2 * linux/drivers/thermal/cpu_cooling.c
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/cpu_cooling.h>
34 #include <trace/events/thermal.h>
37 * Cooling state <-> CPUFreq frequency
39 * Cooling states are translated to frequencies throughout this driver and this
40 * is the relation between them.
42 * Highest cooling state corresponds to lowest possible frequency.
45 * level 0 --> 1st Max Freq
46 * level 1 --> 2nd Max Freq
51 * struct power_table - frequency to power conversion
52 * @frequency: frequency in KHz
55 * This structure is built when the cooling device registers and helps
56 * in translating frequency to power and viceversa.
64 * struct cpufreq_cooling_device - data for cooling device with cpufreq
65 * @id: unique integer value corresponding to each cpufreq_cooling_device
67 * @cool_dev: thermal_cooling_device pointer to keep track of the
68 * registered cooling device.
69 * @cpufreq_state: integer value representing the current state of cpufreq
71 * @clipped_freq: integer value representing the absolute value of the clipped
73 * @max_level: maximum cooling level. One less than total number of valid
74 * cpufreq frequencies.
75 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
76 * @node: list_head to link all cpufreq_cooling_device together.
77 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
78 * @time_in_idle: previous reading of the absolute time that this cpu was idle
79 * @time_in_idle_timestamp: wall time of the last invocation of
80 * get_cpu_idle_time_us()
81 * @dyn_power_table: array of struct power_table for frequency to power
82 * conversion, sorted in ascending order.
83 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85 * @plat_get_static_power: callback to calculate the static power
87 * This structure is required for keeping information of each registered
88 * cpufreq_cooling_device.
90 struct cpufreq_cooling_device
{
92 struct thermal_cooling_device
*cool_dev
;
93 unsigned int cpufreq_state
;
94 unsigned int clipped_freq
;
95 unsigned int max_level
;
96 unsigned int *freq_table
; /* In descending order */
97 struct cpumask allowed_cpus
;
98 struct list_head node
;
101 u64
*time_in_idle_timestamp
;
102 struct power_table
*dyn_power_table
;
103 int dyn_power_table_entries
;
104 struct device
*cpu_dev
;
105 get_static_t plat_get_static_power
;
107 static DEFINE_IDR(cpufreq_idr
);
108 static DEFINE_MUTEX(cooling_cpufreq_lock
);
110 static unsigned int cpufreq_dev_count
;
112 static DEFINE_MUTEX(cooling_list_lock
);
113 static LIST_HEAD(cpufreq_dev_list
);
116 * get_idr - function to get a unique id.
117 * @idr: struct idr * handle used to create a id.
118 * @id: int * value generated by this function.
120 * This function will populate @id with an unique
121 * id, using the idr API.
123 * Return: 0 on success, an error code on failure.
125 static int get_idr(struct idr
*idr
, int *id
)
129 mutex_lock(&cooling_cpufreq_lock
);
130 ret
= idr_alloc(idr
, NULL
, 0, 0, GFP_KERNEL
);
131 mutex_unlock(&cooling_cpufreq_lock
);
132 if (unlikely(ret
< 0))
140 * release_idr - function to free the unique id.
141 * @idr: struct idr * handle used for creating the id.
142 * @id: int value representing the unique id.
144 static void release_idr(struct idr
*idr
, int id
)
146 mutex_lock(&cooling_cpufreq_lock
);
148 mutex_unlock(&cooling_cpufreq_lock
);
151 /* Below code defines functions to be used for cpufreq as cooling device */
154 * get_level: Find the level for a particular frequency
155 * @cpufreq_dev: cpufreq_dev for which the property is required
158 * Return: level on success, THERMAL_CSTATE_INVALID on error.
160 static unsigned long get_level(struct cpufreq_cooling_device
*cpufreq_dev
,
165 for (level
= 0; level
<= cpufreq_dev
->max_level
; level
++) {
166 if (freq
== cpufreq_dev
->freq_table
[level
])
169 if (freq
> cpufreq_dev
->freq_table
[level
])
173 return THERMAL_CSTATE_INVALID
;
177 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
178 * @cpu: cpu for which the level is required
179 * @freq: the frequency of interest
181 * This function will match the cooling level corresponding to the
182 * requested @freq and return it.
