2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/jhash.h>
40 #include <linux/module.h>
41 #include <linux/debugfs.h>
42 #include <linux/seq_file.h>
43 #include <net/neighbour.h>
49 #include "t4_values.h"
51 /* identifies sync vs async L2T_WRITE_REQs */
53 #define SYNC_WR_V(x) ((x) << SYNC_WR_S)
54 #define SYNC_WR_F SYNC_WR_V(1)
57 unsigned int l2t_start
; /* start index of our piece of the L2T */
58 unsigned int l2t_size
; /* number of entries in l2tab */
60 atomic_t nfree
; /* number of free entries */
61 struct l2t_entry
*rover
; /* starting point for next allocation */
62 struct l2t_entry l2tab
[0]; /* MUST BE LAST */
65 static inline unsigned int vlan_prio(const struct l2t_entry
*e
)
67 return e
->vlan
>> VLAN_PRIO_SHIFT
;
70 static inline void l2t_hold(struct l2t_data
*d
, struct l2t_entry
*e
)
72 if (atomic_add_return(1, &e
->refcnt
) == 1) /* 0 -> 1 transition */
73 atomic_dec(&d
->nfree
);
77 * To avoid having to check address families we do not allow v4 and v6
78 * neighbors to be on the same hash chain. We keep v4 entries in the first
79 * half of available hash buckets and v6 in the second. We need at least two
80 * entries in our L2T for this scheme to work.
83 L2T_MIN_HASH_BUCKETS
= 2,
86 static inline unsigned int arp_hash(struct l2t_data
*d
, const u32
*key
,
89 unsigned int l2t_size_half
= d
->l2t_size
/ 2;
91 return jhash_2words(*key
, ifindex
, 0) % l2t_size_half
;
94 static inline unsigned int ipv6_hash(struct l2t_data
*d
, const u32
*key
,
97 unsigned int l2t_size_half
= d
->l2t_size
/ 2;
98 u32
xor = key
[0] ^ key
[1] ^ key
[2] ^ key
[3];
100 return (l2t_size_half
+
101 (jhash_2words(xor, ifindex
, 0) % l2t_size_half
));
104 static unsigned int addr_hash(struct l2t_data
*d
, const u32
*addr
,
105 int addr_len
, int ifindex
)
107 return addr_len
== 4 ? arp_hash(d
, addr
, ifindex
) :
108 ipv6_hash(d
, addr
, ifindex
);
112 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check
113 * whether the L2T entry and the address are of the same address family.
114 * Callers ensure an address is only checked against L2T entries of the same
115 * family, something made trivial by the separation of IP and IPv6 hash chains
116 * mentioned above. Returns 0 if there's a match,
118 static int addreq(const struct l2t_entry
*e
, const u32
*addr
)
121 return (e
->addr
[0] ^ addr
[0]) | (e
->addr
[1] ^ addr
[1]) |
122 (e
->addr
[2] ^ addr
[2]) | (e
->addr
[3] ^ addr
[3]);
123 return e
->addr
[0] ^ addr
[0];
126 static void neigh_replace(struct l2t_entry
*e
, struct neighbour
*n
)
130 neigh_release(e
->neigh
);
135 * Write an L2T entry. Must be called with the entry locked.
136 * The write may be synchronous or asynchronous.
