765 ttm_dma_handle_caching_state_failure(
766 pool, d_pages, caching_array,
767 cpages);
768 goto out;
770 cpages = 0;
775 if (cpages) {
776 r = ttm_set_pages_caching(pool, caching_array, cpages);
777 if (r)
778 ttm_dma_handle_caching_state_failure(pool, d_pages,
779 caching_array, cpages);
781 out:
782 kfree(caching_array);
783 return r;
787 * @return count of pages still required to fulfill the request.
789 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
790 unsigned long *irq_flags)
792 unsigned count = _manager->options.small;
793 int r = pool->npages_free;
795 if (count > pool->npages_free) {
796 struct list_head d_pages;
798 INIT_LIST_HEAD(&d_pages);
800 spin_unlock_irqrestore(&pool->lock, *irq_flags);
802 /* Returns how many more are neccessary to fulfill the
803 * request. */
804 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
806 spin_lock_irqsave(&pool->lock, *irq_flags);
807 if (!r) {
808 /* Add the fresh to the end.. */
809 list_splice(&d_pages, &pool->free_list);
810 ++pool->nrefills;
811 pool->npages_free += count;
812 r = count;
813 } else {
814 struct dma_page *d_page;
815 unsigned cpages = 0;
817 pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
818 pool->dev_name, pool->name, r);
820 list_for_each_entry(d_page, &d_pages, page_list) {
821 cpages++;
823 list_splice_tail(&d_pages, &pool->free_list);
824 pool->npages_free += cpages;
825 r = cpages;
828 return r;
832 * The populate list is actually a stack (not that is matters as TTM
833 * allocates one page at a time.
834 * return dma_page pointer if success, otherwise NULL.
836 static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
837 struct ttm_dma_tt *ttm_dma,
838 unsigned index)
840 struct dma_page *d_page = NULL;
841 struct ttm_tt *ttm = &ttm_dma->ttm;
842 unsigned long irq_flags;
843 int count;
845 spin_lock_irqsave(&pool->lock, irq_flags);
846 count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
847 if (count) {
848 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
849 ttm->pages[index] = d_page->p;
850 ttm_dma->dma_address[index] = d_page->dma;
851 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
852 pool->npages_in_use += 1;
853 pool->npages_free -= 1;
855 spin_unlock_irqrestore(&pool->lock, irq_flags);
856 return d_page;
859 static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
861 struct ttm_tt *ttm = &ttm_dma->ttm;
862 gfp_t gfp_flags;
864 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
865 gfp_flags = GFP_USER | GFP_DMA32;
866 else
867 gfp_flags = GFP_HIGHUSER;
868 if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
869 gfp_flags |= __GFP_ZERO;
871 if (huge) {
872 gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
873 __GFP_KSWAPD_RECLAIM;
874 gfp_flags &= ~__GFP_MOVABLE;
875 gfp_flags &= ~__GFP_COMP;
878 if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
879 gfp_flags |= __GFP_RETRY_MAYFAIL;
881 return gfp_flags;
885 * On success pages list will hold count number of correctly
886 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
888 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
889 struct ttm_operation_ctx *ctx)
891 struct ttm_tt *ttm = &ttm_dma->ttm;
892 struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
893 unsigned long num_pages = ttm->num_pages;
894 struct dma_pool *pool;
895 struct dma_page *d_page;
896 enum pool_type type;
897 unsigned i;
898 int ret;
900 if (ttm->state != tt_unpopulated)
901 return 0;
903 if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
904 return -ENOMEM;
906 INIT_LIST_HEAD(&ttm_dma->pages_list);
907 i = 0;
909 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
912 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
913 goto skip_huge;
915 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
916 if (!pool) {
917 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
919 pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
920 if (IS_ERR_OR_NULL(pool))
921 goto skip_huge;
924 while (num_pages >= HPAGE_PMD_NR) {
925 unsigned j;
927 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
928 if (!d_page)
929 break;
931 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