184 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
187 unsigned long cpufreq_cooling_get_level(unsigned int cpu
, unsigned int freq
)
189 struct cpufreq_cooling_device
*cpufreq_dev
;
191 mutex_lock(&cooling_list_lock
);
192 list_for_each_entry(cpufreq_dev
, &cpufreq_dev_list
, node
) {
193 if (cpumask_test_cpu(cpu
, &cpufreq_dev
->allowed_cpus
)) {
194 unsigned long level
= get_level(cpufreq_dev
, freq
);
196 mutex_unlock(&cooling_list_lock
);
200 mutex_unlock(&cooling_list_lock
);
202 pr_err("%s: cpu:%d not part of any cooling device\n", __func__
, cpu
);
203 return THERMAL_CSTATE_INVALID
;
205 EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level
);
208 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
209 * @nb: struct notifier_block * with callback info.
210 * @event: value showing cpufreq event for which this function invoked.
211 * @data: callback-specific data
213 * Callback to hijack the notification on cpufreq policy transition.
214 * Every time there is a change in policy, we will intercept and
215 * update the cpufreq policy with thermal constraints.
217 * Return: 0 (success)
219 static int cpufreq_thermal_notifier(struct notifier_block
*nb
,
220 unsigned long event
, void *data
)
222 struct cpufreq_policy
*policy
= data
;
223 unsigned long clipped_freq
;
224 struct cpufreq_cooling_device
*cpufreq_dev
;
226 if (event
!= CPUFREQ_ADJUST
)
229 mutex_lock(&cooling_list_lock
);
230 list_for_each_entry(cpufreq_dev
, &cpufreq_dev_list
, node
) {
231 if (!cpumask_test_cpu(policy
->cpu
, &cpufreq_dev
->allowed_cpus
))
235 * policy->max is the maximum allowed frequency defined by user
236 * and clipped_freq is the maximum that thermal constraints
239 * If clipped_freq is lower than policy->max, then we need to
240 * readjust policy->max.
242 * But, if clipped_freq is greater than policy->max, we don't
243 * need to do anything.
245 clipped_freq
= cpufreq_dev
->clipped_freq
;
247 if (policy
->max
> clipped_freq
)
248 cpufreq_verify_within_limits(policy
, 0, clipped_freq
);
251 mutex_unlock(&cooling_list_lock
);
257 * build_dyn_power_table() - create a dynamic power to frequency table
258 * @cpufreq_device: the cpufreq cooling device in which to store the table
259 * @capacitance: dynamic power coefficient for these cpus
261 * Build a dynamic power to frequency table for this cpu and store it
262 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
263 * cpu_freq_to_power() to convert between power and frequency
264 * efficiently. Power is stored in mW, frequency in KHz. The
265 * resulting table is in ascending order.
267 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
268 * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
269 * added/enabled while the function was executing.
