2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #include <linux/pci.h>
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
50 int t4vf_wait_dev_ready(struct adapter
*adapter
)
52 const u32 whoami
= T4VF_PL_BASE_ADDR
+ PL_VF_WHOAMI
;
53 const u32 notready1
= 0xffffffff;
54 const u32 notready2
= 0xeeeeeeee;
57 val
= t4_read_reg(adapter
, whoami
);
58 if (val
!= notready1
&& val
!= notready2
)
61 val
= t4_read_reg(adapter
, whoami
);
62 if (val
!= notready1
&& val
!= notready2
)
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
72 static void get_mbox_rpl(struct adapter
*adapter
, __be64
*rpl
, int size
,
75 for ( ; size
; size
-= 8, mbox_data
+= 8)
76 *rpl
++ = cpu_to_be64(t4_read_reg64(adapter
, mbox_data
));
80 * t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81 * @adapter: the adapter
82 * @cmd: the Firmware Mailbox Command or Reply
83 * @size: command length in bytes
84 * @access: the time (ms) needed to access the Firmware Mailbox
85 * @execute: the time (ms) the command spent being executed
87 static void t4vf_record_mbox(struct adapter
*adapter
, const __be64
*cmd
,
88 int size
, int access
, int execute
)
90 struct mbox_cmd_log
*log
= adapter
->mbox_log
;
91 struct mbox_cmd
*entry
;
94 entry
= mbox_cmd_log_entry(log
, log
->cursor
++);
95 if (log
->cursor
== log
->size
)
98 for (i
= 0; i
< size
/ 8; i
++)
99 entry
->cmd
[i
] = be64_to_cpu(cmd
[i
]);
100 while (i
< MBOX_LEN
/ 8)
102 entry
->timestamp
= jiffies
;
103 entry
->seqno
= log
->seqno
++;
104 entry
->access
= access
;
105 entry
->execute
= execute
;
109 * t4vf_wr_mbox_core - send a command to FW through the mailbox
110 * @adapter: the adapter
111 * @cmd: the command to write
112 * @size: command length in bytes
113 * @rpl: where to optionally store the reply
114 * @sleep_ok: if true we may sleep while awaiting command completion
116 * Sends the given command to FW through the mailbox and waits for the
117 * FW to execute the command. If @rpl is not %NULL it is used to store
118 * the FW's reply to the command. The command and its optional reply
119 * are of the same length. FW can take up to 500 ms to respond.
120 * @sleep_ok determines whether we may sleep while awaiting the response.
121 * If sleeping is allowed we use progressive backoff otherwise we spin.
123 * The return value is 0 on success or a negative errno on failure. A
124 * failure can happen either because we are not able to execute the
125 * command or FW executes it but signals an error. In the latter case
126 * the return value is the error code indicated by FW (negated).
128 int t4vf_wr_mbox_core(struct adapter
*adapter
, const void *cmd
, int size
,
129 void *rpl
, bool sleep_ok
)
131 static const int delay
[] = {
132 1, 1, 3, 5, 10, 10, 20, 50, 100
135 u16 access
= 0, execute
= 0;
137 int i
, ms
, delay_idx
, ret
;
139 u32 mbox_ctl
= T4VF_CIM_BASE_ADDR
+ CIM_VF_EXT_MAILBOX_CTRL
;
140 u32 cmd_op
= FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr
*)cmd
)->hi
));
141 __be64 cmd_rpl
[MBOX_LEN
/ 8];
142 struct mbox_list entry
;
144 /* In T6, mailbox size is changed to 128 bytes to avoid
145 * invalidating the entire prefetch buffer.
147 if (CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
)
148 mbox_data
= T4VF_MBDATA_BASE_ADDR
;
150 mbox_data
= T6VF_MBDATA_BASE_ADDR
;
153 * Commands must be multiples of 16 bytes in length and may not be
154 * larger than the size of the Mailbox Data register array.
156 if ((size
% 16) != 0 ||
157 size
> NUM_CIM_VF_MAILBOX_DATA_INSTANCES
* 4)
160 /* Queue ourselves onto the mailbox access list. When our entry is at
161 * the front of the list, we have rights to access the mailbox. So we
162 * wait [for a while] till we're at the front [or bail out with an
165 spin_lock(&adapter
->mbox_lock
);
166 list_add_tail(&entry
.list
, &adapter
->mlist
.list
);
167 spin_unlock(&adapter
->mbox_lock
);
172 for (i
= 0; ; i
+= ms
) {
173 /* If we've waited too long, return a busy indication. This
174 * really ought to be based on our initial position in the
175 * mailbox access list but this is a start. We very rearely
176 * contend on access to the mailbox ...
178 if (i
> FW_CMD_MAX_TIMEOUT
) {
179 spin_lock(&adapter
->mbox_lock
);
180 list_del(&entry
.list
);
181 spin_unlock(&adapter
->mbox_lock
);
183 t4vf_record_mbox(adapter
, cmd
, size
, access
, ret
);
187 /* If we're at the head, break out and start the mailbox
190 if (list_first_entry(&adapter
->mlist
.list
, struct mbox_list
,
194 /* Delay for a bit before checking again ... */
196 ms
= delay
[delay_idx
]; /* last element may repeat */
197 if (delay_idx
< ARRAY_SIZE(delay
) - 1)
206 * Loop trying to get ownership of the mailbox. Return an error
207 * if we can't gain ownership.
209 v
= MBOWNER_G(t4_read_reg(adapter
, mbox_ctl
));
210 for (i
= 0; v
== MBOX_OWNER_NONE
&& i
< 3; i
++)
211 v
= MBOWNER_G(t4_read_reg(adapter
, mbox_ctl
));
212 if (v
!= MBOX_OWNER_DRV
) {
213 spin_lock(&adapter
->mbox_lock
);
214 list_del(&entry
.list
);
215 spin_unlock(&adapter
->mbox_lock
);
216 ret
= (v
== MBOX_OWNER_FW
) ? -EBUSY
: -ETIMEDOUT
;
217 t4vf_record_mbox(adapter
, cmd
, size
, access
, ret
);
222 * Write the command array into the Mailbox Data register array and
223 * transfer ownership of the mailbox to the firmware.
225 * For the VFs, the Mailbox Data "registers" are actually backed by
226 * T4's "MA" interface rather than PL Registers (as is the case for
227 * the PFs). Because these are in different coherency domains, the
228 * write to the VF's PL-register-backed Mailbox Control can race in
229 * front of the writes to the MA-backed VF Mailbox Data "registers".
230 * So we need to do a read-back on at least one byte of the VF Mailbox
231 * Data registers before doing the write to the VF Mailbox Control
234 if (cmd_op
!= FW_VI_STATS_CMD
)
235 t4vf_record_mbox(adapter
, cmd
, size
, access
, 0);
236 for (i
= 0, p
= cmd
; i
< size
; i
+= 8)
237 t4_write_reg64(adapter
, mbox_data
+ i
, be64_to_cpu(*p
++));
238 t4_read_reg(adapter
, mbox_data
); /* flush write */
240 t4_write_reg(adapter
, mbox_ctl
,
241 MBMSGVALID_F
| MBOWNER_V(MBOX_OWNER_FW
));
242 t4_read_reg(adapter
, mbox_ctl
); /* flush write */
245 * Spin waiting for firmware to acknowledge processing our command.
250 for (i
= 0; i
< FW_CMD_MAX_TIMEOUT
; i
+= ms
) {
252 ms
= delay
[delay_idx
];
253 if (delay_idx
< ARRAY_SIZE(delay
) - 1)
260 * If we're the owner, see if this is the reply we wanted.
262 v
= t4_read_reg(adapter
, mbox_ctl
);
263 if (MBOWNER_G(v
) == MBOX_OWNER_DRV
) {
265 * If the Message Valid bit isn't on, revoke ownership
266 * of the mailbox and continue waiting for our reply.
268 if ((v
& MBMSGVALID_F
) == 0) {
269 t4_write_reg(adapter
, mbox_ctl
,
270 MBOWNER_V(MBOX_OWNER_NONE
));
275 * We now have our reply. Extract the command return
276 * value, copy the reply back to our caller's buffer
277 * (if specified) and revoke ownership of the mailbox.
278 * We return the (negated) firmware command return
279 * code (this depends on FW_SUCCESS == 0).