932 pool->size, ctx);
933 if (unlikely(ret != 0)) {
934 ttm_dma_unpopulate(ttm_dma, dev);
935 return -ENOMEM;
938 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
939 for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
940 ttm->pages[j] = ttm->pages[j - 1] + 1;
941 ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
942 PAGE_SIZE;
945 i += HPAGE_PMD_NR;
946 num_pages -= HPAGE_PMD_NR;
949 skip_huge:
950 #endif
952 pool = ttm_dma_find_pool(dev, type);
953 if (!pool) {
954 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
956 pool = ttm_dma_pool_init(dev, gfp_flags, type);
957 if (IS_ERR_OR_NULL(pool))
958 return -ENOMEM;
961 while (num_pages) {
962 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
963 if (!d_page) {
964 ttm_dma_unpopulate(ttm_dma, dev);
965 return -ENOMEM;
968 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
969 pool->size, ctx);
970 if (unlikely(ret != 0)) {
971 ttm_dma_unpopulate(ttm_dma, dev);
972 return -ENOMEM;
975 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
976 ++i;
977 --num_pages;
980 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
981 ret = ttm_tt_swapin(ttm);
982 if (unlikely(ret != 0)) {
983 ttm_dma_unpopulate(ttm_dma, dev);
984 return ret;
988 ttm->state = tt_unbound;
989 return 0;
991 EXPORT_SYMBOL_GPL(ttm_dma_populate);
993 /* Put all pages in pages list to correct pool to wait for reuse */
994 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
996 struct ttm_tt *ttm = &ttm_dma->ttm;
997 struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
998 struct dma_pool *pool;
999 struct dma_page *d_page, *next;
1000 enum pool_type type;
1001 bool is_cached = false;
1002 unsigned count, i, npages = 0;
1003 unsigned long irq_flags;
1005 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1007 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1008 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1009 if (pool) {
1010 count = 0;
1011 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1012 page_list) {
1013 if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1014 continue;
1016 count++;
1017 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1018 ttm_mem_global_free_page(mem_glob, d_page->p,
1019 pool->size);
1020 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1022 ttm_dma_page_put(pool, d_page);
1025 spin_lock_irqsave(&pool->lock, irq_flags);
1026 pool->npages_in_use -= count;
1027 pool->nfrees += count;
1028 spin_unlock_irqrestore(&pool->lock, irq_flags);
1030 #endif
1032 pool = ttm_dma_find_pool(dev, type);
1033 if (!pool)
1034 return;
1036 is_cached = (ttm_dma_find_pool(pool->dev,
1037 ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1039 /* make sure pages array match list and count number of pages */
1040 count = 0;
1041 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1042 page_list) {
1043 ttm->pages[count] = d_page->p;
1044 count++;
1046 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1047 ttm_mem_global_free_page(mem_glob, d_page->p,
1048 pool->size);
1049 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1052 if (is_cached)
1053 ttm_dma_page_put(pool, d_page);
1056 spin_lock_irqsave(&pool->lock, irq_flags);
1057 pool->npages_in_use -= count;
1058 if (is_cached) {
1059 pool->nfrees += count;
1060 } else {
1061 pool->npages_free += count;
1062 list_splice(&ttm_dma->pages_list, &pool->free_list);
1064 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1065 * to free in order to minimize calls to set_memory_wb().
1067 if (pool->npages_free >= (_manager->options.max_size +
1068 NUM_PAGES_TO_ALLOC))
1069 npages = pool->npages_free - _manager->options.max_size;
1071 spin_unlock_irqrestore(&pool->lock, irq_flags);
1073 INIT_LIST_HEAD(&ttm_dma->pages_list);
1074 for (i = 0; i < ttm->num_pages; i++) {
1075 ttm->pages[i] = NULL;
1076 ttm_dma->dma_address[i] = 0;
1079 /* shrink pool if necessary (only on !is_cached pools)*/
1080 if (npages)
1081 ttm_dma_page_pool_free(pool, npages, false);
1082 ttm->state = tt_unpopulated;
1084 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1087 * Callback for mm to request pool to reduce number of page held.