271 static int build_dyn_power_table(struct cpufreq_cooling_device
*cpufreq_device
,
274 struct power_table
*power_table
;
275 struct dev_pm_opp
*opp
;
276 struct device
*dev
= NULL
;
277 int num_opps
= 0, cpu
, i
, ret
= 0;
280 for_each_cpu(cpu
, &cpufreq_device
->allowed_cpus
) {
281 dev
= get_cpu_device(cpu
);
283 dev_warn(&cpufreq_device
->cool_dev
->device
,
284 "No cpu device for cpu %d\n", cpu
);
288 num_opps
= dev_pm_opp_get_opp_count(dev
);
291 else if (num_opps
< 0)
298 power_table
= kcalloc(num_opps
, sizeof(*power_table
), GFP_KERNEL
);
304 for (freq
= 0, i
= 0;
305 opp
= dev_pm_opp_find_freq_ceil(dev
, &freq
), !IS_ERR(opp
);
307 u32 freq_mhz
, voltage_mv
;
313 goto free_power_table
;
316 freq_mhz
= freq
/ 1000000;
317 voltage_mv
= dev_pm_opp_get_voltage(opp
) / 1000;
320 * Do the multiplication with MHz and millivolt so as
323 power
= (u64
)capacitance
* freq_mhz
* voltage_mv
* voltage_mv
;
324 do_div(power
, 1000000000);
326 /* frequency is stored in power_table in KHz */
327 power_table
[i
].frequency
= freq
/ 1000;
329 /* power is stored in mW */
330 power_table
[i
].power
= power
;
337 goto free_power_table
;
340 cpufreq_device
->cpu_dev
= dev
;
341 cpufreq_device
->dyn_power_table
= power_table
;
342 cpufreq_device
->dyn_power_table_entries
= i
;
352 static u32
cpu_freq_to_power(struct cpufreq_cooling_device
*cpufreq_device
,
356 struct power_table
*pt
= cpufreq_device
->dyn_power_table
;
358 for (i
= 1; i
< cpufreq_device
->dyn_power_table_entries
; i
++)
359 if (freq
< pt
[i
].frequency
)
362 return pt
[i
- 1].power
;
365 static u32
cpu_power_to_freq(struct cpufreq_cooling_device
*cpufreq_device
,
369 struct power_table
*pt
= cpufreq_device
->dyn_power_table
;
371 for (i
= 1; i
< cpufreq_device
->dyn_power_table_entries
; i
++)
372 if (power
< pt
[i
].power
)
375 return pt
[i
- 1].frequency
;
379 * get_load() - get load for a cpu since last updated
380 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
382 * @cpu_idx: index of the cpu in cpufreq_device->allowed_cpus
384 * Return: The average load of cpu @cpu in percentage since this
385 * function was last called.
387 static u32
get_load(struct cpufreq_cooling_device
*cpufreq_device
, int cpu
,
391 u64 now
, now_idle
, delta_time
, delta_idle
;
393 now_idle
= get_cpu_idle_time(cpu
, &now
, 0);
394 delta_idle
= now_idle
- cpufreq_device
->time_in_idle
[cpu_idx
];
395 delta_time
= now
- cpufreq_device
->time_in_idle_timestamp
[cpu_idx
];
397 if (delta_time
<= delta_idle
)
400 load
= div64_u64(100 * (delta_time
- delta_idle
), delta_time
);
402 cpufreq_device
->time_in_idle
[cpu_idx
] = now_idle
;
403 cpufreq_device
->time_in_idle_timestamp
[cpu_idx
] = now
;
409 * get_static_power() - calculate the static power consumed by the cpus
410 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
411 * @tz: thermal zone device in which we're operating
412 * @freq: frequency in KHz
413 * @power: pointer in which to store the calculated static power
415 * Calculate the static power consumed by the cpus described by
416 * @cpu_actor running at frequency @freq. This function relies on a
417 * platform specific function that should have been provided when the
418 * actor was registered. If it wasn't, the static power is assumed to
419 * be negligible. The calculated static power is stored in @power.
421 * Return: 0 on success, -E* on failure.
423 static int get_static_power(struct cpufreq_cooling_device
*cpufreq_device
,
424 struct thermal_zone_device
*tz
, unsigned long freq
,
427 struct dev_pm_opp
*opp
;
428 unsigned long voltage
;
429 struct cpumask
*cpumask
= &cpufreq_device
->allowed_cpus
;
430 unsigned long freq_hz
= freq
* 1000;
432 if (!cpufreq_device
->plat_get_static_power
||
433 !cpufreq_device
->cpu_dev
) {
440 opp
= dev_pm_opp_find_freq_exact(cpufreq_device
->cpu_dev
, freq_hz
,
442 voltage
= dev_pm_opp_get_voltage(opp
);
447 dev_warn_ratelimited(cpufreq_device
->cpu_dev
,
448 "Failed to get voltage for frequency %lu: %ld\n",
449 freq_hz
, IS_ERR(opp
) ? PTR_ERR(opp
) : 0);
453 return cpufreq_device
->plat_get_static_power(cpumask
, tz
->passive_delay
,
458 * get_dynamic_power() - calculate the dynamic power
459 * @cpufreq_device: &cpufreq_cooling_device for this cdev
460 * @freq: current frequency
462 * Return: the dynamic power consumed by the cpus described by
465 static u32
get_dynamic_power(struct cpufreq_cooling_device
*cpufreq_device
,
470 raw_cpu_power
= cpu_freq_to_power(cpufreq_device
, freq
);
471 return (raw_cpu_power
* cpufreq_device
->last_load
) / 100;
474 /* cpufreq cooling device callback functions are defined below */
477 * cpufreq_get_max_state - callback function to get the max cooling state.