281 get_mbox_rpl(adapter
, cmd_rpl
, size
, mbox_data
);
283 /* return value in low-order little-endian word */
284 v
= be64_to_cpu(cmd_rpl
[0]);
287 /* request bit in high-order BE word */
288 WARN_ON((be32_to_cpu(*(const __be32
*)cmd
)
289 & FW_CMD_REQUEST_F
) == 0);
290 memcpy(rpl
, cmd_rpl
, size
);
291 WARN_ON((be32_to_cpu(*(__be32
*)rpl
)
292 & FW_CMD_REQUEST_F
) != 0);
294 t4_write_reg(adapter
, mbox_ctl
,
295 MBOWNER_V(MBOX_OWNER_NONE
));
297 if (cmd_op
!= FW_VI_STATS_CMD
)
298 t4vf_record_mbox(adapter
, cmd_rpl
, size
, access
,
300 spin_lock(&adapter
->mbox_lock
);
301 list_del(&entry
.list
);
302 spin_unlock(&adapter
->mbox_lock
);
303 return -FW_CMD_RETVAL_G(v
);
307 /* We timed out. Return the error ... */
309 t4vf_record_mbox(adapter
, cmd
, size
, access
, ret
);
310 spin_lock(&adapter
->mbox_lock
);
311 list_del(&entry
.list
);
312 spin_unlock(&adapter
->mbox_lock
);
316 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
320 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
321 * @caps16: a 16-bit Port Capabilities value
323 * Returns the equivalent 32-bit Port Capabilities value.
325 static fw_port_cap32_t
fwcaps16_to_caps32(fw_port_cap16_t caps16
)
327 fw_port_cap32_t caps32
= 0;
329 #define CAP16_TO_CAP32(__cap) \
331 if (caps16 & FW_PORT_CAP_##__cap) \
332 caps32 |= FW_PORT_CAP32_##__cap; \
335 CAP16_TO_CAP32(SPEED_100M
);
336 CAP16_TO_CAP32(SPEED_1G
);
337 CAP16_TO_CAP32(SPEED_25G
);
338 CAP16_TO_CAP32(SPEED_10G
);
339 CAP16_TO_CAP32(SPEED_40G
);
340 CAP16_TO_CAP32(SPEED_100G
);
341 CAP16_TO_CAP32(FC_RX
);
342 CAP16_TO_CAP32(FC_TX
);
343 CAP16_TO_CAP32(ANEG
);
344 CAP16_TO_CAP32(MDIX
);
345 CAP16_TO_CAP32(MDIAUTO
);
346 CAP16_TO_CAP32(FEC_RS
);
347 CAP16_TO_CAP32(FEC_BASER_RS
);
348 CAP16_TO_CAP32(802_3_PAUSE
);
349 CAP16_TO_CAP32(802_3_ASM_DIR
);
351 #undef CAP16_TO_CAP32
356 /* Translate Firmware Pause specification to Common Code */
357 static inline enum cc_pause
fwcap_to_cc_pause(fw_port_cap32_t fw_pause
)
359 enum cc_pause cc_pause
= 0;
361 if (fw_pause
& FW_PORT_CAP32_FC_RX
)
362 cc_pause
|= PAUSE_RX
;
363 if (fw_pause
& FW_PORT_CAP32_FC_TX
)
364 cc_pause
|= PAUSE_TX
;
369 /* Translate Firmware Forward Error Correction specification to Common Code */
370 static inline enum cc_fec
fwcap_to_cc_fec(fw_port_cap32_t fw_fec
)
372 enum cc_fec cc_fec
= 0;
374 if (fw_fec
& FW_PORT_CAP32_FEC_RS
)
376 if (fw_fec
& FW_PORT_CAP32_FEC_BASER_RS
)
377 cc_fec
|= FEC_BASER_RS
;
383 * Return the highest speed set in the port capabilities, in Mb/s.
385 static unsigned int fwcap_to_speed(fw_port_cap32_t caps
)
387 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
389 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
393 TEST_SPEED_RETURN(400G
, 400000);
394 TEST_SPEED_RETURN(200G
, 200000);
395 TEST_SPEED_RETURN(100G
, 100000);
396 TEST_SPEED_RETURN(50G
, 50000);
397 TEST_SPEED_RETURN(40G
, 40000);
398 TEST_SPEED_RETURN(25G
, 25000);
399 TEST_SPEED_RETURN(10G
, 10000);
400 TEST_SPEED_RETURN(1G
, 1000);
401 TEST_SPEED_RETURN(100M
, 100);
403 #undef TEST_SPEED_RETURN
409 * init_link_config - initialize a link's SW state
410 * @lc: structure holding the link state
411 * @pcaps: link Port Capabilities
412 * @acaps: link current Advertised Port Capabilities
414 * Initializes the SW state maintained for each link, including the link's
415 * capabilities and default speed/flow-control/autonegotiation settings.
417 static void init_link_config(struct link_config
*lc
,
418 fw_port_cap32_t pcaps
,
419 fw_port_cap32_t acaps
)
425 lc
->requested_fc
= lc
->fc
= PAUSE_RX
| PAUSE_TX
;
427 /* For Forward Error Control, we default to whatever the Firmware
428 * tells us the Link is currently advertising.
430 lc
->auto_fec
= fwcap_to_cc_fec(acaps
);
431 lc
->requested_fec
= FEC_AUTO
;
432 lc
->fec
= lc
->auto_fec
;
434 if (lc
->pcaps
& FW_PORT_CAP32_ANEG
) {
435 lc
->acaps
= acaps
& ADVERT_MASK
;
436 lc
->autoneg
= AUTONEG_ENABLE
;
437 lc
->requested_fc
|= PAUSE_AUTONEG
;
440 lc
->autoneg
= AUTONEG_DISABLE
;
445 * t4vf_port_init - initialize port hardware/software state
446 * @adapter: the adapter
447 * @pidx: the adapter port index
449 int t4vf_port_init(struct adapter
*adapter
, int pidx
)
451 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
452 unsigned int fw_caps
= adapter
->params
.fw_caps_support
;
453 struct fw_vi_cmd vi_cmd
, vi_rpl
;
454 struct fw_port_cmd port_cmd
, port_rpl
;
455 enum fw_port_type port_type
;
457 fw_port_cap32_t pcaps
, acaps
;
460 /* If we haven't yet determined whether we're talking to Firmware
461 * which knows the new 32-bit Port Capabilities, it's time to find
462 * out now. This will also tell new Firmware to send us Port Status
463 * Updates using the new 32-bit Port Capabilities version of the
464 * Port Information message.
466 if (fw_caps
== FW_CAPS_UNKNOWN
) {
469 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF
) |
470 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32
));
472 ret
= t4vf_set_params(adapter
, 1, ¶m
, &val
);
473 fw_caps
= (ret
== 0 ? FW_CAPS32
: FW_CAPS16
);
474 adapter
->params
.fw_caps_support
= fw_caps
;
478 * Execute a VI Read command to get our Virtual Interface information
479 * like MAC address, etc.
481 memset(&vi_cmd
, 0, sizeof(vi_cmd
));
482 vi_cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD
) |
485 vi_cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(vi_cmd
));
486 vi_cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID_V(pi
->viid
));
487 ret
= t4vf_wr_mbox(adapter
, &vi_cmd
, sizeof(vi_cmd
), &vi_rpl
);
488 if (ret
!= FW_SUCCESS
)
491 BUG_ON(pi
->port_id
!= FW_VI_CMD_PORTID_G(vi_rpl
.portid_pkd
));
492 pi
->rss_size
= FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl
.rsssize_pkd
));
493 t4_os_set_hw_addr(adapter
, pidx
, vi_rpl
.mac
);
496 * If we don't have read access to our port information, we're done
497 * now. Otherwise, execute a PORT Read command to get it ...
499 if (!(adapter
->params
.vfres
.r_caps
& FW_CMD_CAP_PORT
))
502 memset(&port_cmd
, 0, sizeof(port_cmd
));
503 port_cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD
) |
506 FW_PORT_CMD_PORTID_V(pi
->port_id
));
507 port_cmd
.action_to_len16
= cpu_to_be32(
508 FW_PORT_CMD_ACTION_V(fw_caps
== FW_CAPS16
509 ? FW_PORT_ACTION_GET_PORT_INFO
510 : FW_PORT_ACTION_GET_PORT_INFO32
) |
512 ret
= t4vf_wr_mbox(adapter
, &port_cmd
, sizeof(port_cmd
), &port_rpl
);
513 if (ret
!= FW_SUCCESS
)
516 /* Extract the various fields from the Port Information message. */
517 if (fw_caps
== FW_CAPS16
) {
518 u32 lstatus
= be32_to_cpu(port_rpl
.u
.info
.lstatus_to_modtype
);
520 port_type
= FW_PORT_CMD_PTYPE_G(lstatus
);
521 mdio_addr
= ((lstatus
& FW_PORT_CMD_MDIOCAP_F
)
522 ? FW_PORT_CMD_MDIOADDR_G(lstatus
)
524 pcaps
= fwcaps16_to_caps32(be16_to_cpu(port_rpl
.u
.info
.pcap
));
525 acaps
= fwcaps16_to_caps32(be16_to_cpu(port_rpl
.u
.info
.acap
));
528 be32_to_cpu(port_rpl
.u
.info32
.lstatus32_to_cbllen32
);
530 port_type
= FW_PORT_CMD_PORTTYPE32_G(lstatus32
);
531 mdio_addr
= ((lstatus32
& FW_PORT_CMD_MDIOCAP32_F
)
532 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32
)
534 pcaps
= be32_to_cpu(port_rpl
.u
.info32
.pcaps32
);
535 acaps
= be32_to_cpu(port_rpl
.u
.info32
.acaps32
);
538 pi
->port_type
= port_type
;
539 pi
->mdio_addr
= mdio_addr
;
540 pi
->mod_type
= FW_PORT_MOD_TYPE_NA
;
542 init_link_config(&pi
->link_cfg
, pcaps
, acaps
);
547 * t4vf_fw_reset - issue a reset to FW
548 * @adapter: the adapter
550 * Issues a reset command to FW. For a Physical Function this would
551 * result in the Firmware resetting all of its state. For a Virtual
552 * Function this just resets the state associated with the VF.
