2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
25 #include <dma-coherence.h>
27 #ifdef CONFIG_DMA_MAYBE_COHERENT
28 int coherentio
= 0; /* User defined DMA coherency from command line. */
29 EXPORT_SYMBOL_GPL(coherentio
);
30 int hw_coherentio
= 0; /* Actual hardware supported DMA coherency setting. */
32 static int __init
setcoherentio(char *str
)
35 pr_info("Hardware DMA cache coherency (command line)\n");
38 early_param("coherentio", setcoherentio
);
40 static int __init
setnocoherentio(char *str
)
43 pr_info("Software DMA cache coherency (command line)\n");
46 early_param("nocoherentio", setnocoherentio
);
49 static inline struct page
*dma_addr_to_page(struct device
*dev
,
53 plat_dma_addr_to_phys(dev
, dma_addr
) >> PAGE_SHIFT
);
57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
58 * speculatively fill random cachelines with stale data at any time,
59 * requiring an extra flush post-DMA.
61 * Warning on the terminology - Linux calls an uncached area coherent;
62 * MIPS terminology calls memory areas with hardware maintained coherency
65 * Note that the R14000 and R16000 should also be checked for in this
66 * condition. However this function is only called on non-I/O-coherent
67 * systems and only the R10000 and R12000 are used in such systems, the
68 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
70 static inline int cpu_needs_post_dma_flush(struct device
*dev
)
72 return !plat_device_is_coherent(dev
) &&
73 (boot_cpu_type() == CPU_R10000
||
74 boot_cpu_type() == CPU_R12000
||
75 boot_cpu_type() == CPU_BMIPS5000
);
78 static gfp_t
massage_gfp_flags(const struct device
*dev
, gfp_t gfp
)
82 /* ignore region specifiers */
83 gfp
&= ~(__GFP_DMA
| __GFP_DMA32
| __GFP_HIGHMEM
);
90 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
91 if (dev
->coherent_dma_mask
< DMA_BIT_MASK(32))
93 else if (dev
->coherent_dma_mask
< DMA_BIT_MASK(64))
94 dma_flag
= __GFP_DMA32
;
97 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
98 if (dev
->coherent_dma_mask
< DMA_BIT_MASK(64))
99 dma_flag
= __GFP_DMA32
;
102 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
103 if (dev
->coherent_dma_mask
< DMA_BIT_MASK(sizeof(phys_addr_t
) * 8))
104 dma_flag
= __GFP_DMA
;
109 /* Don't invoke OOM killer */
110 gfp
|= __GFP_NORETRY
;
112 return gfp
| dma_flag
;
115 static void *mips_dma_alloc_noncoherent(struct device
*dev
, size_t size
,
116 dma_addr_t
* dma_handle
, gfp_t gfp
)
120 gfp
= massage_gfp_flags(dev
, gfp
);
122 ret
= (void *) __get_free_pages(gfp
, get_order(size
));
125 memset(ret
, 0, size
);
126 *dma_handle
= plat_map_dma_mem(dev
, ret
, size
);
132 static void *mips_dma_alloc_coherent(struct device
*dev
, size_t size
,
133 dma_addr_t
* dma_handle
, gfp_t gfp
, struct dma_attrs
*attrs
)
136 struct page
*page
= NULL
;
137 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
140 * XXX: seems like the coherent and non-coherent implementations could
143 if (dma_get_attr(DMA_ATTR_NON_CONSISTENT
, attrs
))
144 return mips_dma_alloc_noncoherent(dev
, size
, dma_handle
, gfp
);
146 gfp
= massage_gfp_flags(dev
, gfp
);
148 if (IS_ENABLED(CONFIG_DMA_CMA
) && gfpflags_allow_blocking(gfp
))
149 page
= dma_alloc_from_contiguous(dev
,
150 count
, get_order(size
));
152 page
= alloc_pages(gfp
, get_order(size
));
157 ret
= page_address(page
);
158 memset(ret
, 0, size
);
159 *dma_handle
= plat_map_dma_mem(dev
, ret
, size
);
160 if (!plat_device_is_coherent(dev
)) {
161 dma_cache_wback_inv((unsigned long) ret
, size
);
163 ret
= UNCAC_ADDR(ret
);
170 static void mips_dma_free_noncoherent(struct device