1089 * XXX: (dchinner) Deadlock warning!
1091 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1092 * shrinkers
1094 static unsigned long
1095 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1097 static unsigned start_pool;
1098 unsigned idx = 0;
1099 unsigned pool_offset;
1100 unsigned shrink_pages = sc->nr_to_scan;
1101 struct device_pools *p;
1102 unsigned long freed = 0;
1104 if (list_empty(&_manager->pools))
1105 return SHRINK_STOP;
1107 if (!mutex_trylock(&_manager->lock))
1108 return SHRINK_STOP;
1109 if (!_manager->npools)
1110 goto out;
1111 pool_offset = ++start_pool % _manager->npools;
1112 list_for_each_entry(p, &_manager->pools, pools) {
1113 unsigned nr_free;
1115 if (!p->dev)
1116 continue;
1117 if (shrink_pages == 0)
1118 break;
1119 /* Do it in round-robin fashion. */
1120 if (++idx < pool_offset)
1121 continue;
1122 nr_free = shrink_pages;
1123 /* OK to use static buffer since global mutex is held. */
1124 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1125 freed += nr_free - shrink_pages;
1127 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1128 p->pool->dev_name, p->pool->name, current->pid,
1129 nr_free, shrink_pages);
1131 out:
1132 mutex_unlock(&_manager->lock);
1133 return freed;
1136 static unsigned long
1137 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1139 struct device_pools *p;
1140 unsigned long count = 0;
1142 if (!mutex_trylock(&_manager->lock))
1143 return 0;
1144 list_for_each_entry(p, &_manager->pools, pools)
1145 count += p->pool->npages_free;
1146 mutex_unlock(&_manager->lock);
1147 return count;
1150 static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1152 manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1153 manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1154 manager->mm_shrink.seeks = 1;
1155 return register_shrinker(&manager->mm_shrink);
1158 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1160 unregister_shrinker(&manager->mm_shrink);
1163 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1165 int ret;
1167 WARN_ON(_manager);
1169 pr_info("Initializing DMA pool allocator\n");
1171 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1172 if (!_manager)
1173 return -ENOMEM;
1175 mutex_init(&_manager->lock);
1176 INIT_LIST_HEAD(&_manager->pools);
1178 _manager->options.max_size = max_pages;
1179 _manager->options.small = SMALL_ALLOCATION;
1180 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1182 /* This takes care of auto-freeing the _manager */
1183 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1184 &glob->kobj, "dma_pool");
1185 if (unlikely(ret != 0))
1186 goto error;
1188 ret = ttm_dma_pool_mm_shrink_init(_manager);
1189 if (unlikely(ret != 0))
1190 goto error;
1191 return 0;
1193 error:
1194 kobject_put(&_manager->kobj);
1195 _manager = NULL;
1196 return ret;
1199 void ttm_dma_page_alloc_fini(void)
1201 struct device_pools *p, *t;
1203 pr_info("Finalizing DMA pool allocator\n");
1204 ttm_dma_pool_mm_shrink_fini(_manager);
1206 list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1207 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1208 current->pid);
1209 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1210 ttm_dma_pool_match, p->pool));
1211 ttm_dma_free_pool(p->dev, p->pool->type);
1213 kobject_put(&_manager->kobj);
1214 _manager = NULL;
1217 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1219 struct device_pools *p;
1220 struct dma_pool *pool = NULL;
1222 if (!_manager) {
1223 seq_printf(m, "No pool allocator running.\n");
1224 return 0;
1226 seq_printf(m, " pool refills pages freed inuse available name\n");
1227 mutex_lock(&_manager->lock);
1228 list_for_each_entry(p, &_manager->pools, pools) {
1229 struct device *dev = p->dev;
1230 if (!dev)
1231 continue;
1232 pool = p->pool;
1233 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1234 pool->name, pool->nrefills,
1235 pool->nfrees, pool->npages_in_use,
1236 pool->npages_free,
1237 pool->dev_name);
1239 mutex_unlock(&_manager->lock);
1240 return 0;
1242 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1244 #endif