554 int t4vf_fw_reset(struct adapter
*adapter
)
556 struct fw_reset_cmd cmd
;
558 memset(&cmd
, 0, sizeof(cmd
));
559 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD
) |
561 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
562 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
566 * t4vf_query_params - query FW or device parameters
567 * @adapter: the adapter
568 * @nparams: the number of parameters
569 * @params: the parameter names
570 * @vals: the parameter values
572 * Reads the values of firmware or device parameters. Up to 7 parameters
573 * can be queried at once.
575 static int t4vf_query_params(struct adapter
*adapter
, unsigned int nparams
,
576 const u32
*params
, u32
*vals
)
579 struct fw_params_cmd cmd
, rpl
;
580 struct fw_params_param
*p
;
586 memset(&cmd
, 0, sizeof(cmd
));
587 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD
) |
590 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
591 param
[nparams
].mnem
), 16);
592 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16_V(len16
));
593 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++)
594 p
->mnem
= htonl(*params
++);
596 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
598 for (i
= 0, p
= &rpl
.param
[0]; i
< nparams
; i
++, p
++)
599 *vals
++ = be32_to_cpu(p
->val
);
604 * t4vf_set_params - sets FW or device parameters
605 * @adapter: the adapter
606 * @nparams: the number of parameters
607 * @params: the parameter names
608 * @vals: the parameter values
610 * Sets the values of firmware or device parameters. Up to 7 parameters
611 * can be specified at once.
613 int t4vf_set_params(struct adapter
*adapter
, unsigned int nparams
,
614 const u32
*params
, const u32
*vals
)
617 struct fw_params_cmd cmd
;
618 struct fw_params_param
*p
;
624 memset(&cmd
, 0, sizeof(cmd
));
625 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD
) |
628 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
629 param
[nparams
]), 16);
630 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16_V(len16
));
631 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++) {
632 p
->mnem
= cpu_to_be32(*params
++);
633 p
->val
= cpu_to_be32(*vals
++);
636 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
640 * t4vf_fl_pkt_align - return the fl packet alignment
641 * @adapter: the adapter
643 * T4 has a single field to specify the packing and padding boundary.
644 * T5 onwards has separate fields for this and hence the alignment for
645 * next packet offset is maximum of these two. And T6 changes the
646 * Ingress Padding Boundary Shift, so it's all a mess and it's best
647 * if we put this in low-level Common Code ...
650 int t4vf_fl_pkt_align(struct adapter
*adapter
)
652 u32 sge_control
, sge_control2
;
653 unsigned int ingpadboundary
, ingpackboundary
, fl_align
, ingpad_shift
;
655 sge_control
= adapter
->params
.sge
.sge_control
;
657 /* T4 uses a single control field to specify both the PCIe Padding and
658 * Packing Boundary. T5 introduced the ability to specify these
659 * separately. The actual Ingress Packet Data alignment boundary
660 * within Packed Buffer Mode is the maximum of these two
661 * specifications. (Note that it makes no real practical sense to
662 * have the Pading Boudary be larger than the Packing Boundary but you
663 * could set the chip up that way and, in fact, legacy T4 code would
664 * end doing this because it would initialize the Padding Boundary and
665 * leave the Packing Boundary initialized to 0 (16 bytes).)
666 * Padding Boundary values in T6 starts from 8B,
667 * where as it is 32B for T4 and T5.
669 if (CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
)
670 ingpad_shift
= INGPADBOUNDARY_SHIFT_X
;
672 ingpad_shift
= T6_INGPADBOUNDARY_SHIFT_X
;
674 ingpadboundary
= 1 << (INGPADBOUNDARY_G(sge_control
) + ingpad_shift
);
676 fl_align
= ingpadboundary
;
677 if (!is_t4(adapter
->params
.chip
)) {
678 /* T5 has a different interpretation of one of the PCIe Packing
681 sge_control2
= adapter
->params
.sge
.sge_control2
;
682 ingpackboundary
= INGPACKBOUNDARY_G(sge_control2
);
683 if (ingpackboundary
== INGPACKBOUNDARY_16B_X
)
684 ingpackboundary
= 16;
686 ingpackboundary
= 1 << (ingpackboundary
+
687 INGPACKBOUNDARY_SHIFT_X
);
689 fl_align
= max(ingpadboundary
, ingpackboundary
);
695 * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
696 * @adapter: the adapter
698 * @qtype: the Ingress or Egress type for @qid
699 * @pbar2_qoffset: BAR2 Queue Offset
700 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
702 * Returns the BAR2 SGE Queue Registers information associated with the
703 * indicated Absolute Queue ID. These are passed back in return value
704 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
705 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
707 * This may return an error which indicates that BAR2 SGE Queue
708 * registers aren't available. If an error is not returned, then the
709 * following values are returned:
711 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
712 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
714 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
715 * require the "Inferred Queue ID" ability may be used. E.g. the
716 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
717 * then these "Inferred Queue ID" register may not be used.
719 int t4vf_bar2_sge_qregs(struct adapter
*adapter
,
721 enum t4_bar2_qtype qtype
,
723 unsigned int *pbar2_qid
)
725 unsigned int page_shift
, page_size
, qpp_shift
, qpp_mask
;
726 u64 bar2_page_offset
, bar2_qoffset
;
727 unsigned int bar2_qid
, bar2_qid_offset
, bar2_qinferred
;
729 /* T4 doesn't support BAR2 SGE Queue registers.
731 if (is_t4(adapter
->params
.chip
))
734 /* Get our SGE Page Size parameters.
736 page_shift
= adapter
->params
.sge
.sge_vf_hps
+ 10;
737 page_size
= 1 << page_shift
;
739 /* Get the right Queues per Page parameters for our Queue.
741 qpp_shift
= (qtype
== T4_BAR2_QTYPE_EGRESS
742 ? adapter
->params
.sge
.sge_vf_eq_qpp
743 : adapter
->params
.sge
.sge_vf_iq_qpp
);
744 qpp_mask
= (1 << qpp_shift
) - 1;
746 /* Calculate the basics of the BAR2 SGE Queue register area:
747 * o The BAR2 page the Queue registers will be in.
748 * o The BAR2 Queue ID.
749 * o The BAR2 Queue ID Offset into the BAR2 page.
751 bar2_page_offset
= ((u64
)(qid
>> qpp_shift
) << page_shift
);
752 bar2_qid
= qid
& qpp_mask
;
753 bar2_qid_offset
= bar2_qid
* SGE_UDB_SIZE
;
755 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
756 * hardware will infer the Absolute Queue ID simply from the writes to
757 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
758 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
759 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
760 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
761 * from the BAR2 Page and BAR2 Queue ID.
763 * One important censequence of this is that some BAR2 SGE registers
764 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
765 * there. But other registers synthesize the SGE Queue ID purely
766 * from the writes to the registers -- the Write Combined Doorbell
767 * Buffer is a good example. These BAR2 SGE Registers are only
768 * available for those BAR2 SGE Register areas where the SGE Absolute
769 * Queue ID can be inferred from simple writes.
771 bar2_qoffset
= bar2_page_offset
;
772 bar2_qinferred
= (bar2_qid_offset
< page_size
);
773 if (bar2_qinferred
) {
774 bar2_qoffset
+= bar2_qid_offset
;
778 *pbar2_qoffset
= bar2_qoffset
;
779 *pbar2_qid
= bar2_qid
;
783 unsigned int t4vf_get_pf_from_vf(struct adapter
*adapter
)
787 whoami
= t4_read_reg(adapter
, T4VF_PL_BASE_ADDR
+ PL_VF_WHOAMI_A
);
788 return (CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
?
789 SOURCEPF_G(whoami
) : T6_SOURCEPF_G(whoami
));
793 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
794 * @adapter: the adapter
796 * Retrieves various core SGE parameters in the form of hardware SGE
797 * register values. The caller is responsible for decoding these as
798 * needed. The SGE parameters are stored in @adapter->params.sge.