478 * @cdev: thermal cooling device pointer.
479 * @state: fill this variable with the max cooling state.
481 * Callback for the thermal cooling device to return the cpufreq
484 * Return: 0 on success, an error code otherwise.
486 static int cpufreq_get_max_state(struct thermal_cooling_device
*cdev
,
487 unsigned long *state
)
489 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
491 *state
= cpufreq_device
->max_level
;
496 * cpufreq_get_cur_state - callback function to get the current cooling state.
497 * @cdev: thermal cooling device pointer.
498 * @state: fill this variable with the current cooling state.
500 * Callback for the thermal cooling device to return the cpufreq
501 * current cooling state.
503 * Return: 0 on success, an error code otherwise.
505 static int cpufreq_get_cur_state(struct thermal_cooling_device
*cdev
,
506 unsigned long *state
)
508 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
510 *state
= cpufreq_device
->cpufreq_state
;
516 * cpufreq_set_cur_state - callback function to set the current cooling state.
517 * @cdev: thermal cooling device pointer.
518 * @state: set this variable to the current cooling state.
520 * Callback for the thermal cooling device to change the cpufreq
521 * current cooling state.
523 * Return: 0 on success, an error code otherwise.
525 static int cpufreq_set_cur_state(struct thermal_cooling_device
*cdev
,
528 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
529 unsigned int cpu
= cpumask_any(&cpufreq_device
->allowed_cpus
);
530 unsigned int clip_freq
;
532 /* Request state should be less than max_level */
533 if (WARN_ON(state
> cpufreq_device
->max_level
))
536 /* Check if the old cooling action is same as new cooling action */
537 if (cpufreq_device
->cpufreq_state
== state
)
540 clip_freq
= cpufreq_device
->freq_table
[state
];
541 cpufreq_device
->cpufreq_state
= state
;
542 cpufreq_device
->clipped_freq
= clip_freq
;
544 cpufreq_update_policy(cpu
);
550 * cpufreq_get_requested_power() - get the current power
551 * @cdev: &thermal_cooling_device pointer
552 * @tz: a valid thermal zone device pointer
553 * @power: pointer in which to store the resulting power
555 * Calculate the current power consumption of the cpus in milliwatts
556 * and store it in @power. This function should actually calculate
557 * the requested power, but it's hard to get the frequency that
558 * cpufreq would have assigned if there were no thermal limits.
559 * Instead, we calculate the current power on the assumption that the
560 * immediate future will look like the immediate past.
562 * We use the current frequency and the average load since this
563 * function was last called. In reality, there could have been
564 * multiple opps since this function was last called and that affects
565 * the load calculation. While it's not perfectly accurate, this
566 * simplification is good enough and works. REVISIT this, as more
567 * complex code may be needed if experiments show that it's not
570 * Return: 0 on success, -E* if getting the static power failed.
