3 System on chip designs are often divided into multiple PM domains that can be
4 used for power gating of selected IP blocks for power saving by reduced leakage
7 This device tree binding can be used to bind PM domain consumer devices with
8 their PM domains provided by PM domain providers. A PM domain provider can be
9 represented by any node in the device tree and can provide one or more PM
10 domains. A consumer node can refer to the provider by a phandle and a set of
11 phandle arguments (so called PM domain specifiers) of length specified by the
12 #power-domain-cells property in the PM domain provider node.
14 ==PM domain providers==
17 - #power-domain-cells : Number of cells in a PM domain specifier;
18 Typically 0 for nodes representing a single PM domain and 1 for nodes
19 providing multiple PM domains (e.g. power controllers), but can be any value
20 as specified by device tree binding documentation of particular provider.
23 - power-domains : A phandle and PM domain specifier as defined by bindings of
24 the power controller specified by phandle.
25 Some power domains might be powered from another power domain (or have
26 other hardware specific dependencies). For representing such dependency
27 a standard PM domain consumer binding is used. When provided, all domains
28 created by the given provider should be subdomains of the domain
29 specified by this binding. More details about power domain specifier are
30 available in the next section.
32 - domain-idle-states : A phandle of an idle-state that shall be soaked into a
33 generic domain power state. The idle state definitions are
34 compatible with domain-idle-state specified in [1]. phandles
35 that are not compatible with domain-idle-state will be
37 The domain-idle-state property reflects the idle state of this PM domain and
38 not the idle states of the devices or sub-domains in the PM domain. Devices
39 and sub-domains have their own idle-states independent of the parent
40 domain's idle states. In the absence of this property, the domain would be
41 considered as capable of being powered-on or powered-off.
43 - operating-points-v2 : Phandles to the OPP tables of power domains provided by
44 a power domain provider. If the provider provides a single power domain only
45 or all the power domains provided by the provider have identical OPP tables,
46 then this shall contain a single phandle. Refer to ../opp/opp.txt for more
51 power: power-controller@12340000 {
52 compatible = "foo,power-controller";
53 reg = <0x12340000 0x1000>;
54 #power-domain-cells = <1>;
57 The node above defines a power controller that is a PM domain provider and
58 expects one cell as its phandle argument.
62 parent: power-controller@12340000 {
63 compatible = "foo,power-controller";
64 reg = <0x12340000 0x1000>;
65 #power-domain-cells = <1>;
68 child: power-controller@12341000 {
69 compatible = "foo,power-controller";
70 reg = <0x12341000 0x1000>;
71 power-domains = <&parent 0>;
72 #power-domain-cells = <1>;
75 The nodes above define two power controllers: 'parent' and 'child'.
76 Domains created by the 'child' power controller are subdomains of '0' power
77 domain provided by the 'parent' power controller.
80 parent: power-controller@12340000 {
81 compatible = "foo,power-controller";
82 reg = <0x12340000 0x1000>;
83 #power-domain-cells = <0>;
84 domain-idle-states = <&DOMAIN_RET>, <&DOMAIN_PWR_DN>;
87 child: power-controller@12341000 {
88 compatible = "foo,power-controller";
89 reg = <0x12341000 0x1000>;
90 power-domains = <&parent>;
91 #power-domain-cells = <0>;
92 domain-idle-states = <&DOMAIN_PWR_DN>;
96 compatible = "domain-idle-state";
98 entry-latency-us = <1000>;
99 exit-latency-us = <2000>;
100 min-residency-us = <10000>;
103 DOMAIN_PWR_DN: state@1 {
104 compatible = "domain-idle-state";
106 entry-latency-us = <5000>;
107 exit-latency-us = <8000>;
108 min-residency-us = <7000>;
111 ==PM domain consumers==
114 - power-domains : A phandle and PM domain specifier as defined by bindings of
115 the power controller specified by phandle.
119 leaky-device@12350000 {
120 compatible = "foo,i-leak-current";
121 reg = <0x12350000 0x1000>;
122 power-domains = <&power 0>;
125 The node above defines a typical PM domain consumer device, which is located
126 inside a PM domain with index 0 of a power controller represented by a node
127 with the label "power".
130 - required-opp: This contains phandle to an OPP node in another device's OPP
131 table. It may contain an array of phandles, where each phandle points to an
132 OPP of a different device. It should not contain multiple phandles to the OPP
133 nodes in the same OPP table. This specifies the minimum required OPP of the
134 device(s), whose OPP's phandle is present in this property, for the
135 functioning of the current device at the current OPP (where this property is
139 - OPP table for domain provider that provides two domains.
141 domain0_opp_table: opp-table0 {
142 compatible = "operating-points-v2";
144 domain0_opp_0: opp-1000000000 {
145 opp-hz = /bits/ 64 <1000000000>;
146 opp-microvolt = <975000 970000 985000>;
148 domain0_opp_1: opp-1100000000 {
149 opp-hz = /bits/ 64 <1100000000>;
150 opp-microvolt = <1000000 980000 1010000>;
154 domain1_opp_table: opp-table1 {
155 compatible = "operating-points-v2";
157 domain1_opp_0: opp-1200000000 {
158 opp-hz = /bits/ 64 <1200000000>;
159 opp-microvolt = <975000 970000 985000>;
161 domain1_opp_1: opp-1300000000 {
162 opp-hz = /bits/ 64 <1300000000>;
163 opp-microvolt = <1000000 980000 1010000>;
167 power: power-controller@12340000 {
168 compatible = "foo,power-controller";
169 reg = <0x12340000 0x1000>;
170 #power-domain-cells = <1>;
171 operating-points-v2 = <&domain0_opp_table>, <&domain1_opp_table>;
174 leaky-device0@12350000 {
175 compatible = "foo,i-leak-current";
176 reg = <0x12350000 0x1000>;
177 power-domains = <&power 0>;
178 required-opp = <&domain0_opp_0>;
181 leaky-device1@12350000 {
182 compatible = "foo,i-leak-current";
183 reg = <0x12350000 0x1000>;
184 power-domains = <&power 1>;
185 required-opp = <&domain1_opp_1>;
188 [1]. Documentation/devicetree/bindings/power/domain-idle-state.txt