800 int t4vf_get_sge_params(struct adapter
*adapter
)
802 struct sge_params
*sge_params
= &adapter
->params
.sge
;
803 u32 params
[7], vals
[7];
806 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
807 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A
));
808 params
[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
809 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A
));
810 params
[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
811 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A
));
812 params
[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
813 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A
));
814 params
[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
815 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A
));
816 params
[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
817 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A
));
818 params
[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
819 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A
));
820 v
= t4vf_query_params(adapter
, 7, params
, vals
);
823 sge_params
->sge_control
= vals
[0];
824 sge_params
->sge_host_page_size
= vals
[1];
825 sge_params
->sge_fl_buffer_size
[0] = vals
[2];
826 sge_params
->sge_fl_buffer_size
[1] = vals
[3];
827 sge_params
->sge_timer_value_0_and_1
= vals
[4];
828 sge_params
->sge_timer_value_2_and_3
= vals
[5];
829 sge_params
->sge_timer_value_4_and_5
= vals
[6];
831 /* T4 uses a single control field to specify both the PCIe Padding and
832 * Packing Boundary. T5 introduced the ability to specify these
833 * separately with the Padding Boundary in SGE_CONTROL and and Packing
834 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab
835 * SGE_CONTROL in order to determine how ingress packet data will be
836 * laid out in Packed Buffer Mode. Unfortunately, older versions of
837 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
838 * failure grabbing it we throw an error since we can't figure out the
841 if (!is_t4(adapter
->params
.chip
)) {
842 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
843 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A
));
844 v
= t4vf_query_params(adapter
, 1, params
, vals
);
845 if (v
!= FW_SUCCESS
) {
846 dev_err(adapter
->pdev_dev
,
847 "Unable to get SGE Control2; "
848 "probably old firmware.\n");
851 sge_params
->sge_control2
= vals
[0];
854 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
855 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A
));
856 params
[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
857 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A
));
858 v
= t4vf_query_params(adapter
, 2, params
, vals
);
861 sge_params
->sge_ingress_rx_threshold
= vals
[0];
862 sge_params
->sge_congestion_control
= vals
[1];
864 /* For T5 and later we want to use the new BAR2 Doorbells.
865 * Unfortunately, older firmware didn't allow the this register to be
868 if (!is_t4(adapter
->params
.chip
)) {
869 unsigned int pf
, s_hps
, s_qpp
;
871 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
872 FW_PARAMS_PARAM_XYZ_V(
873 SGE_EGRESS_QUEUES_PER_PAGE_VF_A
));
874 params
[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
875 FW_PARAMS_PARAM_XYZ_V(
876 SGE_INGRESS_QUEUES_PER_PAGE_VF_A
));
877 v
= t4vf_query_params(adapter
, 2, params
, vals
);
878 if (v
!= FW_SUCCESS
) {
879 dev_warn(adapter
->pdev_dev
,
880 "Unable to get VF SGE Queues/Page; "
881 "probably old firmware.\n");
884 sge_params
->sge_egress_queues_per_page
= vals
[0];
885 sge_params
->sge_ingress_queues_per_page
= vals
[1];
887 /* We need the Queues/Page for our VF. This is based on the
888 * PF from which we're instantiated and is indexed in the
889 * register we just read. Do it once here so other code in
890 * the driver can just use it.
892 pf
= t4vf_get_pf_from_vf(adapter
);
893 s_hps
= (HOSTPAGESIZEPF0_S
+
894 (HOSTPAGESIZEPF1_S
- HOSTPAGESIZEPF0_S
) * pf
);
895 sge_params
->sge_vf_hps
=
896 ((sge_params
->sge_host_page_size
>> s_hps
)
897 & HOSTPAGESIZEPF0_M
);
899 s_qpp
= (QUEUESPERPAGEPF0_S
+
900 (QUEUESPERPAGEPF1_S
- QUEUESPERPAGEPF0_S
) * pf
);
901 sge_params
->sge_vf_eq_qpp
=
902 ((sge_params
->sge_egress_queues_per_page
>> s_qpp
)
903 & QUEUESPERPAGEPF0_M
);
904 sge_params
->sge_vf_iq_qpp
=
905 ((sge_params
->sge_ingress_queues_per_page
>> s_qpp
)
906 & QUEUESPERPAGEPF0_M
);
913 * t4vf_get_vpd_params - retrieve device VPD paremeters
914 * @adapter: the adapter
916 * Retrives various device Vital Product Data parameters. The parameters
917 * are stored in @adapter->params.vpd.
919 int t4vf_get_vpd_params(struct adapter
*adapter
)
921 struct vpd_params
*vpd_params
= &adapter
->params
.vpd
;
922 u32 params
[7], vals
[7];
925 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
926 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK
));
927 v
= t4vf_query_params(adapter
, 1, params
, vals
);
930 vpd_params
->cclk
= vals
[0];
936 * t4vf_get_dev_params - retrieve device paremeters
937 * @adapter: the adapter
939 * Retrives various device parameters. The parameters are stored in
940 * @adapter->params.dev.
942 int t4vf_get_dev_params(struct adapter
*adapter
)
944 struct dev_params
*dev_params
= &adapter
->params
.dev
;
945 u32 params
[7], vals
[7];
948 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
949 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV
));
950 params
[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
951 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV
));
952 v
= t4vf_query_params(adapter
, 2, params
, vals
);
955 dev_params
->fwrev
= vals
[0];
956 dev_params
->tprev
= vals
[1];
962 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
963 * @adapter: the adapter
965 * Retrieves global RSS mode and parameters with which we have to live
966 * and stores them in the @adapter's RSS parameters.
968 int t4vf_get_rss_glb_config(struct adapter
*adapter
)
970 struct rss_params
*rss
= &adapter
->params
.rss
;
971 struct fw_rss_glb_config_cmd cmd
, rpl
;
975 * Execute an RSS Global Configuration read command to retrieve
976 * our RSS configuration.
978 memset(&cmd
, 0, sizeof(cmd
));
979 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD
) |
982 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
983 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
988 * Transate the big-endian RSS Global Configuration into our
989 * cpu-endian format based on the RSS mode. We also do first level
990 * filtering at this point to weed out modes which don't support
993 rss
->mode
= FW_RSS_GLB_CONFIG_CMD_MODE_G(
994 be32_to_cpu(rpl
.u
.manual
.mode_pkd
));
996 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
997 u32 word
= be32_to_cpu(
998 rpl
.u
.basicvirtual
.synmapen_to_hashtoeplitz
);
1000 rss
->u
.basicvirtual
.synmapen
=
1001 ((word
& FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F
) != 0);
1002 rss
->u
.basicvirtual
.syn4tupenipv6
=
1003 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F
) != 0);
1004 rss
->u
.basicvirtual
.syn2tupenipv6
=
1005 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F
) != 0);
1006 rss
->u
.basicvirtual
.syn4tupenipv4
=
1007 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F
) != 0);
1008 rss
->u
.basicvirtual
.syn2tupenipv4
=
1009 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F
) != 0);
1011 rss
->u
.basicvirtual
.ofdmapen
=
1012 ((word
& FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F
) != 0);
1014 rss
->u
.basicvirtual
.tnlmapen
=
1015 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F
) != 0);
1016 rss
->u
.basicvirtual
.tnlalllookup
=
1017 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F
) != 0);
1019 rss
->u
.basicvirtual
.hashtoeplitz
=
1020 ((word
& FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F
) != 0);
1022 /* we need at least Tunnel Map Enable to be set */
1023 if (!rss
->u
.basicvirtual
.tnlmapen
)
1029 /* all unknown/unsupported RSS modes result in an error */
1037 * t4vf_get_vfres - retrieve VF resource limits
1038 * @adapter: the adapter
1040 * Retrieves configured resource limits and capabilities for a virtual
1041 * function. The results are stored in @adapter->vfres.
1043 int t4vf_get_vfres(struct adapter
*adapter
)
1045 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
1046 struct fw_pfvf_cmd cmd
, rpl
;
1051 * Execute PFVF Read command to get VF resource limits; bail out early
1052 * with error on command failure.
1054 memset(&cmd
, 0, sizeof(cmd
));
1055 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD
) |
1058 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
1059 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1064 * Extract VF resource limits and return success.
1066 word
= be32_to_cpu(rpl
.niqflint_niq
);
1067 vfres
->niqflint
= FW_PFVF_CMD_NIQFLINT_G(word
);
1068 vfres
->niq
= FW_PFVF_CMD_NIQ_G(word
);
1070 word
= be32_to_cpu(rpl
.type_to_neq
);
1071 vfres
->neq
= FW_PFVF_CMD_NEQ_G(word
);
1072 vfres
->pmask
= FW_PFVF_CMD_PMASK_G(word
);
1074 word
= be32_to_cpu(rpl
.tc_to_nexactf
);
1075 vfres
->tc
= FW_PFVF_CMD_TC_G(word
);
1076 vfres
->nvi
= FW_PFVF_CMD_NVI_G(word
);
1077 vfres
->nexactf
= FW_PFVF_CMD_NEXACTF_G(word
);
1079 word
= be32_to_cpu(rpl
.r_caps_to_nethctrl
);
1080 vfres
->r_caps
= FW_PFVF_CMD_R_CAPS_G(word
);
1081 vfres
->wx_caps
= FW_PFVF_CMD_WX_CAPS_G(word
);
1082 vfres
->nethctrl
= FW_PFVF_CMD_NETHCTRL_G(word
);
1088 * t4vf_read_rss_vi_config - read a VI's RSS configuration
1089 * @adapter: the adapter
1090 * @viid: Virtual Interface ID
1091 * @config: pointer to host-native VI RSS Configuration buffer
1093 * Reads the Virtual Interface's RSS configuration information and
1094 * translates it into CPU-native format.
