2 * Copyright 2003-2013 Broadcom Corporation.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the Broadcom
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
22 * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 #include <asm/asm-offsets.h>
39 #include <asm/cacheops.h>
40 #include <asm/regdef.h>
41 #include <asm/mipsregs.h>
42 #include <asm/stackframe.h>
43 #include <asm/asmmacro.h>
44 #include <asm/addrspace.h>
46 #include <asm/netlogic/common.h>
48 #include <asm/netlogic/xlp-hal/iomap.h>
49 #include <asm/netlogic/xlp-hal/xlp.h>
50 #include <asm/netlogic/xlp-hal/sys.h>
51 #include <asm/netlogic/xlp-hal/cpucontrol.h>
54 #define SYS_CPU_COHERENT_BASE CKSEG1ADDR(XLP_DEFAULT_IO_BASE) + \
55 XLP_IO_SYS_OFFSET(0) + XLP_IO_PCI_HDRSZ + \
56 SYS_CPU_NONCOHERENT_MODE * 4
58 /* Enable XLP features and workarounds in the LSU */
63 lui t2, 0x4080 /* Enable Unaligned Access, L2HPE */
69 ori t1, 0x1000 /* Enable Icache partitioning */
72 li t0, SCHED_DEFEATURE
73 lui t1, 0x0100 /* Disable BRU accepting ALU ops */
78 * Allow access to physical mem >64G by enabling ELPA in PAGEGRAIN
79 * register. This is needed before going to C code since the SP can
80 * in this region. Called from all HW threads.
82 .macro xlp_early_mmu_init
83 mfc0 t0, CP0_PAGEMASK, 1
84 li t1, (1 << 29) /* ELPA bit */
86 mtc0 t0, CP0_PAGEMASK, 1
90 * L1D cache has to be flushed before enabling threads in XLP.
91 * On XLP8xx/XLP3xx, we do a low level flush using processor control
92 * registers. On XLPII CPUs, usual cache instructions work.
94 .macro xlp_flush_l1_dcache
96 andi t0, t0, PRID_IMP_MASK
101 /* XLP8xx low level cache flush */
102 li t0, LSU_DEBUG_DATA0
103 li t1, LSU_DEBUG_ADDR
105 li t3, 0x1000 /* loop count */
109 ori v1, v0, 0x3 /* way0 | write_enable | write_active */
113 andi v1, 0x1 /* wait for write_active == 0 */
117 ori v1, v0, 0x7 /* way1 | write_enable | write_active */
121 andi v1, 0x1 /* wait for write_active == 0 */
130 /* XLPII CPUs, Invalidate all 64k of L1 D-cache */
134 16: cache Index_Writeback_Inv_D, 0(t0)
142 * nlm_reset_entry will be copied to the reset entry point for
143 * XLR and XLP. The XLP cores start here when they are woken up. This
144 * is also the NMI entry point.
146 * We use scratch reg 6/7 to save k0/k1 and check for NMI first.
148 * The data corresponding to reset/NMI is stored at RESET_DATA_PHYS
149 * location, this will have the thread mask (used when core is woken up)
150 * and the current NMI handler in case we reached here for an NMI.
152 * When a core or thread is newly woken up, it marks itself ready and
153 * loops in a 'wait'. When the CPU really needs waking up, we send an NMI
154 * IPI to it, with the NMI handler set to prom_boot_secondary_cpus
158 .set arch=xlr /* for mfcr/mtcr, XLR is sufficient */
160 FEXPORT(nlm_reset_entry)
166 beqz k1, 1f /* go to real reset entry */
168 li k1, CKSEG1ADDR(RESET_DATA_PHYS) /* NMI */
169 ld k0, BOOT_NMI_HANDLER(k1)
173 1: /* Entry point on core wakeup */
174 mfc0 t0, CP0_EBASE, 0 /* processor ID */
175 andi t0, PRID_IMP_MASK
176 li t1, 0x1500 /* XLP 9xx */
177 beq t0, t1, 2f /* does not need to set coherent */
180 li t1, 0x1300 /* XLP 5xx */
181 beq t0, t1, 2f /* does not need to set coherent */
184 /* set bit in SYS coherent register for the core */
185 mfc0 t0, CP0_EBASE, 1
186 mfc0 t1, CP0_EBASE, 1
188 andi t1, 0x3 /* t1 <- node */
190 mul t3, t2, t1 /* t3 = node * 0x40000 */
192 and t0, t0, 0x7 /* t0 <- core */
195 nor t0, t0, zero /* t0 <- ~(1 << core) */
196 li t2, SYS_CPU_COHERENT_BASE
197 add t2, t2, t3 /* t2 <- SYS offset for node */
202 /* read back to ensure complete */
207 /* Configure LSU on Non-0 Cores. */
212 * Wake up sibling threads from the initial thread in a core.
214 EXPORT(nlm_boot_siblings)
215 /* core L1D flush before enable threads */
217 /* save ra and sp, will be used later (only for boot cpu) */
220 /* Enable hw threads by writing to MAP_THREADMODE of the core */
221 li t0, CKSEG1ADDR(RESET_DATA_PHYS)
222 lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */
223 li t0, ((CPU_BLOCKID_MAP << 8) | MAP_THREADMODE)
229 * The new hardware thread starts at the next instruction
230 * For all the cases other than core 0 thread 0, we will
231 * jump to the secondary wait function.
233 * NOTE: All GPR contents are lost after the mtcr above!
235 mfc0 v0, CP0_EBASE, 1
236 andi v0, 0x3ff /* v0 <- node/core */
239 * Errata: to avoid potential live lock, setup IFU_BRUB_RESERVE
240 * when running 4 threads per core
242 andi v1, v0, 0x3 /* v1 <- thread id */
246 /* thread 0 of each core. */
247 li t0, CKSEG1ADDR(RESET_DATA_PHYS)
248 lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */
249 subu t1, 0x3 /* 4-thread per core mode? */
253 li t0, IFU_BRUB_RESERVE
258 beqz v0, 4f /* boot cpu (cpuid == 0)? */
261 /* setup status reg */
271 li t3, CKSEG1ADDR(RESET_DATA_PHYS)
272 ADDIU t1, t3, BOOT_CPU_READY
277 /* Wait until NMI hits */
283 * For the boot CPU, we have to restore ra and sp and return, rest
284 * of the registers will be restored by the caller
291 EXPORT(nlm_reset_entry_end)
293 LEAF(nlm_init_boot_cpu)
294 #ifdef CONFIG_CPU_XLP
300 END(nlm_init_boot_cpu)