138 static int write_l2e(struct adapter
*adap
, struct l2t_entry
*e
, int sync
)
140 struct l2t_data
*d
= adap
->l2t
;
141 unsigned int l2t_idx
= e
->idx
+ d
->l2t_start
;
143 struct cpl_l2t_write_req
*req
;
145 skb
= alloc_skb(sizeof(*req
), GFP_ATOMIC
);
149 req
= __skb_put(skb
, sizeof(*req
));
152 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ
,
153 l2t_idx
| (sync
? SYNC_WR_F
: 0) |
154 TID_QID_V(adap
->sge
.fw_evtq
.abs_id
)));
155 req
->params
= htons(L2T_W_PORT_V(e
->lport
) | L2T_W_NOREPLY_V(!sync
));
156 req
->l2t_idx
= htons(l2t_idx
);
157 req
->vlan
= htons(e
->vlan
);
158 if (e
->neigh
&& !(e
->neigh
->dev
->flags
& IFF_LOOPBACK
))
159 memcpy(e
->dmac
, e
->neigh
->ha
, sizeof(e
->dmac
));
160 memcpy(req
->dst_mac
, e
->dmac
, sizeof(req
->dst_mac
));
162 t4_mgmt_tx(adap
, skb
);
164 if (sync
&& e
->state
!= L2T_STATE_SWITCHING
)
165 e
->state
= L2T_STATE_SYNC_WRITE
;
170 * Send packets waiting in an L2T entry's ARP queue. Must be called with the
173 static void send_pending(struct adapter
*adap
, struct l2t_entry
*e
)
177 while ((skb
= __skb_dequeue(&e
->arpq
)) != NULL
)
178 t4_ofld_send(adap
, skb
);
182 * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a
183 * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T
184 * index it refers to.
186 void do_l2t_write_rpl(struct adapter
*adap
, const struct cpl_l2t_write_rpl
*rpl
)
188 struct l2t_data
*d
= adap
->l2t
;
189 unsigned int tid
= GET_TID(rpl
);
190 unsigned int l2t_idx
= tid
% L2T_SIZE
;
192 if (unlikely(rpl
->status
!= CPL_ERR_NONE
)) {
193 dev_err(adap
->pdev_dev
,
194 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
195 rpl
->status
, l2t_idx
);
199 if (tid
& SYNC_WR_F
) {
200 struct l2t_entry
*e
= &d
->l2tab
[l2t_idx
- d
->l2t_start
];
203 if (e
->state
!= L2T_STATE_SWITCHING
) {
204 send_pending(adap
, e
);
205 e
->state
= (e
->neigh
->nud_state
& NUD_STALE
) ?
206 L2T_STATE_STALE
: L2T_STATE_VALID
;
208 spin_unlock(&e
->lock
);
213 * Add a packet to an L2T entry's queue of packets awaiting resolution.
214 * Must be called with the entry's lock held.
216 static inline void arpq_enqueue(struct l2t_entry
*e
, struct sk_buff
*skb
)
218 __skb_queue_tail(&e
->arpq
, skb
);
221 int cxgb4_l2t_send(struct net_device
*dev
, struct sk_buff
*skb
,
224 struct adapter
*adap
= netdev2adap(dev
);
228 case L2T_STATE_STALE
: /* entry is stale, kick off revalidation */
229 neigh_event_send(e
->neigh
, NULL
);
230 spin_lock_bh(&e
->lock
);
231 if (e
->state
== L2T_STATE_STALE
)
232 e
->state
= L2T_STATE_VALID
;
233 spin_unlock_bh(&e
->lock
);
234 case L2T_STATE_VALID
: /* fast-path, send the packet on */
235 return t4_ofld_send(adap
, skb
);
236 case L2T_STATE_RESOLVING
:
237 case L2T_STATE_SYNC_WRITE
:
238 spin_lock_bh(&e
->lock
);
239 if (e
->state
!= L2T_STATE_SYNC_WRITE
&&
240 e
->state
!= L2T_STATE_RESOLVING
) {
241 spin_unlock_bh(&e
->lock
);
244 arpq_enqueue(e
, skb
);
245 spin_unlock_bh(&e
->lock
);
247 if (e
->state
== L2T_STATE_RESOLVING
&&
248 !neigh_event_send(e
->neigh
, NULL
)) {
249 spin_lock_bh(&e
->lock
);
250 if (e
->state
== L2T_STATE_RESOLVING
&&
251 !skb_queue_empty(&e
->arpq
))
252 write_l2e(adap
, e
, 1);
253 spin_unlock_bh(&e
->lock
);
258 EXPORT_SYMBOL(cxgb4_l2t_send
);
261 * Allocate a free L2T entry. Must be called with l2t_data.lock held.