1096 int t4vf_read_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
1097 union rss_vi_config
*config
)
1099 struct fw_rss_vi_config_cmd cmd
, rpl
;
1102 memset(&cmd
, 0, sizeof(cmd
));
1103 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD
) |
1106 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
1107 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
1108 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1112 switch (adapter
->params
.rss
.mode
) {
1113 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
1114 u32 word
= be32_to_cpu(rpl
.u
.basicvirtual
.defaultq_to_udpen
);
1116 config
->basicvirtual
.ip6fourtupen
=
1117 ((word
& FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F
) != 0);
1118 config
->basicvirtual
.ip6twotupen
=
1119 ((word
& FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F
) != 0);
1120 config
->basicvirtual
.ip4fourtupen
=
1121 ((word
& FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F
) != 0);
1122 config
->basicvirtual
.ip4twotupen
=
1123 ((word
& FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F
) != 0);
1124 config
->basicvirtual
.udpen
=
1125 ((word
& FW_RSS_VI_CONFIG_CMD_UDPEN_F
) != 0);
1126 config
->basicvirtual
.defaultq
=
1127 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word
);
1139 * t4vf_write_rss_vi_config - write a VI's RSS configuration
1140 * @adapter: the adapter
1141 * @viid: Virtual Interface ID
1142 * @config: pointer to host-native VI RSS Configuration buffer
1144 * Write the Virtual Interface's RSS configuration information
1145 * (translating it into firmware-native format before writing).
1147 int t4vf_write_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
1148 union rss_vi_config
*config
)
1150 struct fw_rss_vi_config_cmd cmd
, rpl
;
1152 memset(&cmd
, 0, sizeof(cmd
));
1153 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD
) |
1156 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
1157 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
1158 switch (adapter
->params
.rss
.mode
) {
1159 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
1162 if (config
->basicvirtual
.ip6fourtupen
)
1163 word
|= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F
;
1164 if (config
->basicvirtual
.ip6twotupen
)
1165 word
|= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F
;
1166 if (config
->basicvirtual
.ip4fourtupen
)
1167 word
|= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F
;
1168 if (config
->basicvirtual
.ip4twotupen
)
1169 word
|= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F
;
1170 if (config
->basicvirtual
.udpen
)
1171 word
|= FW_RSS_VI_CONFIG_CMD_UDPEN_F
;
1172 word
|= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1173 config
->basicvirtual
.defaultq
);
1174 cmd
.u
.basicvirtual
.defaultq_to_udpen
= cpu_to_be32(word
);
1182 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1186 * t4vf_config_rss_range - configure a portion of the RSS mapping table
1187 * @adapter: the adapter
1188 * @viid: Virtual Interface of RSS Table Slice
1189 * @start: starting entry in the table to write
1190 * @n: how many table entries to write
1191 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1192 * @nrspq: number of values in @rspq
1194 * Programs the selected part of the VI's RSS mapping table with the
1195 * provided values. If @nrspq < @n the supplied values are used repeatedly
1196 * until the full table range is populated.
1198 * The caller must ensure the values in @rspq are in the range 0..1023.
1200 int t4vf_config_rss_range(struct adapter
*adapter
, unsigned int viid
,
1201 int start
, int n
, const u16
*rspq
, int nrspq
)
1203 const u16
*rsp
= rspq
;
1204 const u16
*rsp_end
= rspq
+nrspq
;
1205 struct fw_rss_ind_tbl_cmd cmd
;
1208 * Initialize firmware command template to write the RSS table.
1210 memset(&cmd
, 0, sizeof(cmd
));
1211 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD
) |
1214 FW_RSS_IND_TBL_CMD_VIID_V(viid
));
1215 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
1218 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1219 * Queue Identifiers. These Ingress Queue IDs are packed three to
1220 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1224 __be32
*qp
= &cmd
.iq0_to_iq2
;
1225 int nq
= min(n
, 32);
1229 * Set up the firmware RSS command header to send the next
1230 * "nq" Ingress Queue IDs to the firmware.
1232 cmd
.niqid
= cpu_to_be16(nq
);
1233 cmd
.startidx
= cpu_to_be16(start
);
1236 * "nq" more done for the start of the next loop.
1242 * While there are still Ingress Queue IDs to stuff into the
1243 * current firmware RSS command, retrieve them from the
1244 * Ingress Queue ID array and insert them into the command.
1248 * Grab up to the next 3 Ingress Queue IDs (wrapping
1249 * around the Ingress Queue ID array if necessary) and
1250 * insert them into the firmware RSS command at the
1251 * current 3-tuple position within the commad.
1255 int nqbuf
= min(3, nq
);
1258 qbuf
[0] = qbuf
[1] = qbuf
[2] = 0;
1265 *qp
++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf
[0]) |
1266 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf
[1]) |
1267 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf
[2]));
1271 * Send this portion of the RRS table update to the firmware;
1272 * bail out on any errors.
1274 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1282 * t4vf_alloc_vi - allocate a virtual interface on a port
1283 * @adapter: the adapter
1284 * @port_id: physical port associated with the VI
1286 * Allocate a new Virtual Interface and bind it to the indicated
1287 * physical port. Return the new Virtual Interface Identifier on
1288 * success, or a [negative] error number on failure.
1290 int t4vf_alloc_vi(struct adapter
*adapter
, int port_id
)
1292 struct fw_vi_cmd cmd
, rpl
;
1296 * Execute a VI command to allocate Virtual Interface and return its
1299 memset(&cmd
, 0, sizeof(cmd
));
1300 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD
) |
1304 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
1306 cmd
.portid_pkd
= FW_VI_CMD_PORTID_V(port_id
);
1307 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1311 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl
.type_viid
));
1315 * t4vf_free_vi -- free a virtual interface
1316 * @adapter: the adapter
1317 * @viid: the virtual interface identifier
1319 * Free a previously allocated Virtual Interface. Return an error on
1322 int t4vf_free_vi(struct adapter
*adapter
, int viid
)
1324 struct fw_vi_cmd cmd
;
1327 * Execute a VI command to free the Virtual Interface.
1329 memset(&cmd
, 0, sizeof(cmd
));
1330 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD
) |
1333 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
1335 cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID_V(viid
));
1336 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1340 * t4vf_enable_vi - enable/disable a virtual interface
1341 * @adapter: the adapter
1342 * @viid: the Virtual Interface ID
1343 * @rx_en: 1=enable Rx, 0=disable Rx
1344 * @tx_en: 1=enable Tx, 0=disable Tx
1346 * Enables/disables a virtual interface.
1348 int t4vf_enable_vi(struct adapter
*adapter
, unsigned int viid
,
1349 bool rx_en
, bool tx_en
)
1351 struct fw_vi_enable_cmd cmd
;
1353 memset(&cmd
, 0, sizeof(cmd
));
1354 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD
) |
1357 FW_VI_ENABLE_CMD_VIID_V(viid
));
1358 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en
) |
1359 FW_VI_ENABLE_CMD_EEN_V(tx_en
) |
1361 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1365 * t4vf_identify_port - identify a VI's port by blinking its LED
1366 * @adapter: the adapter
1367 * @viid: the Virtual Interface ID
1368 * @nblinks: how many times to blink LED at 2.5 Hz
1370 * Identifies a VI's port by blinking its LED.
1372 int t4vf_identify_port(struct adapter
*adapter
, unsigned int viid
,
1373 unsigned int nblinks
)
1375 struct fw_vi_enable_cmd cmd
;
1377 memset(&cmd
, 0, sizeof(cmd
));
1378 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD
) |
1381 FW_VI_ENABLE_CMD_VIID_V(viid
));
1382 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_LED_F
|
1384 cmd
.blinkdur
= cpu_to_be16(nblinks
);
1385 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1389 * t4vf_set_rxmode - set Rx properties of a virtual interface
1390 * @adapter: the adapter
1392 * @mtu: the new MTU or -1 for no change
1393 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1394 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1395 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1396 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1399 * Sets Rx properties of a virtual interface.
1401 int t4vf_set_rxmode(struct adapter
*adapter
, unsigned int viid
,
1402 int mtu
, int promisc
, int all_multi
, int bcast
, int vlanex
,
1405 struct fw_vi_rxmode_cmd cmd
;
1407 /* convert to FW values */
1409 mtu
= FW_VI_RXMODE_CMD_MTU_M
;
1411 promisc
= FW_VI_RXMODE_CMD_PROMISCEN_M
;
1413 all_multi
= FW_VI_RXMODE_CMD_ALLMULTIEN_M
;
1415 bcast
= FW_VI_RXMODE_CMD_BROADCASTEN_M
;
1417 vlanex
= FW_VI_RXMODE_CMD_VLANEXEN_M
;
1419 memset(&cmd
, 0, sizeof(cmd
));
1420 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD
) |
1423 FW_VI_RXMODE_CMD_VIID_V(viid
));
1424 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
1425 cmd
.mtu_to_vlanexen
=
1426 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu
) |
1427 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc
) |
1428 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi
) |
1429 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast
) |
1430 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex
));
1431 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
1435 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1436 * @adapter: the adapter
1437 * @viid: the Virtual Interface Identifier
1438 * @free: if true any existing filters for this VI id are first removed
1439 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1440 * @addr: the MAC address(es)
1441 * @idx: where to store the index of each allocated filter
1442 * @hash: pointer to hash address filter bitmap
1443 * @sleep_ok: call is allowed to sleep
1445 * Allocates an exact-match filter for each of the supplied addresses and
1446 * sets it to the corresponding address. If @idx is not %NULL it should
1447 * have at least @naddr entries, each of which will be set to the index of
1448 * the filter allocated for the corresponding MAC address. If a filter
1449 * could not be allocated for an address its index is set to 0xffff.