572 static int cpufreq_get_requested_power(struct thermal_cooling_device
*cdev
,
573 struct thermal_zone_device
*tz
,
578 u32 static_power
, dynamic_power
, total_load
= 0;
579 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
580 u32
*load_cpu
= NULL
;
582 cpu
= cpumask_any_and(&cpufreq_device
->allowed_cpus
, cpu_online_mask
);
585 * All the CPUs are offline, thus the requested power by
588 if (cpu
>= nr_cpu_ids
) {
593 freq
= cpufreq_quick_get(cpu
);
595 if (trace_thermal_power_cpu_get_power_enabled()) {
596 u32 ncpus
= cpumask_weight(&cpufreq_device
->allowed_cpus
);
598 load_cpu
= kcalloc(ncpus
, sizeof(*load_cpu
), GFP_KERNEL
);
601 for_each_cpu(cpu
, &cpufreq_device
->allowed_cpus
) {
605 load
= get_load(cpufreq_device
, cpu
, i
);
610 if (trace_thermal_power_cpu_limit_enabled() && load_cpu
)
616 cpufreq_device
->last_load
= total_load
;
618 dynamic_power
= get_dynamic_power(cpufreq_device
, freq
);
619 ret
= get_static_power(cpufreq_device
, tz
, freq
, &static_power
);
626 trace_thermal_power_cpu_get_power(
627 &cpufreq_device
->allowed_cpus
,
628 freq
, load_cpu
, i
, dynamic_power
, static_power
);
633 *power
= static_power
+ dynamic_power
;
638 * cpufreq_state2power() - convert a cpu cdev state to power consumed
639 * @cdev: &thermal_cooling_device pointer
640 * @tz: a valid thermal zone device pointer
641 * @state: cooling device state to be converted
642 * @power: pointer in which to store the resulting power
644 * Convert cooling device state @state into power consumption in
645 * milliwatts assuming 100% load. Store the calculated power in
648 * Return: 0 on success, -EINVAL if the cooling device state could not
649 * be converted into a frequency or other -E* if there was an error
650 * when calculating the static power.
652 static int cpufreq_state2power(struct thermal_cooling_device
*cdev
,
653 struct thermal_zone_device
*tz
,
654 unsigned long state
, u32
*power
)
656 unsigned int freq
, num_cpus
;
658 u32 static_power
, dynamic_power
;
660 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
662 cpumask_and(&cpumask
, &cpufreq_device
->allowed_cpus
, cpu_online_mask
);
663 num_cpus
= cpumask_weight(&cpumask
);
665 /* None of our cpus are online, so no power */
671 freq
= cpufreq_device
->freq_table
[state
];
675 dynamic_power
= cpu_freq_to_power(cpufreq_device
, freq
) * num_cpus
;
676 ret
= get_static_power(cpufreq_device
, tz
, freq
, &static_power
);
680 *power
= static_power
+ dynamic_power
;
685 * cpufreq_power2state() - convert power to a cooling device state
686 * @cdev: &thermal_cooling_device pointer
687 * @tz: a valid thermal zone device pointer
688 * @power: power in milliwatts to be converted
689 * @state: pointer in which to store the resulting state
691 * Calculate a cooling device state for the cpus described by @cdev
692 * that would allow them to consume at most @power mW and store it in
693 * @state. Note that this calculation depends on external factors
694 * such as the cpu load or the current static power. Calling this
695 * function with the same power as input can yield different cooling
696 * device states depending on those external factors.
698 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
699 * the calculated frequency could not be converted to a valid state.
700 * The latter should not happen unless the frequencies available to
701 * cpufreq have changed since the initialization of the cpu cooling
704 static int cpufreq_power2state(struct thermal_cooling_device
*cdev
,
705 struct thermal_zone_device
*tz
, u32 power
,
706 unsigned long *state
)
708 unsigned int cpu
, cur_freq
, target_freq
;
711 u32 last_load
, normalised_power
, static_power
;
712 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
714 cpu