*dev
, size_t size
,
171 void *vaddr
, dma_addr_t dma_handle
)
173 plat_unmap_dma_mem(dev
, dma_handle
, size
, DMA_BIDIRECTIONAL
);
174 free_pages((unsigned long) vaddr
, get_order(size
));
177 static void mips_dma_free_coherent(struct device
*dev
, size_t size
, void *vaddr
,
178 dma_addr_t dma_handle
, struct dma_attrs
*attrs
)
180 unsigned long addr
= (unsigned long) vaddr
;
181 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
182 struct page
*page
= NULL
;
184 if (dma_get_attr(DMA_ATTR_NON_CONSISTENT
, attrs
)) {
185 mips_dma_free_noncoherent(dev
, size
, vaddr
, dma_handle
);
189 plat_unmap_dma_mem(dev
, dma_handle
, size
, DMA_BIDIRECTIONAL
);
191 if (!plat_device_is_coherent(dev
) && !hw_coherentio
)
192 addr
= CAC_ADDR(addr
);
194 page
= virt_to_page((void *) addr
);
196 if (!dma_release_from_contiguous(dev
, page
, count
))
197 __free_pages(page
, get_order(size
));
200 static int mips_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
201 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
202 struct dma_attrs
*attrs
)
204 unsigned long user_count
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
205 unsigned long count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
206 unsigned long addr
= (unsigned long)cpu_addr
;
207 unsigned long off
= vma
->vm_pgoff
;
211 if (!plat_device_is_coherent(dev
) && !hw_coherentio
)
212 addr
= CAC_ADDR(addr
);
214 pfn
= page_to_pfn(virt_to_page((void *)addr
));
216 if (dma_get_attr(DMA_ATTR_WRITE_COMBINE
, attrs
))
217 vma
->vm_page_prot
= pgprot_writecombine(vma
->vm_page_prot
);
219 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
221 if (dma_mmap_from_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
224 if (off
< count
&& user_count
<= (count
- off
)) {
225 ret
= remap_pfn_range(vma
, vma
->vm_start
,
227 user_count
<< PAGE_SHIFT
,
234 static inline void __dma_sync_virtual(void *addr
, size_t size
,
235 enum dma_data_direction direction
)
239 dma_cache_wback((unsigned long)addr
, size
);
242 case DMA_FROM_DEVICE
:
243 dma_cache_inv((unsigned long)addr
, size
);
246 case DMA_BIDIRECTIONAL
:
247 dma_cache_wback_inv((unsigned long)addr
, size
);
256 * A single sg entry may refer to multiple physically contiguous
257 * pages. But we still need to process highmem pages individually.
258 * If highmem is not configured then the bulk of this loop gets
261 static inline void __dma_sync(struct page
*page
,
262 unsigned long offset
, size_t size
, enum dma_data_direction direction
)
269 if (PageHighMem(page
)) {
272 if (offset
+ len
> PAGE_SIZE
) {
273 if (offset
>= PAGE_SIZE
) {
274 page
+= offset
>> PAGE_SHIFT
;
275 offset
&= ~PAGE_MASK
;
277 len
= PAGE_SIZE
- offset
;
280 addr
= kmap_atomic(page
);
281 __dma_sync_virtual(addr
+ offset
, len
, direction
);
284 __dma_sync_virtual(page_address(page
) + offset
,
292 static void mips_dma_unmap_page(struct device
*dev
, dma_addr_t dma_addr
,
293 size_t size
, enum dma_data_direction direction
, struct dma_attrs
*attrs
)
295 if (cpu_needs_post_dma_flush(dev
))
296 __dma_sync(dma_addr_to_page(dev
, dma_addr
),
297 dma_addr
& ~PAGE_MASK
, size
, direction
);
298 plat_post_dma_flush(dev
);
299 plat_unmap_dma_mem(dev
, dma_addr
, size
, direction
);
302 static int mips_dma_map_sg(struct device
*dev
, struct scatterlist
*sglist
,
303 int nents
, enum dma_data_direction direction
, struct dma_attrs
*attrs
)
306 struct scatterlist
*sg
;
308 for_each_sg(sglist
, sg
, nents
, i
) {
309 if (!plat_device_is_coherent(dev
))
310 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