1450 * If @hash is not %NULL addresses that fail to allocate an exact filter
1451 * are hashed and update the hash filter bitmap pointed at by @hash.
1453 * Returns a negative error number or the number of filters allocated.
1455 int t4vf_alloc_mac_filt(struct adapter
*adapter
, unsigned int viid
, bool free
,
1456 unsigned int naddr
, const u8
**addr
, u16
*idx
,
1457 u64
*hash
, bool sleep_ok
)
1459 int offset
, ret
= 0;
1460 unsigned nfilters
= 0;
1461 unsigned int rem
= naddr
;
1462 struct fw_vi_mac_cmd cmd
, rpl
;
1463 unsigned int max_naddr
= adapter
->params
.arch
.mps_tcam_size
;
1465 if (naddr
> max_naddr
)
1468 for (offset
= 0; offset
< naddr
; /**/) {
1469 unsigned int fw_naddr
= (rem
< ARRAY_SIZE(cmd
.u
.exact
)
1471 : ARRAY_SIZE(cmd
.u
.exact
));
1472 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1473 u
.exact
[fw_naddr
]), 16);
1474 struct fw_vi_mac_exact
*p
;
1477 memset(&cmd
, 0, sizeof(cmd
));
1478 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
1481 (free
? FW_CMD_EXEC_F
: 0) |
1482 FW_VI_MAC_CMD_VIID_V(viid
));
1483 cmd
.freemacs_to_len16
=
1484 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free
) |
1485 FW_CMD_LEN16_V(len16
));
1487 for (i
= 0, p
= cmd
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1488 p
->valid_to_idx
= cpu_to_be16(
1489 FW_VI_MAC_CMD_VALID_F
|
1490 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC
));
1491 memcpy(p
->macaddr
, addr
[offset
+i
], sizeof(p
->macaddr
));
1495 ret
= t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), &rpl
,
1497 if (ret
&& ret
!= -ENOMEM
)
1500 for (i
= 0, p
= rpl
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1501 u16 index
= FW_VI_MAC_CMD_IDX_G(
1502 be16_to_cpu(p
->valid_to_idx
));
1509 if (index
< max_naddr
)
1512 *hash
|= (1ULL << hash_mac_addr(addr
[offset
+i
]));
1521 * If there were no errors or we merely ran out of room in our MAC
1522 * address arena, return the number of filters actually written.
1524 if (ret
== 0 || ret
== -ENOMEM
)
1530 * t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1531 * @adapter: the adapter
1533 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1534 * @addr: the MAC address(es)
1535 * @sleep_ok: call is allowed to sleep
1537 * Frees the exact-match filter for each of the supplied addresses
1539 * Returns a negative error number or the number of filters freed.
1541 int t4vf_free_mac_filt(struct adapter
*adapter
, unsigned int viid
,
1542 unsigned int naddr
, const u8
**addr
, bool sleep_ok
)
1544 int offset
, ret
= 0;
1545 struct fw_vi_mac_cmd cmd
;
1546 unsigned int nfilters
= 0;
1547 unsigned int max_naddr
= adapter
->params
.arch
.mps_tcam_size
;
1548 unsigned int rem
= naddr
;
1550 if (naddr
> max_naddr
)
1553 for (offset
= 0; offset
< (int)naddr
; /**/) {
1554 unsigned int fw_naddr
= (rem
< ARRAY_SIZE(cmd
.u
.exact
) ?
1555 rem
: ARRAY_SIZE(cmd
.u
.exact
));
1556 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1557 u
.exact
[fw_naddr
]), 16);
1558 struct fw_vi_mac_exact
*p
;
1561 memset(&cmd
, 0, sizeof(cmd
));
1562 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
1566 FW_VI_MAC_CMD_VIID_V(viid
));
1567 cmd
.freemacs_to_len16
=
1568 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1569 FW_CMD_LEN16_V(len16
));
1571 for (i
= 0, p
= cmd
.u
.exact
; i
< (int)fw_naddr
; i
++, p
++) {
1572 p
->valid_to_idx
= cpu_to_be16(
1573 FW_VI_MAC_CMD_VALID_F
|
1574 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE
));
1575 memcpy(p
->macaddr
, addr
[offset
+i
], sizeof(p
->macaddr
));
1578 ret
= t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), &cmd
,
1583 for (i
= 0, p
= cmd
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1584 u16 index
= FW_VI_MAC_CMD_IDX_G(
1585 be16_to_cpu(p
->valid_to_idx
));
1587 if (index
< max_naddr
)
1601 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1602 * @adapter: the adapter
1603 * @viid: the Virtual Interface ID
1604 * @idx: index of existing filter for old value of MAC address, or -1
1605 * @addr: the new MAC address value
1606 * @persist: if idx < 0, the new MAC allocation should be persistent
1608 * Modifies an exact-match filter and sets it to the new MAC address.
1609 * Note that in general it is not possible to modify the value of a given
1610 * filter so the generic way to modify an address filter is to free the
1611 * one being used by the old address value and allocate a new filter for
1612 * the new address value. @idx can be -1 if the address is a new
1615 * Returns a negative error number or the index of the filter with the new
1618 int t4vf_change_mac(struct adapter
*adapter
, unsigned int viid
,
1619 int idx
, const u8
*addr
, bool persist
)
1622 struct fw_vi_mac_cmd cmd
, rpl
;
1623 struct fw_vi_mac_exact
*p
= &cmd
.u
.exact
[0];
1624 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1626 unsigned int max_mac_addr
= adapter
->params
.arch
.mps_tcam_size
;
1629 * If this is a new allocation, determine whether it should be
1630 * persistent (across a "freemacs" operation) or not.
1633 idx
= persist
? FW_VI_MAC_ADD_PERSIST_MAC
: FW_VI_MAC_ADD_MAC
;
1635 memset(&cmd
, 0, sizeof(cmd
));
1636 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
1639 FW_VI_MAC_CMD_VIID_V(viid
));
1640 cmd
.freemacs_to_len16
= cpu_to_be32(FW_CMD_LEN16_V(len16
));
1641 p
->valid_to_idx
= cpu_to_be16(FW_VI_MAC_CMD_VALID_F
|
1642 FW_VI_MAC_CMD_IDX_V(idx
));
1643 memcpy(p
->macaddr
, addr
, sizeof(p
->macaddr
));
1645 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1647 p
= &rpl
.u
.exact
[0];
1648 ret
= FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p
->valid_to_idx
));
1649 if (ret
>= max_mac_addr
)
1656 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1657 * @adapter: the adapter
1658 * @viid: the Virtual Interface Identifier
1659 * @ucast: whether the hash filter should also match unicast addresses
1660 * @vec: the value to be written to the hash filter
1661 * @sleep_ok: call is allowed to sleep
1663 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1665 int t4vf_set_addr_hash(struct adapter
*adapter
, unsigned int viid
,
1666 bool ucast
, u64 vec
, bool sleep_ok
)
1668 struct fw_vi_mac_cmd cmd
;
1669 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1672 memset(&cmd
, 0, sizeof(cmd
));
1673 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
1676 FW_VI_ENABLE_CMD_VIID_V(viid
));
1677 cmd
.freemacs_to_len16
= cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F
|
1678 FW_VI_MAC_CMD_HASHUNIEN_V(ucast
) |
1679 FW_CMD_LEN16_V(len16
));
1680 cmd
.u
.hash
.hashvec
= cpu_to_be64(vec
);
1681 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
1685 * t4vf_get_port_stats - collect "port" statistics
1686 * @adapter: the adapter
1687 * @pidx: the port index
1688 * @s: the stats structure to fill
1690 * Collect statistics for the "port"'s Virtual Interface.
1692 int t4vf_get_port_stats(struct adapter
*adapter
, int pidx
,
1693 struct t4vf_port_stats
*s
)
1695 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
1696 struct fw_vi_stats_vf fwstats
;
1697 unsigned int rem
= VI_VF_NUM_STATS
;
1698 __be64
*fwsp
= (__be64
*)&fwstats
;
1701 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1702 * commands. We could use a Work Request and get all of them at once
1703 * but that's an asynchronous interface which is awkward to use.