= cpumask_any_and(&cpufreq_device
->allowed_cpus
, cpu_online_mask
);
716 /* None of our cpus are online */
717 if (cpu
>= nr_cpu_ids
)
720 cur_freq
= cpufreq_quick_get(cpu
);
721 ret
= get_static_power(cpufreq_device
, tz
, cur_freq
, &static_power
);
725 dyn_power
= power
- static_power
;
726 dyn_power
= dyn_power
> 0 ? dyn_power
: 0;
727 last_load
= cpufreq_device
->last_load
?: 1;
728 normalised_power
= (dyn_power
* 100) / last_load
;
729 target_freq
= cpu_power_to_freq(cpufreq_device
, normalised_power
);
731 *state
= cpufreq_cooling_get_level(cpu
, target_freq
);
732 if (*state
== THERMAL_CSTATE_INVALID
) {
733 dev_warn_ratelimited(&cdev
->device
,
734 "Failed to convert %dKHz for cpu %d into a cdev state\n",
739 trace_thermal_power_cpu_limit(&cpufreq_device
->allowed_cpus
,
740 target_freq
, *state
, power
);
744 /* Bind cpufreq callbacks to thermal cooling device ops */
746 static struct thermal_cooling_device_ops cpufreq_cooling_ops
= {
747 .get_max_state
= cpufreq_get_max_state
,
748 .get_cur_state
= cpufreq_get_cur_state
,
749 .set_cur_state
= cpufreq_set_cur_state
,
752 static struct thermal_cooling_device_ops cpufreq_power_cooling_ops
= {
753 .get_max_state
= cpufreq_get_max_state
,
754 .get_cur_state
= cpufreq_get_cur_state
,
755 .set_cur_state
= cpufreq_set_cur_state
,
756 .get_requested_power
= cpufreq_get_requested_power
,
757 .state2power
= cpufreq_state2power
,
758 .power2state
= cpufreq_power2state
,
761 /* Notifier for cpufreq policy change */
762 static struct notifier_block thermal_cpufreq_notifier_block
= {
763 .notifier_call
= cpufreq_thermal_notifier
,
766 static unsigned int find_next_max(struct cpufreq_frequency_table
*table
,
767 unsigned int prev_max
)
769 struct cpufreq_frequency_table
*pos
;
770 unsigned int max
= 0;
772 cpufreq_for_each_valid_entry(pos
, table
) {
773 if (pos
->frequency
> max
&& pos
->frequency
< prev_max
)
774 max
= pos
->frequency
;
781 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
782 * @np: a valid struct device_node to the cooling device device tree node
783 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
784 * Normally this should be same as cpufreq policy->related_cpus.
785 * @capacitance: dynamic power coefficient for these cpus
786 * @plat_static_func: function to calculate the static power consumed by these
789 * This interface function registers the cpufreq cooling device with the name
790 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
791 * cooling devices. It also gives the opportunity to link the cooling device
792 * with a device tree node, in order to bind it via the thermal DT code.
794 * Return: a valid struct thermal_cooling_device pointer on success,
795 * on failure, it returns a corresponding ERR_PTR().
797 static struct thermal_cooling_device
*
798 __cpufreq_cooling_register(struct device_node
*np
,
799 const struct cpumask
*clip_cpus
, u32 capacitance
,
800 get_static_t plat_static_func
)
802 struct cpufreq_policy
*policy
;
803 struct thermal_cooling_device
*cool_dev
;
804 struct cpufreq_cooling_device
*cpufreq_dev
;
805 char dev_name
[THERMAL_NAME_LENGTH
];
806 struct cpufreq_frequency_table
*pos
, *table
;
807 struct cpumask temp_mask
;
808 unsigned int freq
, i
, num_cpus
;
810 struct thermal_cooling_device_ops
*cooling_ops
;
812 cpumask_and(&temp_mask
, clip_cpus
, cpu_online_mask
);
813 policy
= cpufreq_cpu_get(cpumask_first(&temp_mask
));
815 pr_debug("%s: CPUFreq policy not found\n", __func__
);
816 return ERR_PTR(-EPROBE_DEFER
);
819 table
= policy
->freq_table
;
821 pr_debug("%s: CPUFreq table not found\n", __func__
);
822 cool_dev
= ERR_PTR(-ENODEV
);
826 cpufreq_dev
= kzalloc(sizeof(*cpufreq_dev
), GFP_KERNEL
);
828 cool_dev
= ERR_PTR(-ENOMEM
);
832 num_cpus
= cpumask_weight(clip_cpus
);