312 #ifdef CONFIG_NEED_SG_DMA_LENGTH
313 sg
->dma_length
= sg
->length
;
315 sg
->dma_address
= plat_map_dma_mem_page(dev
, sg_page(sg
)) +
322 static dma_addr_t
mips_dma_map_page(struct device
*dev
, struct page
*page
,
323 unsigned long offset
, size_t size
, enum dma_data_direction direction
,
324 struct dma_attrs
*attrs
)
326 if (!plat_device_is_coherent(dev
))
327 __dma_sync(page
, offset
, size
, direction
);
329 return plat_map_dma_mem_page(dev
, page
) + offset
;
332 static void mips_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
333 int nhwentries
, enum dma_data_direction direction
,
334 struct dma_attrs
*attrs
)
337 struct scatterlist
*sg
;
339 for_each_sg(sglist
, sg
, nhwentries
, i
) {
340 if (!plat_device_is_coherent(dev
) &&
341 direction
!= DMA_TO_DEVICE
)
342 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
344 plat_unmap_dma_mem(dev
, sg
->dma_address
, sg
->length
, direction
);
348 static void mips_dma_sync_single_for_cpu(struct device
*dev
,
349 dma_addr_t dma_handle
, size_t size
, enum dma_data_direction direction
)
351 if (cpu_needs_post_dma_flush(dev
))
352 __dma_sync(dma_addr_to_page(dev
, dma_handle
),
353 dma_handle
& ~PAGE_MASK
, size
, direction
);
354 plat_post_dma_flush(dev
);
357 static void mips_dma_sync_single_for_device(struct device
*dev
,
358 dma_addr_t dma_handle
, size_t size
, enum dma_data_direction direction
)
360 if (!plat_device_is_coherent(dev
))
361 __dma_sync(dma_addr_to_page(dev
, dma_handle
),
362 dma_handle
& ~PAGE_MASK
, size
, direction
);
365 static void mips_dma_sync_sg_for_cpu(struct device
*dev
,
366 struct scatterlist
*sglist
, int nelems
,
367 enum dma_data_direction direction
)
370 struct scatterlist
*sg
;
372 if (cpu_needs_post_dma_flush(dev
)) {
373 for_each_sg(sglist
, sg
, nelems
, i
) {
374 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
378 plat_post_dma_flush(dev
);
381 static void mips_dma_sync_sg_for_device(struct device
*dev
,
382 struct scatterlist
*sglist
, int nelems
,
383 enum dma_data_direction direction
)
386 struct scatterlist
*sg
;
388 if (!plat_device_is_coherent(dev
)) {
389 for_each_sg(sglist
, sg
, nelems
, i
) {
390 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
396 int mips_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
401 int mips_dma_supported(struct device
*dev
, u64 mask
)
403 return plat_dma_supported(dev
, mask
);
406 void dma_cache_sync(struct device
*dev
, void *vaddr
, size_t size
,
407 enum dma_data_direction direction
)
409 BUG_ON(direction
== DMA_NONE
);
411 if (!plat_device_is_coherent(dev
))
412 __dma_sync_virtual(vaddr
, size
, direction
);
415 EXPORT_SYMBOL(dma_cache_sync
);
417 static struct dma_map_ops mips_default_dma_map_ops
= {
418 .alloc
= mips_dma_alloc_coherent
,
419 .free
= mips_dma_free_coherent
,
420 .mmap
= mips_dma_mmap
,
421 .map_page
= mips_dma_map_page
,
422 .unmap_page
= mips_dma_unmap_page
,
423 .map_sg
= mips_dma_map_sg
,
424 .unmap_sg
= mips_dma_unmap_sg
,
425 .sync_single_for_cpu
= mips_dma_sync_single_for_cpu
,
426 .sync_single_for_device
= mips_dma_sync_single_for_device
,
427 .sync_sg_for_cpu
= mips_dma_sync_sg_for_cpu
,
428 .sync_sg_for_device
= mips_dma_sync_sg_for_device
,
429 .mapping_error
= mips_dma_mapping_error
,
430 .dma_supported
= mips_dma_supported
433 struct dma_map_ops
*mips_dma_map_ops
= &mips_default_dma_map_ops
;
434 EXPORT_SYMBOL(mips_dma_map_ops
);
436 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
438 static int __init
mips_dma_init(void)
440 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES
);
444 fs_initcall(mips_dma_init
);