1706 unsigned int ix
= VI_VF_NUM_STATS
- rem
;
1707 unsigned int nstats
= min(6U, rem
);
1708 struct fw_vi_stats_cmd cmd
, rpl
;
1709 size_t len
= (offsetof(struct fw_vi_stats_cmd
, u
) +
1710 sizeof(struct fw_vi_stats_ctl
));
1711 size_t len16
= DIV_ROUND_UP(len
, 16);
1714 memset(&cmd
, 0, sizeof(cmd
));
1715 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD
) |
1716 FW_VI_STATS_CMD_VIID_V(pi
->viid
) |
1719 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16_V(len16
));
1720 cmd
.u
.ctl
.nstats_ix
=
1721 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix
) |
1722 FW_VI_STATS_CMD_NSTATS_V(nstats
));
1723 ret
= t4vf_wr_mbox_ns(adapter
, &cmd
, len
, &rpl
);
1727 memcpy(fwsp
, &rpl
.u
.ctl
.stat0
, sizeof(__be64
) * nstats
);
1734 * Translate firmware statistics into host native statistics.
1736 s
->tx_bcast_bytes
= be64_to_cpu(fwstats
.tx_bcast_bytes
);
1737 s
->tx_bcast_frames
= be64_to_cpu(fwstats
.tx_bcast_frames
);
1738 s
->tx_mcast_bytes
= be64_to_cpu(fwstats
.tx_mcast_bytes
);
1739 s
->tx_mcast_frames
= be64_to_cpu(fwstats
.tx_mcast_frames
);
1740 s
->tx_ucast_bytes
= be64_to_cpu(fwstats
.tx_ucast_bytes
);
1741 s
->tx_ucast_frames
= be64_to_cpu(fwstats
.tx_ucast_frames
);
1742 s
->tx_drop_frames
= be64_to_cpu(fwstats
.tx_drop_frames
);
1743 s
->tx_offload_bytes
= be64_to_cpu(fwstats
.tx_offload_bytes
);
1744 s
->tx_offload_frames
= be64_to_cpu(fwstats
.tx_offload_frames
);
1746 s
->rx_bcast_bytes
= be64_to_cpu(fwstats
.rx_bcast_bytes
);
1747 s
->rx_bcast_frames
= be64_to_cpu(fwstats
.rx_bcast_frames
);
1748 s
->rx_mcast_bytes
= be64_to_cpu(fwstats
.rx_mcast_bytes
);
1749 s
->rx_mcast_frames
= be64_to_cpu(fwstats
.rx_mcast_frames
);
1750 s
->rx_ucast_bytes
= be64_to_cpu(fwstats
.rx_ucast_bytes
);
1751 s
->rx_ucast_frames
= be64_to_cpu(fwstats
.rx_ucast_frames
);
1753 s
->rx_err_frames
= be64_to_cpu(fwstats
.rx_err_frames
);
1759 * t4vf_iq_free - free an ingress queue and its free lists
1760 * @adapter: the adapter
1761 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1762 * @iqid: ingress queue ID
1763 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1764 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1766 * Frees an ingress queue and its associated free lists, if any.
1768 int t4vf_iq_free(struct adapter
*adapter
, unsigned int iqtype
,
1769 unsigned int iqid
, unsigned int fl0id
, unsigned int fl1id
)
1771 struct fw_iq_cmd cmd
;
1773 memset(&cmd
, 0, sizeof(cmd
));
1774 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD
) |
1777 cmd
.alloc_to_len16
= cpu_to_be32(FW_IQ_CMD_FREE_F
|
1779 cmd
.type_to_iqandstindex
=
1780 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype
));
1782 cmd
.iqid
= cpu_to_be16(iqid
);
1783 cmd
.fl0id
= cpu_to_be16(fl0id
);
1784 cmd
.fl1id
= cpu_to_be16(fl1id
);
1785 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1789 * t4vf_eth_eq_free - free an Ethernet egress queue
1790 * @adapter: the adapter
1791 * @eqid: egress queue ID
1793 * Frees an Ethernet egress queue.
1795 int t4vf_eth_eq_free(struct adapter
*adapter
, unsigned int eqid
)
1797 struct fw_eq_eth_cmd cmd
;
1799 memset(&cmd
, 0, sizeof(cmd
));
1800 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD
) |
1803 cmd
.alloc_to_len16
= cpu_to_be32(FW_EQ_ETH_CMD_FREE_F
|
1805 cmd
.eqid_pkd
= cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid
));
1806 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1810 * t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1811 * @link_down_rc: Link Down Reason Code
1813 * Returns a string representation of the Link Down Reason Code.
1815 static const char *t4vf_link_down_rc_str(unsigned char link_down_rc
)
1817 static const char * const reason
[] = {
1820 "Auto-negotiation Failure",
1822 "Insufficient Airflow",
1823 "Unable To Determine Reason",
1824 "No RX Signal Detected",
1828 if (link_down_rc
>= ARRAY_SIZE(reason
))
1829 return "Bad Reason Code";
1831 return reason
[link_down_rc
];
1835 * t4vf_handle_get_port_info - process a FW reply message
1836 * @pi: the port info
1837 * @rpl: start of the FW message
1839 * Processes a GET_PORT_INFO FW reply message.
1841 static void t4vf_handle_get_port_info(struct port_info
*pi
,
1842 const struct fw_port_cmd
*cmd
)
1844 int action
= FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd
->action_to_len16
));
1845 struct adapter
*adapter
= pi
->adapter
;
1846 struct link_config
*lc
= &pi
->link_cfg
;
1847 int link_ok
, linkdnrc
;
1848 enum fw_port_type port_type
;
1849 enum fw_port_module_type mod_type
;
1850 unsigned int speed
, fc
, fec
;
1851 fw_port_cap32_t pcaps
, acaps
, lpacaps
, linkattr
;
1853 /* Extract the various fields from the Port Information message. */
1855 case FW_PORT_ACTION_GET_PORT_INFO
: {
1856 u32 lstatus
= be32_to_cpu(cmd
->u
.info
.lstatus_to_modtype
);
1858 link_ok
= (lstatus
& FW_PORT_CMD_LSTATUS_F
) != 0;
1859 linkdnrc
= FW_PORT_CMD_LINKDNRC_G(lstatus
);
1860 port_type
= FW_PORT_CMD_PTYPE_G(lstatus
);
1861 mod_type
= FW_PORT_CMD_MODTYPE_G(lstatus
);
1862 pcaps
= fwcaps16_to_caps32(be16_to_cpu(cmd
->u
.info
.pcap
));
1863 acaps
= fwcaps16_to_caps32(be16_to_cpu(cmd
->u
.info
.acap
));
1864 lpacaps
= fwcaps16_to_caps32(be16_to_cpu(cmd
->u
.info
.lpacap
));
1866 /* Unfortunately the format of the Link Status in the old
1867 * 16-bit Port Information message isn't the same as the
1868 * 16-bit Port Capabilities bitfield used everywhere else ...
1871 if (lstatus
& FW_PORT_CMD_RXPAUSE_F
)
1872 linkattr
|= FW_PORT_CAP32_FC_RX
;
1873 if (lstatus
& FW_PORT_CMD_TXPAUSE_F
)
1874 linkattr
|= FW_PORT_CAP32_FC_TX
;
1875 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M
))
1876 linkattr
|= FW_PORT_CAP32_SPEED_100M
;
1877 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G
))
1878 linkattr
|= FW_PORT_CAP32_SPEED_1G
;
1879 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G
))
1880 linkattr
|= FW_PORT_CAP32_SPEED_10G
;
1881 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G
))
1882 linkattr
|= FW_PORT_CAP32_SPEED_25G
;
1883 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G
))
1884 linkattr
|= FW_PORT_CAP32_SPEED_40G
;
1885 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G
))
1886 linkattr
|= FW_PORT_CAP32_SPEED_100G
;
1891 case FW_PORT_ACTION_GET_PORT_INFO32
: {
1894 lstatus32
= be32_to_cpu(cmd
->u
.info32
.lstatus32_to_cbllen32
);
1895 link_ok
= (lstatus32
& FW_PORT_CMD_LSTATUS32_F
) != 0;
1896 linkdnrc
= FW_PORT_CMD_LINKDNRC32_G(lstatus32
);
1897 port_type
= FW_PORT_CMD_PORTTYPE32_G(lstatus32
);
1898 mod_type
= FW_PORT_CMD_MODTYPE32_G(lstatus32
);
1899 pcaps
= be32_to_cpu(cmd
->u
.info32
.pcaps32
);
1900 acaps
= be32_to_cpu(cmd
->u
.info32
.acaps32
);
1901 lpacaps
= be32_to_cpu(cmd
->u
.info32
.lpacaps32
);
1902 linkattr
= be32_to_cpu(cmd
->u
.info32
.linkattr32
);
1907 dev_err(adapter
->pdev_dev
, "Handle Port Information: Bad Command/Action %#x\n",
1908 be32_to_cpu(cmd
->action_to_len16
));
1912 fec
= fwcap_to_cc_fec(acaps
);
1913 fc
= fwcap_to_cc_pause(linkattr
);
1914 speed
= fwcap_to_speed(linkattr
);
1916 if (mod_type
!= pi
->mod_type
) {
1917 /* When a new Transceiver Module is inserted, the Firmware
1918 * will examine any Forward Error Correction parameters
1919 * present in the Transceiver Module i2c EPROM and determine
1920 * the supported and recommended FEC settings from those
1921 * based on IEEE 802.3 standards. We always record the
1922 * IEEE 802.3 recommended "automatic" settings.