263 static struct l2t_entry
*alloc_l2e(struct l2t_data
*d
)
265 struct l2t_entry
*end
, *e
, **p
;
267 if (!atomic_read(&d
->nfree
))
270 /* there's definitely a free entry */
271 for (e
= d
->rover
, end
= &d
->l2tab
[d
->l2t_size
]; e
!= end
; ++e
)
272 if (atomic_read(&e
->refcnt
) == 0)
275 for (e
= d
->l2tab
; atomic_read(&e
->refcnt
); ++e
)
279 atomic_dec(&d
->nfree
);
282 * The entry we found may be an inactive entry that is
283 * presently in the hash table. We need to remove it.
285 if (e
->state
< L2T_STATE_SWITCHING
)
286 for (p
= &d
->l2tab
[e
->hash
].first
; *p
; p
= &(*p
)->next
)
293 e
->state
= L2T_STATE_UNUSED
;
297 static struct l2t_entry
*find_or_alloc_l2e(struct l2t_data
*d
, u16 vlan
,
300 struct l2t_entry
*end
, *e
, **p
;
301 struct l2t_entry
*first_free
= NULL
;
303 for (e
= &d
->l2tab
[0], end
= &d
->l2tab
[d
->l2t_size
]; e
!= end
; ++e
) {
304 if (atomic_read(&e
->refcnt
) == 0) {
308 if (e
->state
== L2T_STATE_SWITCHING
) {
309 if (ether_addr_equal(e
->dmac
, dmac
) &&
310 (e
->vlan
== vlan
) && (e
->lport
== port
))
324 /* The entry we found may be an inactive entry that is
325 * presently in the hash table. We need to remove it.
327 if (e
->state
< L2T_STATE_SWITCHING
)
328 for (p
= &d
->l2tab
[e
->hash
].first
; *p
; p
= &(*p
)->next
)
334 e
->state
= L2T_STATE_UNUSED
;
340 /* Called when an L2T entry has no more users. The entry is left in the hash
341 * table since it is likely to be reused but we also bump nfree to indicate
342 * that the entry can be reallocated for a different neighbor. We also drop
343 * the existing neighbor reference in case the neighbor is going away and is
344 * waiting on our reference.
346 * Because entries can be reallocated to other neighbors once their ref count
347 * drops to 0 we need to take the entry's lock to avoid races with a new
350 static void _t4_l2e_free(struct l2t_entry
*e
)
355 if (atomic_read(&e
->refcnt
) == 0) { /* hasn't been recycled */
357 neigh_release(e
->neigh
);
360 while ((skb
= __skb_dequeue(&e
->arpq
)) != NULL
)
364 d
= container_of(e
, struct l2t_data
, l2tab
[e
->idx
]);
365 atomic_inc(&d
->nfree
);
368 /* Locked version of _t4_l2e_free */
369 static void t4_l2e_free(struct l2t_entry
*e
)
374 spin_lock_bh(&e
->lock
);
375 if (atomic_read(&e
->refcnt
) == 0) { /* hasn't been recycled */
377 neigh_release(e
->neigh
);
380 while ((skb
= __skb_dequeue(&e
->arpq
)) != NULL
)
383 spin_unlock_bh(&e
->lock
);
385 d
= container_of(e
, struct l2t_data
, l2tab
[e
->idx
]);
386 atomic_inc(&d
->nfree
);
389 void cxgb4_l2t_release(struct l2t_entry
*e
)
391 if (atomic_dec_and_test(&e
->refcnt
))
394 EXPORT_SYMBOL(cxgb4_l2t_release
);
397 * Update an L2T entry that was previously used for the same next hop as neigh.
398 * Must be called with softirqs disabled.