833 cpufreq_dev
->time_in_idle
= kcalloc(num_cpus
,
834 sizeof(*cpufreq_dev
->time_in_idle
),
836 if (!cpufreq_dev
->time_in_idle
) {
837 cool_dev
= ERR_PTR(-ENOMEM
);
841 cpufreq_dev
->time_in_idle_timestamp
=
842 kcalloc(num_cpus
, sizeof(*cpufreq_dev
->time_in_idle_timestamp
),
844 if (!cpufreq_dev
->time_in_idle_timestamp
) {
845 cool_dev
= ERR_PTR(-ENOMEM
);
846 goto free_time_in_idle
;
849 /* Find max levels */
850 cpufreq_for_each_valid_entry(pos
, table
)
851 cpufreq_dev
->max_level
++;
853 cpufreq_dev
->freq_table
= kmalloc(sizeof(*cpufreq_dev
->freq_table
) *
854 cpufreq_dev
->max_level
, GFP_KERNEL
);
855 if (!cpufreq_dev
->freq_table
) {
856 cool_dev
= ERR_PTR(-ENOMEM
);
857 goto free_time_in_idle_timestamp
;
860 /* max_level is an index, not a counter */
861 cpufreq_dev
->max_level
--;
863 cpumask_copy(&cpufreq_dev
->allowed_cpus
, clip_cpus
);
866 cpufreq_dev
->plat_get_static_power
= plat_static_func
;
868 ret
= build_dyn_power_table(cpufreq_dev
, capacitance
);
870 cool_dev
= ERR_PTR(ret
);
874 cooling_ops
= &cpufreq_power_cooling_ops
;
876 cooling_ops
= &cpufreq_cooling_ops
;
879 ret
= get_idr(&cpufreq_idr
, &cpufreq_dev
->id
);
881 cool_dev
= ERR_PTR(ret
);
882 goto free_power_table
;
885 /* Fill freq-table in descending order of frequencies */
886 for (i
= 0, freq
= -1; i
<= cpufreq_dev
->max_level
; i
++) {
887 freq
= find_next_max(table
, freq
);
888 cpufreq_dev
->freq_table
[i
] = freq
;
890 /* Warn for duplicate entries */
892 pr_warn("%s: table has duplicate entries\n", __func__
);
894 pr_debug("%s: freq:%u KHz\n", __func__
, freq
);
897 snprintf(dev_name
, sizeof(dev_name
), "thermal-cpufreq-%d",
900 cool_dev
= thermal_of_cooling_device_register(np
, dev_name
, cpufreq_dev
,
902 if (IS_ERR(cool_dev
))
905 cpufreq_dev
->clipped_freq
= cpufreq_dev
->freq_table
[0];
906 cpufreq_dev
->cool_dev
= cool_dev
;
908 mutex_lock(&cooling_cpufreq_lock
);
910 mutex_lock(&cooling_list_lock
);
911 list_add(&cpufreq_dev
->node
, &cpufreq_dev_list
);
912 mutex_unlock(&cooling_list_lock
);
914 /* Register the notifier for first cpufreq cooling device */
915 if (!cpufreq_dev_count
++)
916 cpufreq_register_notifier(&thermal_cpufreq_notifier_block
,
917 CPUFREQ_POLICY_NOTIFIER
);
918 mutex_unlock(&cooling_cpufreq_lock
);
923 release_idr(&cpufreq_idr
, cpufreq_dev
->id
);
925 kfree(cpufreq_dev
->dyn_power_table
);
927 kfree(cpufreq_dev
->freq_table
);
928 free_time_in_idle_timestamp
:
929 kfree(cpufreq_dev
->time_in_idle_timestamp
);
931 kfree(cpufreq_dev
->time_in_idle
);
935 cpufreq_cpu_put(policy
);
941 * cpufreq_cooling_register - function to create cpufreq cooling device.
942 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
944 * This interface function registers the cpufreq cooling device with the name
945 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
948 * Return: a valid struct thermal_cooling_device pointer on success,
949 * on failure, it returns a corresponding ERR_PTR().
951 struct thermal_cooling_device
*
952 cpufreq_cooling_register(const struct cpumask
*clip_cpus
)
954 return __cpufreq_cooling_register(NULL
, clip_cpus
, 0, NULL
);
956 EXPORT_SYMBOL_GPL(cpufreq_cooling_register
);
959 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
960 * @np: a valid struct device_node to the cooling device device tree node
961 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
963 * This interface function registers the cpufreq cooling device with the name
964 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
965 * cooling devices. Using this API, the cpufreq cooling device will be
966 * linked to the device tree node provided.
968 * Return: a valid struct thermal_cooling_device pointer on success,
969 * on failure, it returns a corresponding ERR_PTR().