1926 /* Some versions of the early T6 Firmware "cheated" when
1927 * handling different Transceiver Modules by changing the
1928 * underlaying Port Type reported to the Host Drivers. As
1929 * such we need to capture whatever Port Type the Firmware
1930 * sends us and record it in case it's different from what we
1931 * were told earlier. Unfortunately, since Firmware is
1932 * forever, we'll need to keep this code here forever, but in
1933 * later T6 Firmware it should just be an assignment of the
1934 * same value already recorded.
1936 pi
->port_type
= port_type
;
1938 pi
->mod_type
= mod_type
;
1939 t4vf_os_portmod_changed(adapter
, pi
->pidx
);
1942 if (link_ok
!= lc
->link_ok
|| speed
!= lc
->speed
||
1943 fc
!= lc
->fc
|| fec
!= lc
->fec
) { /* something changed */
1944 if (!link_ok
&& lc
->link_ok
) {
1945 lc
->link_down_rc
= linkdnrc
;
1946 dev_warn(adapter
->pdev_dev
, "Port %d link down, reason: %s\n",
1947 pi
->port_id
, t4vf_link_down_rc_str(linkdnrc
));
1949 lc
->link_ok
= link_ok
;
1955 lc
->lpacaps
= lpacaps
;
1956 lc
->acaps
= acaps
& ADVERT_MASK
;
1958 if (lc
->acaps
& FW_PORT_CAP32_ANEG
) {
1959 lc
->autoneg
= AUTONEG_ENABLE
;
1961 /* When Autoneg is disabled, user needs to set
1963 * Similar to cxgb4_ethtool.c: set_link_ksettings
1966 lc
->speed_caps
= fwcap_to_speed(acaps
);
1967 lc
->autoneg
= AUTONEG_DISABLE
;
1970 t4vf_os_link_changed(adapter
, pi
->pidx
, link_ok
);
1975 * t4vf_update_port_info - retrieve and update port information if changed
1976 * @pi: the port_info
1978 * We issue a Get Port Information Command to the Firmware and, if
1979 * successful, we check to see if anything is different from what we
1980 * last recorded and update things accordingly.
1982 int t4vf_update_port_info(struct port_info
*pi
)
1984 unsigned int fw_caps
= pi
->adapter
->params
.fw_caps_support
;
1985 struct fw_port_cmd port_cmd
;
1988 memset(&port_cmd
, 0, sizeof(port_cmd
));
1989 port_cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD
) |
1990 FW_CMD_REQUEST_F
| FW_CMD_READ_F
|
1991 FW_PORT_CMD_PORTID_V(pi
->port_id
));
1992 port_cmd
.action_to_len16
= cpu_to_be32(
1993 FW_PORT_CMD_ACTION_V(fw_caps
== FW_CAPS16
1994 ? FW_PORT_ACTION_GET_PORT_INFO
1995 : FW_PORT_ACTION_GET_PORT_INFO32
) |
1996 FW_LEN16(port_cmd
));
1997 ret
= t4vf_wr_mbox(pi
->adapter
, &port_cmd
, sizeof(port_cmd
),
2001 t4vf_handle_get_port_info(pi
, &port_cmd
);
2006 * t4vf_handle_fw_rpl - process a firmware reply message
2007 * @adapter: the adapter
2008 * @rpl: start of the firmware message
2010 * Processes a firmware message, such as link state change messages.
2012 int t4vf_handle_fw_rpl(struct adapter
*adapter
, const __be64
*rpl
)
2014 const struct fw_cmd_hdr
*cmd_hdr
= (const struct fw_cmd_hdr
*)rpl
;
2015 u8 opcode
= FW_CMD_OP_G(be32_to_cpu(cmd_hdr
->hi
));
2020 * Link/module state change message.
2022 const struct fw_port_cmd
*port_cmd
=
2023 (const struct fw_port_cmd
*)rpl
;
2024 int action
= FW_PORT_CMD_ACTION_G(
2025 be32_to_cpu(port_cmd
->action_to_len16
));
2028 if (action
!= FW_PORT_ACTION_GET_PORT_INFO
&&
2029 action
!= FW_PORT_ACTION_GET_PORT_INFO32
) {
2030 dev_err(adapter
->pdev_dev
,
2031 "Unknown firmware PORT reply action %x\n",
2036 port_id
= FW_PORT_CMD_PORTID_G(
2037 be32_to_cpu(port_cmd
->op_to_portid
));
2038 for_each_port(adapter
, pidx
) {
2039 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
2041 if (pi
->port_id
!= port_id
)
2043 t4vf_handle_get_port_info(pi
, port_cmd
);
2049 dev_err(adapter
->pdev_dev
, "Unknown firmware reply %X\n",
2057 int t4vf_prep_adapter(struct adapter
*adapter
)
2060 unsigned int chipid
;
2062 /* Wait for the device to become ready before proceeding ...
2064 err
= t4vf_wait_dev_ready(adapter
);
2068 /* Default port and clock for debugging in case we can't reach
2071 adapter
->params
.nports
= 1;
2072 adapter
->params
.vfres
.pmask
= 1;
2073 adapter
->params
.vpd
.cclk
= 50000;
2075 adapter
->params
.chip
= 0;
2076 switch (CHELSIO_PCI_ID_VER(adapter
->pdev
->device
)) {
2078 adapter
->params
.chip
|= CHELSIO_CHIP_CODE(CHELSIO_T4
, 0);
2079 adapter
->params
.arch
.sge_fl_db
= DBPRIO_F
;
2080 adapter
->params
.arch
.mps_tcam_size
=
2081 NUM_MPS_CLS_SRAM_L_INSTANCES
;
2085 chipid
= REV_G(t4_read_reg(adapter
, PL_VF_REV_A
));
2086 adapter
->params
.chip
|= CHELSIO_CHIP_CODE(CHELSIO_T5
, chipid
);
2087 adapter
->params
.arch
.sge_fl_db
= DBPRIO_F
| DBTYPE_F
;
2088 adapter
->params
.arch
.mps_tcam_size
=
2089 NUM_MPS_T5_CLS_SRAM_L_INSTANCES
;
2093 chipid
= REV_G(t4_read_reg(adapter
, PL_VF_REV_A
));
2094 adapter
->params
.chip
|= CHELSIO_CHIP_CODE(CHELSIO_T6
, chipid
);
2095 adapter
->params
.arch
.sge_fl_db
= 0;
2096 adapter
->params
.arch
.mps_tcam_size
=
2097 NUM_MPS_T5_CLS_SRAM_L_INSTANCES
;
2105 * t4vf_get_vf_mac_acl - Get the MAC address to be set to
2106 * the VI of this VF.
2107 * @adapter: The adapter
2108 * @pf: The pf associated with vf
2109 * @naddr: the number of ACL MAC addresses returned in addr
2110 * @addr: Placeholder for MAC addresses
2112 * Find the MAC address to be set to the VF's VI. The requested MAC address
2113 * is from the host OS via callback in the PF driver.
2115 int t4vf_get_vf_mac_acl(struct adapter
*adapter
, unsigned int pf
,
2116 unsigned int *naddr
, u8
*addr
)
2118 struct fw_acl_mac_cmd cmd
;
2121 memset(&cmd
, 0, sizeof(cmd
));
2122 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD
) |
2125 cmd
.en_to_len16
= cpu_to_be32((unsigned int)FW_LEN16(cmd
));
2126 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &cmd
);
2130 if (cmd
.nmac
< *naddr
)
2135 memcpy(addr
, cmd
.macaddr3
, sizeof(cmd
.macaddr3
));
2138 memcpy(addr
, cmd
.macaddr2
, sizeof(cmd
.macaddr2
));
2141 memcpy(addr
, cmd
.macaddr1
, sizeof(cmd
.macaddr1
));
2144 memcpy(addr
, cmd
.macaddr0
, sizeof(cmd
.macaddr0
));
2152 * t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2153 * the VI of this VF.
2154 * @adapter: The adapter
2156 * Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2157 * is from the host OS via callback in the PF driver.
2159 int t4vf_get_vf_vlan_acl(struct adapter
*adapter
)
2161 struct fw_acl_vlan_cmd cmd
;
2165 cmd
.op_to_vfn
= htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD
) |
2166 FW_CMD_REQUEST_F
| FW_CMD_READ_F
);
2168 /* Note: Do not enable the ACL */
2169 cmd
.en_to_len16
= cpu_to_be32((unsigned int)FW_LEN16(cmd
));
2171 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &cmd
);
2174 vlan
= be16_to_cpu(cmd
.vlanid
[0]);