400 static void reuse_entry(struct l2t_entry
*e
, struct neighbour
*neigh
)
402 unsigned int nud_state
;
404 spin_lock(&e
->lock
); /* avoid race with t4_l2t_free */
405 if (neigh
!= e
->neigh
)
406 neigh_replace(e
, neigh
);
407 nud_state
= neigh
->nud_state
;
408 if (memcmp(e
->dmac
, neigh
->ha
, sizeof(e
->dmac
)) ||
409 !(nud_state
& NUD_VALID
))
410 e
->state
= L2T_STATE_RESOLVING
;
411 else if (nud_state
& NUD_CONNECTED
)
412 e
->state
= L2T_STATE_VALID
;
414 e
->state
= L2T_STATE_STALE
;
415 spin_unlock(&e
->lock
);
418 struct l2t_entry
*cxgb4_l2t_get(struct l2t_data
*d
, struct neighbour
*neigh
,
419 const struct net_device
*physdev
,
420 unsigned int priority
)
425 unsigned int addr_len
= neigh
->tbl
->key_len
;
426 u32
*addr
= (u32
*)neigh
->primary_key
;
427 int ifidx
= neigh
->dev
->ifindex
;
428 int hash
= addr_hash(d
, addr
, addr_len
, ifidx
);
430 if (neigh
->dev
->flags
& IFF_LOOPBACK
)
431 lport
= netdev2pinfo(physdev
)->tx_chan
+ 4;
433 lport
= netdev2pinfo(physdev
)->lport
;
435 if (is_vlan_dev(neigh
->dev
))
436 vlan
= vlan_dev_vlan_id(neigh
->dev
);
440 write_lock_bh(&d
->lock
);
441 for (e
= d
->l2tab
[hash
].first
; e
; e
= e
->next
)
442 if (!addreq(e
, addr
) && e
->ifindex
== ifidx
&&
443 e
->vlan
== vlan
&& e
->lport
== lport
) {
445 if (atomic_read(&e
->refcnt
) == 1)
446 reuse_entry(e
, neigh
);
450 /* Need to allocate a new entry */
453 spin_lock(&e
->lock
); /* avoid race with t4_l2t_free */
454 e
->state
= L2T_STATE_RESOLVING
;
455 if (neigh
->dev
->flags
& IFF_LOOPBACK
)
456 memcpy(e
->dmac
, physdev
->dev_addr
, sizeof(e
->dmac
));
457 memcpy(e
->addr
, addr
, addr_len
);
461 e
->v6
= addr_len
== 16;
462 atomic_set(&e
->refcnt
, 1);
463 neigh_replace(e
, neigh
);
465 e
->next
= d
->l2tab
[hash
].first
;
466 d
->l2tab
[hash
].first
= e
;
467 spin_unlock(&e
->lock
);
470 write_unlock_bh(&d
->lock
);
473 EXPORT_SYMBOL(cxgb4_l2t_get
);
475 u64
cxgb4_select_ntuple(struct net_device
*dev
,
476 const struct l2t_entry
*l2t
)
478 struct adapter
*adap
= netdev2adap(dev
);
479 struct tp_params
*tp
= &adap
->params
.tp
;
482 /* Initialize each of the fields which we care about which are present
483 * in the Compressed Filter Tuple.
485 if (tp
->vlan_shift
>= 0 && l2t
->vlan
!= VLAN_NONE
)
486 ntuple
|= (u64
)(FT_VLAN_VLD_F
| l2t
->vlan
) << tp
->vlan_shift
;
488 if (tp
->port_shift
>= 0)
489 ntuple
|= (u64
)l2t
->lport
<< tp
->port_shift
;
491 if (tp
->protocol_shift
>= 0)
492 ntuple
|= (u64
)IPPROTO_TCP
<< tp
->protocol_shift
;
494 if (tp
->vnic_shift
>= 0) {
495 u32 viid
= cxgb4_port_viid(dev
);
496 u32 vf
= FW_VIID_VIN_G(viid
);
497 u32 pf
= FW_VIID_PFN_G(viid
);
498 u32 vld
= FW_VIID_VIVLD_G(viid
);
500 ntuple
|= (u64
)(FT_VNID_ID_VF_V(vf
) |
501 FT_VNID_ID_PF_V(pf
) |
502 FT_VNID_ID_VLD_V(vld
)) << tp
->vnic_shift
;
507 EXPORT_SYMBOL(cxgb4_select_ntuple
);
510 * Called when address resolution fails for an L2T entry to handle packets
511 * on the arpq head. If a packet specifies a failure handler it is invoked,
512 * otherwise the packet is sent to the device.