971 struct thermal_cooling_device
*
972 of_cpufreq_cooling_register(struct device_node
*np
,
973 const struct cpumask
*clip_cpus
)
976 return ERR_PTR(-EINVAL
);
978 return __cpufreq_cooling_register(np
, clip_cpus
, 0, NULL
);
980 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register
);
983 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
984 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
985 * @capacitance: dynamic power coefficient for these cpus
986 * @plat_static_func: function to calculate the static power consumed by these
989 * This interface function registers the cpufreq cooling device with
990 * the name "thermal-cpufreq-%x". This api can support multiple
991 * instances of cpufreq cooling devices. Using this function, the
992 * cooling device will implement the power extensions by using a
993 * simple cpu power model. The cpus must have registered their OPPs
994 * using the OPP library.
996 * An optional @plat_static_func may be provided to calculate the
997 * static power consumed by these cpus. If the platform's static
998 * power consumption is unknown or negligible, make it NULL.
1000 * Return: a valid struct thermal_cooling_device pointer on success,
1001 * on failure, it returns a corresponding ERR_PTR().
1003 struct thermal_cooling_device
*
1004 cpufreq_power_cooling_register(const struct cpumask
*clip_cpus
, u32 capacitance
,
1005 get_static_t plat_static_func
)
1007 return __cpufreq_cooling_register(NULL
, clip_cpus
, capacitance
,
1010 EXPORT_SYMBOL(cpufreq_power_cooling_register
);
1013 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
1014 * @np: a valid struct device_node to the cooling device device tree node
1015 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
1016 * @capacitance: dynamic power coefficient for these cpus
1017 * @plat_static_func: function to calculate the static power consumed by these
1020 * This interface function registers the cpufreq cooling device with
1021 * the name "thermal-cpufreq-%x". This api can support multiple
1022 * instances of cpufreq cooling devices. Using this API, the cpufreq
1023 * cooling device will be linked to the device tree node provided.
1024 * Using this function, the cooling device will implement the power
1025 * extensions by using a simple cpu power model. The cpus must have
1026 * registered their OPPs using the OPP library.
1028 * An optional @plat_static_func may be provided to calculate the
1029 * static power consumed by these cpus. If the platform's static
1030 * power consumption is unknown or negligible, make it NULL.
1032 * Return: a valid struct thermal_cooling_device pointer on success,
1033 * on failure, it returns a corresponding ERR_PTR().
1035 struct thermal_cooling_device
*
1036 of_cpufreq_power_cooling_register(struct device_node
*np
,
1037 const struct cpumask
*clip_cpus
,
1039 get_static_t plat_static_func
)
1042 return ERR_PTR(-EINVAL
);
1044 return __cpufreq_cooling_register(np
, clip_cpus
, capacitance
,
1047 EXPORT_SYMBOL(of_cpufreq_power_cooling_register
);
1050 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1051 * @cdev: thermal cooling device pointer.
1053 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
1055 void cpufreq_cooling_unregister(struct thermal_cooling_device
*cdev
)
1057 struct cpufreq_cooling_device
*cpufreq_dev
;
1062 cpufreq_dev
= cdev
->devdata
;
1064 /* Unregister the notifier for the last cpufreq cooling device */
1065 mutex_lock(&cooling_cpufreq_lock
);
1066 if (!--cpufreq_dev_count
)
1067 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block
,
1068 CPUFREQ_POLICY_NOTIFIER
);
1070 mutex_lock(&cooling_list_lock
);
1071 list_del(&cpufreq_dev
->node
);
1072 mutex_unlock(&cooling_list_lock
);
1074 mutex_unlock(&cooling_cpufreq_lock
);
1076 thermal_cooling_device_unregister(cpufreq_dev
->cool_dev
);
1077 release_idr(&cpufreq_idr
, cpufreq_dev
->id
);
1078 kfree(cpufreq_dev
->dyn_power_table
);
1079 kfree(cpufreq_dev
->time_in_idle_timestamp
);
1080 kfree(cpufreq_dev
->time_in_idle
);
1081 kfree(cpufreq_dev
->freq_table
);
1084 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister
);