514 static void handle_failed_resolution(struct adapter
*adap
, struct l2t_entry
*e
)
518 while ((skb
= __skb_dequeue(&e
->arpq
)) != NULL
) {
519 const struct l2t_skb_cb
*cb
= L2T_SKB_CB(skb
);
521 spin_unlock(&e
->lock
);
522 if (cb
->arp_err_handler
)
523 cb
->arp_err_handler(cb
->handle
, skb
);
525 t4_ofld_send(adap
, skb
);
531 * Called when the host's neighbor layer makes a change to some entry that is
532 * loaded into the HW L2 table.
534 void t4_l2t_update(struct adapter
*adap
, struct neighbour
*neigh
)
537 struct sk_buff_head
*arpq
= NULL
;
538 struct l2t_data
*d
= adap
->l2t
;
539 unsigned int addr_len
= neigh
->tbl
->key_len
;
540 u32
*addr
= (u32
*) neigh
->primary_key
;
541 int ifidx
= neigh
->dev
->ifindex
;
542 int hash
= addr_hash(d
, addr
, addr_len
, ifidx
);
544 read_lock_bh(&d
->lock
);
545 for (e
= d
->l2tab
[hash
].first
; e
; e
= e
->next
)
546 if (!addreq(e
, addr
) && e
->ifindex
== ifidx
) {
548 if (atomic_read(&e
->refcnt
))
550 spin_unlock(&e
->lock
);
553 read_unlock_bh(&d
->lock
);
557 read_unlock(&d
->lock
);
559 if (neigh
!= e
->neigh
)
560 neigh_replace(e
, neigh
);
562 if (e
->state
== L2T_STATE_RESOLVING
) {
563 if (neigh
->nud_state
& NUD_FAILED
) {
565 } else if ((neigh
->nud_state
& (NUD_CONNECTED
| NUD_STALE
)) &&
566 !skb_queue_empty(&e
->arpq
)) {
567 write_l2e(adap
, e
, 1);
570 e
->state
= neigh
->nud_state
& NUD_CONNECTED
?
571 L2T_STATE_VALID
: L2T_STATE_STALE
;
572 if (memcmp(e
->dmac
, neigh
->ha
, sizeof(e
->dmac
)))
573 write_l2e(adap
, e
, 0);
577 handle_failed_resolution(adap
, e
);
578 spin_unlock_bh(&e
->lock
);
581 /* Allocate an L2T entry for use by a switching rule. Such need to be
582 * explicitly freed and while busy they are not on any hash chain, so normal
583 * address resolution updates do not see them.
585 struct l2t_entry
*t4_l2t_alloc_switching(struct adapter
*adap
, u16 vlan
,
586 u8 port
, u8
*eth_addr
)
588 struct l2t_data
*d
= adap
->l2t
;
592 write_lock_bh(&d
->lock
);
593 e
= find_or_alloc_l2e(d
, vlan
, port
, eth_addr
);
595 spin_lock(&e
->lock
); /* avoid race with t4_l2t_free */
596 if (!atomic_read(&e
->refcnt
)) {
597 e
->state
= L2T_STATE_SWITCHING
;
600 ether_addr_copy(e
->dmac
, eth_addr
);
601 atomic_set(&e
->refcnt
, 1);
602 ret
= write_l2e(adap
, e
, 0);
605 spin_unlock(&e
->lock
);
606 write_unlock_bh(&d
->lock
);
610 atomic_inc(&e
->refcnt
);
613 spin_unlock(&e
->lock
);
615 write_unlock_bh(&d
->lock
);
620 * @dev: net_device pointer
622 * @port: Associated port
623 * @dmac: Destination MAC address to add to L2T
624 * Returns pointer to the allocated l2t entry
626 * Allocates an L2T entry for use by switching rule of a filter
628 struct l2t_entry
*cxgb4_l2t_alloc_switching(struct net_device
*dev
, u16 vlan
,
631 struct adapter
*adap
= netdev2adap(dev
);
633 return t4_l2t_alloc_switching(adap
, vlan
, port
, dmac
);
635 EXPORT_SYMBOL(cxgb4_l2t_alloc_switching
);
637 struct l2t_data
*t4_init_l2t(unsigned int l2t_start
, unsigned int l2t_end
)
639 unsigned int l2t_size
;
643 if (l2t_start
>= l2t_end
|| l2t_end
>= L2T_SIZE
)
645 l2t_size
= l2t_end
- l2t_start
+ 1;
646 if (l2t_size
< L2T_MIN_HASH_BUCKETS
)
649 d
= kvzalloc(sizeof(*d
) + l2t_size
* sizeof(struct l2t_entry
), GFP_KERNEL
);
653 d
->l2t_start
= l2t_start
;
654 d
->l2t_size
= l2t_size
;
657 atomic_set(&d
->nfree
, l2t_size
);
658 rwlock_init(&d
->lock
);
660 for (i
= 0; i
< d
->l2t_size
; ++i
) {
662 d
->l2tab
[i
].state
= L2T_STATE_UNUSED
;
663 spin_lock_init(&d
->l2tab
[i
].lock
);
664 atomic_set(&d
->l2tab
[i
].refcnt
, 0);
665 skb_queue_head_init(&d
->l2tab
[i
].arpq
);
670 static inline void *l2t_get_idx(struct seq_file
*seq
, loff_t pos
)
672 struct l2t_data
*d
= seq
->private;
674 return pos
>= d
->l2t_size
? NULL
: &d
->l2tab
[pos
];
677 static void *l2t_seq_start(struct seq_file
*seq
, loff_t
*pos
)
679 return *pos
? l2t_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
682 static void *l2t_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
684 v
= l2t_get_idx(seq
, *pos
);
690 static void l2t_seq_stop(struct seq_file
*seq
, void *v
)
694 static char l2e_state(const struct l2t_entry
*e
)
697 case L2T_STATE_VALID
: return 'V';
698 case L2T_STATE_STALE
: return 'S';
699 case L2T_STATE_SYNC_WRITE
: return 'W';
700 case L2T_STATE_RESOLVING
:
701 return skb_queue_empty(&e
->arpq
) ? 'R' : 'A';
702 case L2T_STATE_SWITCHING
: return 'X';
708 static int l2t_seq_show(struct seq_file
*seq
, void *v
)
710 if (v
== SEQ_START_TOKEN
)
711 seq_puts(seq
, " Idx IP address "
712 "Ethernet address VLAN/P LP State Users Port\n");
715 struct l2t_data
*d
= seq
->private;
716 struct l2t_entry
*e
= v
;
718 spin_lock_bh(&e
->lock
);
719 if (e
->state
== L2T_STATE_SWITCHING
)
722 sprintf(ip
, e
->v6
? "%pI6c" : "%pI4", e
->addr
);
723 seq_printf(seq
, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n",
724 e
->idx
+ d
->l2t_start
, ip
, e
->dmac
,
725 e
->vlan
& VLAN_VID_MASK
, vlan_prio(e
), e
->lport
,
726 l2e_state(e
), atomic_read(&e
->refcnt
),
727 e
->neigh
? e
->neigh
->dev
->name
: "");
728 spin_unlock_bh(&e
->lock
);
733 static const struct seq_operations l2t_seq_ops
= {
734 .start
= l2t_seq_start
,
735 .next
= l2t_seq_next
,
736 .stop
= l2t_seq_stop
,
740 static int l2t_seq_open(struct inode
*inode
, struct file
*file
)
742 int rc
= seq_open(file
, &l2t_seq_ops
);
745 struct adapter
*adap
= inode
->i_private
;
746 struct seq_file
*seq
= file
->private_data
;
748 seq
->private = adap
->l2t
;
753 const struct file_operations t4_l2t_fops
= {
754 .owner
= THIS_MODULE
,
755 .open
= l2t_seq_open
,
758 .release
= seq_release
,